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RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL
STATISTICS OF EIGENVALUES

BY TERENCE TAO1 AND VAN VU2

UCLA and Rutgers University

We study the eigenvalues of the covariance matrix 1
nM∗M of a large

rectangular matrix M = Mn,p = (ζij )1≤i≤p;1≤j≤n whose entries are i.i.d.
random variables of mean zero, variance one, and having finite C0th moment
for some sufficiently large constant C0.

The main result of this paper is a Four Moment theorem for i.i.d. covari-
ance matrices (analogous to the Four Moment theorem for Wigner matrices
established by the authors in [Acta Math. (2011) Random matrices: Univer-
sality of local eigenvalue statistics] (see also [Comm. Math. Phys. 298 (2010)
549–572])). We can use this theorem together with existing results to estab-
lish universality of local statistics of eigenvalues under mild conditions.

As a byproduct of our arguments, we also extend our previous results on
random Hermitian matrices to the case in which the entries have finite C0th
moment rather than exponential decay.

1. Introduction.

1.1. The model. The main purpose of this paper is to study the asymptotic
local eigenvalue statistics of covariance matrices of large random matrices. Let us
first fix the matrix ensembles that we will be studying.

DEFINITION 1 (Random covariance matrices). Let n be a large integer pa-
rameter going off to infinity, and let p = p(n) be another integer parameter such
that p ≤ n and limn→∞ p/n = y for some 0 < y ≤ 1. We let M = Mn,p =
(ζij )1≤i≤p,1≤j≤n be a random p × n matrix, whose distribution is allowed to de-
pend on n. We say that the matrix ensemble M obeys condition C1 with some
exponent C0 ≥ 2 if the random variables ζij are jointly independent, have mean
zero and variance 1, and obey the moment condition supi,j E|ζij |C0 ≤ C for some
constant C independent of n,p. We say that the matrix M is i.i.d. if the ζij are
identically and independently distributed with law independent of n,p.

Given such a matrix, we form the n × n covariance matrix W = Wn,p :=
1
n
M∗M . This matrix has rank p and so the first n − p eigenvalues are trivial; we
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order the (necessarily positive) remaining eigenvalues of these matrices (counting
multiplicity) as

0 ≤ λ1(W) ≤ · · · ≤ λp(W).

We often abbreviate λi(W) as λi .

Note that the only distributional hypothesis we require on the entries ζij , besides
the crucial joint independence hypothesis, are moment conditions. In particular, we
make no distinction between continuous and discrete distributions here.

REMARK 2. In this paper, we will focus primarily on the case y = 1, but
several of our results extend to other values of y as well. The case p > n can
be easily deduced from the p < n case after some minor notational changes by
transposing the matrix M , which does not affect the nontrivial eigenvalues of the
covariance matrix. One can also easily normalise the variance of the entries to be
some other quantity σ 2 than 1 if one wishes. Observe that the quantities σi :=√

nλ
1/2
i can be interpreted as the nontrivial singular values of the original matrix

M , and λ1, . . . , λp can also be interpreted as the eigenvalues of the p × p matrix
1
n
MM∗. It will be convenient to exploit all three of these spectral interpretations of

λ1, . . . , λp in this paper. condition C1 is analogous to condition C0 for Wigner-type
matrices in [28], but with the exponential decay hypothesis relaxed to polynomial
decay only.

The well-known Marchenko–Pastur law governs the bulk distribution of the
eigenvalues λ1, . . . , λp of W :

THEOREM 3 (Marchenko–Pastur law). Assume condition C1 with C0 > 2, and
suppose that p/n → y for some 0 < y ≤ 1. Then for any x > 0, the random vari-
ables

1

p
|{1 ≤ i ≤ p :λi(W) ≤ x}|

converge in probability to
∫ x

0 ρMP,y(x) dx, where

ρMP,y(x) := 1

2πxy

√
(b − x)(x − a)1[a,b](x)(1)

and

a := (
1 − √

y
)2; b = (

1 + √
y
)2

.(2)

When furthermore M is i.i.d., one can also obtain the case C0 = 2.
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PROOF. For the case C0 ≥ 4, see [21, 23]; for the case C0 > 2, see [29]; for the
C0 = 2 i.i.d. case, see [30]. Further results are known on the rate of convergence:
see [16]. �

In this paper, we are concerned instead with the local eigenvalue statistics.
A model case is the (complex) Wishart ensemble, in which the ζij are i.i.d. vari-
ables which are complex Gaussians with mean zero and variance 1. In this case,
the distribution of the eigenvalues (λ1, . . . , λn) of W can be explicitly computed
(as a special case of the Laguerre unitary ensemble). For instance, when p = n,
the joint distribution is given by the density function

ρn(λ1, . . . , λn) = c(n)
∏

1≤i<j≤n

|λi − λj |2 exp

(
−n

n∑
i=1

λi

)
(3)

for some explicit normalization constant c(n) whose exact value is not important
for this discussion.

Very similarly to the GUE case, one can use this explicit formula to directly
compute several local statistics, including the distribution of the largest and small-
est eigenvalues [3], the correlation functions [22] etc. Also in similarity to the GUE
case, it is widely conjectured that these statistics hold for a much larger class of
random matrices. For some earlier results in this direction, we refer to [2, 13, 25,
26] and the references therein.

The goal of this paper is to establish a Four Moment theorem for random co-
variance matrices, as an analogue of a recent result in [28]. Roughly speaking, this
theorem asserts that the asymptotic behaviour of local statistics of the eigenvalues
of Wn are determined by the first four moments of the entries.

1.2. The Four Moment theorem. To state the Four Moment theorem, we first
need a definition.

DEFINITION 4 (Matching). We say that two complex random variables
ζ, ζ ′ match to order k for some integer k ≥ 1 if one has ERe(ζ )mIm(ζ )l =
ERe(ζ ′)mIm(ζ ′)l for all m, l ≥ 0 with m + l ≤ k.

Our main result is the following.

THEOREM 5 (Four Moment theorem). For sufficiently small c0 > 0 and suf-
ficiently large C0 > 0 (C0 = 104 would suffice) the following holds for every
0 < ε < 1 and k ≥ 1. Let M = (ζij )1≤i≤p,1≤j≤n and M ′ = (ζ ′

ij )1≤i≤p,1≤j≤n be
matrix ensembles obeying condition C1 with the the indicated constant C0, and
assume that for each i, j that ζij and ζ ′

ij match to order 4. Let W,W ′ be the asso-
ciated covariance matrices. Assume also that p/n → y for some 0 < y ≤ 1.
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Let G : Rk → R be a smooth function obeying the derivative bounds

|∇jG(x)| ≤ nc0(4)

for all 0 ≤ j ≤ 5 and x ∈ R
k .

Then for any εp ≤ i1 < i2 < · · · < ik ≤ (1 − ε)p, and for n sufficiently large
depending on ε, k, c0 we have

|E(G(nλi1(W), . . . , nλik (W))) − E(G(nλi1(W
′), . . . , nλik (W

′)))| ≤ n−c0 .(5)

If ζij and ζ ′
ij only match to order 3 rather than 4, the conclusion (5) still holds

provided that one strengthens (4) to

|∇jG(x)| ≤ n−jc1

for all 0 ≤ j ≤ 5 and x ∈ R
k and any c1 > 0, provided that c0 is sufficiently small

depending on c1.

This is an analogue of [28], Theorem 15, for covariance matrices, with the main
difference being that the exponential decay condition from [28], Theorem 15, has
been weakened to the high moment condition in C1. This is achieved by an “expo-
nential decay removing trick” that relies on using a truncated version of the four
moment theorem to extend the range of validity of a key “gap condition” that is
used in the proof of the above theorem. The same trick also allows one to obtain a
similar strengthening of the main results of [27, 28], thus relaxing the exponential
decay hypotheses in those results to high moment conditions. The value C0 = 104

is ad hoc, and we make no attempt to optimize this constant.

REMARK 6. The reason that we restrict the eigenvalues to the bulk of the
spectrum [εp ≤ i ≤ (1 − ε)p] is to guarantee that the density function ρMP,y is
bounded away from zero. In view of the results in [27], we expect that the result
extends to the edge of the spectrum as well. In particular, in view of the results in
[2], it is likely that the hard edge asymptotics of Forrester [14] can be extended to
a wider class of ensembles. We will pursue this issue elsewhere.

