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SCHRAMM’S PROOF OF WATTS’ FORMULA

BY SCOTT SHEFFIELD AND DAVID B. WILSON

Massachussetts Institute of Technology and Microsoft Research

Gérard Watts predicted a formula for the probability in percolation that
there is both a left–right and an up–down crossing, which was later proved
by Julien Dubédat. Here we present a simpler proof due to Oded Schramm,
which builds on Cardy’s formula in a conceptually appealing way: the triple
derivative of Cardy’s formula is the sum of two multi-arm densities. The rel-
ative sizes of the two terms are computed with Girsanov conditioning. The
triple integral of one of the terms is equivalent to Watts’ formula. For the
relevant calculations, we present and annotate Schramm’s original (and re-
markably elegant) Mathematica code.

1. Watts’ formula. When Langlands, Pichet, Pouliot and Saint-Aubin (1992)
were doing computer simulations to test the conformal invariance of percolation,
there were several different events whose probability they measured. The first event
that they studied was the probability that there is a percolation crossing connect-
ing two disjoint boundary segments. Using conformal field theory, Cardy (1992)
derived his now-famous formula for this crossing probability, and the formula was
later proved rigorously by Smirnov (2001) for site percolation on the hexagonal
lattice. The next event that Langlands et al. tested was the probability that there
is both a percolation crossing connecting the two boundary segments and a perco-
lation crossing connecting the complementary boundary segments (see Figure 1).
This probability also appeared to be conformally invariant, but finding a formula
for it was harder, and it was not until several years after Cardy’s formula that Watts
(1996) proposed his formula for the probability of this double crossing. Watts
considered the derivation of the formula unsatisfactory, even by the standards of
physics, but it matched the data of Langlands et al. very well, which lent credibility
to the formula. Watts’ formula was proved rigorously by Dubédat (2006a).

To express Cardy’s formula and Watts’ formula for the two types of crossing
events, since the scaling limit of percolation is conformally invariant, it is enough
to give these probabilities for one canonical domain, and this is usually taken to
be the upper half-plane. There are four points on the boundary of the domain (the
real line). Label them in increasing order x1, x2, x3 and x4. Cardy’s formula is then
the probability that there is a percolation crossing from the interval [x1, x2] to the
interval [x3, x4]. Again by conformal invariance, we may map the upper half-plane
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FIG. 1. In the left panel, there is no left–right crossing in blue hexagons. In the second panel there
is a blue left–right crossing, but no blue up–down crossing. In the third panel, there are both blue
left–right and blue up–down crossings. Cardy’s formula gives the probability of a left–right crossing
in a domain, while Watts’ formula gives the probability that there is both a left–right crossing and an
up–down crossing.

to itself so that x1 → 0, x3 → 1 and x4 → ∞. The remaining point x2 gets mapped
to

s = cr(x1, x2, x3, x4) := (x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)
,(1.1)

which is a point in (0,1) known as the cross-ratio. Both Cardy’s formula and
Watts’ formula are expressed in terms of the cross-ratio. Cardy’s formula for the
probability of a percolation crossing is

cardy(s) := �(2/3)
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where � is the gamma function, and 2F1 is the hypergeometric function defined
by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)nn! zn,

where a, b, c ∈ C are parameters, c /∈ −N (where N = {0,1,2, . . .}), and (�)n de-
notes �(� + 1) · · · (� + n − 1). This series converges for z ∈ C when |z| < 1, and
the hypergeometric function is defined by analytic continuation elsewhere (though
it is then not always single-valued).

By comparison, Watts’ formula for the probability of the two crossings is the
same as Cardy’s formula minus another term

watts(s) := �(2/3)

�(4/3)�(1/3)
s1/3

2F1

(
1

3
,

2

3
; 4

3
; s

)

(1.3)

− 1

�(1/3)�(2/3)
s 3F2

(
1,1,

4

3
;2,

5

3
; s

)
,

where 3F2 is the generalized hypergeometric function. The functions cardy(s) and
watts(s) are shown in Figure 2. [The reader should not be intimidated by these
formulae; the parts of the proof involving hypergeometric functions can be handled
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FIG. 2. Cardy’s formula (upper curve), Watts’ formula (lower curve), and a tripod probability
(defined in Section 3) as a function of the cross-ratio s.

mechanically with the aid of Mathematica. See also Watts (1996) and Maier (2003)
for equivalent double-integral formulations of Watts’ formula.]

