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The MEG inverse problem refers to the reconstruction of the neural ac-
tivity of the brain from magnetoencephalography (MEG) measurements. We
propose a two-way regularization (TWR) method to solve the MEG inverse
problem under the assumptions that only a small number of locations in space
are responsible for the measured signals (focality), and each source time
course is smooth in time (smoothness). The focality and smoothness of the re-
constructed signals are ensured respectively by imposing a sparsity-inducing
penalty and a roughness penalty in the data fitting criterion. A two-stage al-
gorithm is developed for fast computation, where a raw estimate of the source
time course is obtained in the first stage and then refined in the second stage
by the two-way regularization. The proposed method is shown to be effective
on both synthetic and real-world examples.

1. Introduction. Magnetoencephalography (MEG) is a noninvasive neuro-
physiological technique that measures the magnetic field generated by neural ac-
tivity of the brain using a collection of sensors outside the scalp [Papanicolaou
(1995)]. When information is being processed at some regions of the brain,
small currents will flow in the neural system, producing a small electric field,
which in turn produces an orthogonally oriented small magnetic field according
to Maxwell’s Equations. The MEG inverse problem refers to recovering neural ac-
tivity by means of measurements of the magnetic field. The neural activities are
usually represented by magnetic dipoles, which are closed circulations of electric
currents, that is, loops with some constant current flowing through. Each dipole
has a position, an orientation, and a magnitude. The inverse problem then becomes
determining the position, orientation, and magnitude (or amplitude) of the dipoles.

One challenge of the MEG inverse problem is that it does not have a unique so-
lution and so it is ill-posed [von Helmholtz (1853); Nunez (1981); Sarvas (1987)].
As early as in the 19th century, von Helmholtz demonstrated theoretically that
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general inverse problems, such as those aiming at identifying the sources of elec-
tromagnetic fields outside a volume conductor, have an infinite number of solu-
tions [von Helmholtz (1853)]. Hence, to derive a practically meaningful solution
from the infinitely many mathematically correct solutions, one has to introduce
constraints to the solution and/or use prior knowledge about the brain activity.

Existing approaches for the MEG inverse problem can be grouped into two ma-
jor classes that differ in how they impose constraints on the source signals. Within
the first class, the dipole fitting [Scherg and Von Cramon (1986); Hämäläinen
et al. (1993); Yamazaki et al. (2000); Jun et al. (2005)] and scanning methods
[Sorrentino et al. (2009); Schmidt (1986); Mosher, Lewis and Leahy (1992); Veen
and Buckley (1988); VanVeen et al. (1997); Dogandžić and Nehorai (2000)] as-
sume that there exist a limited number of dipoles as point sources of the magnetic
field in the brain. By constraining the number of sources, the locations of these
dipoles are estimated by least squares fitting [Lu and Kaufman (2003)] or iterative
computing [Baillet et al. (2001)]. Dipole orientations and amplitudes can be effec-
tively estimated within these locations. However, estimating the source locations
involves solving a difficult nonlinear optimization problem which has multiple lo-
cal optima [Darvas et al. (2004)].

Our proposed method belongs to the second class, which contains various imag-
ing methods. Different from the first class, imaging methods assume that there are
a large number of potential dipole locations evenly distributed all over the cor-
tex. By dividing the cortical region into a fine grid and attaching a dipole at each
grid, imaging methods model the orientations and magnitudes for all the poten-
tial dipoles simultaneously. Dipoles with nonzero magnitudes are identified as the
source dipoles. Imaging methods are based on the theory that the primary sources
can be represented as linear combinations of neuron activities [Barlow (1994)].
One can express the inverse problem using a linear model

Y = XB + E,(1)

where Y is an n × s matrix containing MEG time courses measured by n sensors
at s time points, recording the amplitudes of the magnetic field. Without loss of
generality, it is assumed that the s measurements for each time course are sampled
at the same evenly-spaced time points. The known n×p design matrix X links the
source signals to the sensor measurements, and is computed using a boundary ele-
ment model prior to application of Model (1) [Mosher, Leahy and Lewis (1999)].
The p × s matrix B represents the unknown dipole activities in the form of p un-
observable source time courses. The n × s matrix E contains some additive noise.
The amplitudes and orientations of the signal for each dipole at a time point can be
decomposed into three components in the x, y, z coordinate system. Therefore, p

represents the total number of the dipole components, and it is three times that of
the number of grid cells. In a typical MEG study, s is usually from a few hundred
to a few thousand, n is a few hundred, but p is as large as over 10,000, and so
p � n.
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Defining the matrix Frobenius norm as ‖B‖F = √
tr(BT B). To recover B, one

can solve a penalized least squares problem

min
B

{‖Y − XB‖2
F + λpen(B)},(2)

where pen(·) is a penalty function that promotes certain desirable properties on B.
In the literature of MEG source reconstruction, spatial focality and temporal

smoothness are two valid assumptions. That is, the source signals are smooth in
time, and only a small number of compact areas are responsible for the recordings
[Bolstad, Veen and Nowak (2009)]. Many of the imaging methods focus on either
the first assumption or the second. Earlier methods using the smoothness assump-
tion usually adopt the L2-norm penalty, pen(B) = ‖WB‖2

F for certain weight-
ing matrix W. The simplest such method is the minimum norm estimate (MNE)
[Hämäläinen and Ilmoniemi (1994)] which uses W = I. The LORETA methods
[Pascual-Marqui, Michel and Lehmann (1994); Pascual-Marqui (2002)] set W to
be the discrete spatial Laplacian operator. Two advantages of the L2-penalty based
methods are the computational efficiency and the less-spiky property in the time
domain. Nevertheless, the L2-penalty lowers the spatial resolution and causes the
well-known “blurring effect” in the spatial domain. Utilizing the L2-penalty, the
FOCUSS method [Gorodnitsky and Rao (1997)] reduces the blurring effect by
reinforcing the strong signals while weakening the weak ones using an iterative
algorithm to update W. However, it is noticed that FOCUSS is very sensitive
to noise [Ou, Hämäläinen and Golland (2009)]. Many hierarchical Bayesian ap-
proaches induce the temporal smoothness by employing smoothing priors which
penalize discontinuities [see, e.g., Baillet and Garnero (1997); Daunizeau et al.
(2006); Nummenmaa et al. (2007a)].