REMARK 7. As observed in [5], the requirement that the moments of ζij and
ζ ′
ij match exactly can be relaxed slightly. Indeed, to obtain the desired conclusions,

it suffices to require that for k = 1,2,3,4, the kth moments of ζij and ζ ′
ij differ by

O(n−(4−k)/2−δ) for some δ > 0 independent of n. Indeed, if one inspects the proof
of the four moment theorem, and specifically the step in which one performs a Tay-
lor expansion argument to understand the effect of exchanging a single entry ζij

with ζ ′
ij on the expectations in (5) (see [28], Section 3.2), the above near-matching

property is sufficient to ensure that this effect has magnitude O(n−2−c) for some
c > 0, and so the net effect on (5) after performing O(n2) such exchange opera-
tions is acceptable. We omit the details. This relaxed version of the four moment
theorem is particularly useful for dealing with Bernoulli distributions, which are
completely determined by their first four moments; see [5] for further discussion.
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1.3. Applications. One can apply Theorem 5 in a similar way as its counter-
part [28], Theorem 15, in order to obtain universality results for large classes of
random matrices. In many cases, one can combine this theorem with existing par-
tial results for special ensembles to remove some of the moment assumptions. Let
us demonstrate this through an example concerning the universality of the sine
kernel.

Using the explicit formula (3), Nagao and Wadati [22] established the following
result for the complex Wishart ensemble, which roughly speaking asserts that the
spectrum of such an ensemble enjoys sine kernel statistics in the neighborhood of
any bulk energy level 0 < u < 4.

THEOREM 8 (Sine kernel for Wishart ensemble). [22] Let k ≥ 1 be an integer,
let f : Rk → C be a continuous function with compact support and symmetric with
respect to permutations, and let 0 < u < 4; we assume all these quantities are
independent of n. Assume that3 p = n+O(1) (thus y = 1), and that W is given by
the complex Wishart ensemble. Let λ1, . . . , λp be the nontrivial eigenvalues of W .
Then the quantity

E
∑

1≤i1,...,ik≤p

f
(
nρMP,1(u)(λi1 − u), . . . , nρMP,1(u)(λik − u)

)
(6)

converges as n → ∞ to∫
Rk

f (t1, . . . , tk)det(K(ti, tj ))1≤i,j≤k dt1 · · ·dtk,

where K(x,y) := sin(π(x−y))
π(x−y)

is the sine kernel.

REMARK 9. The results in [22] allowed f to be bounded measurable rather
than continuous, but when we consider discrete ensembles later, it will be impor-
tant to keep f continuous.

Returning to the bulk, the following extension was established by Ben Arous
and Peché [2], as a variant of Johansson’s result [19] for random hermitian ma-
trices. We say that a complex random variable ζ of mean zero and variance one
is Gauss divisible if ζ has the same distribution as ζ = (1 − t)1/2ζ ′ + t1/2ζ ′′ for
some 0 < t < 1 and some independent random variables ζ ′, ζ ′′ of mean zero and
variance 1, with ζ ′′ distributed according to the complex Gaussian.

THEOREM 10 (Sine kernel for Gaussian divisible ensemble). [2] Theorem 8
[which is for the Wishart ensemble and for p = n + O(1)] can be extended to the
case when p = n + O(n43/48) (so y is still 1), and when M is an i.i.d. matrix
obeying condition C1 with C0 = 2, and with the ζij gauss divisible.

3See Section 1.5 for the asymptotic notation we will be using.
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Using Theorem 5 and Theorem 10 (in exactly the same way we used [28], The-
orem 15, and Johansson’s theorem [19] to establish [28], Theorem 11), we can
extend Theorem 10 from the gauss divisible case to a more general situation.

COROLLARY 11 (Sine kernel for more general ensembles). Theorem 8 can
be extended to the case when p = n + O(n43/48) (so y is still 1), and when M is
an i.i.d. matrix obeying condition C1 with C0 sufficiently large (C0 = 104 would
suffice), and where the real and imaginary parts of ζij are i.i.d. and are supported
on at least three points.

PROOF. (Sketch) It was shown in [28], Corollary 30, that if the real and imag-
inary parts of a complex random variable ζ were independent with mean zero and
variance one, and both were supported on at least three points, then ζ matched to
order 4 with a gauss divisible random variable ζ ′ with finite C0 moment (indeed,
if one inspects the convexity argument used to solve the moment problem in [28],
Lemma 28, the Gauss divisible random variable could be taken to be the sum of
a Gaussian variable and a discrete variable, and in particular is thus exponentially
decaying). If one lets M ′ be the i.i.d. matrix whose coefficients have entries ζ ′,
then Theorem 10 asserts that the conclusions of Theorem 8 hold for M ′. Using
Theorem 5 exactly as in the proof of [28], Theorem 11, (and approximating f uni-
formly by smooth functions), we conclude that the conclusions of Theorem 8 hold
for M also. �

One can also extend the above argument to cover cases in which the real and
imaginary parts of ζij are not i.i.d. by an analysis of the moment matching problem
for complex random variables (and in particular, by extending the three-moment
analysis in Lemma 34 below to four moments), but we will not do so here.

The arguments in this paper will be a nonsymmetric version of those in [28]. The
arguments in [28] started with analyzing the stability of the eigenvalue equation
Mvi = λivi where M is a random Hermitian matrix and λi is the ith eigenvalue
with eigenvector v. For the situation considered in this paper, it is tempting to
similarly analyze the eigenvalue equation Wvi = λivi for the covariance matrix W .
However, this does not work, since the covariance matrix W , while random, does
not have independent entries. The new idea here is to work with a system of two
equations

Mui = σivi(7)

and

M∗vi = σiui,(8)

where ui and vi are the left and right singular vectors of M . This leads to a number
of technical issues that need to be addressed through the paper.
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One can combine the singular value equations (7), (8) into a single eigenvalue
equation

M
(

vi

ui

)
= σi

(
vi

ui

)
,

where M is the augmented matrix

M :=
(

0 M

M∗ 0

)
.(9)

Thus one can view the singular values of an i.i.d. matrix as being essentially given
by the eigenvalues of a slightly larger Hermitian matrix which is of Wigner type
except that the entries have been zeroed out on two diagonal blocks. We will take
advantage of thus augmented perspective in some parts of the paper (particularly
when we wish to import results from [28] as black boxes), but in other parts it
will in fact be more convenient to work with M directly. In particular, the fact
that many of the entries in (9) are zero (and in particular, have zero mean and
variance) seems to make it difficult to directly apply parts of the arguments from
[28] (particularly those that are probabilistic in nature,4 rather than deterministic)
directly to the augmented matrix, and will instead work with M directly in these
cases. Nevertheless, one can view this connection as a heuristic explanation as to
why some (but not all) of the machinery in the Hermitian eigenvalue problem can
be transferred to the non-Hermitian singular value problem.

1.4. Extensions. In a very recent work, Erdős et al. [10] extended5 Theorem
10 to a large class of matrices, assuming that the distribution of the entries ζij is
sufficiently smooth and obeys a log-Sobolev inequality. While their results do not
apply for entries with discrete distributions, it allows one to extend Theorem 10 to
the case when t is a negative power of n. Given this, one can use the argument in

4A typical instance of a probabilistic argument that encounters difficulty when there are many
zero entries arises when one wants to estimate the distance dist(X,V ) between a random vector
X = (ξ1, . . . , ξn) (which one should think of as something like a row of M) and a fixed subspace V .
If all the entries of X are i.i.d. with mean zero and constant variance, then an easy second moment
computation allows one to control E dist(X,V )2 exactly in terms of the codimension of V ; in partic-
ular, no knowledge of the orientation of V is required. One also obtains reasonable upper and lower
bounds on this quantity if the variance is not constant, but is also bounded above and below. How-
ever, if many of the entries of X have zero variance (i.e., they vanish), then one has difficulty lower
bounding E dist(X,V )2 because one has to somehow exclude the possibility that the normal vectors
to V have almost all of their 
2 mass supported on those zero variance entries. We do not know
how to address this problem in general. Note added in proof : Several months after the submission
of this paper, Erdős, Yau and Yin [11, 12] were able to obtain universality results for some classes
of generalized Wigner matrices (such as band matrices) in which some entries are permitted to have
zero variance. However, one of their key assumptions is that the matrix of (normalised) variances has
a simple eigenvalue at 1, and this assumption does not hold for the augmented matrix (9).

5Even more recently, a similar result was also established by Péché [24].
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[5] to remove the requirement that the real and imaginary parts of ζij be supported
on at least three points.

We can also have the following analogue of [5], Theorem 2.

