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MULTIPLE IMPUTATION FOR SHARING PRECISE GEOGRAPHIES
IN PUBLIC USE DATA1
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When releasing data to the public, data stewards are ethically and often
legally obligated to protect the confidentiality of data subjects’ identities and
sensitive attributes. They also strive to release data that are informative for a
wide range of secondary analyses. Achieving both objectives is particularly
challenging when data stewards seek to release highly resolved geograph-
ical information. We present an approach for protecting the confidentiality
of data with geographic identifiers based on multiple imputation. The basic
idea is to convert geography to latitude and longitude, estimate a bivariate
response model conditional on attributes, and simulate new latitude and lon-
gitude values from these models. We illustrate the proposed methods using
data describing causes of death in Durham, North Carolina. In the context
of the application, we present a straightforward tool for generating simulated
geographies and attributes based on regression trees, and we present methods
for assessing disclosure risks with such simulated data.

1. Introduction. Statistical agencies, research centers and individual re-
searchers frequently collect geographic data as an integral part of their studies.
Geographic data can be highly beneficial for analyses. In studies of aging, for ex-
ample, they can reveal areas where elderly people live in high densities, which
is useful for policy and planning; they can illuminate how environmental factors
impact the health and quality of life of elderly people; and, through contextual
data, they can yield insights into the social and economic conditions and lifestyle
choices of the elderly. Analysts who do not account for spatial dependencies may
miss important geographic trends and differences, potentially resulting in invalid
inferences.

Geographic variables also are among the most challenging data to share when
making a primary data source available to other researchers and the broader pub-
lic. Very fine geography, while facilitating detailed spatial analyses, enables ill-
intentioned users to infer the identities of individuals in the shared file. Even mod-
estly coarse geography can be risky in the presence of demographic or other readily
available attributes, which when combined may identify individuals in the shared
file. Such identifications are problematic for data collectors, who are ethically and
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often legally obligated to protect data subjects’ confidentiality. To reduce the risks
of disclosures, data collectors typically delete or aggregate geographies to high
levels before sharing data. Unfortunately, deletion and aggregation sacrifice the
quality of analyses that utilize finer geographic detail.

We propose to protect the confidentiality of data with fine geographic identifiers
by simulating values of geographies and other identifying attributes from statistical
models that capture the spatial dependencies among the variables in the collected
data. These simulated values replace the collected ones when sharing data. To
enable estimation of variances, the data steward generates several versions of the
data sets for dissemination, resulting in multiply-imputed, partially synthetic data
sets [Little (1993), Reiter (2003)]. Such data sets can protect confidentiality, since
identification of units and their sensitive data can be difficult when the geographies
and other quasi-identifiers in the released data are not actual, collected values.
And, when the simulation models faithfully reflect the relationships in the collected
data, the shared data can preserve spatial associations, avoid ecological inference
problems, and facilitate small area estimation.

The remainder of the article is as follows. In Section 2 we describe some of the
shortcomings of current approaches to protecting data with geographies, and we
motivate the use of multiple imputation for releasing public use data with highly re-
solved geographies. In Section 3 we generate multiply-imputed, partially synthetic
versions of a spatially-referenced data set describing causes of death in Durham,
North Carolina. As part of the application, we present an easy-to-implement data
simulator based on sequential regression trees for synthesizing highly-resolved ge-
ographies or attributes. We also describe methods for assessing disclosure risks for
data with synthetic geographies. These include (i) a new measure for quantifying
the risks that the original geographies could be recovered from the simulated data,
and (ii) a measure for assessing risks of re-identifications based on the approach of
Reiter and Mitra (2009). In Section 4 we conclude with issues for implementation
of the approach.

2. Motivation for using simulated geographies. At first glance, releasing or
sharing safe data seems a straightforward task: simply strip unique identifiers like
names and tax identification numbers before releasing data. However, these actions
alone may not suffice when other readily available variables, such as geographic
or demographic data, remain on the file. These quasi-identifiers can be used to
match units in the released data to other databases. When the quasi-identifiers in-
clude geographic variables, the risks of identification disclosures can be extremely
high. For example, Sweeney [(2001), pages 51 and 52] showed that 97% of the
records in a publicly available voter registration list for Cambridge, MA, could
be identified using only birth date and 9-digit zip code. Because of the disclo-
sive nature of geography, the U.S. Health Insurance Portability and Accountability
Act (HIPAA) Privacy Rule requires that, when sharing certain health data, the re-
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leased geographic units comprise at least 20,000 people [Federal Register (2000),
page 82543].

Data stewards can protect confidentiality by restricting public access to the data.
For example, analysts can use the data only in secure data enclaves, such as the Re-
search Data Centers operated by the U.S. Census Bureau. Or, analysts can submit
queries to remote access systems that provide statistical output without revealing
the data that generated the output. While useful, restricted access strategies are
only a partial solution. Analysts who do not live near a secure data enclave, or do
not have the resources to relocate temporarily to be near one, are shut out from this
form of access. Gaining restricted access can require months of proposal prepara-
tion and background checks; analysts cannot simply walk in to any secure data
enclave and immediately start working with the data. Remote access servers limit
the scope of analyses and details of output, since clever queries can reveal indi-
vidual data values [Gomatam et al. (2005)]. Performing exploratory data analysis
and checking model fit are difficult without access to record-level data. Hence, as
recommended by two recent National Research Council panels on data confiden-
tiality, to maintain the benefits of wide dissemination, it is necessary to supplement
restricted access strategies with readily available, record-level data [National Re-
search Council (2005, 2007)].

2.1. Common approaches to protecting geography. Data stewards commonly
employ several strategies for protecting confidentiality when sharing data with ge-
ographic identifiers. However, these methods can have serious impacts on the qual-
ity of the released data, as we now describe.

Data suppression. Data stewards can suppress geography or attributes from
data releases. The intensity of suppression can range from not releasing entire
variables, for example, stripping the file of all geographic identifiers, to not releas-
ing small subsets of values, for example, blanking out sensitive attribute values.
An example of the former is the Health and Retirement Study: the public use data
do not contain any geographic information on relocations [Health and Retirement
Study (2007), page 14]. Increasing the intensity of suppression generally increases
data protection and decreases data quality. While intense suppression can reduce
risks, it has repercussions for inferences. Wholesale deletion of geographic iden-
tifiers disables any spatial analysis. When relationships depend on the omitted ge-
ography, analysts’ inferences are biased. Selective suppression of geography or
attributes creates data that are missing not at random, which complicates analy-
ses for users. When there are many records at risk, as is likely the case when the
data have fine geographic identifiers, data stewards may need to suppress so many
values to achieve satisfactory protection that the released data have very limited
quality for spatial analysis.



