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BAYESIAN JOINT MODELING OF MULTIPLE GENE NETWORKS
AND DIVERSE GENOMIC DATA TO IDENTIFY TARGET GENES

OF A TRANSCRIPTION FACTOR1

BY PENG WEI2 AND WEI PAN

University of Texas School of Public Health and University of Minnesota

We consider integrative modeling of multiple gene networks and diverse
genomic data, including protein-DNA binding, gene expression and DNA se-
quence data, to accurately identify the regulatory target genes of a transcrip-
tion factor (TF). Rather than treating all the genes equally and independently
a priori in existing joint modeling approaches, we incorporate the biologi-
cal prior knowledge that neighboring genes on a gene network tend to be
(or not to be) regulated together by a TF. A key contribution of our work is
that, to maximize the use of all existing biological knowledge, we allow in-
corporation of multiple gene networks into joint modeling of genomic data
by introducing a mixture model based on the use of multiple Markov ran-
dom fields (MRFs). Another important contribution of our work is to allow
different genomic data to be correlated and to examine the validity and ef-
fect of the independence assumption as adopted in existing methods. Due to
a fully Bayesian approach, inference about model parameters can be carried
out based on MCMC samples. Application to an E. coli data set, together with
simulation studies, demonstrates the utility and statistical efficiency gains
with the proposed joint model.

1. Introduction. In this paper we consider integrative modeling of multiple
sources of genomic data and gene networks to accurately identify the regulatory
target genes of a transcription factor (TF). TFs, a class of regulatory proteins, play
a central role in controlling gene expression: a TF stimulates or inhibits its tar-
get gene’s transcription into messenger RNA (mRNA) by binding to some spe-
cific DNA subsequences in the gene’s promoter region. In our motivating exam-
ple, we are interested in identifying the target genes of LexA in E. coli. LexA is
an important TF involved in DNA repair and cell division: it is a repressor for
genes involved in the “SOS” response whose transcription is induced in response
to DNA damage due to ultraviolet (UV) or chemical exposures [Zhang, Pigli and
Rice (2010)]. Under normal growth conditions, LexA binds to the promoter re-
gions of these “SOS” genes, repressing their transcription. When DNA becomes
extensively damaged, the LexA repressor is cleaved and loses its function. As a
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result, the expression of “SOS” genes is induced, and DNA repair ability in the
cells is enhanced. Recently, LexA was shown to be essential in the acquisition of
bacterial mutations which lead to resistance to some antibiotic drugs [Cirz et al.
(2005)]. Therefore, a thorough understanding of LexA regulation is not only cru-
cial to the elucidation of the DNA repair mechanism in E. coli, a common model
microorganism, but also beneficial to antibiotic drug development [Butala, Zfur-
Bertok and Busby (2009)].

The task of identifying the target genes of a TF can be approached by using
ChIP-chip data (also called DNA-protein binding data or genome-wide location
analysis), which provide evidence about genome-wide physical binding sites of
a specific TF in living cells. However, those DNA–TF interactions may not be
functional in terms of regulating gene expression because other conditions such
as binding of co-regulators and recruitment of RNA polymerase II complex are
also needed to initiate the target gene’s transcription. Two other types of genomic
data, also available for LexA, provide complementary information about TF-gene
regulation: microarray gene expression data comparing expression changes before
and after knocking-out or mutating a TF-coding gene, and DNA sequence data
which are aligned and scanned to find specific binding sites of a TF, called con-
sensus sequence or motif. Although extremely valuable, these two data sources
provide only partial information: for expression data, genes that are directly or in-
directly regulated by the TF will all show changes in expression levels, while DNA
sequence data provide only potential binding sites which may or may not eventu-
ally be bound by the TF. Because each data source measures different aspects of
TF-gene regulation, and high-throughput data are inherently associated with high
noise levels, using one type of data alone may result in high false positives or false
negatives.