THEOREM 12 (Universality of averaged correlation function). Fix ε > 0 and
u such that 0 < u − ε < u + ε < 4. Let k ≥ 1 and let f : Rk → R be a continuous,
compactly supported function, and let W = Wn,n be a random covariance matrix,
with n assumed large depending on u, ε, k. Then the quantity

1

2ε

∫ u+ε

u−ε

∫
Rk

f (t1, . . . , tk)
1

(nρMP,1(u′))k
p(k)

n

(10)

×
(
u′ + t1

nρMP,1(u′)
, . . . , u′ + tk

nρMP,1(u′)

)
dt1 · · ·dtk du′

converges as n → ∞ to∫
Rk

f (t1, . . . , tk)det(K(ti, tj ))
k
i,j=1 dt1 · · ·dtk,

where K(x,y) is the Dyson sine kernel

K(x,y) := sin(π(x − y))

π(x − y)
,(11)

and the k-point correlation function p
(k)
n : Rk → R

+ is the unique symmetric prob-
ability distribution such that∫

Rk
f (α1, . . . , αk)p

(k)
n (α1, . . . , αk) := k! ∑

1≤i1<···<ik≤n

f (λ1, . . . , λn)

for all symmetric test functions f . (If W is a discrete ensemble, one has to interpret
p

(k)
n as a distribution or a probability measure rather than as a function.)

The detailed proof of Theorem 12 are essentially the same as the proof of [5],
Theorem 2, and is omitted.

REMARK 13. The four moment theorem controls the distribution of individ-
ual eigenvalues (or singular values) λi , but as indicated above, this control can then
be used to obtain control of correlation expressions such as (10). The local relax-
ation flow methods developed in [4, 6–10], by contrast, are focused on individual
energy levels u rather than individual eigenvalues. As such, they provide an al-
ternate approach to controlling correlation expressions such as (10), but we do not
know how to convert such information back to control on individual eigenvalues or
singular values in general, because the standard deviation of each eigenvalue can
exceed (by a logarithmic factor, see [18]) the scale of the mean eigenvalue spacing,
which is the scale at which the correlation estimates operate at.
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1.5. Notation. Throughout this paper, n will be an asymptotic parameter go-
ing to infinity. Some quantities (e.g., ε, y and C0) will remain independent of n,
while other quantities (e.g., p, or the matrix M) will depend on n. All statements
here are understood to hold only in the asymptotic regime when n is sufficiently
large depending on all quantities that are independent of n. We write X = O(Y),
Y = �(|X|), |X| � Y , or Y � |X| if one has |X| ≤ CY for all sufficiently large
n and some C independent of n. [Note however that C is allowed to depend on
other quantities independent of n, such as ε and y, unless otherwise stated; we
will sometimes emphasise this by using subscripts, thus, for instance, X = Oa(Y )

denotes the estimate |X| ≤ CaY for some constant C depending only on a.] We
write X = o(Y ) if |X| ≤ c(n)Y where c(n) → 0 as n → ∞. We write X = (Y)

if X � Y � X, thus, for instance, if p/n → y for some 0 < y ≤ 1 then p = (n).
We write

√−1 for the complex imaginary unit, in order to free up the letter i to
denote an integer (usually between 1 and n).

We write ‖X‖ for the length of a vector X, ‖A‖ = ‖A‖op for the operator norm
of a matrix A, and ‖A‖F = tr(AA∗)1/2 for the Frobenius (or Hilbert–Schmidt)
norm.

We will need to quantify the intuitive assertion that a given event E occurs
“frequently,” as follows.

DEFINITION 14 (Frequent events). [28] Let E be an event depending on n.

• E holds with high probability if P(E) ≥ 1 − O(n−c) for some constant c > 0
(independent of n).

• E holds with overwhelming probability if P(E) ≥ 1 − OC(n−C) for every con-
stant C > 0.

• E holds almost surely if P(E) = 1.

2. The gap property and the exponential decay removing trick. The fol-
lowing property, which roughly speaking asserts that unexpectedly small eigen-
value spacings are rare, plays an important role in proving the main results of [28].

DEFINITION 15 (Gap property). Let M be a matrix ensemble obeying condi-
tion C1. We say that M obeys the gap property if for every ε, c > 0 (independent
of n), and for every εp ≤ i ≤ (1 − ε)p, one has |λi+1(W) − λi(W)| ≥ n−1−c with
high probability. (The implied constants in this statement are allowed to depend on
ε and c.)

In the Wigner case, it was shown that exponential decay of the atom distribution
implied the gap property, and the gap property was then used to establish deduce
the four moment theorem from a “truncated four moment theorem.” As it turns
out, the proof of this latter theorem does not require exponential decay of the atom
distribution, relying instead on the weaker hypothesis that a sufficiently high mo-
ment of the atom distribution is finite. A new technical observation of this paper
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is that one can use the truncated four moment theorem to extend the gap property
from exponentially decaying atom distributions to distributions with sufficiently
high moments finite, and as a consequence we can extend the full Four Moment
theorem to this case also.

We turn to the details. First, as an analogue of [28], Theorem 19, we prove the
following theorem, using a slight modification of the method in [28].

THEOREM 16 (Gap theorem). Let M = (ζij )1≤i≤p,1≤j≤n obey condition C1
for some C0, and suppose that the coefficients ζij are exponentially decaying in the
sense that P(|ζij | ≥ tC) ≤ exp(−t) for all t ≥ C ′ for all i, j and some constants C,
C′ > 0. Then M obeys the gap property.

Next, we have the following analogue of [28], Theorem 15.

THEOREM 17 (Four Moment theorem with Gap assumption). For sufficiently
small c0 > 0 and sufficiently large C0 > 0 (C0 = 104 would suffice) the fol-
lowing holds for every 0 < ε < 1 and k ≥ 1. Let M = (ζij )1≤i≤p,1≤j≤n and
M ′ = (ζ ′

ij )1≤i≤p,1≤j≤n be matrix ensembles obeying condition C1 with the indi-
cated constant C0, and assume that for each i, j that ζij and ζ ′

ij match to order 4.
Let W,W ′ be the associated covariance matrices. Assume also that M and M ′
obeys the gap property, and that p/n → y for some 0 < y ≤ 1.

Let G : Rk → R be a smooth function obeying the derivative bounds

|∇jG(x)| ≤ nc0(12)

for all 0 ≤ j ≤ 5 and x ∈ R
k .

Then for any εp ≤ i1 < i2 < · · · < ik ≤ (1 − ε)p, and for n sufficiently large
depending on ε, k, c0 we have

|E(G(nλi1(W), . . . , nλik (W))) − E(G(nλi1(W
′), . . . , nλik (W

′)))| ≤ n−c0 .(13)

If ζij and ζ ′
ij only match to order 3 rather than 4, the conclusion (13) still holds

provided that one strengthens (12) to

|∇jG(x)| ≤ n−jc1

for all 0 ≤ j ≤ 5 and x ∈ R
k and any c1 > 0, provided that c0 is sufficiently small

depending on c1.

This theorem is weaker than Theorem 5, as we assume the gap property. Be-
sides the fact that we consider singular values here instead of eigenvalues, the
main difference between this result and [28], Theorem 15, is that in the latter we
assume exponential decay rather than the gap property. However, this difference is
only a formality, since in the proof of [28], Theorem 15, the only place we used
exponential decay is to prove the gap property (via [28], Theorem 19).
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The core of the proof of Theorem 17 is a truncated four moment theorem (The-
orem 32), which allows us to insert information such as the gap property into the
test function G.

By combining Theorem 17 with Theorem 16, we obtain Theorem 5 in the case
when the coefficients ζij are exponentially decaying. To remove the exponential
decay hypothesis, we will apply the truncated four moment theorem (Theorem 32)
a second time, together with a moment matching argument (Lemma 34) to elimi-
nate this hypothesis from Theorem 16.

THEOREM 18 (Gap theorem). Assume that M = (ζij )1≤i≤p,1≤j≤n satisfies
condition C1 with C0 sufficiently large. Then M obeys the gap property.

Theorem 5 follows directly from Theorems 17 and 18.
The rest of the paper is organized as follows. The next three sections are de-

voted to technical lemmas. The proofs of Theorems 17 and 18 are presented in
Section 6, assuming Theorems 32 and 16. The proofs of these latter two theorems
are presented in Sections 7 and 8, respectively.

3. The main technical lemmas. Important note. The arguments in this paper
are very similar to, and draw heavily from, the previous paper [28] of the authors.
We recommend therefore that the reader be familiar with that paper first, before
reading the current one.

In the proof of the Four Moment theorem (as well as the Gap theorem) for
n × n Wigner matrices in [28], a crucial ingredient was a variant of the Delocal-
ization Theorem of Erdös, Schlein and Yau [7–9]. This result asserts (assuming
uniformly exponentially decaying distribution for the coefficients) that with over-
whelming probability, all the unit eigenvectors of the Wigner matrix have coeffi-
cients O(n−1/2+o(1)) (thus, the “
2 energy” of the eigenvector is spread out more
or less uniformly amongst the n coefficients). When one just assumes uniformly
bounded C0 moment rather than uniform exponential decay, the bound becomes
O(n−1/2+O(1/C0)) instead (where the implied constant in the exponent is uniform
in C0).