Schramm thought that Dubédat’s paper on Watts’ formula was an exciting de-
velopment and started reading it as soon as it appeared in the arXiv. Schramm
sometimes presented papers to interested people at Microsoft Research: for exam-
ple, he presented Smirnov’s proof of Cardy’s formula when it came out [Smirnov
(2001)], as well as Dubédat’s paper on Watts’ formula [Dubédat (2006a)], and later
Zhan’s paper on the reversibility of SLEκ for κ ≤ 4 [Zhan (2008)]. In the course of
reaching his own understanding of Watts’ formula, Schramm simplified Dubédat’s
proof, with the help of a Mathematica notebook, and it was this version that he
presented at Microsoft on May 17, 2004. This proof did not come up again until
an August 2008 Centre de Recherches Mathématiques (CRM) meeting on SLE
in Montréal, after a talk by Jacob Simmons on his work with Kleban and Ziff on
“Watts’ formula and logarithmic conformal field theory” [Simmons, Kleban and
Ziff (2007)]. Schramm mentioned that he had an easier proof of Watts’ formula,
which he recalled after just a few minutes. The people who saw his version of the
proof thought it was very elegant and strongly encouraged him to write it up. The
next day Oded wrote down an outline of the proof, but he tragically died a few
weeks later. There is interest in seeing a written version of Schramm’s version of
the proof, so we present it here.

2. Outline of proof. This is a slightly edited version of the proof outline that
Oded wrote down at the CRM. Steps 1 and 2 are the same as in Dubédat’s proof,
but with step 3 the proofs diverge. We will expand on these steps of the outline
(with slightly modified notation) in subsequent sections.
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• Reduce to the problem of calculating the probability that there is a crossing
up–down which also connects to the right.

• Further reduce to the following problem. In the upper half-plane, say, mark
points −∞ < y1 < x0 < y2 < y3 = ∞. Let γ be the SLE6 interface started
from x0. Let τ := inf{t ≥ 0 :γt ∈ R \ [y1, y2] and σ := sup{t < τ :γt ∈ R}. Cal-
culate P[γτ ∈ [y2, y3], γσ ∈ [x0, y2]].

• Let σ1 := sup{t < τ :γt ∈ [y1, x0]} and σ2 := sup{t < τ :γt ∈ [x0, y2]}. Now
calculate the probability density of the event γσ1 = z1, γσ2 = z2, γτ = z3 as
h(z1, x0, z2, z3) := ∂z1∂z2∂z3 Cardy(z1, x0, z2, z3).

• Now, h [times certain derivatives] is a martingale for the corresponding diffu-
sion. Consider the Doob-transform (h-transform) of the diffusion with this h.
This corresponds to conditioning on this probability zero event. For the Doob-
transform, calculate the probability that σ2 > σ1. This comes out to be a hyper-
geometric function g. Finally,

Watts(y1, x0, y2, y3) =
∫
[y1,x0]

dz1

∫
[x0,y2]

dz2

∫
[y2,y3]

ghdz3,

(or more precisely, the three-arm probability), and use integration by parts.

3. Reduction to tripod probabilities. The initial reduction, which is step 1 of
the proof, has been derived by multiple people independently. The first place that
it appeared in print appears to be in Dubédat’s (2004) paper, where it is credited to
Werner, who, in turn, is sure that it must have been known earlier. In the interest
of keeping the exposition self-contained, we explain this reduction.

It is an elementary fact that exactly one of the following two events occurs:

(1) there is a horizontal blue crossing in the rectangle (i.e., a path of blue
hexagons connecting the left and right edges of the rectangle), which we denote
by Hb;

(2) there is a vertical yellow crossing, which we denote by Vy .

If there is a horizontal crossing, then by considering the region beneath it, using
the above fact, either it connects to the bottom edge (forming a T shape) or else
there is another crossing beneath it of the opposite color. Since there are finitely
many hexagons, there must be a bottom-most crossing, which then necessarily
forms a T shape. Thus exactly one of the following three events occurs:

(1) there is no horizontal crossing of either color (denoted by N );
(2) there is a blue T (denoted Tb);
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(3) there is a yellow T (denoted Ty).

Of course the latter two events have equal probability, so we have

Pr[N ] + 2 Pr[Tb] = 1.

