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NONEXPLOSION CRITERIA FOR RELATIVISTIC DIFFUSIONS1

BY ISMAËL BAILLEUL AND JACQUES FRANCHI

Centre for Mathematical Sciences and Université de Strasbourg et CNRS

Some general Lorentz covariant operators, associated to the so-called �

(or �)-relativistic diffusions and making sense in any Lorentzian manifold,
have been introduced by Franchi and Le Jan [Comm. Pure Appl. Math. 60
(2007) 187–251], Franchi and Le Jan [Curvature diffusions in general relativ-
ity (2010). Unpublished manuscript]. Only a few examples have been studied
so far. We provide in this work some nonexplosion criteria for these diffu-
sions, which can be used in generic cases.

1. Introduction. It is well known that the metric completeness of a Rieman-
nian manifold does not prevent Brownian motion from exploding within a finite
time with positive probability. The situation is now well understood, in particu-
lar, thanks to the works of Yau [27], Grigor’yan [16], Takeda [25, 26] and very
recently Hsu and Qin [20], to cite but a few names. Different lines of approach
have been used. Yau and Grigor’yan treated the analytic counterpart of the com-
pleteness problem and investigated the well-posedness of the parabolic Cauchy
problem; the former using local information on the geometry under the form of
curvature bounds; the latter using a global information under the form of an upper
bound for the volume of large balls. Takeda used a purely probabilistic method
due to Lyons and Zheng in [21], based on reversibility. This approach was recently
improved by Hsu and Qin in [20]. Hsu used stochastic analysis in [19], Theo-
rem 3.5.1, to control the radial process, by estimating the Laplacian of the distance
function to a fixed point in terms of curvature bounds. All these results are tied
down to the metric framework provided by a complete Riemannian manifold.

A natural analog of Brownian motion in a Lorentzian setting was first intro-
duced by Dudley [10] in the special relativistic case, and extended to the general
relativistic framework by Franchi and Le Jan [12]. It belongs to a larger class of
relativistic processes introduced in [3] and [13], defined in purely geometric terms
and collectively refered to as relativistic diffusions. Their trajectories represent the
random motion in spacetime of a small massive particle, and make sense only in
the unit tangent bundle or in the orthonormal frame bundle. Only a few examples
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have been studied in detail up to now: in Minkowski spacetime (the framework of
special relativity) [2, 5, 10], in Robertson–Walker spacetimes (models of universe
with a big-bang) [1], Gödel spacetime (a causally paradoxical universe) [11] and
Schwarzschild spacetime (a model for an isolated star or a black hole) [12].

Apart from the works [3] and [13], no general study of these intrinsic random
processes was done. As a first step towards a better understanding of these pro-
cesses and their interplay with the geometry of the ambient spacetime, we provide
in this work some nonexplosion criteria for some generic classes of Lorentz man-
ifolds. In addition to being a natural question, the completeness issue is strongly
related to important questions in general relativity. Indeed, dating back to Pen-
rose and Hawking’s incompleteness theorems, the appearance of singularities in
Einstein’s theory of gravitation has been recognized as unavoidable under quite
natural assumptions. Although there is no agreement on what should be called a
singularity of a spacetime, the existence of incomplete geodesics has been widely
used as an indicator of such a singular feature. In so far as the random dynamics
considered in this work (Section 2.2) can be seen as intrinsic perturbations of the
geodesic flow, their completeness/incompleteness is a distinguishing feature of a
spacetime. We refer the reader to [4] for a first approach of stochastic incomplete-
ness.

The paths of the random processes we shall consider are (almost-)all C 1 paths
parametrized by their (proper time) arc length. What could possibly make them
explode? In a complete Riemannian manifold, any such path would have to be at
time s in a closed ball of radius s with center its starting point, so it cannot explode.
There are two problems with the Lorentzian setting: a Lorentzian manifold has
no metric or finite distance function associated with its structure, and the set of
unit tangent vectors at any point is noncompact. As a result, even in Minkowski
spacetime, one can construct exploding paths with finite (proper time) arc length.

To start our investigations, we shall take advantage in Section 3 of the bun-
dle structure of the state space of the process, to exhibit a one-dimensional sub-
process whose control is possible in the class of globally hyperbolic spacetimes.
This structure, indeed, allows us to define some Lyapounov function, and leads
to a nonexplosion criterion by using a simple and well-known observation due to
Khasminsky.

With a metric missing, the completeness notion used in a crucial way in the Rie-
mannian setting becomes unavailable. Busemann, Hawking and Ellis and Schmidt,
Beem and Ehrlich proposed different notions in replacement. Schmidt’s idea is
to give a Riemannian structure to the orthonormal frame bundle. We consider
Schmidt b-completeness notion in Section 4, showing how it leads to a stochas-
tic completeness result for some of the relativistic diffusions.

This result can be significantly improved by adapting Takeda’s strategy [26], as
improved by Hsu and Qin [20], to the Lorentzian setting. This is, however, far from
being straightforward, since we are working in a nonsymmetric, nonelliptic setting,
where the main ingredients of Takeda’s method (use of symmetry and reflected
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Brownian motion on the boundary of large Riemannian balls) have no obvious
Lorentzian counterpart. To overcome this difficulty, we use in Section 5 a sub-
Riemannian structure well adapted to our setting, and which will somehow play
for us the role of the nonexisting Lorentzian distance.

2. Relativistic diffusions.

2.1. Basic geometrical setting. Recall Minkowski space is the product R1,d ≡
R × Rd equipped with the metric

gM(q, q) := t2 − |x1|2 − · · · − |xd |2 for any q = (t, x) ∈ R1,d ,

where (t, x1, . . . , xd) denote the coordinates of q in the canonical basis {ε0, ε1, . . . ,

εd} of R1,d .
Let (M, g) be a smooth (1 + d)-dimensional Lorentzian manifold (with d ≥ 2),

which we shall always suppose to be oriented and time-oriented. (We refer the
reader to the books of Hawking–Ellis [18] and O’Neill [23] for the basics on
Lorentzian geometry.) Given any point m ∈ M, it is usual to consider an orthonor-
mal basis {e0, . . . , ed} of the tangent space TmM as an isometry e from (R1,d , gM)

to (TmM, gm); so, strictly speaking, ei = e(εi). The orthonormal frame bundle of
M is just the collection

OM = {� = (m, e)|m ∈ M, e an orthonormal basis of (TmM, gm)}.
We shall write OU = {� = (m, e)|m ∈ U , e an orthonormal basis of TmM} for any
subset U of M. For a small enough U and a chart x : U → R1+d on it, we shall
write ej = ek

j ∂xk for each vector ej of a frame e; this decomposition provides

local coordinates (xi, ek
j ) on OU .

Each fiber OmM is modeled on the noncompact orthogonal group O(1, d),
which has four connected components. We shall be interested in dynamics leaving
these components globally fixed. We choose to consider only one of them, speci-
fied by the requirement that e0 should be future-oriented and that the orientation
of e should be direct. We shall still denote the resulting frame bundle by OM, as
there will be no risk of confusion. The Lorentz–Möbius group SO0(1, d), that is,
the connected component of the unit in O(1, d), acts properly on OM. This natural
action induces the canonical vertical vector fields (Vij )0≤i<j≤d . The subgroup of
elements in SO0(1, d) that fix ε0 can be identified with the rotation group SO(d),
and generates the vector fields (Vij )1≤i<j≤d . To shorten notations we shall write
Vj for V0j ; it generates boosts, that is, hyperbolic rotations in each fiber, and reads,
in the above local coordinates,

Vj = ek
j

∂

∂ek
0

+ ek
0

∂

∂ek
j

.(2.1)

Throughout this work, T M and OM will be endowed with the Levi–Civita con-
nection, inherited from the Lorentzian pseudo-metric g. Last, we denote by H0 the
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vector field generating the geodesic flow on OM. Denoting by ��
kj the Christoffel

coefficients, we have, in the above local chart on OM,

H0 = ek
0 ∂xk − ek

0e
j
i �

�
kj

∂

∂e�
i

.(2.2)

We shall denote by T 1M the future-oriented unit tangent bundle over M, with
generic element (m, ṁ). In Minkowski spacetime R1,d , it is the product of R1,d

by the hyperboloid H = {q = (t, x) ∈ R1,d;g(q, q) = 1, t > 0}. The bundle T 1M

is locally modeled on that product. (Consult [18] or [23] for some background.)
Denote by π1 the projection (m, e) �→ (m, e0 ≡ ṁ) from OM to T 1M, and by π0
the canonical projection OM → M.

2.2. Relativistic random dynamics. Relativistic diffusions model the random
motion in spacetime of a small massive particle parametrized by its proper time,
providing random timelike paths; so, properly speaking, their mathematical coun-
terpart are random trajectories (ms, ṁs) in the future unit bundle T 1M subject to
the condition d

ds
ms = ṁs . Yet it happens to be more convenient to define random

dynamics in the orthonormal frame bundle OM as it bears more structure than
T 1M; these diffusions on OM are constructed so as to have a projection on T 1M

which is itself a diffusion. Such a construction is remniscent of Malliavin–Eells–
Elworthy’s construction of Brownian motion on a Riemannian manifold as the
projection of a diffusion on the orthonormal frame bundle.