Similarly, to prove the Four Moment and Gap theorems in this paper, we will
need a Delocalization theorem for the singular vectors of the matrix M . We de-
fine a right singular vector ui (resp., left singular vector vi ) with singular value
σi(M) = √

nλi(W)1/2 to be an eigenvector of W = 1
n
M∗M (resp., W̃ = 1

n
MM∗)

with eigenvalue λi . In the generic case when the singular values are simple (i.e.,
0 < σ1 < · · · < σp), we observe from the singular value decomposition that one
can find orthonormal bases u1, . . . , up ∈ C

n and v1, . . . , vp ∈ C
p for the corange

ker(M)⊥ of M and of C
p , respectively, such that

Mui = σivi
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and

M∗vi = σiui.

Furthermore, in the generic case the unit singular vectors ui, vi are determined up
to multiplication by a complex phase eiθ .

We will establish the following Erdös–Schlein–Yau type delocalization theo-
rem (analogous to [28], Proposition 62), which is an essential ingredient to Theo-
rems 17, 16 and is also of some independent interest.

THEOREM 19 (Delocalization theorem). Suppose that p/n → y for some 0 <

y ≤ 1, and let M obey condition C1 for some C0 ≥ 2. Suppose further that that
|ζij | ≤ K almost surely for some K > 1 (which can depend on n) and all i, j , and
that the probability distribution of M is continuous. Let ε > 0 be independent of n.
Then with overwhelming probability, all the unit left and right singular vectors of
M with eigenvalue λi in the interval [a + ε, b − ε] [with a, b defined in (2)] have
all coefficients uniformly of size O(Kn−1/2 log10 n).

The factors K log10 n can probably be improved slightly, but anything which is
polynomial in K and logn will suffice for our purposes. Observe that if M obeys
condition C1, then each event |ζij | ≤ K with K := n10/C0 (say) occurs with prob-
ability 1 − O(n−10). Thus, in practice, we will be able to apply the above theorem
with K = n10/C0 without difficulty. The continuity hypothesis is a technical one,
imposed so that the singular values are almost surely simple, but in practice we
will be able to eliminate this hypothesis by a limiting argument (as none of the
bounds will depend on any quantitative measure of this continuity).

As with other proofs of delocalization theorems in the literature, Theorem 19 is
in turn deduced from the following eigenvalue concentration bound (analogous to
[28], Proposition 60).

THEOREM 20 (Eigenvalue concentration theorem). Let the hypotheses be
as in Theorem 19, and let δ > 0 be independent of n. Then for any interval
I ⊂ [a + ε, b − ε] of length |I | ≥ K2 log20 n/n, one has with overwhelming prob-
ability (uniformly in I ) that∣∣∣∣NI − p

∫
I
ρMP,y(x) dx

∣∣∣∣ ≤ δp,

where

NI := {1 ≤ i ≤ p :λi(W) ∈ I }(14)

is the number of eigenvalues in I .

We remark that a very similar result (with slightly different hypotheses on the
parameters and on the underlying random variable distributions) was recently es-
tablished in [10], Corollary 7.2.

We isolate one particular consequence of Theorem 20 (also established in [17]):
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COROLLARY 21 (Concentration of the bulk). Let the hypotheses be as in The-
orem 19. Then there exists ε′ > 0 independent of n such that with overwhelming
probability, one has a + ε′ ≤ λi(W) ≤ b − ε′ for all εp ≤ i ≤ (1 − ε)p.

PROOF. From Theorem 20, we see with overwhelming probability that the
number of eigenvalues in [a + ε′, b − ε′] is at least (1 − ε)p, if ε′ is sufficiently
small depending on ε. The claim follows. �

4. Basic tools.

4.1. Tools from linear algebra. In this section, we recall some basic identities
and inequalities from linear algebra which will be used in this paper.

We begin with the Cauchy interlacing law and the Weyl inequalities.

LEMMA 22 (Cauchy interlacing law). Let 1 ≤ p ≤ n.

(i) If An is an n × n Hermitian matrix, and An−1 is an n − 1 × n − 1 minor,
then λi(An) ≤ λi(An−1) ≤ λi+1(An) for all 1 ≤ i < n.

(ii) If Mn,p is a p × n matrix, and Mn,p−1 is an p − 1 × n minor, then
σi(Mn,p) ≤ σi(Mn,p−1) ≤ σi+1(Mn,p) for all 1 ≤ i < p.

(iii) If p < n, if Mn,p is a p × n matrix, and Mn−1,p is a p × n − 1 minor, then
σi−1(Mn,p) ≤ σi(Mn−1,p) ≤ σi(Mn,p) for all 1 ≤ i ≤ p, with the understanding
that σ0(Mn,p) = 0. [For p = n, one can also use the transpose of (ii) instead.]

PROOF. Claim (i) follows from the minimax formula

λi(An) = inf
V :dim(V )=i

sup
v∈V :‖v‖=1

v∗Anv,

where V ranges over i-dimensional subspaces in C
n. Similarly, (ii) and (iii) follow

from the minimax formula

σi(Mn,p) = inf
V :dim(V )=i+n−p

sup
v∈V :‖v‖=1

‖Mn,pv‖. �

LEMMA 23 (Weyl inequality). Let 1 ≤ p ≤ n.

• If A,B are n × n Hermitian matrices, then ‖λi(A) − λi(B)| ≤ ‖A − B‖op for
all 1 ≤ i ≤ n.

• If M,N are p × n matrices, then ‖σi(M) − σi(N)| ≤ ‖M − N‖op for all 1 ≤
i ≤ p.

PROOF. This follows from the same minimax formulae used to establish
Lemma 22. �
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REMARK 24. One can also deduce the singular value versions of Lemmas 22,
23 from their Hermitian counterparts by using the augmented matrices (9). We
omit the details.

We have the following elementary formula for a component of an eigenvector
of a Hermitian matrix, in terms of the eigenvalues and eigenvectors of a minor.

LEMMA 25 (Formula for coordinate of an eigenvector). [7] Let

An =
(

An−1 X

X∗ a

)

be a n × n Hermitian matrix for some a ∈ R and X ∈ C
n−1, and let

(v
x

)
be a unit

eigenvector of An with eigenvalue λi(An), where x ∈ C and v ∈ C
n−1. Suppose

that none of the eigenvalues of An−1 are equal to λi(An). Then

|x|2 = 1

1 + ∑n−1
j=1(λj (An−1) − λi(An))−2|uj (An−1)∗X|2 ,

where u1(An−1), . . . , un−1(An−1) ∈ C
n−1 is an orthonormal eigenbasis corre-

sponding to the eigenvalues λ1(An−1), . . . , λn−1(An−1) of An−1.

PROOF. See, for example, [28], Lemma 41. �

This implies an analogous formula for singular vectors.

COROLLARY 26 (Formula for coordinate of a singular vector). Let p,n ≥ 1,
and let

Mp,n = (Mp,n−1 X )

be a p × n matrix for some X ∈ C
p , and let

(u
x

)
be a right unit singular vector

of Mp,n with singular value σi(Mp,n), where x ∈ C and u ∈ C
n−1. Suppose that

none of the singular values of Mp,n−1 are equal to σi(Mp,n). Then

|x|2 =
(

1 +
min(p,n−1)∑

j=1

σj (Mp,n−1)
2

(σj (Mp,n−1)2 − σi(Mp,n)2)2 |vj (Mp,n−1)
∗X|2

)−1

,

where v1(Mp,n−1), . . . , vmin(p,n−1)(Mp,n−1) ∈ C
p is an orthonormal system of left

singular vectors corresponding to the nontrivial singular values of Mp,n−1.
In a similar vein, if

Mp,n =
(

Mp−1,n

Y ∗
)
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for some Y ∈ C
n, and (v y) is a left unit singular vector of Mp,n with singular

value σi(Mp,n), where y ∈ C and v ∈ C
p−1, and none of the singular values of

Mp−1,n are equal to σi(Mp,n), then

|y|2 =
(

1 +
min(p−1,n)∑

j=1

σj (Mp−1,n)
2

(σj (Mp−1,n)2 − σi(Mp,n)2)2 |uj (Mp−1,n)
∗Y |2

)−1

,

where u1(Mp−1,n), . . . , umin(p−1,n)(Mp−1,n) ∈ C
n is an orthonormal system of

right singular vectors corresponding to the nontrivial singular values of Mp−1,n.

PROOF. We just prove the first claim, as the second is proven analogously (or
by taking adjoints). Observe that

(u
x

)
is a unit eigenvector of the matrix

M∗
p,nMp,n =

(
M∗

p,n−1Mp,n−1 M∗
p,n−1X

X∗Mp,n−1 |X|2
)

with eigenvalue σi(Mp,n)
2. Applying Lemma 25, we obtain

|x|2 =
(

1 +
n−1∑
j=1

(
λj (M

∗
p,n−1Mp,n−1) − σi(Mp,n)

2)−2

× |uj (M
∗
p,n−1Mp,n−1)

∗M∗
p,n−1X|2

)−1

.