An alternative penalty is the L1-norm, pen(B) = |B| = ∑p
i

∑s
j |bij |, which

promotes the focality of the recovered signals. Related work includes the mini-
mum current estimate (MCE) [Matsuura and Okabe (1995); Uutela, Hämäläinen
and Somersalo (1999); Lin et al. (2006)] and the sparse source imaging method
[Ding and He (2008)]. In contrast to the L2-penalty, the L1-penalty causes “spiky”
discontinuities of the recovered signals in both temporal and spatial domains.
Bayesian methods developed by Baillet and Garnero (1997), Friston et al. (2008),
Nummenmaa et al. (2007b) take into account the spatial focality by employing
anatomic sparse priors. However, these methods have similar problems as meth-
ods based on the L1-penalty.

To prevent the spiky property from the L1-penalty and the blurry property from
the L2-penalty, some Ll-norm methods with 0 < l < 1 and 1 < l < 2 have been
introduced [Auranen et al. (2005); Jeffs, Leahy and Singh (1987)]. However, the
optimization problems associated with Ll-penalties are more difficult to solve than
with L1 and L2 penalties.

More recently, some spatio-temporal regularization methods have been pro-
posed, which take into account both the smoothness and focality properties by
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combining basis representation with penalization. The L1L2-regularization dis-
cussed by Ou, Hämäläinen and Golland (2009) first projects B onto a temporal
basis and then imposes the L1-penalty on the spatial domain and the L2-penalty
on the temporal domain. The event sparse penalty procedure [Bolstad, Veen and
Nowak (2009)] divides the brain surface into several patches based on its anatomic
features and uses temporal basis functions to represent source time courses within
each patch. One drawback of both methods is that it is not straightforward to
choose the basis. Both methods have some shortcomings. The former makes the
assumption that the source temporal basis can be extracted perfectly from the MEG
recordings. The latter utilizes comprehensive prior information of the experiment
task and the brain geometry. In addition, the use of basis representation can poten-
tially cause information loss, since information orthogonal to the basis set can not
be recovered after the projection to the basis set is done.

The goal of this paper is to develop an innovative two-way regularization
method (TWR) for solving the MEG inverse problem that promotes both spatial fo-
cality and temporal smoothness of the reconstructed signals. The proposed method
is a two-stage procedure. The first stage produces a raw estimate of B using a fast
minimum norm algorithm. The second stage refines the raw estimate in a penal-
ized least squares matrix decomposition framework. A sparsity-inducing penalty
and a roughness penalty are employed to encourage spatial focality and temporal
smoothness, respectively.

The proposed TWR has three major advantages over the existing methods. First,
TWR regularizes in both spatial and temporal domains, and simultaneously takes
into account both focality and smoothness properties. Hence, it should be superior
to one-way regularization methods (e.g., MNE and MCE). Second, unlike some
aforementioned spatio-temporal methods, TWR does not rely on the choice of
basis functions. Hence, it avoids the information loss due to basis approximation.
Third, the two-stage procedure is computationally efficient. The advantages of our
method are well illustrated in the empirical studies, which show clearly that TWR
outperforms one-way regularization methods that focus either on the focality or the
smoothness alone, and some existing two-way spatio-temporal methods as well.

Two-way regularization techniques for matrix reconstruction have been studied
in other contexts. Huang, Shen and Buja (2009) present a two-way regularized
singular value decomposition for analyzing two-way functional data that imposes
separate roughness penalties on the two domains. Witten, Tibshirani and Hastie
(2009) and Lee et al. (2010) develop sparse singular value decomposition methods
that impose separate sparsity-inducing penalties on the two domains. However, to
the best of our knowledge, a two-way regularization with the sparsity penalty on
one domain and the roughness penalty on the other domain of the data matrix has
not appeared in the literature. This paper provides a novel application of the two-
way regularization method in solving the highly ill-posed MEG inverse problem,
where different types of penalties are naturally used to meet the dual requirements
of spatial focality and temporal smoothness on the unknown source signals.
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The rest of the paper is organized as follows. Section 2 presents the details of the
TWR methodology including the computational algorithm. Through a synthetic
example, Section 3 shows advantages of the TWR over some existing methods
for solving the MEG inverse problem. Section 4 applies the TWR to a real-world
MEG source reconstruction problem. Section 5 concludes the paper with some
discussion about an alternative one-step approach and related complications.

2. Methodology. We propose a two-way regularization (TWR) method to
regularize the recovered signals in both spatial and temporal domains. We adopt a
penalized least squares formulation that uses suitable penalty functions to ensure
the spatial focality and the temporal smoothness of the recovered signals. TWR is
implemented in a two-stage procedure where the first stage produces a rough es-
timate of the source signals and the second stage refines the initial rough estimate
using regularization.

2.1. Stage 1. The goal of Stage 1 is to obtain a rough estimate of the location
and the shape of the source signals. At this stage, source information in the data
is retained as much as possible. It is natural to obtain such a rough estimate by
solving the following minimization problem:

min
B

‖Y − XB‖2
F .(3)

Note that the forward operator X contains the information of positions and orien-
tations of the dipoles, and how they are represented at the sensor level. This infor-
mation can be decomposed by applying a singular value decomposition (SVD) to
X, that is, X = UDVT , where U ∈ R

n×n is an orthogonal matrix and V ∈ R
p×n is

a thin (since p � n) orthonomal matrix, such that UT U = UUT = I and VT V = I.
Then the objective function in the optimization problem (3) becomes

‖Y − UDVT B‖2
F = ‖UT Y − DVT B‖2

F .