2.2.1. Dynamics in OM. Given any smooth nonnegative function � :T 1M →
R+, identified to a SO(d)-invariant function on OM by setting �(�) := �(π1(�)),
consider the following Stratonovich differential equation on OM:

◦d�s = H0(�s) ds + 1

4

∑
1≤j≤d

Vj�(�s)Vj (�s) ds

(2.3)
+ √

�(�s)
∑

1≤j≤d

Vj (�s) ◦ dwj
s ,

where w is a d-dimensional Brownian motion and where we understand a vec-
tor field as a first-order differential operator. This equation has a unique maximal
strong solution, defined up to its explosion time ζ .

It is clear on this equation that the (e1, . . . , ed)-part of �s is irrelevant in defin-
ing the dynamics of (ms, e0(s)) since �(�) depends only on π1(�); this is the
reason why this diffusion on OM projects down in T 1M onto a diffusion. Con-
sult [12], Theorem 1, [13], Theorem 3.2.1 or [3], Section 3.2, for the details. The
diffusion in OM has generator

G� = H0 + 1

2

∑
1≤j≤d

Vj (�Vj ).(2.4)



2172 I. BAILLEUL AND J. FRANCHI

We shall generically call these relativistic dynamics �-diffusions (the �-
diffusions of [13]). These diffusions are covariant, in the sense that any isome-
try of (M, g) maps a �-diffusion to a �-diffusion (with the same �: the law is
preserved, up to the starting point), and admit the Liouville measure as an invari-
ant measure. The π0-projections (on the base manifold M) of their trajectories
are almost-surely C1 paths. A �-diffusion (�s)0≤s<ζ solving equation (2.3) is
parametrized by proper time s ≥ 0. The particular case � = 0 gives back the de-
terministic geodesic flow, and the case of a nonnull constant � gives back the
relativistic diffusion as defined first in [12], which we shall call the basic rel-
ativistic diffusion. It is described in simple terms in Minkowski spacetime. Al-
though the metric gM is nondefinite positive, its restriction to any tangent space
of the half sphere H of unit tangent vectors is definite negative; this turns H

into a Riemannian manifold with constant negative curvature. Dudley’s diffu-
sion (ms, es) = (ms, (e0(s), . . . , ed(s))), which is the basic relativistic diffusion
in Minkowski spacetime, corresponds to taking ms = m0 + ∫ s

0 e0(r) dr , and for
the velocity e0(r) a Brownian motion on H. The remainder e1(r), . . . , ed(r) of the
basis is obtained by paralell transport of e1(0), . . . , ed(0) along the Brownian path
(e0(u))0≤u≤r .

The following elementary lemma, proved in [4], Section 2.2, gives an intuitive
picture of the �-diffusions, for � depending only on m ∈ M.

LEMMA 1. Let γ : [0, T ] → M be a C 2 timelike path parametrized by its
proper time, and �0 ∈ OM such that π1(�0) = (γ (0), γ̇ (0)) ∈ T 1M. Then there
exists a unique C 2 path (�s)0≤s≤T in OM, and some unique C 1 real-valued con-
trols h1, . . . , hd defined on [0, T ], such that �0 = �0, π1(�s) = (γ (s), γ̇ (s)) and

�̇s = H0(�s) +
d∑

j=1

Vj (�s)h
j (s).

So the �-diffusion is obtained in that case by replacing the deterministic con-
trols of a typical C 2 timelike path by Brownian controls with position dependent
variance �(ms).

On a manifold with nonpositive scalar curvature R, taking �(�) = −2R (for
a nonnull constant ), one gets a dynamic which can be truly random only in
nonempty parts of spacetime; it was called R-diffusion in [13]. Denote by T the
energy-momentum tensor of the spacetime. Taking �(�) = 2T(e0, e0), we get
what was named the energy diffusion in [13]. See [3] for more general models of
diffusions.

2.2.2. Dynamics in T 1M. Denote by ∇v the gradient on T 1
mM, identified with

the hyperbolic space Hd by means of the metric gm, and by L0 the vector field
generating the geodesic flow on T 1M. Note that T π1(H0) = L0 and T π1(Vj ) =:
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∇v
j = ek

j ∂ṁk (with Einstein summation convention). The projection on T 1M of the
OM-valued diffusion has the following SO(d)-invariant generator:

L� = L0 + 1
2∇v(�∇v).

For a constant � the operator L� has the following expression in the local coordi-
nates introduced in Section 2.1:

L0 + �

2
�v = ṁk ∂

∂mk
+

(
d

2
�ṁk − ṁiṁj�k

ij (m)

)
∂

∂ṁk

+ �

2

(
ṁkṁ� − gk�(m)

) ∂2

∂ṁk ∂ṁ�
,

where �v denotes the vertical Laplacian. We have, for a generic �,

L� = L0 + �

2
�v + 1

2

(
ṁkṁ� − gk�(m)

) ∂�

∂ṁk

∂

∂ṁ�
.(2.5)

The purpose of this work is to provide some conditions under which the �-
diffusions have almost-surely an infinite lifetime ζ . In so far as we are mainly in-
terested in the T 1M-valued �-diffusions as models of physical phenomena, while
we shall mainly be working with OM-valued diffusions, it is reassuring to have the
following fact, which essentially means that the possible explosion of (�s)0≤s<ζ

is never due to its (e1, . . . , ed)-part.

PROPOSITION 2. The �-diffusion on OM and its T 1M-projection have the
same lifetime.

PROOF. Write �s = (ms; (ṁs, e1(s), . . . , ed(s))) ∈ OM and φs := π1(�s) =
(ms, ṁs) ∈ T 1M. Using the local coordinates (xk, e�

j )0≤k,�≤d;1≤j≤d , equation
(2.3) defining the �-diffusion reads

dṁk
s = dMk

s − �k
i�(ms)ṁ

i
sṁ

�
s ds + d

2
�(φs)ṁ

k
s ds

+ 1

2

(
ṁk

s ṁ
�
s − gk�(ms)

) ∂�

∂ṁ�
(φs) ds,

dek
j (s) =

√
�(φs)ṁ

k
s dwj

s − �k
i�(ms)e

�
j (s)ṁ

i
s ds

+ 1

2
�(φs)e

k
j (s) ds + 1

2
Vj�(φs)ṁ

k
s ds,

with the martingale term dMk
s := √

�(φs)e
k
j (s) dw

j
s . (See Section 3.2 of [13]

for the computation of the Itô correction.) Setting e0 = ṁ and ηin := ηn
i :=

1i=n=0 − 11≤i=n≤d , and noticing that the matrix (ηinek
ngk�)0≤i,�≤d is the inverse
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of the matrix (ei
�)0≤i,�≤d , it follows from the above system that we have, for all

0 ≤ k ≤ d,1 ≤ j ≤ d ,

dek
j (s) = ṁk

s η
n
j eq

n(s)gq�(ms) dM�
s − �k

i�(ms)e
�
j (s)ṁ

i
s ds + 1

2
�(φs)e

k
j (s) ds

+ 1

2
Vj�(φs)ṁ

k
s ds

= −e�
j (s)�

k
i�(ms)ṁ

i
s ds + 1

2
ek
j (s)�(φs) ds + 1

2
Vj�(φs)ṁ

k
s ds

− e
q
j (s)ṁk

s gq�(ms)

[
dṁ�

s + ��
ip(ms)ṁ

i
sṁ

p
s ds − d

2
�(φs)ṁ

�
s ds

− 1

2
[ṁp

s ṁ�
s − gp�(ms)] ∂�

∂ṁp
(φs) ds

]
.

So the matrix (ek
j (s))0≤s<ζ and the frame-valued diffusion (�s)0≤s<ζ satisfy a

linear stochastic differential equation, conditionally on (φs)0≤s<ζ . It is thus well
defined up to the explosion time ζ of the T 1M-valued �-diffusion. �

This point being clarified, we shall work freely in the sequel with �-diffusions
on OM.

3. A first nonexplosion criterion. We give in this section a simple nonex-
plosion criterion, well suited to investigate the behavior of the �-diffusions in
the largely used class of globally hyperbolic spacetimes. A Lyapounov function
is introduced for this purpose, and leads to a nonexplosion criterion of a different
nature than the typical Riemannian criteria mentioned in the Introduction.

The idea is roughly the following: if we can find a function f = f (�) which
has compact level sets {f ≤ λ}, and does not increase along the trajectories, then
the dynamics cannot explode. This was noted first by Khasminsky in a stochastic
context; we state his observation here for the relativistic diffusions.

LEMMA 3 (Khasminsky). If there exists a nonnegative function f on OM

and a positive constant C such that G�f ≤ Cf , and f goes to infinity along any
timelike path leaving any compact in a finite time, then the �-diffusion has almost-
surely an infinite lifetime.