But uj (M
∗
p,n−1Mp,n−1)

∗M∗
p,n−1 = σj (Mp,n−1)vj (Mp,n−1)

∗ for the min(p,n−1)

nontrivial singular values (possibly after relabeling the j ), and vanishes for trivial
ones, and λj (M

∗
p,n−1Mp,n−1) = σj (Mp,n−1)

2, so the claim follows. �

The Stieltjes transform s(z) of a Hermitian matrix W is defined for complex z

by the formula

s(z) := 1

n

n∑
i=1

1

λi(W) − z
.

It has the following alternate representation (see, e.g., [1], Chapter 11).

LEMMA 27. Let W = (ζij )1≤i,j≤n be a Hermitian matrix, and let z be a com-
plex number not in the spectrum of W . Then we have

sn(z) = 1

n

n∑
k=1

1

ζkk − z − a∗
k (Wk − zI)−1ak

,

where Wk is the n − 1 × n − 1 matrix with the kth row and column removed, and
ak ∈ C

n−1 is the kth column of W with the kth entry removed.

PROOF. By Schur’s complement, 1
ζkk−z−a∗

k (Wk−zI )−1ak
is the kth diagonal en-

try of (W − zI)−1. Taking traces, one obtains the claim. �
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4.2. Tools from probability theory. We will rely frequently on the following
concentration of measure result for projections of random vectors.

LEMMA 28 (Distance between a random vector and a subspace). Let X =
(ξ1, . . . , ξn) ∈ C

n be a random vector whose entries are independent with mean
zero, variance 1, and are bounded in magnitude by K almost surely for some
K , where K ≥ 10(E|ξ |4 + 1). Let H be a subspace of dimension d and πH the
orthogonal projection onto H . Then

P
(∣∣‖πH (X)‖ − √

d
∣∣ ≥ t

) ≤ 10 exp
(
− t2

10K2

)
.

In particular, one has

‖πH (X)‖ = √
d + O(K logn)

with overwhelming probability.

PROOF. See [28], Lemma 43; the proof is a short application of Talagrand’s
inequality [20]. �

5. Delocalization. The purpose of this section is to establish Theorem 19 and
Theorem 20. The material here is closely analogous to [28], Sections 5.2, 5.3, as
well as that of the original results in [7–9] and can be read independently of the
other sections of the paper. The recent paper [10] also contains arguments and
results closely related to those in this section.

5.1. Deduction of Theorem 19 from Theorem 20. We begin by showing how
Theorem 19 follows from Theorem 20. We shall just establish the claim for the
right singular vectors ui , as the claim for the left singular vectors is similar. We fix
ε and allow all implied constants to depend on ε and y. We can also assume that
K2 log20 n = o(n) as the claim is trivial otherwise.

As M is continuous, we see that the nontrivial singular values are almost surely
simple and positive, so that the singular vectors ui are well defined up to unit
phases. Fix 1 ≤ i ≤ p; it suffices by the union bound and symmetry to show that
the event that λi falls outside [a + ε, b − ε] or that the nth coordinate x of ui is
O(Kn−1/2 log10 n) holds with (uniformly) overwhelming probability.

Applying Corollary 26, it suffices to show that with uniformly overwhelming
probability, either λi /∈ [a + ε, b − ε], or

min(p,n−1)∑
j=1

σj (Mp,n−1)
2

(σj (Mp,n−1)2 − σi(Mp,n)2)2 |vj (Mp,n−1)
∗X|2 � n

K2 log20 n
,(15)
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where M = (
Mp,n−1 X

)
. But if λi ∈ [a + ε, b − ε], then by6 Theorem 20, one can

find (with uniformly overwhelming probability) a set J ⊂ {1, . . . ,min(p,n − 1)}
with |J | � K2 log20 n such that λj (Mp,n−1) = λi(Mp,n) + O(K2 log20 n/n)

for all j ∈ J ; since λi = 1
n
σ 2

i , we conclude that σj (Mp,n−1)
2 = σi(Mp,n)

2 +
O(K2 log20 n). In particular, σj (Mp,n−1) = (

√
n). By Pythagoras’ theorem, the

left-hand side of (15) is then bounded from below by

� n
‖πHX‖2

(K2 log20 n)2
,

where H ⊂ C
p is the span of the vj (Mp,n−1) for j ∈ J . But from Lemma 28 (and

the fact that X is independent of Mp,n−1), one has

‖πHX‖2 � K2 log20 n

with uniformly overwhelming probability, and the claim follows.
It thus remains to establish Theorem 20.

5.2. A crude upper bound. Let the hypotheses be as in Theorem 20. We first
establish a crude upper bound, which illustrates the techniques used to prove The-
orem 20, and also plays an important direct role in that proof.

PROPOSITION 29 (Eigenvalue upper bound). Let the hypotheses be as in The-
orem 19. Then for any interval I ⊂ [a + ε, b − ε] of length |I | ≥ K log2 n/n, one
has with overwhelming probability (uniformly in I ) that

|NI | � n|I |,
where |I | denotes the length of I , and NI was defined in (14).

To prove this proposition, we suppose for contradiction that

|NI | ≥ Cn|I |(16)

for some large constant C to be chosen later. We will show that for C large enough,
this leads to a contradiction with overwhelming probability.

We follow the standard approach (see, e.g., [1]) of controlling the eigenvalue
counting function NI via the Stieltjes transform

s(z) := 1

p

p∑
j=1

1

λj (W) − z
.

6In the case p = n, one would have to replace Mp,n−1 by its transpose to return to the regime
p ≤ n.
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Fix I . If x is the midpoint of I , η := |I |/2, and z := x + √−1η, we see that

Ims(z) � |NI |
ηp

[recall that p = (n)] so from (16) one has

Im(s(z)) � C.(17)

Applying Lemma 27, with W replaced by the p × p matrix W̃ := 1
n
MM∗

(which only has the nontrivial eigenvalues), we see that

s(z) = 1

p

p∑
k=1

1

ξkk − z − a∗
k (Wk − zI)−1ak

,(18)

where ξkk is the kk entry of W̃ , Wk is the p − 1 × p − 1 matrix with the kth row
and column of W̃ removed, and ak ∈ C

p−1 is the kth column of W̃ with the kth
entry removed.

Using the crude bound |Im1
z
| ≤ 1

|Im(z)| and (17), one concludes

1

p

p∑
k=1

1

|η + Ima∗
k (Wk − zI)−1ak| � C.

By the pigeonhole principle, there exists 1 ≤ k ≤ p such that

1

|η + Ima∗
k (Wk − zI)−1ak| � C.(19)

The fact that k varies will cost us a factor of p in our failure probability estimates,
but this will not be of concern since all of our claims will hold with overwhelming
probability.

Fix k. Note that

ak = 1

n
MkXk(20)

and

Wk = 1

n
MkM

∗
k ,

where Xk ∈ C
n is the (adjoint of the) kth row of M , and Mk is the p − 1 × n

matrix formed by removing that row. Thus, if we let v1(Mk), . . . , vp−1(Mk) ∈
C

p−1 and u1(Mk), . . . , up−1(Mk) ∈ C
n be coupled orthonormal systems of left

and right singular vectors of Mk , and let λj (Wk) = 1
n
σj (Mk)

2 for 1 ≤ j ≤ p − 1
be the associated eigenvectors, one has

a∗
k (Wk − zI)−1ak =

p−1∑
j=1

|a∗
k vj (Mk)|2

λj (Wk) − z
.(21)
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and thus

Ima∗
k (Wk − zI)−1ak ≥ η

p−1∑
j=1

|a∗
k vj (Mk)|2

η2 + |λj (Wk) − x|2 .

We conclude that
p−1∑
j=1

|a∗
k vj (Mk)|2

η2 + |λj (Wk) − x|2 � 1

Cη
.

The expression a∗
k vj (Mk) can be rewritten much more favorably using (20) as

a∗
k vj (Mk) = σj (Mk)

n
X∗

kuj (Mk).(22)

The advantage of this latter formulation is that the random variables Xk and
uj (Mk) are independent (for fixed k).

Next, note that from (16) and the Cauchy interlacing law (Lemma 22) one can
find an interval J ⊂ {1, . . . , p − 1} of length

|J | � Cηn(23)

such that λj (Wk) ∈ I . We conclude that

∑
j∈J

σj (Mk)
2

n2 |X∗
kuj (Mk)|2 � η

C
.