Recall again that there is either a blue horizontal crossing or a yellow vertical
crossing but not both. We can decompose the yellow vertical crossing event into
two subevents according to whether or not there is also a yellow horizontal cross-
ing. The first subevent is, of course, the event we are interested in (with blue and
yellow reversed), and the second subevent is identical to the event N .

Thus we have

Pr[Hb] + Pr[Hy ∧ Vy] + Pr[N ] = 1.

Combining these equations, we see that

Pr[Hb ∧ Vb] = 2 Pr[Tb] − Pr[Hb].
In the limit of large grids with cross ratio s, the third term is given by Cardy’s
formula, cardy(s), and we seek to show that the left-hand side is given by Watts’
formula, watts(s). Let us give another name for what we expect to be the limit of
the second term. Define tripod(s) to satisfy

watts(s) = 2 tripod(s) − cardy(s),

that is [substituting (1.2) and (1.3)],

tripod(s) = watts(s) + cardy(s)

2
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Then in light of Cardy’s formula, proving Watts’ formula is equivalent to showing
that Pr[Tb] is given by tripod(s) in the fine mesh limit.



SCHRAMM’S PROOF OF WATTS’ FORMULA 1849

4. Comparison with SLE6.

4.1. Discrete derivatives of the tripod probability. Consider percolation on the
upper half-plane triangular lattice, and let PT [x1, x2, x3, x4] be the probability of a
blue tripod connecting the intervals (x1, x2) and (x2, x3) and (x3, x4) when the four
(here discrete) locations are x1 < x2 < x3 < x4 (each of which is a point between
two boundary hexagons; see the upper image in Figure 3).

Then 	x4PT [x1, x2, x3, x4] := PT [x1, x2, x3, x4] − PT [x1, x2, x3, x4 − 1] gives
the probability that there is a crossing tripod for (x1, x2, x3, x4) but not for
(x1, x2, x3, x4 − 1). (Here we assume that the lattice spacing is 1.) Since the
crossing tripod for (x1, x2, x3, x4) does not extend to a crossing tripod for
(x1, x2, x3, x4 − 1), there must be a path of the opposite color from the hexagon
just to the left of x4 − 1 to the interval between x2 + 1 and x3 + 1; this event is

FIG. 3. The discrete triple partial derivative of the tripod probability is the probability of a multi-
arm event. The top panel illustrates the event whose probability is PT [x1, x2, x3, x4], the next panel
illustrates 	x4PT [x1, x2, x3, x4], the third panel illustrates 	x3	x4PT [x1, x2, x3, x4] and the bot-
tom panel illustrates −	x1	x3	x4PT [x1, x2, x3, x4].
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represented by the second image in Figure 3. Similarly,

−	x1	x3	x4PT [x1, x2, x3, x4]
gives the probability of a multi-arm event such as the one in the bottom image in
Figure 3.

By summing these discrete differences, it is straightforward to write

PT [x1, x2, x3, x4] = ∑
c∈(x3,x4]

∑
b∈(x2,x3]

∑
a∈(x1,x2]

−	x1	x3	x4PT [a, x2, b, c].

If there is a blue tripod connecting the intervals (x1, x2), (x2, x3) and (x3, x4), then
there is only one cluster containing such a tripod. This formula can be interpreted
as partitioning the tripod event into multi-arm events of the type shown in the
bottom panel of Figure 3. The triple (a, b, c) ∈ (x1, x2] × (x2, x3] × (x3, x4] is
uniquely determined by the tripod: a is (half a lattice spacing to the right of) the
rightmost boundary point of the tripod cluster in the interval (x1, x2), b is (just
right of) the rightmost point of the tripod cluster in (x2, x3) and c is (just right of)
the leftmost point of the tripod cluster in (x3, x4).