232 H. WANG AND J. P. REITER

Data aggregation. Data stewards can coarsen geography or other variables,
for example, releasing addresses at the block or county rather than parcel level, or
releasing ages in five year intervals. Aggregation reduces disclosure risks by turn-
ing unique records—which generally are most at risk—into nonunique records.
For example, there may be only one person with a particular combination of demo-
graphic characteristics in a street block, but many people with those characteristics
in a state. Releasing data for this person with geography at the street level might
have a high disclosure risk, whereas releasing the data at the state level might not.
The amount of aggregation needed to protect confidentiality depends on the nature
of the data. When other identifying attributes are present, such as demographic
characteristics, high-level aggregation of the geographic identifiers may be needed
to achieve adequate protection. For example, there may be only one person of a
certain age, sex, race and marital status—which may be available to ill-intentioned
users at low cost—in a particular county, so that coarsening geographies to the
county level provides no greater protection for that person than does releasing the
exact address.

Aggregation preserves analyses at the level of aggregation. However, it can cre-
ate ecological inference fallacies [Robinson (1950), Freedman (2004)] at lower
levels of aggregation. Additionally, when geography is highly aggregated, ana-
lysts may be unable to detect important local spatial dependencies. Despite these
limitations, aggregation is the most widely used solution to protect data with geo-
graphic identifiers and is routinely implemented by government agencies and other
data collectors. The U.S. Census Bureau, for example, does not release geographic
identifiers below aggregates of at least 100,000 people in public use files of census
data. The public use files for the Health and Retirement Study aggregate geog-
raphy to “a level no higher than U.S. Census Region and Division” [Health and
Retirement Study (2007), page 14].

Aggregation also is frequently used to disguise values in the tails of nongeo-
graphic quasi-identifiers, especially age. The HIPAA requires that all ages above
89 be aggregated into and shared as a single category, “90 or older.”

Random noise addition. Data stewards can disguise geographic and other at-
tribute values by adding some randomly selected amount to each confidential ob-
served value. For geographic attributes, this involves moving an observed location
to another randomly drawn location, usually within a circle of some radius r cen-
tered at the original location. The quality of inferences and the amount of protec-
tion depend crucially on r . When a large r is needed to protect confidentiality—as
is likely the case when data contain readily available quasi-identifiers—inferences
involving spatial relationships can be seriously degraded [Armstrong, Rushton and
Zimmerman (1999), VanWey et al. (2005)]. Adding random noise to attribute val-
ues introduces measurement error, which inflates variances and attenuates regres-
sion coefficients [Fuller (1993)].
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Random data swapping. Data stewards can swap data values for selected
records, for example, switch values of age, race and sex for at-risk records with
those for other records, to discourage users from matching, since matches may
be based on incorrect data [Dalenius and Reiss (1982), Fienberg and McIntyre
(2004)]. Swapping is used extensively by government agencies. It is generally
presumed that swapping fractions are low—agencies do not reveal the rates to
the public—because swapping at high levels destroys relationships involving the
swapped and unswapped variables. Because data stewards might have to swap all
geographic identifiers to ensure released records do not have their actual geogra-
phies, swapping is not effective for highly resolved geographic identifiers.

2.2. Proposed approach: Simulate geographic identifiers. The main limitation
of the approaches in Section 2.1 is that they perturb the geography or other quasi-
identifiers with minimal or no consideration of the relationships among the vari-
ables. Our proposed approach explicitly aims to preserve relationships among the
geographic and other attributes through statistical modeling. At the same time, re-
placing geographic and other quasi-identifiers with imputations makes it difficult
for ill-intentioned users to know the original values of those variables, which re-
duces the chance of disclosures.

Our approach differs from the recent proposal of Zhou, Dominici and Louis
(2010), who use spatial smoothing to mask nongeographic attributes at the origi-
nal locations. Releasing the original locations can result in high risks of identifica-
tion disclosures when the data include fine geography. Zhou, Dominici and Louis
(2010) do not intend to deal with these risks, whereas we explicitly seek to do
so. We note that spatial smoothing could be used to mask attribute values after
synthesis of locations.

To illustrate how our approach might work in practice, we modify the setting
described by Reiter (2004a). Suppose that a statistical agency has collected data on
a random sample of 10,000 heads of households in a state. The data comprise each
person’s street block, age, sex, income and an indicator of disease status. Suppose
that combining street block, age and sex uniquely determines a large percentage of
records in the sample and the population. Therefore, the agency wants to replace
street block, age and sex for all people in the sample—or possibly only a fraction
of the three variables, for example, only street block for some records and only
age and sex for others—to disguise their identities. The agency generates values
of street block, age and sex for these people by randomly simulating values from
their joint distribution (see Section 2.3), conditional on their disease status and
income values. This distribution is estimated with the collected data. The result is
one partially synthetic data set. The agency repeats this process, say, ten times, and
these ten data sets are released to the public.

To illustrate how a secondary data analyst might utilize these shared data sets,
suppose that the analyst seeks to fit a logistic regression of disease status on in-
come, age, sex and indicator variables for the person’s county (obtained by aggre-
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gating the released, simulated street blocks). The analyst first estimates the regres-
sion coefficients and their variances separately in each simulated data set using
standard likelihood-based estimates and standard software. Then, the analyst aver-
ages the estimated coefficients and variances across the simulated data sets. These
averages are used to form 95% confidence intervals based on the simple formulas
developed by Reiter (2003), described below.

The agency creates m partially synthetic data sets, D(1), . . . ,D(m), that it shares
with the public. Let Q be the secondary analyst’s estimand of interest, such as
a regression coefficient or population average. For l = 1, . . . ,m, let q(l) and u(l)

be respectively the estimate of Q and the estimate of the variance of q(l) in syn-
thetic data set D(l). Secondary analysts use q̄m = ∑m

l=1 q(l)/m to estimate Q and
Tm = ūm + bm/m to estimate var(q̄m), where bm = ∑m

l=1(q
(l) − q̄m)2/(m − 1)

and ūm = ∑m
l=1 u(l)/m. For large samples, inferences for Q are obtained from

the t-distribution, (q̄m − Q) ∼ tνm(0, Tm), where the degrees of freedom is νm =
(m − 1)[1 + mūm/bm]2. Details of the derivations of these methods are in Reiter
(2003). Tests of significance for multicomponent null hypotheses are derived by
Reiter (2005c).