PROOF. The condition G�f ≤ Cf implies that the real-valued process
(e−Csf (�s))s<ζ is a nonnegative supermartingale. Denote by τn the (possibly
infinite) exit time from the level set {f ≤ n}. By optional stopping, we have

f (�0) ≥ E[e−Cτnf (�τn)] = nE[e−Cτn].
This implies that τn goes to infinity as n goes to infinity; as ζ = limn→∞ τn, this
proves Khasminsky’s statement. �
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As �-diffusions have no a priori reason not to explode, such a Lyapounov func-
tion will generally not exist. Yet, it is possible to construct such a function in some
classes of spacetimes of interest for cosmology and theoretical physics. We give
below two such examples. The construction of the function f uses the same recipe
in both cases: if there exists an intrinsic distinguished future-directed timelike C1

vector field U ∈ T 1M, we can define

f (�) := gm(Um, ṁ);(3.1)

recall that π1(�) = (m, ṁ) ∈ T 1M. For this choice of f (�), which is the hyper-
bolic angle between U and ṁ, we have f ≥ 1, and

H0f (�) = ∇ṁ(g(U, ṁ)) = g(∇ṁU, ṁ).(3.2)

The following lemma shows why f is a good choice to apply Khasminsky’s crite-
rion.

LEMMA 4. We have on OM : 1
2

∑d
j=1 Vj (�Vjf ) = d

2 �f + 1
2(f ṁk −Uk) ∂�

∂ṁk .

PROOF. Choose local coordinates for which U = ∂x0 , so f (�) = ṁ0 = e0
0.

Using (2.1), we have thus locally:

Vjf =
(
ek
j

∂

∂ek
0

+ ek
0

∂

∂ek
j

)
e0

0 = e0
j , V 2

j f = e0
0 = f

and

d∑
j=1

(Vj�)(Vjf ) =
d∑

j=1

e0
j e

k
j

∂�

∂ṁk
= (ṁ0ṁk − g0k)

∂�

∂ṁk
= (f ṁk − Uk)

∂�

∂ṁk
.

�

It follows from (2.4) and (3.2) that

G�f = g(∇ṁU, ṁ) + d

2
�f + 1

2
(f ṁk − Uk)

∂�

∂ṁk
·

Khasminsky’s criterion will thus guarantee the nonexplosion of the �-diffusion
provided f explodes along exploding trajectories, and there exists a positive con-
stant C such that

g(∇ṁU, ṁ) + 1

2
(f ṁk − Uk)

∂�

∂ṁk
≤

(
C − d

2
�

)
g(U, ṁ).(3.3)

In order to turn this criterion into an effective tool, we first restrict ourselves to
the following general class of spacetimes. This inequality become s particularly
simple when � depends only on the base point m ∈ M.
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3.1. Globally hyperbolic spacetimes. This class of cosmological models is
characterized by the existence of a global time function (i.e., a function τ : M → R,
with timelike gradient) such that it has connected spacelike level sets {τ = t} of τ ,
and each integral curve of the vector field ∇τ meets each level set of τ in exactly
one point. Thus M is diffeomorphic to the product I × S of an interval I and a
d-dimensional manifold S. Without loss of generality, we can suppose the inter-
val I unbonded from above. With the example of Minkowski spacetime in mind,
we see that a given spacetime may have an infinity of time functions; they are not
intrinsically associated with the geometry.

Yet, we can take for vector field U in this setting the gradient of the time func-
tion τ :m = (t, x) ∈ I × S �→ t , so

f (�) = g(U, ṁ) = ∇ṁτ = ṁ0 = ṫ > 0.

There is no hope, though, to prove inequality (3.3) without specifying further the
model, as the time function is not intrinsically defined. To proceed further, we
shall look at the sub-class of generalized warped product spacetimes, in which the
time function is supplied by the model and can be seen as an absolute time. These
universes are globally hyperbolic spacetimes M = I × S whose metric tensor has
the form

gm(ṁ, ṁ) = a2
m|ṁ0|2 − hm(ṁS, ṁS),(3.4)

where ṁ0 is the image of ṁ ∈ T 1
mM by the differential of the first projection I ×

S → I and ṁS the image of ṁ by the differential of the second projection I ×
S → S. Write m = (t, x) ∈ I × S. The function a is a positive C 1 function on M,
assumed to be bounded on any subset I ′ × S where I ′ is bounded from above and
hm is a positive-definite scalar product on TxS, depending on m in a C 1 way. This
class of spacetimes contains all Robertson–Walker spacetimes (hence in particular
de Sitter and Einstein–de Sitter spacetimes and the universal covering of the anti-
de Sitter spacetime).

THEOREM 5. Let (M, g) be a generalized warped product spacetime. If the
function

T 1M  (m, ṁ) �−→ ∇ṁ loga − d

4
�(m, ṁ) − 1

4

(
ṁk ∂�

∂ṁk
− 1

a2(m)ṁ0

∂�

∂ṁ0

)
is bounded below, then the �-diffusion almost-surely does not explode.

PROOF. • We first check that if the �-diffusion has a finite lifetime ζ then
f (�s) explodes at time ζ−. To that end, consider a timelike trajectory γ =
(ms, ṁs)0≤s<T = ((ts, xs), ṁs)0≤s<T in T 1M, defined on some semi-open inter-
val [0, T ), and such that d

ds
ms = ṁs and f (γs) = ṫs is bounded above by some

positive constant C. It follows that t0 ≤ ts ≤ t0 + CT , and hms (ẋs, ẋs) ≤ C2a2
ms

is
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bounded above by a constant since a is bounded above on (inf I, t0 + CT ] × S.
This entails that (xs)0≤s<T cannot exit a bounded region of S, and so that γ must
be trapped in a finite union of sets of the form J+(m0)∩J−(qj ), for some qj ∈ M.
Such a union of sets is compact in a hyperbolic spacetime (see, e.g., [18], Section
6.6), γ is trapped in a compact set. Would γ explode, it would have a cluster point
at which the strong causality would fail, leading to a contradiction as globally hy-
perbolic spacetimes are strongly causal ([18], Section 6.6).

• The condition of the theorem is a rephrasing of the local condition (3.3). To
see that, let us work in a neighborhood V = [t1, t2] × V of a given point m0, and
choose coordinates xj on V ; this provides coordinates (t, xi) on V , which induce
coordinates on T 1V : for m ∈ V and ṁ ∈ T 1

mM, write ṁ = ṁ0 ∂t + ∑
1≤j≤d ṁj ∂xj .

Note first that since U = a−2∂t , we have

∇ṁU = ∇ṁ(a−2) ∂t + a−2∇ṁ ∂t .

Using Christoffel’s symbols �i
jk we have

(∇ṁ ∂t )
α = ∇ṁ(a−2)δα

0 + a−2ṁc�α
c0,

for α ∈ {0, . . . , d} and a summation over c in {0, . . . , d}; so

H0f = g(∇ṁU, ṁ) = ∇ṁ(loga−2)ṁ0 + a−2ṁc�α
c0gαβṁβ.

The explicit formulas for the Christoffel symbols, in terms of the metric, are

�0
00 = ∂t (loga), �0

k0 = ∂xk (loga),

�i
00 = 1

2hi� ∂x�(a
2), �i

k0 = 1
2hi� ∂th�k,

for i, k ∈ {1, . . . , d} and a sommation over 1 ≤ � ≤ d . We thus have, after simplifi-
cations,

H0f = −2∇ṁ(loga)ṁ0 + |ṁ0|2 ∂t (loga) − a−2

2
ṁk ∂t (h�k)ṁ

�

= −|ṁ0|2 ∂t loga − 2ṁ0ṁk ∂xk loga − a−2

2
ṁk ∂t (h�k)ṁ

�.

Using the unit pseudo-norm relation a2
m|ṁ0|2 −h�k(m)ṁkṁ� = 1, the above equal-

ity becomes

H0f = −|ṁ0|2 ∂t loga − 2ṁ0ṁk ∂xk loga − a−2

2
|ṁ0|2 ∂t (a

2),

that is, H0f = −2ṁ0∇ṁ loga. The statement of the theorem follows from (3.3).
�

This result takes a particularly simple form in the case where � depends only
on the base point m, as is the case of the R-diffusion.
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COROLLARY 6. Let M = I × S denote a generalized warped product space-
time and � be a bounded nonnegative function on M. Then the �-diffusion does
not explode if ∇a is everywhere nonspacelike and future-directed.

PROOF. The condition of Theorem 5 reads, in that case, “T 1M  (m, ṁ) �→
∇ṁ loga is bounded below.” To rephrase this condition into the more synthetic
condition of the statement, let us work in local coordinates, (t, x) and (ṫ , ẋ) for m

and ṁ, respectively.
We have ṫ = a−1 ch r and ẋ = (sh r)σ , for some r ∈ R and σ ∈ TxS with

|σ |h(m) = 1.
Define u := ∂t loga and v := ∂x loga ∈ TxS ≡ Rd . Then the condition of The-

orem 5 reads, “ua−1 ch r − (viσ
i) sh r ≥ C,” for any r and σ . Letting r → ±∞,

gives a−1u ≥ |viσ
i | ≥ 0. As the constant C can be taken negative without loss

of generality, the reciprocal is clear. Now, since max|σ |h(m)=1 |viσ
i | = |v|h−1(m),

the condition reads, “a−1u ≥ |v|h−1(m).” Finally, as ∇ = (a−2 ∂t ,−hij ∂xj ), the
vector ∇ loga = (a−2u,−hijvj ) has pseudo-norm g(∇ loga,∇ loga) = a−2u2 −
|v|2

h−1(m)
≥ 0. �

This criterion applies in particular to �-diffusions in Robertson–Walker space-
times, recovering the results of Angst [1], who proceeded by direct analysis of the
stochastic differential equations of the dynamics.