Since λj (Wk) ∈ I , one has σj (Mk) = (
√

n), and thus∑
j∈J

|X∗
kuj (Mk)|2 � ηn

C
.

The left-hand side can be rewritten using Pythagoras’ theorem as ‖πHXk‖2, where
H is the span of the eigenvectors uj (Mk) for j ∈ J . But from Lemma 28 and
(23), we see that this quantity is � ηn with overwhelming probability, giving the
desired contradiction with overwhelming probability (even after taking the union
bound in k). This concludes the proof of Proposition 29.

5.3. Reduction to a Stieltjes transform bound. We now begin the proof of The-
orem 20 in earnest. We continue to allow all implied constants to depend on ε

and y.
It suffices by a limiting argument (using Lemma 23) to establish the claim under

the assumption that the distribution of M is continuous; our arguments will not use
any quantitative estimates on this continuity.

The strategy is to compare s with the Marchenko–Pastur Stieltjes transform

sMP,y(z) :=
∫

R

ρMP,y(x)
1

x − z
dx.
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A routine application of (1) and the Cauchy integral formula yields the explicit
formula

sMP,y(z) = −y + z − 1 −
√

(y + z − 1)2 − 4yz

2yz
,(24)

where we use the branch of
√

(y + z − 1)2 − 4yz with cut at [a, b] that is asymp-
totic to y − z + 1 as z → ∞. To put it another way, for z in the upper half-plane,
sMP,y(z) is the unique solution to the equation

sMP,y = − 1

y + z − 1 + yzsMP,y(z)
(25)

with ImsMP,y(z) > 0. (Details of these computations can also be found in [1].)
We have the following standard relation between convergence of Stieltjes trans-

form and convergence of the counting function.

LEMMA 30 (Stieltjes transform controls counting function). Let 1/10 ≥ η ≥
1/n, and L,ε, δ > 0. Suppose that one has the bound

|sMP,y(z) − s(z)| ≤ δ(26)

with overwhelming probability for each z with |Re(z)| ≤ L and Im(z) ≥ η, with
the implied constants in the definition of overwhelming probability uniform in z.
Then for any interval I in [a + ε, b − ε] with |I | ≥ max(2η,

η
δ

log 1
δ
), one has∣∣∣∣NI − n

∫
I
ρMP,y(x) dx

∣∣∣∣ � δn|I |
with overwhelming probability.

PROOF. This follows from [28], Lemma 64; strictly speaking, that lemma was
phrased for the semi-circular distribution rather than the Marchenko–Pastur dis-
tribution, but an inspection of the proof shows the proof can be modified without
difficulty. See also [15] and [7], Corollary 4.2, for closely related lemmas. �

In view of this lemma, we see that to show Theorem 20, it suffices to show that
for each complex number z in the region

� :=
{
z ∈ C :a + ε/2 ≤ Re(z) ≤ b − ε/2; Im(z) ≥ η := K2 log19 n

n

}
,

one has

s(z) − sMP,y(z) = o(1)(27)

with (uniformly) overwhelming probability.
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For this, we return to the formula (18). Inserting the identities (21), (22) into
this formula, one obtains

s(z) = 1

p

p∑
k=1

1

ξkk − z − Yk

,(28)

where Yk = Yk(z) is the quantity

Yk :=
p−1∑
j=1

λj (Mk)

n

|X∗
kuj (Mk)|2

λj (Wk) − z
.

Suppose we condition Mk (and thus Wk) to be fixed; the entries of Xk remain
independent with mean zero and variance 1, and thus (since the uj are unit vectors)

E(Yk|Mk) =
p−1∑
j=1

λj (Mk)

n

1

λj (Wk) − z

= p − 1

n

(
1 + zsk(z)

)
,

where

sk(z) := 1

p − 1

p−1∑
j=1

1

λj (Wk) − z

is the Stieltjes transform of Wk .
From the Cauchy interlacing law (Lemma 22), we see that the difference

s(z) − p − 1

p
sk(z) = 1

p

( p∑
j=1

1

λj (W) − z
−

p−1∑
j=1

1

λj (Wk) − z

)

is bounded in magnitude by O( 1
p
) times the total variation of the function λ �→ 1

λ−z

on [0,+∞), which is O( 1
η
). Thus,

p − 1

p
sk(z) = s(z) + O

(
1

pη

)

and thus

E(Yk|Mk) = p − 1

n
+ p

n
zs(z) + O

(
1

nη

)
(29)

= y + o(1) + (
y + o(1)

)
zs(z)

since p/n = y + o(1) and 1/η = o(n).
We will shortly show a similar bound for Yk itself.
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LEMMA 31 (Concentration of Yk). Let z ∈ �. For each 1 ≤ k ≤ p, one has
Yk = y + o(1) + (y + o(1))zs(z) with overwhelming probability (uniformly in k

and I ).

Meanwhile, we have

ξkk = 1

n
‖Xk‖2

and hence by Lemma 28, ξkk = 1 + o(1) with overwhelming probability (again
uniformly in k and I ). Inserting these bounds into (28), one obtains

s(z) = 1

p

p∑
k=1

1

1 − z − (y + o(1)) − (y + o(1))zs(z)

with overwhelming probability; thus s(z) “almost solves” (25) in some sense.
From the quadratic formula, the two solutions of (25) are sMP,y(z) and −y+z−1

yz
−

sMP,y(z). One concludes that for each fixed z ∈ �, it occurs with overwhelming
probability that one has either

s(z) = sMP,y(z) + o(1)(30)

or

s(z) = −y + z − 1

yz
+ o(1)(31)

or

s(z) = −y + z − 1

yz
− sMP,y(z) + o(1)(32)

(with the convention that y+z−1
yz

= 1 when y = 1). By using a n−100-net of possible
z’s in � and using the union bound [and the fact that s(z) has a Lipschitz constant
of at most O(n10) in �] we may assume (with overwhelming probability) that the
above trichotomy holds for all z ∈ �. In other words, if δ > 0 is a small number
(which may depend on a, b, ε) and n is sufficiently large depending on δ, we may
cover

� ⊂ �1 ∪ �2 ∪ �3,

where

�1 := {z ∈ � : |s(z) − sMP,y(z)| ≤ δ},

�2 :=
{
z ∈ � :

∣∣∣∣s(z) + y + z − 1

yz

∣∣∣∣ ≤ δ

}
,

�3 :=
{
z ∈ � :

∣∣∣∣s(z) + y + z − 1

yz
+ sMP,y(z)

∣∣∣∣ ≤ δ

}
.
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When Im(z) = n10, then s(z), sMP,y(z) are both o(1), and so (for n sufficiently
large) we see that z ∈ �1 in this case. In particular, �1 is empty. On the other hand,
�1,�2,�3 are closed subsets of �. From (25), one has

sMP,y(z)

(
y + z − 1

yz
+ sMP,y(z)

)
= − 1

yz
,

which implies that the separation between sMP,y(z) from −y+z−1
yz

is bounded from
below, which implies that �1 and �2 are disjoint (for δ small enough). Similarly,
from (24), we see that

y + z − 1

yz
+ 2sMP,y(z) =

√
(y + z − 1)2 − 4yz

yz
;

since (y + z − 1)2 − 4yz has zeroes only when z = a, b, and z is bounded away
from these singularities, we see also that �1 and �3 are also disjoint.

The sets �1, �2 ∪ �3 are thus disjoint closed subsets of �. As � is connected
and �1 is nonempty, we conclude that �1 = � (whenever n is sufficiently large
depending on δ). Letting δ → 0, we conclude that (30) holds unniformly for z ∈ �

with overwhelming probability, which gives (27) and thus Theorem 20.

6. Proof of Theorem 17 and Theorem 18. We first prove Theorem 17. The
arguments follow those in [28].

We begin by observing from Markov’s inequality and the union bound that one
has |ζij |, |ζ ′

ij | ≤ n10/C0 (say) for all i, j with probability O(n−8). Thus, by trun-
cation (and adjusting the moments appropriately, using Lemma 23 to absorb the
error), one may assume without loss of generality that

|ζij |, |ζ ′
ij | ≤ n10/C0(33)

almost surely for all i, j . Next, by a further approximation argument we may as-
sume that the distribution of M,M ′ is continuous. This is a purely qualitative as-
sumption, to ensure that the singular values are almost surely simple; our bounds
will not depend on any quantitative measure on the continuity, and so the general
case then follows by a limiting argument using Lemma 23.

The key technical step is the following theorem, whose proof is delayed to the
next section.

THEOREM 32 (Truncated Four Moment theorem). For sufficiently small c0 >

0 and sufficiently large C0 > 0, the following holds for every 0 < ε < 1 and k ≥ 1.
Let M = (ζij )1≤i≤p,1≤j≤n and M ′ = (ζ ′

ij )1≤i≤p,1≤j≤n be matrix ensembles obey-
ing condition C1 for some C0, as well as (33). Assume that p/n → y for some
0 < y ≤ 1, and that ζij and ζ ′

ij match to order 4.