Let Ỹ = UT Y and C = VT B. The minimization problem (3) is equivalent to

min
B

‖Ỹ − DC‖2
F .(4)

Let ỹT
i and cT

i be the ith row of Ỹ and the ith row of C, respectively. Since D
is a diagonal matrix, the minimization problem (4) can be obtained by separately
solving for each i,

min
ci

{‖ỹi − dici‖2},
where di is the ith diagonal element in D. This problem has a unique solution
ĉi = ỹi/di . Then the estimated matrix Ĉ with ĉT

i in the ith row can be obtained.
Thus, a rough estimate of B can be obtained by solving

Ĉ = VT B.(5)
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Note that Ĉ is n× s, V is p × n, and B is p × s. Since p � n and p � s, equation
(5) does not have a unique solution for B. Any solution of (5) can be written as
B† = VĈ + V⊥F, where V⊥ is a p × (p − n) orthonormal matrix whose columns
are orthogonal to the columns of V and F is a (p−n)×s matrix. We pick the mini-
mum norm solution, which is B̂ = VĈ. In fact, B̂ solves the following optimization
problem:

min
B

‖B‖2
F subject to ‖Y − XB‖F = 0.

We can see this by noticing that ‖B†‖2
F = ‖VĈ‖2

F + ‖V⊥F‖2
F ≥ ‖B̂‖2

F and the
equality holds when F is a matrix of zeros.

We call this B̂ the raw estimate. Note that the raw estimate can only recover in-
formation that lies in the column space of V, and thus any information orthogonal
to the columns of V is lost. Since the columns of V are the right singular vectors of
X, the column space of V is equivalent to the row space of X. This information loss
can also be understood by viewing the forward operator X as a filter that maps the
source B to the space of the observations, Y, and so the information in the columns
of B that is orthogonal to the rows of X can not be recovered. Since all imaging
methods are based on Model (1), information loss is a common problem to these
methods. This is the limitation of the MEG technology. Fortunately, according to
our experience, most important information still remains in many real-world appli-
cations, as we will see in our real data example. Note that the methods that require
basis representation may cause additional information loss, since any information
in the columns of B that is orthogonal to the basis chosen will also be lost.

2.2. Stage 2. It is obvious that the raw estimate, B̂, can be noisy. The purpose
of Stage 2 is to polish the raw estimate by incorporating the smoothness and fo-
cality assumptions. The polished solution from this stage is denoted as B̃. As we
will see in the simulation study in Section 3, the shapes of the time courses in the
rows of B̂ are noisy but usually follow the shapes of the true curves, and B̂ may
suggest a broader range of active regions. In a penalized least squares framework,
we apply a roughness penalty to smooth the recovered time courses and apply a
sparsity-inducing L1 penalty to refine the active regions.

In order to apply two penalty functions to B, we first use the two-way structure
of the raw estimate and decompose it into spatial-only and temporal-only compo-
nents. Specifically, we write B̂ as

B̂ = AGT ,(6)

where the matrix G ∈ R
s×q (q ≤ s) contains only the temporal features of B̂, and

A ∈ R
p×q can be treated as the spatial coefficients. When q < s, the decomposition

(6) suggests a reduced-rank representation of B̂. Our empirical studies, however,
suggest that any reduced-rank representation would lead to information loss and
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thus the full rank model is needed in practice. We shall focus on the full rank model
(q = s) for the rest of the paper. For identification purposes, we require that G is
an orthogonal matrix, that is, GT G = GGT = I.

Note that when the full rank model is used, the reconstruction error of using
AGT to represent B̂, ‖B̂ − AGT ‖2

F , is exactly zero. We propose to introduce focal-
ity and smoothness requirements on A and G respectively at the cost of allowing
some errors in reconstructing B̂. In particular, we consider the following penalized
least squares problem:

min
A,G

{‖B̂ − AGT ‖2
F + μ1 pen1(A) + μ2 pen2(G)},(7)

where pen1(A) and pen2(G) are appropriate penalty functions, and μ1 and μ2 are
the corresponding penalty parameters.

To ensure the spatial focality of the recovered source signals, we employ a
sparsity-inducing penalty on A so that the estimated A is a sparse matrix, that
is, a large proportion of its entries are zero. Note that if a row of A has all zero
entries, then the corresponding row of B̂ has all zero entries, indicating no signal
or an inactive location. Although other choices are possible, we use the L1 penalty
pen1(A) = |A| = ∑p

i=1
∑q

j=1 |aij | to serve our purpose. On the other hand, to in-
duce smoothness to the time course of the recovered source signals, we apply a
roughness penalty to the columns of G so that each column of G is a smooth
function of time. Let g = (g1, . . . , gs)

T represent a generic vector representing a
column of G. One choice of the roughness penalty is the squared second order
difference penalty, defined as pen(g) = ∑s−1

l=2 (gl−1 − 2gl + gl+1)
2. This penalty is

a quadratic form and can be written as gT �g for a nonnegative definite roughness
penalty matrix, �. The overall penalty on G is the summation of the penalty on
each column, pen2(G) = tr(GT �G) = ∑s

j=1 gT
j �gj . Using the penalties defined

above, the penalized least squares problem (7) becomes

min
A,G

{‖B̂ − AGT ‖2
F + μ1|A| + μ2 tr(GT �G)}.(8)

2.3. Algorithm. We propose an iterative algorithm to solve (8) that alternates
the optimization with respect to A and G. The algorithm starts with setting the
initial G to be the orthonormal matrix of the right singular vectors from the SVD
of B̂. That is, let B̂ = LTRT , where L and R are orthonormal matrices, and we set
the initial G = R.