3.2. Perfect fluids. Our second class of examples, where to apply Lyapounov’s
method to prove nonexplosion, will be the set of spacetimes with normal matter
whose energy-momentum tensor T is that of a perfect fluid. They are characterized
by the datum of a timelike vector field U , the four velocity of the fluid and two
functions ρ and p on M, respectively, the energy density and pressure of the fluid.
See [7, 18]. We have then T = ρU ⊗ U + p(g + U ⊗ U), or in local coordinates,

Tij = (ρ + p)UiUj + pgij .

Such a spacetime is said to be of perfect fluid type. Notice that contrarily to the
globally hyperbolic spacetimes, no topological assumption is made on a perfect
fluid type spacetime.

Gödel’s universe is such a spacetime. This is the manifold R4 with the metric
ds2 = dt2 − dx2 + 1

2e2
√

2ωxdy2 − dz2 − 2e
√

2ωx dt dy, where ω > 0 is a constant.
It is a solution to Einstein’s equation with cosmological constant ω2 and represents
a pressure-free perfect fluid. It has energy-momentum tensor T = U ⊗ U , where
(Uj ) = (

√
2ω,0,

√
2ωe

√
2ωx,0) represents the four-velocity covector of the mat-

ter, and ω is the vorticity of this field. This spacetime has constant scalar curvature
2ω2. See Section 2.4 in [11]. As above, the function f is defined by formula (3.1)
and can be used as a Lyapounov function under some conditions. The computa-
tions made in Section 3.1 work equally well in that setting and lead to the following
results.
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PROPOSITION 7. Let (M, g) be a Lorentzian manifold of perfect fluid type
and f be defined by formula (3.1). Suppose f goes almost-surely to infinity along
any exploding timelike path. If there exists a constant C such that

H0f + d

2
�f + 1

2
(f ṁk − Uk)

∂�

∂ṁk
≤ Cf,

then the �-diffusion has almost-surely an infinite lifetime.

In the particular case of Gödel’s universe, the gradient ∇U of the velocity van-
ishes (since Ui = δi

0), so that H0f = 0, by formula (3.2); and f is the square root
of the energy.

COROLLARY 8. Let us work in Gödel’s universe and suppose that 3� +
(ṁk ∂�

∂ṁk − 1
f

∂�
∂ṁ0 ) is bounded above in T 1M. Then the �-diffusion has almost-

surely an infinite lifetime. This condition holds in particular if �(�) = �(m)

depends only on the base point and is bounded, as this is the case for the basic
relativistic diffusion and the R-diffusion in Gödel’s universe.

Note that this criterion does not apply to the energy diffusion in Gödel’s uni-
verse. Indeed one can see in that case (see Section 2.4 of [11]) that the above
quantity is equal to 5� − 4ω2 and that the energy � is unbounded along the tra-
jectories of the energy diffusion.

REMARK 9. In Einstein–de Sitter spacetime the energy diffusion explodes
with positive probability, as proved in Proposition 5.4.2 of [13]. (This Robertson–
Walker universe is both a warped product and a perfect fluid type spacetime.) Con-
sult [4] for a first study of stochastic incompleteness for relativistic diffusions.

4. b-completeness. The study of dynamics in the orthonormal frame bundle
is not new in general relativity, and essentially dates back to Cartan’s moving frame
method. However, Schmidt [24] was the first to notice that the geometry of OM

itself may be used to provide a conceptual framework in which studying the na-
ture of spacetime singularities. For that purpose, he introduced on the paralleliz-
able manifold OM a Riemannian metric, turning {H0, . . . ,Hd, (Vij )0≤i<j≤d} into
a Riemannian orthonormal basis, and called it the bundle metric, or b-metric. The
completeness of this metric structure on OM can essentially be phrased in terms
of M-valued paths. To state that fact, recall that one can associate to any M-valued

C 1 path γ : [0, T [→ M and e ∈ Oγ0M a unique horizontal lift γ ↑ : [0, T ) → OM

of γ , starting from (γ0, e), and charactarized by the properties

d

ds
γ ↑
s ∈ span(H0, . . . ,Hd) and π0(γ

↑
s ) = γs for all s ∈ [0, T ).

The Se-length of γ is defined as the Riemannian length of its horizontal lift γ ↑;
it depends on e ∈ Oγ0M. In other words, given e ∈ Oγ0M, seen as orthonormal
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in the Euclidean sense, the Se-length of the M-valued C 1 path γ is the Euclidean
length of its anti-development in (Tγ0M, e). Although this length depends on e,
its finiteness is independent of it; we can thus talk of finite S-length of a C 1 path
without mentioning the frame e. Note that in a Riemannian setting the Se-lenth of
a C 1 path is its usual Riemannian length.

THEOREM 10 (Schmidt [24]). OM is complete for the above b-metric if and
only if any C 1 path γ : [0, T ) → M with a bounded S-length converges in M at
time T −.

The above completeness hypothesis is usually called b-completeness. The Rie-
mannian version of this statement is trivial as the orthonormal frame bundle with
its b-metric is complete iff the Riemannian manifold is complete. The Lorentzian
situation is more involved as there exists (timelike, spacelike and lightlike) com-
plete Lorentzian manifolds M which have an incomplete path of bounded acceler-
ation, so OM is not b-complete (see, e.g., [14] and [6]). The noncompactness of
SO0(1, d) lies at the core of this phenomenon.

However, the Riemannian view of a Lorentzian manifold provided by Schmidt’s
metric offers a bridge to investigate some features of the latter using the tools of
Riemannian geometry, as the following proposition shows.

PROPOSITION 11. Let � be a bounded function on M. Then the �-diffusion
does not explode if OM is b-complete.

One should not be confused about that statement. It does not mean that the
Riemannian completeness of OM implies the completeness of its Brownian tra-
jectories, which is false. One cannot assign an Se-length to a Brownian path in
OM as it is not regular enough.

PROOF OF PROPOSITION 11. • Given a horizontal C 1-path (ρs)0≤s<T in OM,
write γ for its projection π0 ◦ ρ in M, so ρ = γ ↑. For 0 ≤ s < T , denote by
τ

γ
0→s the parallel transport operator along the curve (γr)0≤r≤s , with inverse τ

γ
0←s .

Also, denote by (ps)0≤s<T the anti-development of γ : this Tγ0M-valued C 1-path
is defined for all s ∈ [0, T [ by the formula ps = ∫ s

0 τ
γ
0←r γ̇r dr . Last, we shall de-

note by ṗ
j
r the coordinates of ṗr in the frame ρ0, and by ‖.‖ρs the Euclidean

norm in (Tγs M, ρs). We have by construction dρs = ∑
0≤j≤d Hj (ρs)ṗ

j
s ds and

γ̇s = τ
γ
0→s ṗs , as well as the identity ‖γ̇s‖2

ρs
= ‖ṗs‖2

ρ0
= ∑

0≤j≤d(ṗ
j
s )2. The b-

completeness assumption means that γ has a limit γT in M at time T if∫ T −
0

‖ṗs‖ρ0 ds < ∞.(4.1)
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• The basic relativistic diffusion (ms, es)0≤s<ζ is by construction the develop-
ment in M of the relativistic Dudley diffusion in Minkowski spacetime, identified
with Tm0M (see Theorem 3.2 in [12]). As trajectories of the latter over a time
a bounded time interval have almost-surely a finite length in the Eulidean norm
associated with any frame of R1,d , the b-completeness of OM ensures the nonex-
plosion of the basic relativistic diffusion.

• For a generic �-diffusion, formula (2.5) implies the existence for each s ∈
[0, ζ [ of an orthonormal basis (ϕ1(s), . . . , ϕd(s)) of ṗ⊥

s in R1,d such that one has

dṗk
s =

d∑
j=1

√
�(ms)ϕ

k
j (s) dwj

s + d

2
�(ms)ṗ

k
s ds

for some d-dimensional Brownian motion w. We have used the fact that � de-
pends only on m to simplify the general expression. The path (ps, ṗs)0≤s<ζ ap-
pears then as a time change of Dudley’s diffusion, by means of the map s �→
inf{u| ∫ u

0 �(mr)dr > s}. The result follows for a bounded function �. �

This result can be improved in two ways: by relaxing the boundedness hypothe-
sis on � and by relaxing the geometric completeness assumption. The next section
explains how this can be done in a sub-Riemannian framework by using ideas from
the theory of reversible Markov processes.