Partially synthetic data sets can have positive data utility features. When data
are simulated from distributions that reflect the distributions of the collected data,
Reiter (2003, 2004b, 2005c) shows that analysts can obtain valid inferences (e.g.,
95% confidence intervals contain the true values 95% of the time) for wide classes
of estimands. These inferences are determined by combining standard likelihood-
based or survey-weighted estimates; the analyst need not learn new statistical
methods or software to adjust for the effects of the disclosure limitation. The re-
leased data can include simulated values in the tails of distributions, for example,
there is no top-coding of ages or incomes [however, it is challenging to develop
synthesis models that simultaneously protect confidentiality and preserve infer-
ences when data are very sparse in tails; see Reiter (2005b)]. Because many quasi-
identifiers including geography can be simulated, finer details of geography can be
released, facilitating estimation for small areas and spatial analyses.

There is a cost to these benefits: the validity of inferences depends on the va-
lidity of the models used to generate the simulated data. The extent of this de-
pendence is driven by the nature of the synthesis. For example, when all of age
and sex are synthesized, analyses involving those variables reflect only the rela-
tionships included in the data generation models. When the models fail to reflect
certain relationships accurately, analysts’ inferences also will not reflect those rela-
tionships. Similarly, incorrect distributional assumptions built into the models will
be passed on to the users’ analyses. On the other hand, when replacing only a se-
lect fraction of age and sex and leaving many original values on the file, inferences
are less sensitive to the assumptions of the simulated data models. In practice, this
dependence means that data stewards should release information that helps ana-
lysts decide whether or not the simulated data are reliable for their analyses. For
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example, data stewards might include the data generation models (without param-
eter estimates) as attachments to public releases of data. Or, they might include
generic statements that describe the imputation models, such as “Main effects and
interactions for age, sex, income and disease status are included in the imputation
models for street blocks.” Analysts who desire finer detail than afforded by the
imputations may have to apply for restricted access to the collected data.

When generating partially synthetic data, the data steward must choose which
values to synthesize and must specify models to simulate replacements of those
values. In most existing partially synthetic data sets, stewards replace all values of
variables that they deem to be either (i) readily available to ill-intentioned users
seeking to identify released records, or (ii) too sensitive to risk releasing exactly.
However, it may be sufficient from a confidentiality perspective to replace only
portions of some variables; see Little, Liu and Raghunathan (2004). The process of
specifying synthesis models is typically iterative: the data steward creates synthetic
data using a posited model, checks the quality of a large number of representative
analyses with the synthetic data, and adjusts the models as necessary to improve
quality while maintaining confidentiality protection. For examples of this process,
see Drechsler and Reiter (2010) and Kinney et al. (2011).

The data steward also must determine m, that is, how many synthetic data sets to
release. Generally, increasing m results in decreased standard errors in secondary
analyses. However, increasing m results in greater data storage costs and possibly
increased disclosure risks [Reiter and Mitra (2009)]. When small fractions of val-
ues are synthesized (e.g., around 10%), the efficiency gains from increasing m are
typically modest, so that data stewards can make m modest, for example, m = 5,
to keep risks and storage costs comparatively low. When large fractions of values
are replaced, efficiency gains from increasing m can be substantial [Drechsler and
Reiter (2010)]. In such cases, we recommend that data stewards select the largest
m that still offers acceptable risks and storage costs.

2.3. Synthesis models for sharing precise geographies. Our strategy for simu-
lating geographies involves four general steps. First, the data steward converts the
geographic variables on the file to latitudes and longitudes (possibly, using UTM
projection to Eastings and Northings). When the collected geographies are aggre-
gated rather than precise locations, the data steward uses a typical value for the
location of all records in that area; for example, use the latitude and longitude of
the centroid of the street block. Second, the data steward estimates a model for
latitudes and longitudes conditional on other variables in the data set. Third, us-
ing this model, the data steward simulates new latitudes and longitudes for every
record in the file. Fourth and finally, the data steward releases multiple draws of
the simulated latitudes and longitudes along with the other attributes—which also
might be altered to protect confidentiality, for example, Zhou, Dominici and Louis
(2010)—in the original file.
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We expect that, in general, some attributes in the data will exhibit spatial de-
pendence. When considering location as the response variable, this implies a joint
distribution for latitude and longitude that depends on the attributes and is possibly
multi-modal. For example, people of similar age, socio-economic status and other
demographic characteristics tend to cluster in neighborhoods, and certain demo-
graphic characteristics may be highly prevalent in multiple locations but absent in
others. If we ignore these features when simulating geographies—or alter geog-
raphy with approaches that do not explicitly account for these associations—the
spatial relationships in the data will be altered or destroyed.

To illustrate some possible response models for locations, let φi and λi denote
the latitude and longitude, respectively, for data subject i. Let xi denote the p non-
geographical attributes for data subject i. One family of convenient response mod-
els is (λi, φi) ∼ N(μi ,�i ), where each μi = h(xi ) is a 2 × 1 vector of unknown
means, h(xi ) is a function of the covariates, and each �i is an unknown 2 × 2
covariance matrix. A simple implementation is a bivariate regression model with
h(xi ) = β0 +∑p

j=1 hj (xij )βj , where each hj is a spline for variable j and �i = �

for all i. An alternative is a mixture model with h(xi ) = βi0+∑
j hj (xij )βij , where

βi = (βi0, . . . , βip) and �i come from K mixture components.
In specifying a response model for locations, the data steward should include

components of x that vary with spatial locations. The data steward also should
seek a flexible model that can adapt to a potentially complex response distribution.
In the application, we describe a semi-automated approach for approximating the
response distribution that can be easily implemented by data stewards. We em-
phasize, however, that the idea of treating latitude and longitude as a response is
general, and that data stewards can improve the quality of the released data by
tailoring the response model to their particular problem.

To our knowledge, treating geography as a continuous response and releas-
ing simulated draws from its distribution has not been previously implemented.
However, partially synthetic data are used to protect locations in the Census
Bureau’s OnTheMap project [Machanavajjhala et al. (2008)]. In that project,
Machanavajjhala et al. (2008) synthesize the street blocks where people live con-
ditional on the street blocks where they work and other block-level attributes. They
use multinomial regressions to simulate home-block values, constraining the pos-
sible outcome space for each individual based on where they work. Our approach
differs from the OnTheMap modeling in that (i) we model more precise geogra-
phy, that is, continuous versions of latitudes and longitudes, than discrete street
blocks, and (ii) we do not rely on a fixed set of geographic locations, that is, where
people work, to anchor the synthesis models. Furthermore, for settings with high-
dimensional xi and no obvious way to set constraints on the outcome space, multi-
nomial regressions can be computationally demanding if even estimable, whereas
continuous response models are readily estimated.
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3. Application: Protecting a cause of death file. We now apply the multiple
imputation approach to create disclosure-protected data on a subset of North Car-
olina (NC) mortality records in 2002. The data include precise longitudes and lat-
itudes of deceased individuals’ residences, as well as a variety of variables related
to manner of death; we consider the subset of variables in Table 1. These mortal-
ity data are in fact publicly available and so do not require disclosure protection.
Nonetheless, they are ideal test data for methods that protect confidentiality of ge-
ographies since, unlike many data sets on human individuals, actual locations are
available and can be revealed for comparisons. Access to the data is managed by
the Children’s Environmental Health Initiative at Duke University per agreement
with the state of NC.