4.2. Discrete derivatives of the crossing probability. Consider percolation on a
half-plane triangular lattice, as in the previous subsection, and let PC[x1, x2, x3, x4]
be the probability of at least one blue cluster spanning the intervals (x1, x2)

and (x3, x4); see the upper image in Figure 4. Then 	x4PC[x1, x2, x3, x4] =
PC[x1, x2, x3, x4]−PC[x1, x2, x3, x4 −1] gives the probability that there is a cross-
ing for (x1, x2, x3, x4) but not (x1, x2, x3, x4 − 1). This event is represented by the
second image in Figure 4. Similarly,

−	x1	x3	x4PC[x1, x2, x3, x4]
gives the probability that one of the two multi-arm events in the bottom image
in Figure 3 occurs. The event of a crossing cluster is equivalent to the event that
one of these multi-arm events occurs for some (necessarily unique) set of three
points (a, b, c) ∈ (x1, x2] × (x2, x3] × (x3, x4]: a is (just right of) the rightmost
boundary point of the crossing cluster(s) in the interval (x1, x2); b is (just right of)
the rightmost point of the crossing cluster in (x2, x3) [if it exists; otherwise b is the
rightmost boundary point in (x2, x3) of a crossing yellow cluster, as shown]; and
c is (just right of) the leftmost point of the cluster(s) in (x3, x4).

Thus −	x1	x3	x4PC[x1, x2, x3, x4] decomposes into the probabilities of two
multiarm events, the first of which is −	x1	x3	x4PT [x1, x2, x3, x4].

4.3. Multi-arm events and the interface. Consider the setting of Figures 3
and 4, and suppose we add an additional boundary layer of blue hexagons to the
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FIG. 4. The discrete triple partial derivative of the crossing probability is sum of the
probabilities of two multi-arm events. The panels illustrate the events whose probability is
PC [x1, x2, x3, x4] (top), 	x4PC [x1, x2, x3, x4] (second), 	x3	x4PC [x1, x2, x3, x4] (third row),
and −	x1	x3	x4PC [x1, x2, x3, x4] (bottom row).

left of x2 and yellow hexagons to the right of x2. Then let γdiscrete be the discrete
interface starting at x2. (See Figure 5.)

Then the union of the two multi-arm events at the bottom of Figure 4 describes
the event that that c is the first boundary point that γdiscrete hits outside the interval
(x1, x3), and that a and b are the leftmost and rightmost boundary points hit by
γdiscrete before c. The left figure corresponds to the case that a is hit before b, and
the right figure to the case that b is hit before a.

4.4. Continuum Watts’ formula: A statement about SLE. Like Cardy’s for-
mula, Watts’ formula has a continuum analog, which is a statement strictly about
SLE6. Fix real numbers x1 < x2 < x3 < x4, and let s be their cross ratio. Con-
sider the usual SLE6 in the upper half-plane, where the starting point of the path
is x2. Before Smirnov proved Cardy’s formula for the scaling limit of triangular
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FIG. 5. The interface interpretation of the multi-arm events.

lattice percolation, it was already known by Schramm that cardy(s) represents the
probability that γ hits (x3, x4) before hitting R \ [x1, x4]. [In the discrete setting
of Section 4.3, having γdiscrete hit (x3, x4) before the complement of (x1, x4) is
equivalent to the existence of a crossing.] In light of Section 4.3, the following is
the natural continuum analog of the tripod formula.

THEOREM 4.1. Let SLEtripod(s) be the probability that both:

(1) γ first hits (x3, x4) (at some time t) before it first hits R \ (x1, x4), and
(2) γ hits the leftmost point of R ∩ γ [0, t) before it hits the rightmost point.

Then SLEtripod(s) = tripod(s).

Theorem 4.1 is the actual statement that was proved by Dubédat, and the
statement whose proof was sketched by Oded. Dubédat claimed further that
Theorem 4.1 would imply the tripod formula (and hence Watts’ formula) for
the scaling limit of critical triangular lattice percolation if one used the (at the
time unpublished) proof that SLE6 is the scaling limit of the interface [Dubédat
(2006a)]. To be fully precise, one needs slightly more than the fact that the in-
terface scaling limit is SLE6: it is important to know that the discrete interface is
unlikely to get close to the boundary without hitting it. [Similar issues arise when
using Cardy’s formula to prove SLE6 convergence; see, e.g., Camia and Newman
(2007).] Rather than address this (relatively minor technical) point here, we will
proceed to prove Theorem 4.1 in the manner outlined by Oded and defer this issue
until Section 7.

It is convenient to have a name for the SLE versions of the multi-arm events
in Figure 4. Say that a triple of distinct real numbers (a, b, c) with a < 0 < b

constitutes a tripod set for γ if for some t > 0 we have:
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(1) γ (t) = c;
(2) inf(γ [0, t) ∩ R) = a;
(3) sup(γ [0, t) ∩ R) = b.