Fix G, update A. When G is fixed as Ĝ, the roughness penalty term in the
objective function (8) is irrelevant to the optimization of A. Thus, updating A
reduces to solving the problem

min
A

{‖B̂ − AĜT ‖2
F + μ1|A|}.(9)
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This is similar to one step of the iterative algorithm for the sparse principal com-
ponent analysis as formulated by Shen and Huang (2008). Express AĜT as a sum-
mation of a serial of rank-one terms

AĜT =
s∑

j=1

aj ĝT
j ,(10)

where aj and ĝj are the j th column of A and Ĝ, respectively. Since simultaneous
extracting of all the rank-one terms is computationally expensive, we propose to
obtain them sequentially.

For the first rank-one term (j = 1), we solve for fixed ĝ1

min
a1

{‖B̂ − a1ĝT
1 ‖2

F + μ1|a1|}.(11)

This problem has a closed-from solution which is given below. For the sake of
notational simplicity, we drop the subscripts for now and express the objective
function of (11) as

‖B̂ − aĝT ‖2
F + μ1|a|

(12)

=
p∑

i=1

{
a2
i

s∑
l=1

ĝ2
l − 2ai

s∑
l=1

b̂il ĝl +
s∑

l=1

b2
il + μ1|ai |

}
,

where b̂il is the (i, l)th element in B̂, and ai , i = 1, . . . , p, are the elements of
the vector a. The minimization of (12) is equivalent to independently solving p

optimization problems

min
ai

(
a2
i

s∑
l=1

g2
l − 2ai

s∑
l=1

b̂ilgl + μ1|ai |
)
, i = 1, . . . , p.(13)

According to Lemma 2 of Shen and Huang (2008), the minimizer of each objective
function in (13) is the soft thresholding rule

âi = sign(ri)(|ri | − λ)+,(14)

where ri = ∑s
l=1 b̂il ĝl/

∑s
l=1 ĝ2

l , and λ = μ1/(2
∑s

l=1 ĝ2
l ). The p-vector a that

minimizes (12) is â = (â1, . . . , âp)T .
After the first rank-one term â1ĝT

1 is obtained, we find the second rank-one term
by solving the following minimization problem, while fixing ĝ2:

min
a2

{‖(B̂ − â1ĝT
1 ) − a2ĝT

2 ‖2
F + μ1|a2|}.

This is the same problem as (11) except that the B̂ in (11) is replaced by the resid-
ual B̂res,1 = B̂ − â1ĝT

1 from the rank-one approximation. The rest of the rank-one
terms, âl ĝT

l , l = 3, . . . , s, can be obtained sequentially in a similar manner by using
the residuals from the lower-rank approximations.
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Fix A, update G. When A is fixed as Â, the L1 penalty term in (8) becomes
constant and thus is irrelevant to the optimization with respect to G. The update of
G then solves the following problem:

min
G

{‖B̂ − ÂGT ‖2
F + μ2 tr(GT �G)}.(15)

Since directly solving this problem is complicated, we solve for the columns of G
sequentially. To obtain the first column of G, we solve the problem

min
g1

{‖B̂ − â1gT
1 ‖2

F + μ2gT
1 �g1},(16)

which has the solution ĝ1 = (âT
1 â1I + μ2�)−1B̂T â1. Let � = P�PT be the eigen-

decomposition. Then

ĝ1 = P(âT
1 â1I + μ2�)−1PT B̂T â1.

To obtain an update of g2, we solve the problem

min
g2

{‖(B̂ − â1ĝT
1 ) − â2gT

2 ‖2
F + μ2gT

2 �g2},(17)

which has the solution

ĝ2 = (âT
2 â2I + μ2�)−1(B̂ − â1ĝT

1 )T â2
(18)

= P(âT
2 â2I + μ2�)−1PT B̂T

res,1â2,

where again B̂res,1 = B̂ − â1ĝT
1 is the residual from the rank-one approximation.

The rest of ĝl , l = 3, . . . , s, can be obtained similarly using the residuals from the
corresponding lower rank approximations. When all columns of Ĝ are obtained,
we orthonormalize the columns of Ĝ by taking the QR decomposition of Ĝ and
assigning the Q matrix to Ĝ.

The iterative TWR procedure, including Stage 1 and Stage 2, is summarized in
Algorithm 1.

We consider the algorithm has converged if the Frobenius norm of the relative
difference between the current solution and the previous solution is smaller than a
prespecified threshold value. In our implementation, we declare convergence when
‖B̃i − B̃i−1‖F /‖B̃i‖F ≤ 10−6. Based on our empirical studies, only a few itera-
tions are needed to reach convergence; 15 iterations are usually sufficient for our
numerical examples in Sections 3 and 4.