In contrast, it is now widely recognized that an integrative analysis of multiple
types of genomic data should be more efficient in identifying the target genes of a
TF [see Wang et al. (2005), Jensen, Chen and Stoeckert (2007), Pan, Wei and Kho-
dursky (2008), Xie et al. (2010) and references therein]. There are two main classes
of joint modeling approaches in the literature: regression methods and mixture
model methods. First, in a regression framework, one type of data (e.g., ChIP-chip
binding data or DNA sequence data) is regressed on another type of data [e.g., gene
expression data; Conlon et al. (2003), Sun, Carroll and Zhao (2006), Wei and Pan
(2008b)]. In particular, Jensen, Chen and Stoeckert (2007) proposed a Bayesian
regression model in a variable selection framework to combine all three sources
of data to construct gene regulatory networks (i.e., a set of multiple TFs and their
regulatory target genes). Note that regression-based methods require a large num-
ber of replicated expression arrays, which are not applicable to the LexA data to be
analyzed here. Second, in a mixture model framework, inference is based on the
posterior probability of being a target given gene-specific measurements of differ-
ent sources of data. Wang et al. (2005) proposed a parametric mixture model for
both DNA sequence data and expression/binding data; Pan, Wei and Khodursky
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(2008) extended the mixture model of Wang et al. to one that is able to integrate
all three data sources to detect the targets of a TF. Conditional independence is
commonly assumed in a mixture joint model, that is, different sources of data are
independent given that a gene is or is not a target, which may or may not hold
in practice. In particular, it has been reported in the experimental biology litera-
ture that the binding strength of LexA to its target genes depends on the extent
to which the binding site matches the canonical motif of LexA [Michel (2005),
Butala, Zfur-Bertok and Busby (2009)]. Hence, the conditional independence as-
sumption seems incorrect, at least for the binding and sequence data, motivating
us here to extend the parametric mixture model of Pan et al. to allow conditional
dependence. We propose to summarize each data source with a scalar summary
statistic for each gene, and, thus, the three sources of genomic data can be con-
veniently modeled by a trivariate normal mixture model. Moreover, by adopting a
fully Bayesian approach, we are able to make inference about the conditional cor-
relation structures for all three data sources based on Markov chain Monte Carlo
(MCMC) samples.

In addition to relaxing the conditional independence assumption, another key
contribution of our proposed method here is to allow incorporation of multiple
gene networks into joint modeling of diverse types of genomic data to detect the
targets of a TF. Gene networks represented by undirected graphs with genes as
nodes and gene–gene interactions as edges provide a powerful means to concisely
summarize biological knowledge that is accumulated over thousands of experi-
ments. An emerging class of statistical methods is to incorporate gene network
information into analysis of genomic data [Wei and Li (2007, 2008), Li and Li
(2008), Wei and Pan (2008a, 2010)]. In particular, Wei and Li (2007) proposed
a discrete Markov random field (MRF)-based mixture model to incorporate gene
network information into statistical analysis of gene expression data to boost the
power for detection of differentially expressed genes. Wei and Pan (2010) pro-
posed a Bayesian implementation of the MRF-based mixture model of Wei and
Li (2007), and compared it with the Gaussian MRF-based mixture model of Wei
and Pan (2008a). The network-based methods are motivated by the biological fact
that neighboring genes on a network, for example, co-expression or functional
coupling gene network, are more likely to be co-regulated by a TF than nonneigh-
boring ones.

One limitation of existing network-based methods, including the aforemen-
tioned ones, is that only a single gene network is allowed to be integrated with
a single type of genomic data. However, as biological knowledge accumulates
rapidly, multiple gene networks become available. For humans, existing gene net-
works include the KEGG gene regulatory network [Kanehisa and Goto (2002)], the
functional gene network of Franke et al. (2006) and several protein–protein interac-
tion (PPI) networks, for example, the Human Protein Reference Database (HPRD)
of Prasad et al. (2009) and the Online Predicted Human Interaction Database
(OPHID) of Brown and Jurisica (2005), among others. Interactions between two
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(a) (b)

FIG. 1. Subnetworks, one from each of the following two networks, consisting of LexA’s known
(colored/shaded nodes) and putative (blank nodes) target genes as available from RegulonDB. The
two gene networks are: (a) co-expression network, and (b) GO-induced functional coupling network.

genes in different networks may have different biological implications. For exam-
ple, for E. coli two gene networks can be used to analyze the LexA data: (1) a
co-expression network constructed based on a compendium of gene expression
microarrays, where two genes are direct neighbors if their expression levels were
highly correlated across about 400 experimental conditions; (2) a functional cou-
pling network induced by a Gene Ontology [GO; Ashburner et al. (2000)] semantic
similarity, where two genes are direct neighbors if their functional annotations are
specific and close enough in the GO, a database containing the most comprehen-
sive existing knowledge of gene function. Figure 1 shows subnetworks, one from
each of the aforementioned networks, consisting of LexA’s known and putative
target genes as available from RegulonDB [Gama-Castro et al. (2008)], a database
containing all known TF-gene regulatory interactions in E. coli. As we can see,
a gene may have different sets of direct neighbors according to different networks.
This is in part because edges in different networks reflect different perspectives
of gene–gene interactions, for example, co-expression or co-function, and in part
because of incomplete or simply wrong annotation shown by a network. Since the
two gene networks contain partial yet complementary information about gene–
gene interactions, integrating both of them with ChIP-chip binding, gene expres-
sion and DNA sequence data is expected to boost the power for detecting the target
genes of LexA. As a key contribution, here we propose a mixture model to address
this problem based on the use of multiple MRFs. Statistical inference is carried out
in a fully Bayesian framework. The proposed method can be easily extended to in-
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tegrate more gene networks and more types of genomic data, providing a general
statistical framework for integrative analysis of genomic data.