There are a.s. a countably infinite number of tripod sets, but if x1 < 0 and x3 > 0
is fixed, there is a.s. exactly one for which x1 < a < 0 < b < x3 and c /∈ (x1, x3).
Let PC : R3 → R be the probability density function for this (a, b, c). (We see in
Lemma 4.2 that this density function exists.) There are also two types of tripod
sets (a, b, c): those for which γ hits a first and those for which γ hits b first. Write
PC = PA + PB , where PA and PB are the corresponding probability densities for
a-first and b-first tripod sets.

Now, we claim the following:

LEMMA 4.2. Using the notation above, the density functions PC and PA exist,
and

cardy(s) =
∫ 0

x1

∫ x3

0

∫ x4

x3

PC(a, b, c) dc db da

and

SLEtripod(s) =
∫ 0

x1

∫ x3

0

∫ x4

x3

PA(a, b, c) dc db da.

PROOF. In the event that the density functions do not exist, we abuse nota-
tion and let “PC(a, b, c) dc db da” and “PA(a, b, c) dc db da” denote the relevant
measures, which must exist. It is easy to see that the event that (x3, x4) is hit before
R \ [x1, x4] is equivalent to the event that (a, b, c) ∈ (x1,0) × (0, x3) × (x3, x4).
By definition, SLEtripod(s) is the probability of the same event intersected with
the event that γ hits a first. Finally, observe that Cardy’s formula of the cross-ratio
of 4-points is three-times differentiable, so the density function PC(a, b, c) exists
and, consequently, the density function PA(a, b, c) also exists. �

Of course, from this, one has the immediate corollary:

COROLLARY 4.3. Using the above notation,

∂x1∂x3∂x4 cardy(cr(x1,0, x3, x4)) = PC(x1, x3, x4)

and

∂x1∂x3∂x4 SLEtripod(cr(x1,0, x3, x4)) = PA(x1, x3, x4).

If we could show further that

PA(x1, x3, x4) = ∂x1∂x3∂x4 tripod(cr(x1,0, x3, x4)),(4.1)
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then this corollary and standard integration would imply Theorem 4.1, since we
know that tripod(cr(·)) = SLEtripod(cr(·)) on the bounding planes x1 = 0, x2 = 0
and x3 = x4. Since we already have an explicit formula for tripod, the only re-
maining step is to explicitly compute PA. Oded’s approach is to compute the ratio
PA/PC as the conditional probability [given that (a, b, c) form a tripod set] that γ

hits a before b. Since PC is known, this determines PA.

5. Conditional probability that a is hit first. Schramm was very adept with
using Mathematica to calculate all manner of things. He probably would have con-
sidered this last step to be routine, since it was for him straightforward to set up
the right equations and then let Mathematica solve them. At this point we refer
to his original Mathematica notebook from 2004, and explain the various steps in
the calculation. To be consistent with Oded’s notation, we now make the following
substitutions:

v3 = a, W = x2, v1 = b, v2 = c.

(We assume v3 < W < v1 < v2. Oded apparently chose this notation because under
cyclic reordering it was the same as W = v0, v1, v2, v3.)

First we formally define the function cardy(s) as in (1.2). The Mathematica
function cardy defined here involves an additional parameter κ , but it special-
izes to cardy(s) when κ = 6. This more general formula is analogous to Cardy’s
formula but gives the (conjectural) crossing probability for the critical Fortuin–
Kasteleyn random cluster model [with q = 4 cos2(4π/κ)] with alternating wired-
free-wired-free boundary conditions. (See Rohde and Schramm [(2005), conjec-
ture 9.7], for some background.) This formula was known at Microsoft in 2003,
and most likely Oded copied it from another Mathematica notebook. This formula
was later independently discovered [Bauer, Bernard and Kytölä (2005)] (nonrigor-
ously) and [Dubédat (2006b)] (rigorously).

Consider the evolution of chordal SLE6 started from W and run to ∞, when at
time zero there are 3 marked points at positions v1, v2 and v3. We then let W(t)

represent the SLE6 driving function [i.e., W(t) = W(0) + √
6Bt where Bt is a

standard Brownian motion] of the Loewner evolution

∂tgt (z) = 2

gt (z) − W(t)
,

and interpret the vi as functions of t , evolving under the Loewner flow, that is,
vi(t) := gt (vi(0)).
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If f is any function of v1, v2, v3,W , we define

L(f ) := ∂

∂t
E[f (W(t), v1(t), v2(t), v3(t))]

∣∣∣∣
t=0

.(5.1)

This is a new function of the same four variables which can be calculated explicitly
using Itô’s formula as

L(f ) = κ

2

∂2

∂W 2 f +
3∑

i=1

2(∂/∂vi)f

vi − W
.