2.4. Tuning parameters. There are two tuning parameters in the TWR algo-
rithm: the focality parameter, μ1, and the roughness penalty parameter, μ2. The
choice of μ1 and μ2 can be done using the cross-validation (CV) techniques and
the generalized cross-validation, respectively.
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Algorithm 1: The TWR algorithm
Input: X, Y, μ1, μ2, q

Output: B̃
begin

Stage 1:
Obtain the SVD of X: X = UDVT , D = diag(d1, . . . , dn)

Ỹ ← UT Y, Ỹ = (ỹT
1 , . . . , ỹT

n )T

for i ← 1 to n do
ĉi ← ỹi/di

Ĉ ← [ĉT
1 , . . . , ĉT

n ]T
B̂ ← VĈ

Stage 2:
Obtain the SVD of B̂: B̂ = LTRT

Initialization: Ĝ ← R, Ĝ = (ĝj l)

Obtain eigen-decomposition of �: � = P�PT

repeat
Update A:
B̂res ← B̂, B̂res = (b̂res,il)

â0ĝT
0 ← 0 ∈ R

p×s

for j ← 1 to q do
B̂res ← B̂res − âj−1ĝT

j−1
λj ← μ1

2
∑s

l=1 ĝ2
j l

for i ← 1 to p do

rij ←
∑s

l=1 b̂res,il ĝj l∑s
l=1 ĝ2

j l

âij ← sign(rij )(|rij | − λj )+

Â ← (âij )

Update G:
B̂res ← B̂
â0ĝT

0 ← 0 ∈ R
p×s

for j ← 1 to q do
B̂res ← B̂res − âj−1ĝT

j−1

ĝj ← P(âT
j âj I + μ2�)−1PT B̂T

resâj

Ĝ ← (ĝ1, . . . , ĝq)

Obtain QR decomposition of Ĝ: Ĝ = QR
Ĝ ← Q

until convergence of B̃ ← ÂĜT

end
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To select μ1, we can utilize the leave-one-out CV that minimizes the leave-one-
out CV score defined as

CV(μ1) = 1

n

n∑
i=1

‖Yi − XiÂ−iĜT−i‖2
F ,(19)

where Yi is the ith row of Y corresponding to the ith time course, Xi is the ith
row of X, and Â−i and Ĝ−i are the estimates of A and G using all observations
except the ith time course. However, practical application of the CV has some
difficulties. The gradient-based optimization is not feasible for minimizing the CV
score since it is not a smooth function of μ1, a consequence of using the L1 penalty.
In addition, direct computation of the CV score is costly because of the usual large
scale of the real problem. In a typical MEG study, n is over 200, s is a few hundred,
and p can be over 15,000. In order to reduce the computational cost, we propose to
use the K-fold cross-validation. Specifically, we divide the rows of Y and X into
K about equally sized parts and leave out one part each time for validation, and
use the rest of the parts for estimating A and G. The K-fold CV score is defined
as

CV(μ1) = 1

K

K∑
k=1

∥∥Y(k) − X(k)Â−(k)ĜT−(k)

∥∥2
F ,(20)

where Y(k) contains the kth part of the rows of Y, X(k) contains the corresponding
rows of X, and Â−(k) and Ĝ−(k) are the estimates of A and G using all observations
except the kth part of time courses that are left out for validation. We used K = 5
in our implementation. To further speed up the algorithm, we restrict our search
only in a moderate-sized set of discrete candidate values for μ1. Such restrictive
search is satisfactory, since we find that the results are usually not very sensitive
to mild changes of μ1 (see Sections 3 and 4) and thus fine tuning of μ1 is not
necessary. We used 10 different values evenly-spaced between 0 and 1 for μ1 in
our simulations and the real-world MEG example; the search range may need to
be changed for different problems.

To select μ2, note that given Â, the update of q columns of Ĝ can be obtained
by solving q separate penalized regression problems. For the j th column, the re-
gression has B̂T

res,j−1âj as the input, where B̂res,j−1 = B̂ − ∑j−1
l=1 âl ĝT

l , ĝj as the

output, and the hat matrix of the regression is Sj = P(âT
j âj I + μ2�)−1PT , ac-

cording to equation (18). Theoretically, μ2 can take different values for different
ĝj ’s, but we decide to use a common μ2 for all the ĝj ’s based on computational
efficiency consideration. The advantage of this strategy is that there is only one op-
timization problem to solve for choosing the tuning parameter when updating Ĝ.
Then, the overall GCV criterion is the average of all individual GCV criteria:

GCV(μ2) = 1

s

s∑
j=1

‖B̂T
res,j−1âj−1 − ĝj‖2

{1 − (1/s) tr(Sj )}2 ,(21)
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where B̂res,0 = B̂, and tr(Sj ) = ∑p
l=1 1/{â2

lj + μ2λl}. The GCV optimization is
nested in the iterations because it is defined conditioning on the current value
of Â. Since the GCV criterion is a smooth function of μ2, the optimization can
be done using a combination of golden section search and successive parabolic
interpolation [Brent (1973)].

2.5. One-way regularization. By separately setting one of the penalty parame-
ters in (8) to be zero, one can obtain two different one-way regularization methods:
tOWR and sOWR, as explained below. These two one-way regularization methods
will be used as a comparison to TWR to demonstrate the need for two-way regu-
larization.

Letting μ1 = 0 leads to a method that emphasizes temporal smoothness of the
recovered signals, which is referred to as tOWR (temporal one-way regulariza-
tion), and is related to the functional PCA [Huang, Shen and Buja (2008)]. The
corresponding optimization problem becomes

min
A,G

{‖B̂ − AGT ‖2
F + μ2 tr(G�GT )}.(22)

A modified version of Algorithm 1 can be applied for computation, with the “Up-
date A” step in the algorithm simplified to Â = B̂T Ĝ.

Letting μ2 = 0 leads to a method that encourages spatial sparsity of the recov-
ered signals, which is referred to as sOWR (spatial one-way regularization) and is
related to the sparse principal component analysis of Shen and Huang (2008). In
this case, the optimization problem (8) reduces to

min
A,G

{‖B̂ − AGT ‖2
F + μ1|A|}.(23)

Again, a modified version of Algorithm 1 is applicable, but with the “Update G”
step simplified to Ĝ = B̂T Â.

3. Synthetic example. In this section we illustrate the proposed TWR method
using a synthetic example that mimics human brain activities. Both the source and
the forward operator are created based on real-world MEG studies.