We use individuals whose place of residence was one of seven contiguous postal
zones in Durham, NC. These areas are heterogeneous in terms of population den-
sity and characteristics. For simplicity, we include only individuals with race of
black and white—which comprised 99% of all records in these postal zones—
resulting in n = 2,670 observed cases. We also collapse the cause of death variable
into two levels: death from diseases of the circulatory and respiratory system, and
death from all other causes. We consider this binary variable, which we label Y , as
the outcome for regression models.

In these data, Y does not exhibit strong residual spatial dependence after ac-
counting for other variables. Therefore, for a more thorough test of the analytical
validity of the synthetic data sets, we also generate a surrogate cause of death vari-
able, Ỹ , that exhibits spatial clustering and is dependent on several nongeographic
variables. To do so, we generate outcomes as follows:

Ỹi ∼ Bern(πi),(1)

TABLE 1
Description of variables used in the empirical study

Variable Range

Longitude Recoded to go from 1–100
Latitude Recoded to go from 1–100
Sex Male, female
Race White, black
Age (years) 16–99
Autopsy performed Yes, no, missing
Autopsy findings Yes, no missing
Marital status 5 categories
Attendant Physician, medical examiner, coroner
Hispanic 7 categories
Education (years) 0–17 years
Hospital type 8 categories
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where logit(πi) = 0.02 + Sexi + Racei + 0.003 Agei +w(si ), si = (λi, φi), and
w(s) is a mean zero Gaussian process with exponential covariance function
C(s, s′) = σ 2

e exp(−φe‖s − s′‖2). We set the parameters of the exponential covari-
ance function to σ 2

e = 2 and φe = 0.06, so that the effective range (i.e., the distance
at which the spatial correlation drops to 0.05) is about − log(0.05)/φe = 50, which
equals half of the overall range of the latitudes and longitudes in Table 1. The co-
efficients of the covariates are specified so that the covariates have strong effects.
All results that follow use Ỹ in place of the actual cause of death Y ; see the online
supplement [Wang and Reiter (2011)] for selected results based on Y . For both Ỹ

and Y , the results are qualitatively similar, in that the actual spatial relationships
(or lack thereof) in the original data are approximately preserved in the synthetic
data sets.

3.1. Generation of synthetic data. We examined several methods for simulat-
ing latitude and longitude, including mixtures of bivariate regressions, bivariate
partition models [De’ath (2002)] using the “mvpart” function in R, Bayesian addi-
tive regression trees [Chipman, George and McCulloch (2010)], and classification
and regression trees (CART) [Breiman et al. (1984)]. Among these, the CART
synthesizer resulted in data sets with a desirable profile in terms of low disclo-
sure risks and high data usefulness. Furthermore, the CART synthesizer is fastest
computationally and easy to implement, as it requires minimal tuning. It scales
to large data sets with many predictors and many observations. In comparison to
the CART synthesizer, the Bayesian trees and mixture model synthesizers were far
more computationally demanding, and the bivariate partition model synthesizer re-
sulted in unacceptably high disclosure risks. We therefore present results only for
the CART synthesizer, which we now summarize; see Reiter (2005d) for further
information on CART synthesizers.

Let x include all nongeographic attributes in Table 1 and Ỹ . First, we fit a regres-
sion tree of longitude on x. Label the tree as Tλ, where λ stands for longitude. Let
Lλ,w be the wth leaf in Tλ, and let λLλ,w be the nLλ,w values of λ in leaf Lλ,w . In
each Lλ,w , we draw nLλ,w values from λLλ,w using the Bayesian bootstrap [Rubin
(1981)]. We then smooth the density of the bootstrapped values using a Gaussian
kernel density estimator with bandwidth hλ and support over the smallest to the
largest value of λLλ,w . To get a synthetic longitude for the ith unit, we trace down
Tλ based on the unit’s values of xi , and we sample randomly from the estimated
mixture density in that unit’s leaf. The result is a set of synthetic longitudes, λ̃(l).

Next, we fit the regression tree of latitude on x and the true λ; label the tree
as Tφ , where φ stands for latitude. To locate the ith person’s leaf in Tφ , we use

λ̃
(l)
i in place of λi . For units with combinations of (xi , λ̃

(l)
i ) that do not belong to

one of the leaves of Tφ , we search up the tree until we find a node that contains
the combination, and treat that node as if it were the unit’s leaf. Once each unit’s
leaf is located, values of φ

(l)
i are generated using the Bayesian bootstrap and kernel
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density procedure with bandwidth hφ . The result is a set of synthetic latitudes, φ̃(l),
and, therefore, synthetic locations s̃(l) = (λ̃(l), φ̃(l)).

We repeat the process of generating s̃(l) independently m times, resulting in the
collection of partially synthetic data sets, D(l) = {x, s̃(l)} where l = 1, . . . ,m. With
no further synthesis of x, these m data sets would be released to the public.

We also performed the synthesis by generating latitude first and longitude sec-
ond. As reported in the online supplement [Wang and Reiter (2011)], this ordering
results in slightly decreased disclosure risks and slightly worse data utility. We
recommend that data stewards try both orderings and choose the one that results
in the more desirable risk-utility profile. For general discussions on the order of
synthesis, see Reiter (2005d) and Caiola and Reiter (2010).

We also investigate simulating both geography and nongeographic identifiers to
further improve confidentiality protection. Specifically, we simulate values of race
(R) and age (A) in addition to (λ,φ). We choose these two variables because (i)
in many applications, age and race might be considered available to ill-intentioned
users and hence prominent candidates for disclosure protection, (ii) their distribu-
tions clearly depend on location in the NC mortality data, and (iii) they encompass
the generic modeling challenges of a continuous and a categorical variable.

The process proceeds as follows. Simulate (λ̃, φ̃) using the CART synthesizers
as before, but excluding R and A from x. We simulate new values of A using a
CART synthesizer fit with (x, λ,φ). Each Ai is simulated based on its (λ̃i , φ̃i). We
simulate new values of R using a CART synthesizer fit with (x, λ,φ,A). Each Ri

is simulated based on its (λ̃i, φ̃i , Ãi).
For all trees, we require the smallest node size to be at least five, and we cease

splitting a leaf when the deviance of values in the leaf is less than 0.0001; see
Section 4 for discussion of selecting these tuning parameters. All CART models
are fit in R using the “tree” function. The bandwidth sizes are directly related
to the analytical utility and disclosure risks of the synthetic data sets. Here, we
investigate the risk-utility trade-offs for three bandwidths: hλ = hφ ∈ {1,5,10}.
We set the bandwidth for generating Ã equal to 2. We generate m = 5 synthetic
data sets.