5. A volume growth nonexplosion criterion. We prove in this section a non-
explosion criterion involving only the volume growth of some sub-Riemannian
boxes in OM and the function �, as described in Theorem 13 below. This result
is proved in Section 5.4 following Takeda’s method, as improved recently by Hsu
and Qin in [20]. Yet, there is a real difficulty in doing this, as we are working with a
nonsymmetric, hypoelliptic diffusion, and on a principal bundle with noncompact
fibers. To overcome these difficulties, we introduce a sub-Riemannian structure on
OM, well adapted to our setting, and which will somehow play for us the role of
the missing Lorentzian distance.

5.1. Sub-Riemannian framework and main results.

5.1.1. Sub-Riemannian distance function. We have seen in Section 4 that the
completeness of the natural Riemannian metric of the parallelizable manifold OM

implies the stochastic completeness of all the �-diffusions with a bounded �. One
can significantly improve that conclusion by working with the sub-Riemannian
structure on OM induced by the field of (d + 1)-planes generated by the vector
fields H0,V1, . . . , Vd . In that setting, one can assign a length only to C 1 paths
ρ : [0, T ] → OM whose tangent vector belong at any time s to the vector space
spanned by H0,V1, . . . , Vd in Tρs OM, say ρ̇s = ρ̇0

s H0(ρs) + ρ̇1
s V1(ρs) + · · · +

ρ̇d
s Vd(ρs). Such a path is said to be admissible; its length is then defined as
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0 (

∑d
i=0(ρ̇

i
s)

2)1/2 ds. The sub-Riemannian distance between two points of OM

is defined as the infimum of the length of the admissible paths joining these two
points, with the convention inf∅ = +∞. Chow’s theorem [8] ensures that the sub-
Riemannian distance function D(·, ·) is finite and continuous in its two arguments
if (see, e.g., [22]) the Lie algebra generated by H0,V1, . . . , Vd has full dimension,
which holds here. Fix a reference point �ref ∈ OM.

(H) COMPLETENESS HYPOTHESIS. The closed boxes Bλ := {D(�ref, ·) ≤ λ}
are compact for any λ > 0.

This completeness hypothesis rules out the pathological examples of Geroch
[14] and Beem [6]; it does not depend on the arbitrary choice of �ref. Unlike its
Riemannian analog, the sub-Riemannian distance function D(�ref, ·) is not smooth
in any neighborhood of �ref, [22]; however, it is a viscosity solution of the equation

|H0D|2 + |V1D|2 + · · · + |Vd D|2 = 1

on OM \ {�ref} (see, e.g., Theorem 2 in [9]; we do not use that fact in the sequel).
We shall use that quantitative information in Section 5.4 under the classical form
given in the following proposition.

PROPOSITION 12. Fix λ > 0. One can associate to any positive constant η a
smooth function F : OM → R+ such that

max
�∈Bλ

|F(�) − D(�ref,�)| ≤ η

and we have on Bλ

|H0F |2 + |V1F |2 + · · · + |VdF |2 ≤ 2.

PROOF. Let us introduce the Riemannian metric gε on OM for which
H0,H1, . . . ,Hd and the (Vij )0≤i<j≤d are orthogonal, with H0 and the V0j (= Vj )

of norm 1 and the other vectors of norm ε−1. Denote by Dε(·) = Dε(�ref, ·) the
distance function associated with gε . It is a 1-Lipschitz-continuous function (with
respect to the distance function Dε) which is differentiable almost-everywhere, by
Rademacher’s theorem, and has a gradient of norm 1 almost-everywhere.

|H0Dε|2 + |V1Dε|2 + · · · + |Vd Dε|2
(5.1)

+ ε−2

(
d∑

i=1

|Hi Dε|2 + ∑
1≤i<j≤d

|Vij Dε|2
)

= 1.

(Indeed, the set of conjugate points to �0 in Bλ is closed and has null measure.
In the complementary, relatively open, set the distance is attained along a unique
geodesic whose unit tangent vector at the final point is the gradient of the distance
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function to �0.) The function Dε is easily seen to converge uniformly to D(�ref, ·)
on the compact box Bλ (this is where we need these boxes to be compact); see, for
example, Sections 0.8.A and 1.4.D of Gromov’s article [17]. As we have almost-
everywhere

|H0Dε|2 + |V1Dε|2 + · · · + |Vd Dε|2 ≤ 1,

by (5.1), a standard regularization procedure yields the conclusion. �

5.1.2. Main results. We use the natural volume measure on OM associated
with the Lorentzian structure. It is defined by the formula

VOL(d�) = VOLM(dm) ⊗ VOLm(de), � = (m, e),

where VOLM(dm) is the Lorentzian volume measure and VOLm(de) is the image
of a given Haar measure on SO0(1, d) by the identification of the fiber π−1

0 (m)

with SO0(1, d); see, for example, [18], Section 2.8, for the Lorentzian volume
measure. The volume measure VOL on OM is uniquely defined up to a multiplica-
tive constant. In order to avoid some unpleasant pathologies, we shall make the
following rather mild assumption on the causal structure of spacetime.

HYPOTHESIS. (M, g) is strongly causal.

It means that any point of M has arbitrarily small neighborhoods which no
nonspacelike path intersects more than once; see [18], page 192, or [7].

THEOREM 13. Let (M, g) be a strongly causal Lorentzian manifold satisfying
the Completeness hypothesis (H). Set �r := sup�∈Br

�(�), for any r > 0, and
suppose ∫ ∞ r dr

�r log(�r VOL(Br))
= ∞.(5.2)

Then the �-diffusion has almost-surely an infinite lifetime, from any starting point.

Condition (5.2) has the form of the classical nonexplosion condition for Brown-
ian motion,

∫ ∞ r dr

log VOL(Br )
= ∞, first proved by Grigor’yan [16] and has precisely

that form for � bounded. Note that no topological assumption on M is needed,
contrary to the results of Section 3.1. One can give a quantitative version of the
above theorem by providing an upper rate function.

COROLLARY 14. Let M be a strongly causal Lorentzian manifold satisfying
the Completeness hypothesis (H). Set h(ρ) ≡ ρ if � ≡ 0; otherwise, pick a constant
R0 such that �R0 > 0 and set for ρ > 0

h(ρ) := inf
{
R > R0

∣∣∣ ∫ R

R0

r dr

�r log[�r VOL(Br)] > ρ

}
.
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Then, given any �0 ∈ OM, there exist R0 > 0 and a positive constant C such that
we have P�0 -almost-surely

D(�0,�s) ≤ Ch(Cs).

We prove Theorem 13 following Takeda’s method, explained in the next section.
To adapt it to our setting, we shall introduce in Section 5.3 a modified �-diffusion
on some compact space; it is used crucially in the proof of Theorem 13 given in
Section 5.4.

5.2. Takeda’s method.

5.2.1. The main ingredients. Using an idea of Lyons and Zheng [21], Takeda
devised [25, 26] a remarkably simple and sharp nonexplosion criterion for Brow-
nian motion on a Riemannian manifold V. Loosely speaking, his reasoning works
as follows. Suppose we have a diffusion (xs)s≥0 on V which is symmetric (with re-
spect to the Riemannian volume measure VOL, say) and conservative; denote by L

its generator, and let f be a sufficiently smooth function. Denote by PVOL the mea-
sure

∫
PxVOL(dx) on the path space, where Px is the law of the diffusion started

from x. Fix a time T > 0. As the reversed process (xT −s)0≤s≤T is an L-diffusion
under PVOL, applying Itô’s formula to both f (xs) and f (xT −s) provides two mar-
tingales M and M̃ [with respect to the two different filtrations σ(xs;0 ≤ s ≤ T )

and σ(xT −s;0 ≤ s ≤ T ), resp.] such that

f (xs) = f (x0) + Ms +
∫ s

0
Lf (xr) dr,

f (xs) = f
(
xT −(T −s)

) = f (xT ) + M̃T −s +
∫ T −s

0
Lf (xT −r ) dr.

It follows that f (xs) = f (x0)+f (xT )
2 + Ms+M̃T −s

2 + ∫ T
0 Lf (xs) dr , and consequently,

f (xT ) − f (x0) = 1
2(MT − M̃T ).

If d〈M〉s
ds

and d〈M̃〉s
ds

are bounded above, by 1 say, the previous identity provides a
control of (f (xT ) − f (x0)) by the supremum of the absolute value of a Brownian
motion over the time interval [0, T ].

Back to the nonexplosion problem for Brownian motion on V, fix a point m ∈ V

and a radius R > 1, and consider the Brownian motion (xs)s≥0 reflected on the
boundary of the Riemannian ball B(m;R), started under its invariant measure
1B(m;R)VOL. It is a symmetric conservative diffusion; denote by PB(m;R) its law.
Using the Dirichlet forms approach to symmetric diffusions one can apply the
above reasoning to the (nonsmooth, but 1-Lipschitz) Riemannian distance func-
tion d(m, ·), which gives the estimate

PB(m;R)

(
x0 ∈ B(m;1), sup

s≤T

d(m,xs) = R
)

≤ VOL(B(m;R))×2P
(

sup
s≤T

|Bs | > R
)
.
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But as the Brownian motion on V behaves in the ball B(m;R) as the Brownian
motion reflected on the boundary of B(m;R), the above inequality also gives an
upper bound for the probability that the Brownian motion on V, started uniformly
from B(m;1), exits the ball B(m;R) before time T . Combining this estimate with
the Borel–Cantelli lemma, Takeda proved that the Brownian motion on V is con-
servative provided

lim inf
R→∞ R−2 log VOL(B(m;R)) < ∞,

re-proving in a simple way a criterion due to Karp and Li. Takeda’s method has
been refined by several authors, culminating with Hsu and Qin’s recent work [20],
in which they give an elegant and simple proof of a sharp nonexplosion criterion,
due to Grigor’yan [16], for Brownian motion on a Riemannian manifold in terms
of volume growth, as well as an escape rate function. We shall follow their method
to deal with relativistic diffusions.