3.1. Data generation. We generated the forward operator, X, from a hu-
man subject head boundary element model using the MNE software (available
at: http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php). The X
matrix is a 248 × 15,360 matrix, corresponding to a MEG device with 248 valid
channels. To mimic real-world scenarios and ensure enough difficulty of the prob-
lem, we located two source areas on the left and the right hemispheres, respec-
tively. The sources were generated from two sine-exponential functions [Bolstad,
Veen and Nowak (2009)] and are shown in Figure 1(a). The black solid and the
red dashed curves are source signals located at the left motor and the right visual

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
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FIG. 1. Simulated source and sensor data.

cortical areas, respectively. As we can see, the sources reach their energy peaks
at 25 ms and 58 ms, respectively. The synthetic MEG time courses were gener-
ated using equation (1) and were obtained using a sampling frequency 355 Hz
with a duration of 200 seconds [see Figure 1(b)]. By mimicking the real MEG
data after preprocessing, that is, denoising and smoothing, the signal-to-noise ra-
tio, SNR = ‖XB‖2

F /‖E‖2
F , is set to be 5dB.

3.2. Comparison criteria. We compare TWR with eight different methods
that can be put into two categories as given below.

• One-way regularization:
– The L2-based MNE method [Mosher, Leahy and Lewis (1999)]
– The L1-based MCE method [Matsuura and Okabe (1995)]
– sOWR (i.e., spatial sparsity only)
– tOWR (i.e., temporal smoothness only)

• Two-way regularization:
– The L1L2 method proposed by Ou, Hämäläinen and Golland (2009)
– MNE+sOWR (i.e., obtaining the MNE solution as Stage 1 and then applying

sOWR)
– MCE+tOWR (i.e., obtaining the MCE solution as Stage 1 and then applying

tOWR)
– MNE+TWR (i.e., obtaining the MNE solution as Stage 1 and then applying

Stage 2 of TWR)

We put MNE+sOWR in the two-way regularization category because the L2
penalty in MNE puts constraints on both domains, and sOWR puts the L1 penalty
only on the spatial domain. As a result, the temporal domain is regularized by
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the L2 penalty, while the spatial domain is regularized first by the L2 penalty
and then by the L1 penalty. Similarly, MCE+tOWR is also categorized as a two-
way regularization method. MNE+sOWR and MCE+tOWR can be considered as
two alternative ways for two-way regularization and are suggested by a reviewer.
MNE+TWR, also suggested by a reviewer, is a slight modification of TWR, re-
placing the first stage of TWR by MNE. Its inclusion in comparison helps us study
the effect of using a different Stage 1 estimator on the performance of TWR. We
implemented all the methods in R, and the tuning parameters are selected using
either CV or GCV.

Three comparison criteria are utilized: the overall mean squared error (MSE),
the standardized distance between the energy peak of the estimated source and the
energy peak of the true source, and the computation time.

The overall MSE is defined as

MSE = 1

p
‖B − B̃‖2

F ,

where B and B̃ are the true and recovered source matrices, respectively.
The energy of the dipole j at time point k is defined as (b2

jk,x +b2
jk,y +b2

jk,z)
1/2,

where bjk,x, bjk,y, bjk,z (j = 1, . . . , p, k = 1, . . . , s), are the amplitude compo-
nents for the j th dipole at the time point k in the Cartesian coordinate system.
The energy of the reconstructed source can be defined similarly. The standardized
distance between the estimated and the true energy peak at time point k is defined
as

dk =
√

(x∗
k − x̂k)2 + (y∗

k − ŷk)2 + (z∗
k − ẑk)2

p/3
,

where p/3 is the total number of dipoles, x∗
k , y∗

k , z∗
k are the coordinates of the

location for the maximum source energy at time point k, and x̂, ŷ, ẑ are the
coordinates for the maximum estimated source energy at the corresponding time
point. In this simulation example, there are two peak times, 25 ms and 58 ms, so
we are interested in d25 and d58.

3.3. Results. The simulation was conducted 100 times with the noise term in
Model (1) newly generated for each run. The criteria described in the previous sub-
section (i.e., MSE, d25, d58, computation time) were evaluated for each simulation
run, and the mean and standard error of the criterion values across the 100 runs
were calculated. The numerical results are shown in Table 1.

Several interesting observations can be made from the table. TWR is the best
method in the sense of having the smallest MSE and the shortest distances be-
tween the true and the estimated peaks. Among the four one-way regularization
methods, sOWR and tOWR outperform the classical MNE and MCE methods,
and tOWR outperforms sOWR. The fact that TWR outperforms the four one-way
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TABLE 1
Comparison of nine methods using four criteria: the mean squared error (MSE), the standardized

distance between the true energy peak and the estimated energy peak at the left motor area (d25), at
the right visual area (d58), and the computation time (in seconds). Reported are the average and

standard error of each criterion based on 100 simulation runs

Method MSE (10−3) d25 (×10−4) d58 (×10−4) Computation time (sec.)

MNE 544.0 (9.0) 50.2 (7.3) 42.9 (5.9) 4371 (4.3)

MCE 903.7 (8.9) 337.1 (6.4) 156.1 (11.4) 1545 (3.0)

tOWR 407.9 (8.9) 40.2 (5.8) 39.6 (4.3) 1841 (3.4)∗
sOWR 153.2 (7.7) 19.3 (4.6) 13.9 (3.9) 1798 (3.6)∗
TWR 22.3 (5.7) 15.7 (3.3) 7.1 (2.4) 1872 (3.5)∗
L1L2 44.3 (7.1) 31.0 (6.1) 17.8 (2.3) 40,872 (8.8)

MNE+sOWR 187.3 (8.8) 27.9 (6.8) 14.5 (3.1) 5998 (3.9)

MCE+tOWR 912.7 (10.9) 343.8 (6.2) 145.2 (12.7) 3321 (3.8)