3.2. Evaluation of confidentiality protection. For an initial evaluation of the
protection engendered by simulation, we plot (λ̃, φ̃) against (λ,φ) for one simu-
lated data set when only geography is imputed with h = 1; see Figure 1. Clearly,
(λ̃i, φ̃i) can vary greatly from (λi, φi). However, Figure 1 is a crude evaluation, as
intruders can utilize information from the multiple synthetic data sets and possibly
other information to attempt disclosures.

We now outline frameworks for evaluating disclosure risks. We begin with an
approach for quantifying how much intruders can learn about actual geographies
from the synthetic data.
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FIG. 1. Scatter plots of synthetic longitudes (left) and latitudes (right) against real ones under the
synthesis model that imputes geography only with h = 1.

3.2.1. Risk of geography disclosure. In this section we assume that geography
is the only synthesized variable, although the general ideas and approach apply to
other attributes and with additional synthetic data.

Let s̃i = (s̃(1)
i , . . . , s̃(m)

i ); let S̃ be the collection of s̃i for all n persons in the
sample; and, let S include all n original values of si . Let S−i be all the original
geography except for that of the ith person. Let M represent any meta-data re-
leased by the data steward about the synthesis models, for example, the code for
the computer program that generated that synthetic data (without the original data
or parameter estimates). Let I represent the intruder’s prior information on per-
sons’ geography in the sample, for example, I might include S−i . Either M or I

could be empty.
We posit an intruder whose goal is to estimate si for one or more target records

in the database. Specifically, for any record i, the intruder seeks the posterior distri-
bution of si given (X, S̃,M, I). With this posterior distribution, the intruder could
identify high density regions for the unknown si , which, if precise enough, could
be used to pinpoint the true location of the target individual. Using Bayes’ rule, we
have

P(si |X, S̃,M, I) ∝ P(S̃|X, si ,M, I)P (si |X,M, I),(2)

where P(si |X,M, I) represents the intruder’s prior beliefs about si .
The information in M and I play central roles in the likelihood function

P(S̃|X, si ,M, I). For example, suppose that M contains the code of the computer
program used to generate the synthetic data (without original data or parameter
estimates). If I includes S−i , the intruder could take guesses at si according to his
or her prior distribution and, with the resulting guess of S, determine the likeli-
hood of S̃. If instead I contains only a portion of the geographies or is empty, as
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are likely to be the cases in practice, the computation of the likelihood becomes
much more complex and uncertain, since the intruder needs to guess at multiple
unknown geographies. In such cases, one simple approximation of the distribution
for si is the convex hull of the set s̃i . Given the variation in Figure 1, these regions
in the mortality data could be quite large.

The intruder’s prior distribution is also a key determinant of the posterior distri-
bution of si . An intruder may know the locations of all individuals in the popula-
tion with certain characteristics contained in xi , and the prior distribution could be
uniform over those locations. An intruder who knows x and S−i could estimate a
model from these data to predict si , and use that as a prior distribution. An intruder
with no external information might use a uniform distribution on the map of pos-
sible locations. Unfortunately, it is nearly impossible for the data steward to know
the information possessed by the intruder. Hence, it is prudent for the data stew-
ard to consider disclosure risks under a variety of assumptions about the intruders’
knowledge—including very extensive prior knowledge, which represents possible
worst case scenarios—as we now demonstrate.

Using the CART synthesizer, we consider two scenarios for the NC mortality
data: a high-risk scenario in which the intruders know everything except for one
target’s si , that is, X and S−i , and a low-risk scenario in which the intruder does
not know any records’ geographies. We assume that M includes everything about
the trees except the individual geographies in the nodes, that is, the data steward re-
leases the splitting rules for each tree and the kernel bandwidths. For the risky sce-
nario, we assume the intruder’s prior distribution is uniform on a grid over a small
area containing the target’s true latitude and longitude, and estimate equation (2)
using importance sampling; see the online supplement [Wang and Reiter (2011)]
for details. Because the small area contains the true value, this prior distribution
represents strong intruder prior knowledge. We note that other specifications for
the prior distribution could change the value of the risk measure.

To summarize how much the CART synthesis protects geographies, we create
two risk metrics. Let (φi,t , λi,t ) be a draw from P(si |X, S̃,M, I). The metrics are

R1 =
[∫

{(φi − φi,t )
2 + (λi − λi,t )

2}P(φi,t , λi,t |X, S̃,M, I)dφi,t dλi,t

]1/2

,

R2 = number of actual cases in circle centered at (φi, λi) with radius R1.

Here, R1 measures the average Euclidean distance between the intruder’s guess of
geography and the actual geography. Larger values of R1 (up to a max of 100

√
2)

indicate larger uncertainty in predicting si , so that intruders’ predictions are more
likely to be further away from the true geography; thus, larger values of R1 indicate
smaller disclosure risks. Larger values of R2 indicate that many actual locations
(up to a max of n = 2,670) are reasonable guesses at si , thus smaller disclosure
risks.

Table 2 displays summary statistics for R1 and R2 for all n = 2,670 records in
the database. For the low-risk scenario, the medians of R1 for all three bandwidth
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TABLE 2
Summary of geography disclosure risks for the low risk and high risk scenarios for different

bandwidths h when synthesizing only geography. For each risk measure, α0 is the minimum, α25 is
the first quartile, and α50 is the median

h = 1 h = 5 h = 10

Scenario Risk α0 α25 α50 α0 α25 α50 α0 α25 α50

Low R1 4.2 15.6 21.6 3.6 15.4 20.8 3.8 16.0 21.4
R2 36 384 680 27 373 640 43 393 674

High R1 0.0 4.3 9.7 2.1 9.7 14.2 3.4 13.1 17.8
R2 0 34 159 4 149 327 13 253 474

values are around 21 distance units, and the medians of R2 are around 670 units,
indicating that most si are estimated with sizable uncertainty. In this scenario, each
person’s R1-radius circle contains at least 27 other cases. Interestingly, for this
scenario, increasing the bandwidth does not substantially increase the uncertainty
in si . For the high-risk scenario, the intruder can estimate si with better accuracy
than in the low-risk scenario. Here, both R1 and R2 decrease with h. In fact, when
h = 1, there are individuals in the data who are alone in their R1-radius circles. The
boxplot of Figure 2 in the online supplement [Wang and Reiter (2011)] provides
additional information about the distributions of R1 and R2, including those under
different scenarios when generating latitude first and longitude second.