This operator is defined as L in the Mathematica code below.

Similarly in the Mathematica code, cr is the cross-ratio [defined in (5.2)], that is,

cr := cr(v3,W,v1, v2) = (W − v3)(v1 − v2)

(W − v2)(v1 − v3)
.(5.2)

In the next line, Oded performed a consistency check. Cardy’s formula should
be a martingale for the SLEκ diffusion, hence L(cardy(cr(·))) = 0.

Next, Oded computes the triple derivative h of Cardy’s formula (which is the same
as the PC defined in Section 4.4).
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That is, he computes

h(v3,W,v1, v2) := ∂v1∂v2∂v3 cardy
(

(W − v3)(v1 − v2)

(W − v2)(v1 − v3)

)
.

The result is somewhat complicated, but we may ignore it, since it is just an inter-
mediate result.

The next step involves conditioning on an event of zero probability, the event
that (v3, v1, v2) is a tripod set. We can make sense of this by introducing a triple
difference of Cardy’s formula and recalling the results of Section 4.4. First we
introduce notation to describe some small evolving intervals. For given values
v1(0), v2(0), v3(0),W(0), pick ε small enough so that the intervals (vi(0), vi(0)+
ε) are disjoint and do not contain W(0). Write ṽi(0) = vi(0) + ε. Define ṽi (t)

using the Loewner evolution, and write εi(t) := ṽi(t) − vi(t). Let us write

hε1,ε2,ε3(v3,W,v1, v2)
(5.3)

:= 	(ε1)
v1

	(ε2)
v2

	(ε3)
v3

cardy(cr(v3,W,v1, v2)),

where 	
(ε)
v is the difference operator defined by

	(ε)
v f (v) = f (v + ε) − f (v).

Note that the 	
(εi)
vi depend on t . By Corollary 4.3, equation (5.3) at time t rep-

resents the conditional probability (given the Loewner evolution up to time t)
that there is a tripod set in [v3(0), ṽ3(0)] × [v1(0), ṽ1(0)] × [v2(0), ṽ2(0)]. By Gir-
sanov’s theorem, conditioning on this event induces a drift on the Brownian motion
Wt driving the SLE, where the drift is

κ ∂W loghε1,ε2,ε3(v3,W,v1, v2).

Observe that

∂

∂W
loghε1,ε2,ε3 = (∂/∂W)hε1,ε2,ε3

hε1,ε2,ε3

=
∫∫∫

(∂/∂W)h∫∫∫
h

≈ ε1ε2ε3(∂/∂W)h

ε1ε2ε3h
= ∂W logh,

where there triple integral is over
∏[vi, ṽi]. Thus upon taking the limit ε → 0, the

drift becomes

drift(t) := κ∂W logh(v3,W,v1, v2).(5.4)

The next Mathematica code explicitly computes (5.4).
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The expression above is complicated, but again it is an intermediate result that
we do not need to calculate or read ourselves. The first line of the Mathematica
code below defines the generator L1 (which we will write as L1) for the condi-
tioned SLE6, where the driving function Wt has the drift given above. Here L1 is
defined as in (5.1) except that the expectation is with respect to the law of Wt with
the drift term (5.4). Thus

L1(f ) := L(f ) + drift(t) ∂Wf.

As before, if f is a real function of W,v1, v2, v3, then L1(f ) will be a function of
the same four variables.

We now compute the probability in the modified diffusion that v3 is absorbed
before v1, that is, that W(t) collides with v3(t) before colliding with v1(t). This
probability will be a martingale that only depends upon the cross-ratio s. Thus,
in the next paragraph, we specialize and consider functions of W,v1, v2, v3 that
have the form f (cr(v3,W,v1, v2)) where f : R → R is a function of one variable.
We would like to find a one-parameter function f for which f (cr(v3,W,v1, v2))

is a martingale with respect to this modified diffusion, so we will require that
L1(f (cr(v3,W,v1, v2))) = 0. What one-parameter functions f have this property?