MNE+TWR 28.6 (7.2) 16.9 (4.3) 10.7 (3.9) 6201 (3.1)

∗The computation time for each simulation run is computed based on 15 iterations, which are usually
more than needed for algorithm convergence.

regularization methods justifies our proposal of using two-way regularization. The
L1L2 method is the third most accurate method, but its computation time is more
than 21 times as large as that of TWR. MNE+sOWR and MCE+tOWR are less
satisfactory, demonstrating the importance of the first stage. MNE+sOWR is not
better than sOWR because the L2 penalty of MNE does not smooth the temporal
domain. The performance of MCE+tOWR is similar to MCE and is not better than
tOWR because MCE does not recover well important information at the first stage,
and hence tOWR based on MCE is inaccurate. Note that the reported computation
time for TWR, sOWR and tOWR are based on fixed 15 iterations in order to make
the calculation of the average computation time meaningful. Such report is con-
servative because these algorithms usually converge rapidly and fewer iterations
(usually less than 10) are enough to obtain considerably good accuracy.

Figures 2 and 3 show the 3-D brain mapping by different methods at 25 ms and
58 ms for a randomly selected simulation run. TWR performs the best among the
nine methods in detecting the true source locations even though it misses some
small regions. It is able to identify the majority parts of both source locations, and
its solutions are focal. Solutions from sOWR and MNE+sOWR are more scattered
than TWR. MNE and tOWR produce even more diffuse solutions. MCE misses
the main parts of both active areas and so does MCE+tOWR, and they are the
least satisfactory methods. The L1L2 method recovers some of the activity, but the
solution is overly focal. The plot of MNE+TWR is very similar to that of TWR,
so it is not presented here to save space. Direct comparison of results of TWR and
tOWR clearly demonstrate the positive effect of using regularization in the spatial
domain.
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FIG. 2. Overviews of brain mapping by different methods at 25 ms. (a) shows the true map, indi-
cating an active area located at the left motor area. TWR identifies the major active area and the
solution is focal. The L1L2 method also identifies the active area but the solution is too focal. sOWR
and MNE+sOWR produce more scattering solutions than TWR. MNE and tOWR detected active
areas are diffuse. MCE and MCE+tOWR misidentify the active region.
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FIG. 3. Sideviews of brain mapping by different methods at 58 ms. (a) shows the true map, indicat-
ing an active area located at the right visual area. TWR and L1L2 identify the major active area and
the solution is focal. sOWR and MNE+sOWR produce more scattering solutions than TWR. MNE
and tOWR detected active areas are diffuse. MCE and MCE+tOWR misidentify the active region.

Figures 4 and 5 show the true and the recovered time courses by the nine meth-
ods for an arbitrarily chosen single dipole component in the two active areas, re-
spectively, for a randomly selected simulation run. Each subfigure shows the true
time course and the estimated time course by one method. As one can see, the
methods considering the temporal smoothness reconstruct the shape of the source
time course well. TWR, tOWR, L1L2, MCE+tOWR and MNE+TWR all pro-
duce smooth time courses. TWR recovers the most energy of the source, while
MCE+tOWR recovers the least. MNE+TWR tends to overshrink the amplitude of
the time course because MNE overshrinks the amplitude. The methods without
considering the roughness regularization in the temporal domain result in noisy
time courses even though some methods can recover the general trend. In Fig-
ure 5(b), MCE does not capture the major peaks of the signal, and, consequently,
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FIG. 4. Estimated time courses for one arbitrarily chosen dipole component at left motor area
by different methods for a randomly selected simulation run. TWR, tOWR, MCE+tOWR, L1L2 and
MNE+TWR recover the shape of the time course reasonably well and the solutions are smooth. But
MCR+tOWR, MNE+TWR and L1L2 overshrink the amplitude. MNE, MCE, sOWR and MNE+sOWR
estimate the general trend reasonably well, but the estimated time courses are too noisy. TWR gives
the best result.

MCE+tOWR [Figure 5(h)], which relies on the solution of MCE, does not recover
any signal activity either. Direct comparison of results of TWR and sOWR clearly
demonstrate the positive effect of using regularization in the time domain.
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FIG. 5. Estimated time courses for one arbitrarily chosen dipole component at right visual area
by different methods for a randomly selected simulation run. TWR, tOWR, L1L2 and MNE+TWR
recover the shape of the time course reasonably well and the solutions are smooth. But MNE+TWR
overshrinks the amplitude. MNE, sOWR and MNE+sOWR estimate the general trend reasonably
well, but the estimated time courses are too noisy. MCE and MCE+tOWR do not recover the shape
of the time course. TWR gives the best result.

The selection of the focality parameter and the roughness penalty parameter
was conducted using the method presented in Section 2.4. Figure 6(a) and (b)
shows the CV and GCV scores for TWR as functions of μ1 and μ2, respectively.
The optimal values of the tuning parameters are μ1 = 0.33 and μ2 = 5.9. Fig-
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FIG. 6. Selection of μ1 and μ2 and the sparsity level as a function of the number of iterations. The
optimal μ1 and μ2 are around 0.33 and 5.9, respectively. The sparsity measure levels off at around
0.996.

ure 6(c) shows the sparsity level of the reconstructed source matrix, B̃, for TWR
as a function of the number of iterations when the tuning parameters are set at the
selected values. The sparsity level for a matrix is defined as the number of zero
entries over the total number of entries. Here the total number of entries for B̃
is p × s = 3,072,000. From this figure, we observe that the sparsity of B̃ levels
off rather rapidly and stays steadily at about 0.996, a fairly high sparsity level.
In fact, this sparsity level matches closely the true level in the simulation setup:
The number of true source dipoles is 20, and so the total number of active source
components is 60 after considering orientations. Thus, the true sparsity level is
1 − 60/p = 1 − 60/15360 ≈ 0.996.