5.2.2. The difficulties. The main difficulty in implementing this approach is in
finding what can play the role of the pair “Riemannian distance function–reflected
Brownian motion” in our Lorentzian, hypoelliptic framework. We describe in the
remainder of this section a nonstandard reflection mechanism for a Brownian mo-
tion in a Riemannian manifold which will serve us as a guide in the construction
of the �-diffusion reflected on the boundary of the sub-Riemannian boxes, as de-
scribed in Section 5.3.

Brownian motion reflected on the boundary of a ball B(m;R) is the simplest
diffusion process which coincides with Brownian motion on the ball B(m;R) and
has a state space with finite volume. One cannot take a smaller state space if the for-
mer property is to be satisfied. Yet, one can make different choices if one is ready
to loose the minimality property. To explain that fact, let us suppose that (V, g) is
a Cartan–Hadamard manifold. Given a point m ∈ V let us use the exponential map
expm at m as a global chart on V; this identifies the geodesic ball B(m;R) on M

to the (Euclidean-shaped) ball B ′(0;R) in TmV. Given ε > 0, let us modify the
metric on B ′(0;R + ε) \ B ′(0;R) so as to interpolate smoothly between exp∗

m g

on B ′(0;R) and the constant metric gm outside B ′(0;R + ε) (primed balls refer
to the pull-back metric exp∗

m g). Denote by g̃ the restriction to B ′(0;R + 2ε) of
this modified metric, and define the compact space K as the quotient of the closed
ball B

′
(0;R + 2ε) by the identification of m′ ∈ ∂B

′
(0;R + 2ε) and −m′. Then the

g̃-Brownian motion on K coincides with the exp∗
m g-Brownian motion on B ′(0;R)

and has a state space with finite g̃-volume VOLg̃(K) = (1+o(ε))VOLg(B(m;R)).
The construction of a modified �-diffusion given in Section 5.3 will be reminis-
cent of the preceding nonstandard reflected Brownian motion.

5.3. A modified process. We start our construction of the “reflected” �-
diffusion by constructing the compact space on which it is going to live. Fix for
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that purpose a reference point �ref ∈ OM, the center of the boxes Bλ, and set
D(�) = D(�ref,�) for all � ∈ OM. Fix also two positive constants λ and ε and
consider the relatively compact open region

U := {λ < D < λ + ε} = Bλ+ε \ Bλ.

LEMMA 15. There exists in U a smooth hypersurface V of OM separating
∂Bλ from ∂Bλ+ε such that the subset V0 := {� ∈ V |H0(�) ∈ T�V } is a smooth
hypersurface of V .

The separation property means that ∂Bλ ∪ ∂Bλ+ε does not intersect V but any
continuous path from ∂Bλ to ∂Bλ+ε hits V . We thank A. Oancea and P. Pansu for
their help in proving this statement.

PROOF OF LEMMA 15. Let us use the function F of Proposition 12, with
η < ε/4 and R > λ + ε, and fix some constants η < ε1 < ε2 < ε/2 − η such that
Bλ ⊂ {ε1 ≤ F − λ ≤ ε2} ⊂ Bλ+ε/2. The set of regular values of (F − λ) is dense
in the interval (ε1, ε2), by Sard’s theorem. Fix a regular value c ∈ (ε1, ε2), so the
level set S := {F = c} is a smooth hypersurface separating ∂Bλ from ∂Bλ+ε/2.

We shall now be working in U ′ ≡ S×[0, ε
2), where we are going to construct the

separating hypersurface V as the graph of some function f :S → [0, ε
2), resorting

to the transversality lemma. Denote by Gr(T U ′) the Grassmannian bundle over U ′
made up of all the hyperplanes of T U ′, and associate to any function f :S → (0, ε

2)

the function Gf :S → Gr(T U ′) defined by Gf (m) := {(σ, dfm(σ))|σ ∈ TmS}. Let
H denote the smooth hypersurface of Gr(T U ′), made up of all hyperplanes con-
taining H0. Then G−1

f (H) is a smooth hypersurface of Graph(f ) as soon as Gf is
transverse to H. Therefore the statement reduces to finding a function f such that
Gf be transverse to H.

Consider for that purpose a smooth partition of unity: 1S = ∑k
j=1 αj , with

{αj > 0} = ψj(Bν) diffeomorphic under ψj to the unit ball Bν ⊂ Rν [with
ν = dim(OM) − 1 = (d + 3)d/2]. Denoting by A the space of (the restictions
to Bν of) affine functions on Rν , consider the map F : An × S → Gr(T U ′) defined
by the formula

G(ϕ1, . . . , ϕk,m) := Gf (m),

where f = ∑k
j=1 αjϕj ◦ ψ−1

j . This is easily seen to be a submersion. It follows
from the transversality lemma that such a Gf is transversal to H for almost-every
(ϕ1, . . . , ϕk) ∈ An. The graph of the function f corresponding to a small multiple
of such a k-tuple has the properties of the statement. �

Let O be the set of points of the box Bλ+ε of the form γ (1) for some continuous
path γ : [0,1] → Bλ+ε starting from a point of Bλ and not hitting V ; this is an
open set with V as a boundary. Denote also by W another smooth hypersurface,
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separating V from ∂Bλ and transverse to H0 except on a relative hypersurface. Let
now denote by O′M a disjoint copy of the set of past-directed frames

{(m, e) ∈ GLM|e = (e0, e1, . . . , ed) such that (m, (−e0, e1, . . . , ed)) ∈ OM},
and let O ′, V ′, V ′

0 and W ′ be the subsets of O′M corresponding to O , V , V0 and W .
The equivalence relation

(m, (e0, e1, . . . , ed)) ∈ V ∼ (m, (−e0, e1, . . . , ed)) ∈ V ′

defines a manifold structure on the quotient space (O ∪ V ) � (O ′ ∪ V ′)/ ∼,
which we denote by E . Note that E is compact and that its volume is in between
2VOL(Bλ) and 2VOL(Bλ+ε). Write V for the image in E of V , and V0 for the
image in E of V0; define the primed sets V ′ and V ′

0 accordingly.

REMARK 16. The geodesic flow is naturally well defined on E \ V0, getting
instantly from O to O ′ or from O ′ to O at its crossings of V \ V0. Indeed by the
above definition, for any � ∈ V \ V0, either H0(�) points outwards seen from O

and inwards seen from O ′, or H0(�) points inwards seen from O and outwards
seen from O ′. There is, however, no a priori convenient way to extend the geodesic
flow on V0. This is the reason why we need to take care of this exceptional set.

We define the modified relativistic diffusion on the compact manifold E as fol-
lows. Let a :Bλ+ε → [0,1] be a smooth function equal to 1 on Bλ, and whose
vanishing set is exactly the closed part C of U in between W and V [this means
that C is the union of the trajectories (γs)s∈(0,1) ⊂ U of continuous paths γ such
that γ0 ∈ W , γ1 ∈ V , and (γs)s∈(0,1) does not intersect the oriented hypersurface
W ∪ V ]. We extend to E the restiction of a to O ∪ V , by setting a(e′) = a(e) for
e′ = (m, (−e0, e1, . . . , ed)) ∈ O′M and e = (m, (e0, e1, . . . , ed)) ∈ OM. We define
the generator of the modified diffusion to be the following variant of G�:

G := H0 + 1

2

d∑
j=1

Vj (a�Vj ).(5.3)

Denote by VOLE (resp., VOLV , VOLW ) the natural volume element on E (resp.,
V , W ).

LEMMA 17. For VOLE -almost all starting point �0 ∈ E , the modified rela-
tivistic diffusion is a well-defined E -valued process having an almost-surely infinite
lifetime.

PROOF. This modified diffusion has generator G� in Bλ and in its mirror copy
B ′

λ, and reduces to the geodesic flow in the region {a = 0} in between W and W ′.
After Remark 16, we need first make sure that the set V0 ∪ V ′

0 of bad points is
polar.
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Let N and N ′ be the orbits in the region {a = 0} of V0 and V ′
0 by the geodesic

flow. They have, as a consequence of Lemma 15, null VOLE -measure. But as the
modified diffusion started from any �0 ∈ {a > 0} is hypoelliptic, its hitting dis-
tribution of W ∪ W ′ has a density with respect to VOLW∪W ′ . It follows that the
modified diffusion, started from any point of �0 \ (N ∪ N ′), will almost surely
never hit N ∪ N ′, proving that this E -valued process is well defined.