Oded answers this question with some clever Mathematica work. First, he re-
expresses the differential equation L1(f (cr(v3,W,v1, v2))) = 0—which involves
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the four parameters W,v1, v2, v3—in terms of the parameters s, v1, v2, v3. He does
this by setting s equal to the expression for cr given in (5.2), solving to get W

in terms of the other variables and plugging this new expression for W into the
expression L1(f (cr(v3,W,v1, v2))).

This expression for L1(f (cr(v3,W,v1, v2))) depends on f ′ and f ′′, and equat-
ing it to zero yields a differential equation for f , the unknown one-parameter func-
tion of the cross-ratio that we seek,

2(1 − 6s2 + 4s3)f ′(s) + 3s(−1 + 2s − 2s2 + s3)f ′′(s) = 0.

Oded solves this differential equation, which yields the function f up to two free
parameters C1 and C2.

Here Mathematica gives

f (s) = C2 + C1s
2/3 1 − 3s + 2s2 − (1 − s)1/3(1 − s + s2) 2F1(2/3,1/3;5/3; s)

3(−1 + s)1/3(1 − s + s2)
.

The conditional probability that we seek tends to 1 when s → 0 and tends to 0
when s → 1, and this determines C1 and C2: C2 must be 1, and C1 follows from
Gauss’s hypergeometric formula,

2F1(a, b; c;1) = �(c)�(c − a − b)

�(c − a)�(c − b)
.

Solving for C1 and substituting, we find that the conditional probability that γ hits
v3 before v1, given that (v3, v1, v2) is a tripod set, is given by

f (s) = 1 − �(4/3)

�(2/3)�(5/3)
s2/3

[ −1 + 3s − 2s2

(1 − s)1/3(1 − s + s2)
+ 2F1

(
2

3
,

1

3
; 5

3
; s

)]
,

where s is the cross-ratio of v3,0, v1, v2.
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6. Comparison of triple derivatives. Taking PA and PC as defined in Sec-
tion 4.4, and f and h as defined in the previous section, we now have

h(v3,0, v1, v2) = PC(v3, v1, v2)

and

f (cr(v3,0, v1, v2)) = PA(v3, v1, v2)/PC(v3, v1, v2).

In principle the next step toward proving (4.1) (and hence Theorem 4.1) would
be to integrate PA = f (cr(·))h over the three variables v1, v2, v3 and show that
one obtains tripod(cr(·)). In Oded’s original notes, he stated that this could be
done using integration by parts. Fortunately (for those who lack Oded’s skill at
integrating) we already know (thanks to Watts) what we expect tripod to be, so we
can instead differentiate tripod(cr(·)) three times (w.r.t. v1, v2, v3), and check that
it equals f (cr(·))h. The Mathematica code in this final section was generated by
the authors of this paper, not by Schramm.

First we redefine cardy to have an explicit constant and define the purported
tripod probability.

Next we differentiate Cardy’s formula three times.

This is the same as h defined earlier, but with the trick of eliminating the vari-
able W and expressing the formula in terms of s. Next we triply differentiate the
purported tripod probability.
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Notice that the triple derivative of the tripod probability is expressed in terms
of two different hypergeometric functions. In order to compare this expression
with the conditional probability computed in Section 5, we need to use some hy-
pergeometric identities. We use one of Gauss’s relations between “contiguous”
hypergeometric functions [Erdélyi et al. (1953), Section 2.8, equation 33], to write

−1
3 2F1

(2
3 , 4

3 ; 5
3 ; s) + 2

3(1 − s) 2F1
(5

3 , 4
3 ; 5

3 ; s) − 1
3 2F1

(2
3 , 1

3 ; 5
3 ; s) = 0.

But 2F1(c, b; c; s) = (1 − s)−b Erdélyi et al. (1953), Section 2.8, equation 4, so

2F1
(2

3 , 4
3 ; 5

3 ; s) = 2(1 − s)−1/3 − 2F1
(2

3 , 1
3 ; 5

3 ; s).(6.1)

Next we compare the two expressions for the conditional probability and verify
that they are the same.

Therefore the triple derivatives agree, and we have established (4.1).

7. Percolation statement. We have the established equivalence of
SLEtripod(s) and tripod(s), but we still need to make the connection to perco-
lation.