4. Real data example. In this section we demonstrate the proposed method
using a human MEG data set obtained from the Center for Clinical Neurosciences
at the University of Texas Health Science Center at Houston. The study subject is
a 44-year-old female patient with grade three left frontal astrocytoma who under-
went the MEG test as part of the presurgical evaluation. The patient underwent a
somatosensory task which is designed to noninvasively identify the somatosensory
areas of the patient. We choose this study because of the clinical usefulness of the
somatosensory task in presurgical mapping.

Data collection was done with a whole-head neuromagnetometer containing
248 first-order axial gradiometers. During the MEG somatosensory session, 558
repeated stimulations were delivered to the patient’s right lower lip through a pneu-
matically driven soft plastic diaphragm. Each stimulation lasted 40 ms with 450 ms
epoch duration (including a prestimulus baseline of 100 ms) and an interstimulus
interval randomized between 0.5 s and 0.6 s. We removed the offset and averaged
the 558 epochs to obtain the final event-related magnetic field response. Then a bad
channel was removed. The MEG device recorded 228 time points in each epoch.
The measurement matrix Y is 247 × 228, where n = 247 is the number of valid
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FIG. 7. MEG data. (a) MEG recordings from 247 valid channels; (b) Reconstructed time courses
from an arbitrary source location in the somatosensory area by different methods.

MEG channels and s = 228 is the number of recorded data points per epoch. The
n×p forward operator X was obtained using the MNE software with p = 15,372.

The measured MEG recordings from the 247 valid channels are plotted in Fig-
ure 7(a). Among the 228 time points, there are two peaks at time points 85 and 99,
corresponding to the activation of the primary somatosensory area contralateral to
the stimuli, as expected by clinical experiences and brain anatomic theories.

Nine methods, MNE, MCE, TWR, tOWR, sOWR, MNE+TWR, MNE+sOWR,
MCE+tOWR and L1L2, were applied to solve the MEG inverse problem. Fig-
ure 7(b) shows the reconstructed time courses for an arbitrary source location by
different methods. As we can see, TWR, sOWR and tOWR, are satisfactory in
terms of estimating the shape of the source time course and capturing the peak
features at time points 85 and 99. But sOWR produces a noisy time course. MNE
and MNE+sOWR overshrink the magnitudes in addition to producing a noisy time
course. MNE+TWR recovers the shape of the time course but underestimates the
amplitude. The L1L2 method does not distinguish the two peaks. MCE only iden-
tifies the first peak but misses the second one. MCE+tOWR does not capture any
activity because it smoothes the spikes caused by MCE and hence is the least sat-
isfactory method.

Figure 8 shows the side views of the brain mapping at time point 85 by dif-
ferent methods. As we can see, the somatosensory area was correctly identified
by TWR, which matches the clinical expectation. As with the synthetic example,
tOWR and MNE produce diffuse solutions, leading to false positives around the so-
matosensory area. sOWR produces a scattering solution and so does MNE+sOWR.
MNE+TWR and L1L2 also identify some activity in the frontal lobe. Solutions
from MCE and MCE+tOWR are too focal and do not cover the somatosensory
area.
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FIG. 8. Side views of the brain mapping at time point 85 by different methods. TWR provides a focal
and accurate detection; MNE+TWR and L1L2 identify some activity in the frontal lobe in addition
to the somatosensory area. Solutions from MNE, sOWR, tOWR and MNE+sOWR are too diffuse to
be satisfactory. Both MCE and MCE+tOWR miss the activity in the somatosensory area.

Figure 9(a) shows the CV error as a function of μ1. The CV error was minimized
when the sparsity parameter, μ1, is about 0.44. Figure 9(b) displays the GCV error
as a function of μ2. It shows that the optimal μ2 is about 59.5. The sparsity level as
a function of the number of iterations is shown in Figure 9(c). As we can see, the
sparsity level increases at first and then levels off rapidly, indicating the algorithm
converges fast. The optimal sparsity level was about 0.999.

5. Discussion. TWR solves the MEG inverse problem by using two-way
penalties that promote both the temporal smoothness and the spatial focality of
the solution. We developed a computational efficient two-stage procedure for im-
plementing TWR. We also considered a one-stage approach that tries to recover
the source signal matrix B = AGT by solving

min
A,G

{‖Y − XAGT ‖2
F + μ1|A| + μ2 tr(GT �G)}.(24)
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FIG. 9. Selection of μ1 and μ2 and the sparsity level as a function of the number of iterations. The
optimal μ1 and μ2 are around 0.44 and 59.5, respectively. The sparsity measure levels off at around
0.999.

The optimal matrices A and G can be obtained by alternating optimization. When
fixing A as Â, the optimal G can be obtained as in Algorithm 1, as described in
Section 2.3. When fixing G as Ĝ, the problem (24) becomes

min
A

{‖Y − XAĜT ‖2
F + μ1|A|}

= min
A

{tr[Ĝ(YĜ − XA)T (YĜ − XA)ĜT ] + μ1|A|}(25)

= min
A

{‖YĜ − XA‖2
F + μ1|A|},

which is equivalent to s different problems, one for each column of A, namely,

min
aj

{‖Yĝj − Xaj‖2 + μ1|aj |}, j = 1, . . . , s,

where ĝj is the j th column of the matrix Ĝ. Each of these problems is a stan-
dard LASSO regression problem [Tibshirani (1996)] with over 10,000 variables.
Although efficient computational algorithms exist for the LASSO regression, the
fact that the LASSO problem needs to be solved a few hundred times during each
iteration of updating A makes this approach computationally unattractive. Devel-
oping a scalable algorithm for the one-stage approach is an important issue for its
practical application and remains an interesting research topic.
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