3.2.2. Risk of identification. The approach in Section 3.2.1 can be used to es-
timate posterior distributions of any attribute, of which location is one example.
Often, however, data stewards want to assess the risks that individuals in the re-
leased data can be re-identified. To quantify these risks, we now compute proba-
bilities of identification [Duncan and Lambert (1989), Fienberg, Makov and Sanil
(1997), Reiter (2005a)] by adapting the approach of Drechsler and Reiter (2008)
and Reiter and Mitra (2009) for synthetic geographies.

In this approach, the data steward mimics the behavior of an intruder who
possesses the true values of the quasi-identifiers, including geographies, for se-
lected target records (or even the entire database). To illustrate, suppose the in-
truder has a vector of information, t, on a particular target unit in the population
which may or may not correspond to a unit in the m released synthetic data sets,
D = {D(1), . . . ,D(m)}. Let t0 be the unique identifier (e.g., the individual’s name)
of the target, and let dj0 be the (not released) unique identifier for record j in D,
where j = 1, . . . , n. The intruder’s goal is to match unit j in D to the target when
dj0 = t0, and not to match when dj0 �= t0 for any j ∈ D.

Let J be a random variable that equals j when dj0 = t0 for j ∈ D and equals
n + 1 when dj0 = t0 for some j /∈ D. The intruder thus seeks to calculate the
P(J = j |t,D,M) for j = 1, . . . , n + 1. He or she then would decide whether



SHARING PRECISE GEOGRAPHIES IN PUBLIC USE DATA 243

or not any of the identification probabilities for j = 1, . . . , n are large enough to
declare an identification. Let T be all original values of the variables that were
synthesized. Because the intruder does not know the actual values in T, he or she
should integrate over its possible values when computing the match probabilities.
Hence, for each record in D we compute

P(J = j |t,D,M) =
∫

Pr(J = j |t,D,T,M, I)Pr(T|t,D,M, I) dT .

This integral can be approximated using Monte Carlo approaches; details are in the
online supplement. Once again, the data steward must make assumptions about I ,
the information the intruder knows about the targets.

Data stewards can summarize the risks for the entire data set using functions
of these match probabilities [Reiter (2005a)]. Let cj be the number of records
in the data set with the highest match probability for the target tj . Let gj = 1 if
the true match is among the cj units, and gj = 0 otherwise. The expected match
risk equals

∑
j (1/cj )gj/n. The true match risk equals

∑
j kj /n, where kj = 1

when cjgj = 1, and kj = 0 otherwise. The false match risk equals
∑

j fj (1 −
gj )/

∑
j fj , where fj = 1 when cj = 1 and fj = 0 otherwise. Effective disclosure

limitation techniques have low expected and true match risks, and high false match
risks.

Using the mortality data, we consider three scenarios with different information
in M . In the first M contains everything, that is, details of the CART models, the
splitting rules and the real data values in each leaf and internal node. Essentially,
M is a data simulator that enables analysts to generate new synthetic data sets
using the same process as the data steward. In the second M contains descriptions
of the CART models, but not the specific splitting rules nor the real data values
in each leaf and internal node. Essentially, this is akin to releasing the code used
to simulate data without providing any parameter values for it. In the third M is
empty, that is, the data steward says nothing about how the data were collected.

For all scenarios, we suppose that intruders have a file containing the true values
of sex, race, marital status, age and geography for all n = 2,670 units in the data set,
and that they seek to match records in D to this file. We also suppose that the in-
truder knows which records were in the sample, so that P(J = 2671|t,D,M) = 0.
We compute each target’s probability independently of other targets’ probabilities
and match with replacement.

Table 3 summarizes risk measures in one set of m = 5 synthetic data sets for
each bandwidth and scenario. Three general trends are evident; these persist in two
additional runs of the simulation as well. First, the synthesis of age and race dra-
matically decreases disclosure risks. Indeed, we suspect that many data stewards
would consider the numbers of true matches unacceptably high for synthesizing
geography only and perhaps acceptable for synthesizing geography, age and race.
Second, releasing additional information in M increases the disclosure risks. This
trend is particularly pronounced when synthesizing only geography, and less so



244 H. WANG AND J. P. REITER

TABLE 3
Summary of risk measures under different scenarios when synthesizing only geography and when
synthesizing geography, age and race. Here, E is expected match risk, T is true match risk, and

F is false match risk. Results based on one simulation run per scenario

h = 1 h = 5 h = 10

Information in M E T F E T F E T F

Synthesizing geography only

Empty 0.21 0.15 0.76 0.19 0.12 0.78 0.18 0.11 0.80
Code, no parameters 0.21 0.19 0.78 0.19 0.16 0.80 0.18 0.15 0.82
Everything 0.34 0.32 0.48 – – – – – –

Synthesizing geography, age and race

Empty 0.010 0.008 0.98 0.008 0.007 0.99 0.007 0.006 0.99
Code, no parameters 0.009 0.009 0.99 0.008 0.008 0.99 0.005 0.005 0.99
Everything 0.034 0.034 0.94 – – – – – –

when synthesizing geography, age and race. For the latter synthesis strategy, the
incremental risk of releasing the synthesis code without parameters over releasing
nothing is modest, suggesting that it is worth releasing M to improve analysts’
understanding of the disclosure limitation applied to the data. Third, the risks tend
to increase as the bandwidth for geography synthesis decreases. This is because
larger h implies larger variances in the synthetic locations.

3.3. Evaluation of analytical validity. As with disclosure risks, the extent to
which synthetic data sets can support analytically valid inferences depends on the
properties of the synthesizer. In this section we examine the quality of synthetic
data inferences for several estimands in the NC mortality data set. Based on the
huge reductions in disclosure risks, we only consider scenarios with (λ,φ,R,A)

synthesized. The online supplement [Wang and Reiter (2011)] provides corre-
sponding results with only (λ,φ) synthesized.