Let G : Rk × R
k+ → R be a smooth function obeying the derivative bounds

|∇jG(x1, . . . , xk, q1, . . . , qk)| ≤ nc0(34)
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for all 0 ≤ j ≤ 5 and x1, . . . , xk ∈ R, q1, . . . , qk ∈ R, and such that G is supported
on the region q1, . . . , qk ≤ nc0 , and the gradient ∇ is in all 2k variables.

Then for any εp ≤ i1 < i2 < · · · < ik ≤ (1 − ε)p, and for n sufficiently large
depending on ε, k, c0 we have∣∣E(

G
(√

nσi1(M), . . . ,
√

nσik (M),Qi1(M), . . . ,Qik (M)
))

(35)
− E

(
G

(√
nσi1(M

′), . . . ,
√

nσik (M
′),Qi1(M

′), . . . ,Qik (M
′)

))∣∣ ≤ n−c0 .

If ζij , ζ
′
ij match to order 3, then the conclusion still holds as long as one strength-

ens (34) to

|∇jG(x1, . . . , xk, q1, . . . , qk)| ≤ n−jc1(36)

for some c1 > 0, if c0 is sufficiently small depending on c1.

Informally, Theorem 32 is a truncated version of Theorem 17 in which one has
smoothly restricted attention to the event where eigenvalue gaps are not unexpect-
edly small.

Given a p × n matrix M we form the augmented matrix M defined in (9),
whose eigenvalues are ±σ1(M), . . . ,±σp(M), together with the eigenvalue 0 with
multiplicity n − p (if p < n). For each 1 ≤ i ≤ p, we introduce (in analogy with
the arguments in [28]) the quantities

Qi(M)

:= ∑
λ�=σi(M)

1

|√n(λ − σi(M))|2

= 1

n

( ∑
1≤j≤p:j �=i

1

|σj (M) − σi(M)|2 + n − p

σi(M)2 +
p∑

j=1

1

|σj (M) + σi(M)|2
)
.

(The factor of 1
n

in Qi(M) is present to align the notation here with that in [28], in
which one dilated the matrix by

√
n.) We set Qi(M) = ∞ if the singular value σi

is repeated, but this event occurs with probability zero since we are assuming M

to be continuously distributed. One should view Qi(M) as measuring the extent to
which eigenvalue (or singular value) gaps near σi(M) are unexpectedly small.

The gap property on M ensures an upper bound on Qi(M).

LEMMA 33. If M satisfies the gap property, then for any c0 > 0 (independent
of n), and any εp ≤ i ≤ (1 − ε)p, one has Qi(M) ≤ nc0 with high probability.

PROOF. Observe the upper bound

Qi(M) ≤ 2

n

∑
1≤j≤p:j �=i

1

|σj (M) − σi(M)|2 + n − p + 1

nσi(M)2 .(37)
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From Corollary 21, we see that with overwhelming probability, σi(M)2/n is
bounded away from zero, and so n−p+1

nσi(M)2 = O(1/n). To bound the other term in
(37), one repeats the proof of [28], Lemma 49. �

By applying a truncation argument exactly as in [28], Section 3.3, one can
now remove the hypothesis in Theorem 32 that G is supported in the region
q1, . . . , qk ≤ nc0 . In particular, one can now handle the case when G is indepen-
dent of q1, . . . , qk; and Theorem 17 follows after making the change of variables
λ = 1

n
σ 2 and using the chain rule (and Corollary 21).

Next, we prove Theorem 18, assuming both Theorems 32 and 16. The main
observation here is the following lemma.

LEMMA 34 (Matching lemma). Let ζ be a complex random variable with
mean zero, unit variance, and third moment bounded by some constant a. Then
there exists a complex random variable ζ̃ with support bounded by the ball of
radius Oa(1) centered at the origin (and in particular, obeying the exponential
decay hypothesis uniformly in ζ for fixed a) which matches ζ to third order.

PROOF. In order for ζ̃ to match ζ to third order, it suffices that ζ̃ have mean

zero, variance 1, and that Eζ̃ 3 = Eζ 3 and Eζ̃ 2ζ̃ = Eζ 3ζ .

Accordingly, let � ⊂ C
2 be the set of pairs (Eζ̃ 3,Eζ̃ 2ζ̃ ) where ζ̃ ranges over

complex random variables with mean zero, variance one, and compact support.
Clearly � is convex. It is also invariant under the symmetry (z,w) �→ (e3iθ z, eiθw)

for any phase θ . Thus, if (z,w) ∈ �, then (−z, eiπ/3w) ∈ �, and hence by convex-

ity (0,
√

3
2 eiπ/6w) ∈ �, and hence by convexity and rotation invariance (0,w′) ∈ �

whenever |w′| ≤
√

3
2 w. Since (z,w) and (0,−

√
3

2 w) both lie in �, by convexity
(cz,0) lies in it also for some absolute constant c > 0, and so again by convex-
ity and rotation invariance (z′,0) ∈ � whenever |z′| ≤ cz. One last application of

convexity then gives (z′/2,w′/2) ∈ � whenever |z′| ≤ cz and |w′| ≤
√

3
2 w.

It is easy to construct complex random variables with mean zero, variance one,
compact support, and arbitrarily large third moment. Since the third moment is
comparable to |z| + |w|, we thus conclude that � contains all of C

2, that is, every
complex random variable with finite third moment with mean zero and unit vari-
ance can be matched to third order by a variable of compact support. An inspection
of the argument shows that if the third moment is bounded by a then the support
can also be bounded by Oa(1). �

Now consider a random matrix M as in Theorem 18 with atom variables ζij .
By the above lemma, for each i, j , we can find ζ ′

ij which satisfies the exponential
decay hypothesis and match ζij to third order. Let η(q) be a smooth cutoff to
the region q ≤ nc0 for some c0 > 0 independent of n, and let εp ≤ i ≤ (1 − ε)p.
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By Theorem 16, the matrix M ′ formed by the ζ ′
ij satisfies the gap property. By

Lemma 33,

Eη(Qi(M
′)) = 1 − O(n−c1)

for some c1 > 0 independent of n, so by Theorem 32 one has

Eη(Qi(M)) = 1 − O(n−c2)

for some c2 > 0 independent of n. We conclude that M also obeys the gap property.
The next two sections are devoted to the proofs of Theorem 32 and Theorem 16,

respectively.

REMARK 35. The above trick to remove the exponential decay hypothesis for
Theorem 16 also works to remove the same hypothesis in [28], Theorem 19. The
point is that in the analogue of Theorem 32 in that paper (implicit in [28], Sec-
tion 3.3), the exponential decay hypothesis is not used anywhere in the argument;
only a uniformly bounded C0 moment for C0 large enough is required, as is the
case here. Because of this, one can replace all the exponential decay hypotheses in
the results of [27, 28] by a hypothesis of bounded C0 moment; we omit the details.

7. The proof of Theorem 32. It remains to prove Theorem 32. By telescoping
series, it suffices to establish a bound∣∣E(

G
(√

nσi1(M), . . . ,
√

nσik (M),Qi1(M), . . . ,Qik (M)
))

− E
(
G

(√
nσi1(M

′), . . . ,
√

nσik (M
′),Qi1(M

′), . . . ,Qik (M
′)

))∣∣(38)

≤ n−2−c0

under the assumption that the coefficients ζij , ζ ′
ij of M and M ′ are identical ex-

cept in one entry, say the qr entry for some 1 ≤ q ≤ p and 1 ≤ r ≤ n, since the
claim then follows by interchanging each of the pn = O(n2) entries of M into M ′
separately.

Write M(z) for the matrix M (or M ′) with the qr entry replaced by z. We apply
the following proposition, which follows from a lengthy argument in [28]:

PROPOSITION 36 (Replacement given a good configuration). Let the notation
and assumptions be as in Theorem 32. There exists a positive constant C1 (inde-
pendent of k) such that the following holds. Let ε1 > 0. We condition (i.e., freeze)
all the entries of M(z) to be constant, except for the qr entry, which is z. We as-
sume that for every 1 ≤ j ≤ k and every |z| ≤ n1/2+ε1 whose real and imaginary
parts are multiples of n−C1 , we have

• (Singular value separation) For any 1 ≤ i ≤ n with |i − ij | ≥ nε1 , we have∣∣√nσi(M(z)) − √
nσij (M(z))

∣∣ ≥ n−ε1 |i − ij |.(39)

Also, we assume √
nσij (A(z)) ≥ n−ε1n.(40)
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• (Delocalization at ij ) If uij (M(z)) ∈ C
n, vij (M(z)) ∈ C

p are unit right and left
singular vectors of M(z), then

|e∗
qvij (M(z))|, |e∗

r uij (M(z))| ≤ n−1/2+ε1 .(41)

• For every α ≥ 0

‖Pij ,α(M(z))eq‖,‖P ′
ij ,α(M(z))er‖ ≤ 2α/2n−1/2+ε1,(42)

whenever Pij ,α (resp., P ′
ij ,α) is the orthogonal projection to the span of right

singular vectors ui(M(z)) [resp., left singular vectors vi(M(z))] corresponding
to singular values σi(A(z)) with 2α ≤ |i − ij | < 2α+1.