THEOREM 7.1. Let D ⊂ C be a fixed bounded Jordan domain with marked
points x1, x2, x3, x4 on its boundary. For any ε, we may consider the hexagonal
lattice rescaled to have side length ε and color the faces blue and yellow according
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to site percolation. Let B be the closure of the set of blue faces, and let P ε be the
probability that B ∩ D contains a connected component that intersects all four
boundary segments (x1, x2), (x2, x3), (x3, x4) and (x4, x1). Then

lim
ε→0

P ε = watts(s).

Proving Theorem 7.1 solves the problem addressed by Watts. However, we re-
mark that more general statements are probably possible. Any domain D with
four marked boundary points has a “center” c(D) with the property that a confor-
mal map taking the domain to a rectangle (and the points to the corners) sends
c to the center of the rectangle. Oded would probably have preferred to show
that for any sequence Dn of simply connected marked hexagonal domains (do-
mains comprised of unions of hexagons within a fixed hexagonal lattice H with
four marked boundary points of cross ratios sn converging to s), the probabil-
ity of the Watts event tends to watts(s) provided that the distance from c(Dn) to
∂Dn tends to ∞. (Oded’s SLE convergence results are similarly general [Lawler,
Schramm and Werner (2004), Schramm and Sheffield (2005, 2009)].) However,
Oded’s derivation of Watts’ formula (like Dubédat’s derivation) depends on SLE6
convergence, and existing SLE6 convergence statements [e.g., Camia and Newman
(2007)] are not quite general enough to imply this.

PROOF OF THEOREM 7.1. As shown in Section 3, it suffices to prove the
analogous statement about tripod events (x1, x2), (x2, x3), and (x3, x4) and the
function tripod(s).

Let εn be a sequence of positive reals tending to zero, and define γn to be the
random interface in D obtained from percolation on εn times the hexagonal lattice,
between the lattice points closest to x2 and x4. Let an, bn, cn be the tripod set for
this interface and the points x1 and x3, that is, cn is the first point on γn ∩ ∂Dn

outside the boundary segment (x1, x3), and the interface γn up to point cn last hits
the boundary intervals (x1, x2) and (x2, x3) at an and bn, respectively. From the
work of Camia and Newman (2007), we can couple the γn and γ in such a way
that γn → γ almost surely in the uniform topology (in which two curves are close
if they can be parameterized in such a way that they are close at all times). By
the compactness of ∂D (and the corresponding compactness—in the topology of
convergence in law—of the space of measures on ∂D) it is not hard to see that there
must be a subsequence of the n values and a coupling of the γn with γ in which
the entire quadruple (γn, an, bn, cn) converges almost surely to some limit. If we
could show further that this limit must be (γ, a, b, c) almost surely, this would
imply the theorem, since uniform topology convergence would imply that if γ hits
a before b then γn hits an before bn for large enough n almost surely. However, it
is not clear a priori that this limit is (γ, a, b, c) almost surely (even though the γn

converge to γ ), since while γ touches the boundary at a, b and c, it could be that
γn comes close to the boundary at these points without touching it.
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To obtain a contradiction, let us suppose that there is a uniformly positive prob-
ability (i.e., bounded away from 0 as n → ∞) that, say, the limit of the an is not a.
(The argument for the bn and the cn is essentially the same.) Then there must be an
open interval (α1, α2) of the boundary and an open subinterval (β1, β2) ⊂ (α1, α2)

of the boundary (with β1 = α1 and β2 = α2) such that there is a uniformly pos-
itive probability that a lies (β1, β2) but the limit of the an does not lie in that
(α1, α2). Now we can expand the Jordan domain D to a larger Jordan domain D̃

that includes a neighborhood of (β1, β2), but where the boundary of D̃ agrees with
boundary of D outside of (α1, α2). Let γ̃n denote the discrete interfaces in this ex-
panded domain. We can couple the γ̃n with the γn in such a way that the two agree
whenever γ̃n does not leave D (by using the same percolation to define both). But
now we have a coupling of the γ̃n sequence with the property that there is a positive
probability that the limit of the γ̃n is a path that hits the boundary of D̃ \D without
entering D̃ \ D. This implies that if the γ̃n converge in law, they must converge to
a random path that with positive probability hits the boundary of D̃ \ D without
entering D̃ \ D. By the Camia–Newman theorem, applied to the domain D̃, the γ̃n

converge in law to chordal SLE6 in D̃, and on the event that SLE6 hits ∂(D̃ \ D),
it will a.s. enter D̃ \ D, a contradiction. �
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