Table 4 summarizes a repeated sampling experiment involving descriptive esti-
mands at the zip code level. For each of 100 simulation runs, we create m = 5 syn-
thetic data sets using the observed mortality data (with Ỹ ) and the CART synthe-
sizers with h ∈ (1,5,10). For the percentage-related estimands, the mean square
error (MSE) is typically less than 3%, and for age-related estimands, the MSE is
typically less than 2.5 years. The MSEs for age-related estimands are generally
smaller than the other MSEs because age does not vary spatially as much as the
other variables do; hence, the synthesis process for age is comparatively robust
to imperfect modeling of the relationship between geographies and the attributes.
The MSEs tend to increase as h increases, although the changes for the most part
are only 3% or smaller. Overall, the results suggest that the synthetic data do a rea-
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TABLE 4
Summary of simulation results for descriptive estimands when imputing both geography and

nongeography. Q stands for the population values; ME and MSE stand for the median and mean
square error of q̄5 across the 100 simulations

h = 1 h = 5 h = 10

Estimand ZIP Q ME MSE ME MSE ME MSE

% black Z1 61.1 59.6 2.4 56.2 4.9 55.7 5.6
Z2 41.1 43.4 1.6 41.8 1.7 40.8 1.0
Z3 32.6 33.7 1.7 34.0 2.0 35.5 3.0
Z4 13.5 13.4 0.9 13.6 0.9 13.7 0.9
Z5 46.2 44.8 1.9 43.8 2.7 42.8 3.6
Z6 12.9 15.2 2.5 16.4 3.7 16.3 3.5
Z7 51.3 52.6 1.9 53.9 2.9 55.5 4.8

% with Z1 19.9 18.9 1.8 20.0 1.3 21.8 2.2
educ. > 14.5 Z2 9.6 7.5 2.3 7.4 2.3 8.1 1.6

Z3 10.9 9.9 1.4 10.6 0.9 13.0 2.2
Z4 28.3 29.3 1.6 27.8 1.1 28.1 0.8
Z5 36.6 37.5 1.6 38.9 2.8 38.2 1.9
Z6 25.8 26.5 1.6 26.7 1.8 27.3 2.0
Z7 30.9 32.8 2.6 32.0 1.9 31.8 1.7

Avg. age Z1 65.8 67.6 1.9 68.7 2.9 69.1 3.4
Z2 66.2 68.4 2.3 68.7 2.5 68.6 2.4
Z3 71.4 70.9 0.6 70.5 1.0 70.1 1.3
Z4 72.5 71.6 0.9 71.3 1.2 71.2 1.3
Z5 71.1 70.0 1.2 69.8 1.3 69.8 1.3
Z6 72.1 71.3 1.0 71.4 0.8 71.5 0.7
Z7 69.4 69.4 0.5 69.5 0.5 69.7 0.6

sonable job of preserving the aggregated spatial relationships in the data for these
variables.

We next evaluate inferences from two regression models. The first is a standard
logistic regression of Ỹ on main effects for sex, age and race. The second is a
Bayesian spatial logistic regression of Ỹ on main effects for sex, age and race that
uses an exponential covariance function for spatial random effects, as in (1). To
aid in the evaluation of the synthetic data sets, we randomly choose 2,470 people
as a training set to fit the models and the remaining 200 people as a testing set
to evaluate the predictive performance. Because the sample size of this training
set is large for fitting hierarchical spatial random-effects models, we use Gaussian
predictive process models [Banerjee et al. (2008)] to reduce computational burden.
To do so, we select 100 knots by randomly choosing a subset of the locations
in the training set. We assign flat prior distributions on regression coefficients β ,
an inverse Gamma (2,1) prior for σ 2

e and a uniform prior on (0.01,1) for φe.
The same training sample, testing sample and knots are used for all analyses, that
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TABLE 5
Summary results for spatial and nonspatial logistic regressions. Results include point and variance

estimates for regression coefficients, and misclassification rates (MR)

Real data h = 1 h = 5 h = 10

Q
√

T q̄5
√

T5 q̄5
√

T5 q̄5
√

T5

Nonspatial GLM

Intercept −0.85 0.18 −0.76 0.21 −0.71 0.20 −0.67 0.19
Sex 0.60 0.08 0.61 0.09 0.61 0.09 0.61 0.08
Race 0.59 0.09 0.48 0.18 0.48 0.13 0.42 0.11
Age × 100 0.52 0.24 0.43 0.27 0.36 0.28 0.34 0.26

MR MR MR MR

In-sample 0.42 0.42 0.42 0.42
Out-of-sample 0.46 0.47 0.47 0.47

Spatial GLM

Intercept −1.15 0.43 −0.91 0.37 −0.83 0.44 −0.97 0.33
Sex 0.74 0.10 0.64 0.09 0.67 0.09 0.68 0.10
Race 0.82 0.12 0.62 0.23 0.61 0.15 0.56 0.13
Age × 100 0.68 0.25 0.65 0.31 0.48 0.28 0.53 0.28

σ 2
e 1.83 0.96 1.82 1.20 1.31 0.73 1.13 0.53

φe 0.05 0.02 0.06 0.02 0.06 0.01 0.06 0.01

MR MR MR MR

In-sample 0.22 0.26 0.25 0.27
Out-of-sample 0.32 0.35 0.31 0.32

is, we do not perform a repeated sampling experiment because of computational
burden of estimating the spatial regression model. All models are estimated using
the “spGLM” function in R.

Table 5 summarizes the original and synthetic data inferences and predictions.
For standard logistic regression, we estimate the coefficients using the methods
of Reiter (2003). Misclassification rates are based on predicting Ỹi = 1 when
pi = 1/(1 + e−x′

i β̄5) > 0.5 and predicting Ỹi = 0 otherwise, where β̄5 is the vector
of synthetic point estimates for the coefficients. For the Bayesian spatial logistic re-
gression, we mix the posterior samples of the coefficients from each of the five syn-
thetic data sets, and report the posterior mean and variance of the mixed samples.
Misclassification rates are based on predicting Ỹi = 1 when the posterior mean of
pi across the five synthetic data sets exceeds 0.5 and predicting Ỹi = 0 otherwise.
For both models, we compute the in-sample misclassification rates as the propor-
tions of misclassified cases conditioned on the training set, and the out-of-sample
misclassification rates as the proportions of misclassified cases conditioned on the
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test set. All out-of-sample predictions for the Bayesian spatial logistic regression
are carried out using the “spPredict” function in R.

For the logistic regression, Table 5 indicates that synthetic point estimates are
generally close to those for the observed data, although there is attenuation in
the coefficients for the synthesized variables. This attenuation increases with h.
Both in-sample and out-of-sample misclassification rates for the synthetic data are
similar to those for the observed data.

For the spatial regression, Table 5 indicates that the synthetic point estimates are
generally close to the observed data estimates, again with increasing attenuation as
h gets large. The spatial random effects parameters σ 2

e and φe in the synthetic data
are similar to those from the observed data when h = 1, but σ 2

e declines toward
zero as h gets large. This indicates that large values of h can weaken the spatial
associations in the synthetic data.

It is also informative to compare the misclassification rates for the spatial lo-
gistic regression in the synthetic data with the rates for the nonspatial logistic
regression in the observed data. In particular, both in-sample and out-of-sample
misclassification rates are significantly lower in spatial logistic regression for the
synthetic data than those in nonspatial logistic regression for the observed data.
This suggests that, when spatial dependencies are strong, releasing simulated ge-
ographies enables better predictions than suppressing geography, even when race
and sex are also simulated.