We say that M(0), eq, er are a good configuration for i1, . . . , ik if the above prop-
erties hold. Assuming this good configuration, then we have (38) if ζij and ζ ′

ij

match to order 4, or if they match to order 3 and (36) holds.

PROOF. This follows by applying [28], Proposition 46, to the p + n × p + n

Hermitian matrix A(z) := √
nM(z), where M(z) is the augmented matrix of

M(z), defined in (9). Note that the eigenvalues of A(z) are ±√
nσ1(M(z)), . . . ,

±√
nσp(M(z)) and 0, and that the eigenvalues are given (up to unit phases) by( vj (M(z))

±uj (M(z))

)
. Note also that the analogue of (42) in [28], Proposition 46, is trivially

true if 2α is comparable to n, so one can restrict attention to the regime 2α = o(n).
�

In view of the above proposition, we see that to conclude the proof of The-
orem 32 (and thus Theorem 17) it suffices to show that for any ε1 > 0, that
M(0), eq, er are a good configuration for i1, . . . , ik with overwhelming probability,
if C0 is sufficiently large depending on ε1 (cf. [28], Proposition 48).

Our main tools for this are Theorem 19 and Theorem 20. Actually, we need a
slight variant.

PROPOSITION 37. The conclusions of Theorem 19 and Theorem 20 con-
tinue to hold if one replaces the qr entry of M by a deterministic number
z = O(n1/2+O(1/C0)).

This is proven exactly as in [28], Corollary 63, and is omitted.
We return to the task of establishing a good configuration with overwhelm-

ing probability. By the union bound, we may fix 1 ≤ j ≤ k, and also fix the
|z| ≤ n1/2+ε1 whose real and imaginary parts are multiples of n−C1 . By the union
bound again and Proposition 37, the eigenvalue separation condition (39) holds
with overwhelming probability for every 1 ≤ i ≤ n with |i − j | ≥ nε1 (if C0 is suf-
ficiently large), as does (41). A similar argument using Pythagoras’ theorem and
Corollary 21 gives (42) with overwhelming probability [noting as before that we
may restrict attention to the regime 2α = o(n)]. Corollary 21 also gives (40) with
overwhelming probability. This gives the claim, and Theorem 17 follows.
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8. Proof of Theorem 16. We now prove Theorem 16, closely following the
analogous arguments in [28]. Using the exponential decay condition, we may trun-
cate the ζij (and renormalise moments, using Lemma 23) to assume that

|ζij | ≤ logO(1) n(43)

almost surely. By a limiting argument, we may assume that M has a continuous
distribution, so that the singular values are almost surely simple.

We write i0 instead of i, p0 instead of p, and write N0 := p0 +n. As in [28], the
strategy is to propagate a narrow gap for M = Mp0,n backwards in the p variable,
until one can use Theorem 20 to show that the gap occurs with small probability.

More precisely, for any 1 ≤ i − l < i ≤ p ≤ p0, we let Mp,n be the p × n

matrix formed using the first p rows of Mp0,n, and we define (following [28]) the
regularized gap

gi,l,p := inf
1≤i−≤i−l<i≤i+≤p

√
N0σi+(Mp,n) − √

N0σi−(Mp,n)

min(i+ − i−, logC1 N0)log0.9 N0
,(44)

where C1 > 1 is a large constant to be chosen later. It will suffice to show that

gi0,1,p0 ≤ n−c0 .(45)

The main tool for this is the following lemma.

LEMMA 38 (Backwards propagation of gap). Suppose that p0/2 ≤ p < p0
and l ≤ εp/10 is such that

gi0,l,p+1 ≤ δ(46)

for some 0 < δ ≤ 1 (which can depend on n), and that

gi0,l+1,p ≥ 2mgi0,l,p+1(47)

for some m ≥ 0 with

2m ≤ δ−1/2.(48)

Let Xp+1 be the (p + 1)th row of Mp0,n, and let u1(Mp,n), . . . , up(Mp,n) be an
orthonormal system of right singular vectors of Mp,n associated to σ1(Mp,n), . . . ,

σp(Mp,n). Then one of the following statements hold:

(i) (Macroscopic spectral concentration) There exists 1 ≤ i− < i+ ≤ p +
1 with i+ − i− ≥ logC1/2 n such that |√nσi+(Mp+1,n) − √

nσi−(Mp+1,n)| ≤
δ1/4 exp(log0.95 n)(i+ − i−).

(ii) (Small inner products) There exists εp/2 ≤ i− ≤ i0 − l < i0 ≤ i+ ≤ (1 −
ε/2)p with i+ − i− ≤ logC1/2 n such that

∑
i−≤j<i+

|X∗
p+1uj (Mp,n)|2 ≤ i+ − i−

2m/2 log0.01 n
.(49)
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(iii) (Large singular value) For some 1 ≤ i ≤ p + 1, one has

|σi(Mp+1,n)| ≥
√

n exp(− log0.95 n)

δ1/2 .

(iv) (Large inner product in bulk) There exists εp/10 ≤ i ≤ (1 − ε/10)p such
that

|X∗
p+1ui(Mp,n)|2 ≥ exp(− log0.96 n)

δ1/2 .

(v) (Large row) We have

‖Xp+1‖2 ≥ n exp(− log0.96 n)

δ1/2 .

(vi) (Large inner product near i0) There exists εp/10 ≤ i ≤ (1 − ε/10)p with
|i − i0| ≤ logC1 n such that

|X∗
p+1ui(Mp,n)|2 ≥ 2m/2n log0.8 n.

PROOF. This follows by applying7 [28], Lemma 51, to the p + n + 1 × p +
n + 1 Hermitian matrix

Ap+n+1 := √
n

(
0 M∗

p+1,n

Mp+1,n 0

)
,

which after removing the bottom row and rightmost column (which is Xp+1, plus
p + 1 zeroes) yields the p + n × p + n Hermitian matrix

Ap+n := √
n

(
0 M∗

p,n

Mp,n 0

)

which has eigenvalues ±√
nσ1(Mp,n), . . . ,±√

nσp(Mp,n) and 0, and an orthonor-

mal eigenbasis that includes the vectors
(uj (Mp,n)

vj (Mp,n)

)
for 1 ≤ j ≤ p. (The “large co-

efficient” event in [28], Lemma 51(iii), cannot occur here, as Ap+n+1 has zero
diagonal.) �

By repeating the arguments in [28], Section 3.5, almost verbatim, it then suffices
to show the following proposition.

PROPOSITION 39 (Bad events are rare). Suppose that p0/2 ≤ p < p0 and
l ≤ εp/10, and set δ := n−κ

0 for some sufficiently small fixed κ > 0. Then:

(a) The events (i), (iii), (iv), (v) in Lemma 38 all fail with high probability.

7Strictly speaking, there are some harmless adjustments by constant factors that need to be made
to this lemma, ultimately coming from the fact that n,p,n + p are only comparable up to constants,
rather than equal, but these adjustments make only a negligible change to the proof of that lemma.
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(b) There is a constant C′ such that all the coefficients of the right singular vec-
tors uj (Mp,n) for εp/2 ≤ j ≤ (1 − ε/2)p are of magnitude at most n−1/2 logC′

n

with overwhelming probability. Conditioning Mp,n to be a matrix with this prop-
erty, the events (ii) and (vi) occur with a conditional probability of at most
2−κm + n−κ .

(c) Furthermore, there is a constant C2 (depending on C′, κ,C1) such that if
l ≥ C2 and Mp,n is conditioned as in (b), then (ii) and (vi) in fact occur with a
conditional probability of at most 2−κm log−2C1 n + n−κ .

But Proposition 39 can be proven by repeating the proof of [28], Proposition 53,
with only cosmetic changes, the only significant difference being that Theorem 20
and Theorem 19 are applied instead of [28], Theorem 60, and [28], Proposition 62,
respectively.
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[9] ERDŐS, L., SCHLEIN, B. and YAU, H.-T. (2010). Wegner estimate and level repulsion for
Wigner random matrices. Int. Math. Res. Not. IMRN 3 436–479. MR2587574
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