It can behave in two ways as it approaches its lifetime: either crossing infinitely
many times V , or remaining eventually in a compact subset of O or O ′. In the latter
case, its projection on M is a (future or past-directed) timelike path confined in a
compact subset of O . As such it has a cluster point at which the strong causality
condition cannot hold, preventing M from being strongly causal, a contradiction.

In the former case, either the path eventually remains in the region {a = 0}, or
it performs before some finite proper time an infinite number of crossings from
W ∪W ′ to V . Since the geodesic flow does not explode in {a = 0}, we are left with
the latter possibility. It cannot lead to explosion either, since the geodesic flow
needs a traveling time bounded away from 0 to travel from W ∪ W ′ to V . �

Note that the volume measure VOLE of the compact manifold E is an invariant
finite measure for the modified diffusion.

5.4. Crossing times and escape rate of �-diffusions. Fix a reference point
�ref ∈ OM, and set D(·) = D(�ref, ·). Let us emphasize that D is a two-points
function, so it is easy to pass from D(�ref,�) to D(�0,�), or the other way
round, using the triangle inequality, for any �0 ∈ OM.

Given an increasing sequence (Rn)n≥1 of positive reals, set τ0 = 0 and associate
to each Rn

the exit time τn from the box B(n) := {D ≤ Rn}.
It takes the diffusion an amount of proper time (τn − τn−1) to go from the box
B(n−1) to the box B(n). The strategy in [20] is to estimate P�(τn − τn−1 ≤ tn) for
a suitably chosen deterministic sequence {tn}n≥0 of increments of time. Set for
n ≥ 1

Tn :=
n∑

k=1

tk and rn := Rn − Rn−1.

If one can show that ∑
n≥1

P�(τn − τn−1 ≤ tn) < ∞(5.4)

for a convenient choice of the sequences (Rn)n≥1 and (Tn)n≥1, then the Borel–
Cantelli lemma tells us that the diffusion does not exit B(n) before time Tn, for n
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large enough, preventing explosion. Following [20], we are going to consider the
events

En := {τn − τn−1 ≤ tn, τn ≤ Tn},
so as to be able to use our modified process run backwards from the fixed time Tn,
when estimating the probability that the process crosses from B(n−1) to B(n) not
too fast. Lemma 2.1 of [20] (an application of the Borel–Cantelli lemma) justifies
that considering these events leads to the same nonexplosion conclusion as (5.4).
We recall it here for the reader’s convenience.

LEMMA 18 ([20]). Fix � ∈ OM. If
∑

n≥1 P�(En) < ∞, then there exists P�-
almost-surely δ such that τn ≥ Tn − δ, for all n ≥ 1.

We shall use the results of Sections 5.1.1 and 5.3 to prove the fundamental
estimate of Proposition 19 below. Given any compact subset B of OM, denote by
PB the law of the relativistic diffusion in OM started under the uniform probability
in B

PB(·) = 1

VOL(B)

∫
B

P�(·)VOL(d�).

Similarly, and given any compact subset A of E , write QA for the law of the mod-
ified �-diffusion in E started under the uniform probability in A.

PROPOSITION 19. There exists a constant C such that we have, for any n ≥ 1,

PB(1) (τn − τn−1 ≤ tn, τn ≤ Tn)

≤ C
VOL(B(n))

VOL(B(1))

Tn

√
�̂n/tn

(rn − 1 − 4tn)
exp

[
−(rn − 1 − 4tn)

2

32�̂ntn

]
,

where �̂n denotes the supremum of � over the box {D ≤ Rn + 1}.

The proof mimics Takeda’s original proof, as adapted by Hsu and Qin in [20],
with the noticeable difference that we are working with a nonsymmetric, nonellip-
tic diffusion.

PROOF OF PROPOSITION 19. We start by embedding the box B(n) into the set
E (n) constructed in Section 5.3, with λ = Rn and ε = 1

2 , say. From now on we work
on the path space over E (n) and use the coordinate process X, whose filtration is
denoted by (Fs)s≥0. We still denote by τn the exit time from (the image in E (n) of)
B(n); the event

En := {τn − τn−1 ≤ tn, τn ≤ Tn}
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belongs to Fτn . As explained above in Section 5.2, the proof has two main in-
gredients, the first of which is inequality (5.5) below, where QE (n) denotes the
distribution of the modified �-diffusion in E (n), with generator G given in (5.3).

As the �-diffusion and the modified �-diffusion have the same law before the
stopping time τn, we have PB(n)(En) = QB(n)(En) ≤ 2QE (n)(En), and so

PB(1) (En) ≤ 2
VOL(B(n))

VOL(B(1))
QE (n)(En),(5.5)

by the obvious inequality PB(1) (En) ≤ VOL(B(n))

VOL(B(1))
PB(n)(En). The second ingredi-

ent involves the Lyons–Zheng decomposition of D(Xs) under QE (n) . As D is not
a priori sufficiently regular to use Itô’s formula, we apply it to its smooth approxi-
mation F constructed in Proposition 12 (with R = Rn and η = 1

2 ). As the process
(XTn−s)0≤s≤Tn is under QE (n) a homogeneous diffusion process with generator
G∗ = −H0 + 1

2
∑d

j=1 Vj (a�Vj ), it follows from Itô’s formula that there exist two
martingales (Ms)0≤s≤Tn and (M̃s)0≤s≤Tn , with respect to the forward and back-
ward filtrations of the process, respectively, such that

F(Xs) = F(X0) + Ms +
∫ s

0
GF(Xr) dr,

F (Xs) = F
(
XTn−(Tn−s)

) = F(XTn) + M̃Tn−s +
∫ Tn

s
G∗F(Xr) dr,

with

〈M〉s =
d∑

j=1

∫ s

0
a(Xr)�(Xr)|VjF |2(Xr) dr ≤ 4�̂ns,

(5.6)

〈M̃〉s =
d∑

j=1

∫ s

0
a(XTn−r )�(XTn−r )|VjF |2(XTn−r ) dr ≤ 4�̂ns.

Setting M ′
s := M̃Tn−s and noting that G − G∗ = 2H0, we thus have

d(F (Xs)) = d

(
Ms + M ′

s

2

)
+ H0F(Xs) ds(5.7)

with a controlled drift term |H0F | ≤ 2, by Proposition 12. By construction, we
have

sup
0≤s≤tn

|F(Xτn−1+s) − F(Xτn−1)| ≥ rn − 1

on the event En, where X hits the set {F ≥ Rn − 1
2} in the time interval

[τn−1, τn−1 + tn]. To control the QE (n)-probability of En, we use Hsu and Qin’s
trick. Cut the interval [0, Tn] = ⋃�n

k=1[(k −1)tn, ktn] into �n := Tn/tn sub-intervals
of length tn (to lighten the notations, we shall neglect the fact that �n may not
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be an integer; this fact causes no trouble but notational), and write on each event
{(k − 1)tn ≤ τn−1 ≤ ktn}

F(Xτn−1+s) − F(Xτn−1) = F(Xτn−1+s) − F(Xktn) + F(Xktn) − F(Xτn−1).

This simple remark shows that the event {sup0≤s≤tn
|F(Xτn−1+s) − F(Xτn−1)| ≥

rn − 1} is included in one of the �n events {sup0≤|s|≤tn
|F(Xktn+s) − F(Xktn)| ≥

rn−1
2 }, where 1 ≤ k ≤ �n. By (5.7) and the inequality |H0F | ≤ 2, the kth of these

events is included in the union Ak ∪ Ãk , where

Ak :=
{

sup
0≤|s|≤tn

|Mktn+s − Mktn | ≥
rn − 1

2
− 2tn

}
and

Ãk :=
{

sup
0≤|s|≤tn

|M̃ ′
ktn+s − M̃ ′

ktn
| ≥ rn − 1

2
− 2tn

}
.

Let W be a Brownian motion defined on some probability space (�, F ,P). By
(5.6) we have

QE (n)(Ak) ≤ 2P

(
sup

0≤s≤tn

|Ws | ≥ rn − 1 − 4tn

4
√

�̂n

)

≤ C

√
�̂n/tn

rn − 1 − 4tn
exp

(
−(rn − 1 − 4tn)

2

32�̂ntn

)
for some positive constant C; the same identity holds for Ãk , using (5.6). Summing
over k and using inequality (5.5) yields the statement of the proposition since En ⊂⋃�n

k=1(Ak ∪ Ãk). �

This key proposition being proved, it becomes easy to prove Theorem 13.

PROOF OF THEOREM 13. Taking Rn = 2n+5 and tn ≤ 2n+1 in Proposition 19,
so that Tn ≤ 2n+2, we get for any n ≥ 1

PB(1) (En) = PB(1) (τn − τn−1 ≤ tn, τn ≤ Tn)
(5.8)

≤ C
VOL(B(n))

VOL(B(1))

√
�̂n

tn
exp

[
− 4n

�̂ntn

]
.