The online supplement [Wang and Reiter (2011)] reports the results of the de-
scriptive analyses and the spatial regressions based on synthetic data sets generated
from the actual cause of death Y , which does not exhibit strong spatial depen-
dence. The results for the descriptive estimands are similar to, and even slightly
better than, those from Table 4. For the spatial regressions, the synthetic data sets
appropriately reflect the lack of spatial dependence in Y . As a final illustration of
the usefulness of the synthetic data sets, Figure 2 displays maps of location by
race for the actual data and for three synthetic data sets (m = 1) based on a CART
synthesizer with h ∈ (1,5,10). Across all values of h, the synthetic data sets pre-
serve the spatial distribution of race reasonably well.

3.4. Comparison against random noise addition. When considering the mer-
its of synthetic data approaches, another relevant comparison is against other dis-
closure limitation procedures rather than against the original data, which cannot
be made publicly available. We now compare the synthetic data sets with only ge-
ography simulated against adding random noise to geography, that is, moving an
observed location to another randomly drawn location. To make results compara-
ble, we perturb each si by drawing a random value s∗

i from a bivariate normal dis-
tribution with a mean equal to si and a diagonal covariance matrix with standard
deviations equally set to be the corresponding R1,i/

√
2. Here, R1,i is computed

assuming that, in the high-risk scenario, only geography is synthesized and that
h = 1. In this way, the synthetic and noise-infused data sets have roughly the same
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FIG. 2. Plots of the observed data (upper left) and synthetic data sets for three levels of h. Red dots
indicate locations of black people, and black dots indicate locations of white people. All values of
(λ,φ,R,A) are synthesized.

R1 risks, because ‖s∗
i − si‖2

2 ∼ 1
2R2

1,iχ
2
2 , and, hence, E(‖s∗

i − si‖2
2) = R2

1,i . For
comparisons, we repeat the analyses from Tables 4 and 5.

For the repeated sampling experiment, we add random noise to each loca-
tion independently 100 times, thus creating 100 noise-infused data sets. For the
noise infusion, four of the fourteen percentage-related estimands in Table 4 have
MSE > 3%. In contrast, when synthesizing geography only with h = 1, none of
the percentage-related estimands have MSE > 3%; these results are reported in the
online supplement [Wang and Reiter (2011)]. For the age-related estimands, the
MSEs are similar for synthetic and noise-infused data sets. Thus, for comparable
levels of disclosure risks, adding random noise reduces the quality of inferences
for the descriptive estimands relative to synthetic data.
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For the regression analyses, we estimate the Bayesian spatial regression with
one data set generated by adding random noise to geography only. The in-sample
and out-of-sample misclassification rates are 0.32 and 0.38, respectively, for this
noise-infused data set. We observed similar misclassification rates when repeating
this analysis three more times. These misclassification rates are substantially larger
than those for the corresponding synthetic data sets reported in the supplement (as
well as those in Table 5), again suggesting that, for comparable risk levels, random
noise does not preserve spatial relationships as well as synthetic data.

4. Concluding remarks. Although synthesizing geographies via modeling,
such as the CART approach here, can preserve some spatial analyses, it does not
preserve all of them. For example, two records close in space in the original data
will not necessarily be close in space in the synthetic data, because their locations
are independently generated from the response distribution. Additionally, simu-
lated geographies may not preserve analyses when used to link the synthetic data
with other data containing geography, since the simulated locations are condition-
ally independent of the variables in the linked data set that are not included in
the synthesis model. Evaluating the impacts of synthetic geographies on linked
analysis is a future extension of this research.

When synthesizing the nongeographic quasi-identifiers, we controlled for lo-
cation as predictors in the model. An alternative approach is to simulate from
hierarchical spatial models for point-referenced data, or perhaps from area-level
models by aggregating locations [Banerjee, Gelfand and Carlin (2004)]. With large
data sets, fitting spatial random effects models can be computationally challeng-
ing, although this can be overcome using approximations from the spatial statistics
literature. Another strategy is to mask attribute data using spatial smoothing tech-
niques [Zhou, Dominici and Louis (2010)]. We note that applying either of these
approaches alone, that is, without simulating geography, leaves the original fine
geography on the file, which may be too high of a disclosure risk. Evaluating the
potential gains in disclosure risk and data usefulness of such strategies over the
simple CART synthesizer for attributes utilized here is an area open for further
theoretical and empirical investigation.

To implement the CART synthesizer, data stewards need to select the tuning
parameters of the trees, that is, the minimum number of observations per leaf and
the splitting criteria. These parameters control the size of the tree: increasing them
results in smaller trees, and decreasing them results in larger trees. Based on our
experience, we recommend that data stewards begin by setting the minimum de-
viance in the splitting criteria to a small number, like 0.0001 or even smaller, and
requiring at least five records per leaf. These are typical default values for many
applications and software routines for regression trees. The data steward then eval-
uates the disclosure risk and data utility associated with the synthetic data sets.
If the risks are too high, the data steward can re-tune the parameters for the vari-
ables that are not sufficiently altered by the synthesis to grow smaller trees for
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those variables [Reiter (2005d)]. We did not prune the leaves further, as experi-
ments with further pruning worsened the quality of the synthetic data sets without
substantially improving the confidentiality protection. Growing larger trees can in-
crease the quality of the synthetic data sets. However, it increases the time to run
the synthesizer. Further, it can increase disclosure risks, for example, using trees
with one observation per leaf reproduces the original data.

The CART synthesizer has appealing features: it handles continuous, categor-
ical and mixed data; captures nonlinear relationships and complex interactions
automatically; and runs quickly on large data sets. However, CART synthesizers
can run into computational difficulties when categorical variables have many (e.g.,
>20) levels. Additionally, when some levels have low incidence rates in the data,
the CART synthesizer can have difficulty preserving relationships involving those
levels [Reiter (2005d)].

For simulation purposes, we illustrated the CART synthesizer using only n =
2,670 records. This facilitated estimation of the spatial regressions with each of the
resulting synthetic data sets. In extended investigations, we found that the CART
synthesis process readily scaled for tens of thousands of mortality records. Other
applications using CART synthesizers for nongeographic attributes [Reiter (2009),
Drechsler (2011)] indicate that it can be applied in surveys of dimensions typical of
many government surveys. When data stewards need to synthesize locations for a
very large number, for example, millions, of records, a computationally convenient
strategy is to partition the data into geographical strata of manageable size (tens
of thousands of records), and simulate latitudes and longitudes (and attributes) by
running the synthesizer independently within each stratum.

SUPPLEMENTARY MATERIAL

Computational details and further results (DOI: 10.1214/11-
AOAS506SUPP; .pdf). Computational details for geography disclosure and iden-
tification risks in Sections 3.2.1 and 3.2.2; further analytical validity results; and
results based on genuine cause of death.
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