Specifying the choice of tn by setting

tn := min
{

2n+1,
4n−1

(1 + log+[�̂nVOL(B(n))])�̂n

}
,



2192 I. BAILLEUL AND J. FRANCHI

the right-hand side of (5.8) is seen to be bounded above by a constant multiple
of 2−n, ensuring as a consequence the convergence of the series

∑
n≥1 PB(1) (En).

Indeed, we get from (5.8), with the above tn,

PB(1) (En) ≤ C ′VOL
(
B(n))√�̂2

n log[�̂nVOL(B(n))]
4n

e−4 log[�̂nVOL(B(n))] ≤ C′′/2n.

[Ignoring the trivial case � ≡ 0, we can suppose without loss of generality that we
have �̂nVOL(B(n)) ≥ 3 for n large enough.] Note that the above choice of time
increments tn is simpler than Hsu and Qin’s choice in [20]; there is in particular
no need to introduce their auxiliary function h(R) ≡ log logR, to get Grigor’yan’s
criterion, if the second upper bound of their Section 3 is not used.

To conclude that the �-diffusion does not explode we need to check that
Tn = ∑n

k=1 tk increases to infinity. For the above choice of time increments tn, we
have PB(1) -almost-surely, for n larger than some n0, and for a positive universal
constant c,

Tn ≥
n∑

k=n0

min
{

2k+1,
4k−1

�2k+5+1(log+[�2k+5+1VOL(B2k+5)] + 1)

}
(5.9)

≥ c

∫ 2n

2n0+1
min

{
8,

r

�r log[�r VOL(Br)]
}

dr.

Leaving aside the trivial case � ≡ 0 and recalling that the map r �→ �r = maxBr �

is nondecreasing, we can suppose without loss of generality that �r ≥ 3. The di-
vergence of the sequence (Tn) is then granted by the integral criterion∫ ∞

min
{

8,
r

�r log[�r VOL(Br)]
}

dr = ∞.

As �r increases, this condition is equivalent to∑
n≥1

min
{

8,
n

�n log[�nVOL(Bn)]
}

= ∞,

that is to ∑
n≥1

n

�n log[�nVOL(Bn)] = ∞,

since the former holds obviously if an infinite number of terms were larger than 8.
The previous condition is equivalent to condition (5.2) of Theorem 13.

Using the Borel–Cantelli lemma under the form of Lemma 18, it follows that
we have

PB(1)

(
sup

0≤s≤Tn−δ

D(�s) ≤ 2n+5 for any large enough n
)

= 1,(5.10)
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so sup0≤s≤t D(�s) < ∞, for all t > 0, since Tn increases to ∞. Would a realization
of the path �s explode by time t , its projection in M would provide a timelike
path with an accumulation point [for it stays in the projection of a compact set by
Hypothesis (H)], contradicting the strong causality assumption on M.

To prove that the same happens under any P�0 , notice that since the nonexplo-
sion event E belongs to the invariant σ -algebra, the function OM  � �→ P�(E)

is G�-harmonic, hence continuous, as G� is hypoelliptic. It follows that since

PB(1) (E) = 1

VOL(B(1))

∫
B(1)

P�(E)VOL(d�),

the probability P�(E) must be equal to 1 for all � ∈ B(1). But as the ball B(1) was
arbitrarily chosen, P�(E) is identically equal to 1 everywhere. �

5.5. Upper rate function. Using essentially the same reasoning as in Section 4
of [20], the above proof yields almost for free the upper rate function for the �-
diffusion given in Corollary 14. See also [15] for related results. We keep the pre-
ceding notation.

PROOF OF COROLLARY 14. We follow the argument of [20], Section 4, mak-
ing sure that it works here as well with our choice for tn, and without their auxiliary
function log log. Suppose first � nonidentically null and recall inequality (5.9), in
which we can forget to take the minimum with 8, by Proposition 20 below. By
(5.10), this yields, almost-surely, the inequality

sup
0≤s≤ch−1(2n)−δ

D(�s) ≤ 2n+5,

that is

sup
0≤s≤ch−1(R)−δ

D(�s) ≤ 32R,

for large enough R. Letting R = h((t + δ)/c), this entails sup0≤s≤t D(�s) ≤
32h((t + δ)/c), hence sup0≤s≤t D(�s) ≤ 32h(Ct), for large enough t . This shows
the claim under the probability PB(1) , and then under P�0 as well, by the same ar-
gument already used at the end of the proof of Theorem 13. Finally, in the geodesic
case (� ≡ 0), the same holds with Tn ≥ c2n = ch(2n). �

5.6. Estimates of the volume of the sub-Riemannian boxes and application.
Let us begin with a crude lower estimate of the volume of the boxes Br based on
the vertical expansion in the SO0(1, d)-fiber of OM, without taking into account
the horizontal expansion which depends on the curvature of the base Lorentzian
manifold M. We used this lower bound in the proof of Corollary 14.

PROPOSITION 20. We have lim infr→∞ log VOL(Br )
r

≥ d − 1.
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PROOF. Fix a relatively compact neighborhood U of m0 in M, above which
OU is trivialized in U × SO0(1, d). Assume without loss of generality that �0 cor-
responds to (m0,1). By the ball-box theorem (see, e.g., [22]), the box Br = {D ≤
r} contains a neighborhood V × B(1, ε) of �0, for some ε > 0 and for r larger
than some fixed r1. Using this argument a finite number of times, together with the
triangle inequality for D, we see that the box {D ≤ r} contains any neighborhood
U × B(1, ) of �0, for any  > 0, provided r is large enough, say no less than
r0 = r0(U , ). Take  larger than the diameter of SO(d).

We easily see that the boxes {D ≤ r} dilate in the vertical directions V1, . . . , Vd

with speed r , as r increases. So {D ≤ r} contains the product of U by the ball of
radius (r − r0) in SO0(1, d) for r large enough. This provides a lower bound on
VOL({D ≤ r}) by some constant multiple of the volume of the hyperbolic ball of
radius (r − r0), from which it follows that there exists some positive constant c

such that log VOL(Br) ≥ (d − 1)r + log c, for r large enough. �

To close this work, we give a nonexplosion criterion involving only the geome-
try of M, rather than the geometry of OM as it appears in Theorem 13 through the
sub-Riemannian boxes Br .

PROPOSITION 21. Fix �0 = (m0, e0) ∈ OM, and define the S�0 -radius
ρS

�0
(m) of any m ∈ M as the infimum of the S�0 -length of C1 paths joining m0 to

m. Define the S�0 -ball BS
�0

(r) of radius r as the set BS
�0

(r) := {m ∈ M|ρS
�0

(m) ≤
r}, and set

V S(r) := VOLM(BS
�0

(r)).

Then there exists a constant C such that we have for all r > 0

log VOL(Br) ≤ C + (d − 1)r + logV S(Cer).

Note that the S�0 -balls BS
�0

(r) and their volume depend only on the choice of
�0 = (m0, e0) ∈ OM and on the geometry of M. We noticed indeed in Section 4
that the Se0 -length of a path in M started from m0 is the Euclidean length of its
anti-development in (Tm0M, e0).

PROOF OF PROPOSITION 21. By the definitions in Sections 4 and 5.1.1, the
b-distance of �0 to any � ∈ OM is not larger than D�0(�), so Br ⊂ Bb(�0; r),
where Bb denotes the ball in OM of the b-metric. Vertically, that is to say in the
frame τ

γ
0→s(�0) parallely transported along a minimizing curve γ , the maximal

hyperbolic distance reached by the velocity component ṁs of γs is s, which is
responsible for a maximal vertical volume O(e(d−1)r ).

Having accelerated till reaching a maximal velocity O(er), a minimizing curve
in Bb(�0; r) can perform a maximal horizontal displacement O(er). Hence we
have the inclusions

BS
�0

(r) ⊂ π0(B
b(�0; r)) ⊂ BS

�0
(O(er)),
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and so VOL(Br) ≤ Ce(d−1)rV S(Cer). �

Applying Proposition 21 to the integral condition of Theorem 13 yields in the
case of a bounded � the nonexplosion criterion

∫ ∞ r dr
r+logV S(er )

= ∞. Using the

increasing character of the map (r �→ V S(er)), discretizing and distinguishing
whether or not there are infinitely many n such that logV S(en) ≤ n, we easily
see that this condition is equivalent to the condition

∫ ∞ r dr
logV S(er )

= ∞.

COROLLARY 22. Let (M, g) be a strongly causal Lorentz manifold satisfying
the Completeness hypothesis (H) and the volume growth condition

∫ ∞ r dr
logV S(er )

=
∞. Then all �-diffusions with a bounded � are stochastically complete.

It is easy to see that this volume growth integral criterion does not depend on
the choice of �0 ∈ OM. Contrary to Proposition 20, it relies on the horizontal ex-
pansion and not on the vertical expansion. This criterion does not apply to Gödel’s
universe, for which logV S(er) is of order er ; the nonexplosion criterion of Sec-
tion 3.2 covers the case of that spacetime. Corollary 22 applies, for example, to
Lorentz manifolds which are topologically R1+d and have a pseudo-metric g such
that g,g−1 and the first-order derivatives of g with respect to the canonical coordi-
nates are bounded, since then logV S(er) is of order r , as is the case in Minkowski
spacetime.
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