The rest of this article is organized as follows. We first describe the LexA data
including ChIP-chip binding, gene expression, DNA sequence data and two gene
networks for E. coli. Next, we introduce a multivariate normal mixture model for
joint modeling of multiple sources of genomic data only, followed by a unified
mixture model for integrating multiple gene networks and genomic data based on
the use of multiple MRFs. We discuss statistical inference for the proposed models
in a fully Bayesian framework. Parameter estimates are based on MCMC samples.
We apply the new methods to the LexA data to identify its regulatory target genes.
We evaluate the proposed methods’ predictive performance by comparing the re-
sults with the known and putative targets listed in RegulonDB (v6.4). We also
show results from simulation studies to investigate the conditional independence
assumption as well as the effects of integrating multiple networks and diverse types
of genomic data. We end with a discussion of some existing issues and possible
future work.

2. The data.

2.1. ChIP-chip binding, gene expression and DNA sequence data. The ChIP-
chip binding data, gene expression data and DNA sequence data were extracted
and processed from three sources as reported in Wade et al. (2005), Courcelle
et al. (2001) and RegulonDB (v4.0), respectively.

The ChIP-chip data included two LexA samples (called LexA1 and LexA2,
resp.) and two control samples [one Gal4 and one MelR (no Ab, no antibody)
samples] hybridized on four Affymetrix Antisense Genome Arrays, respectively.
First, the arrays were background corrected with the MAS 5 algorithm, followed
by quantile normalization. Second, four log2 intensity ratios (LIRs) were calcu-
lated, corresponding to the four combinations of any two arrays, for each probe:
LexA1/Gal4, LexA1/no Ab, LexA2/Gal4, LexA2/no Ab; a large LIR indicated a
locus containing enriched LexA, that is, a binding site of LexA. Third, for each
of the four array combinations, the LIRs were smoothed over all probes with a
sliding window of 1,250 base pairs (bp) along the chromosome. Finally, gene i’s
binding score Bi , a summary statistic measuring the relative abundance of the TF
binding to the gene, was taken to be the average of its four LIR peaks from its
coding region, or if there were probes from its intergenic region, Bi was the larger
of (i) the average of its four LIR peaks from its coding region and (ii) that from its
intergenic region.

The expression data were drawn from four cDNA microarrays profiling gene
expression levels for the wild type before and 20 minutes after UV treatment, and
for the LexA mutant before and 20 minutes after UV treatment; a common control
sample was used for each array. Two-channel intensities on each array were nor-
malized using the loess local smoother to eliminate dye bias, as implemented in
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TABLE 1
Some data from the LexA data set

Index Binding (Bi) Expression (Ei) Sequence (Si)

GENE1 −0.490 0.076 15.573
GENE2 2.275 2.777 23.968
GENE3 0.619 1.377 24.164
GENE4 0.210 −0.208 15.464
GENE5 0.120 −0.346 13.055

the R package sma [Yang and Dudoit (2002)]. Suppose that normalized log-ratios
of the two-channel intensities for gene i on the four arrays were M1i , . . . ,M4i ,
respectively, then the summary statistic for gene expression data was taken as
Ei = (M2i − M1i ) − (M4i − M3i ). Because LexA is known to be a repressor of
some “SOS” response genes, it is expected that the regulatory targets of LexA
should have larger values of Ei ’s (i.e., expression changes).

The DNA sequence data were obtained as following. Ten known binding sites
of LexA were downloaded from RegulonDB (v4.0), involving nine genes each
with one binding site and gene LexA with two binding sites. These ten binding
sites were input into MEME [Bailey and Elkan (1995)] to find a top consensus
sequence (motif). scanACE [Roth et al. (1998)] was then used to scan the whole
genome with a very low threshold such that at least one subsequence matching the
motif could be obtained for most genes; the maximum of all the matching scores
for gene i was taken as Si , the summary statistic for the sequence data.

After combining the three data sources and deleting genes with any missing
values, we obtained G = 3,779 genes in the combined data. Table 1 shows a small
portion (5 of 3,779 genes) of the resulting data set.

2.2. Gene networks for E. coli. Two gene networks were constructed for
E. coli as mentioned before: a co-expression network and a functional coupling
network.

The co-expression gene network was derived from 380 microarray experi-
ments across a variety of conditions, available at the Many Microbe Microarrays
Database [M3D; Faith et al. (2008)]. Two genes were direct neighbors if the Pear-
son correlation coefficient of their expression profiles across the 380 experiments
was greater than 0.65, resulting in a network with 3,208 nodes (genes) and 86,791
edges (interactions). The cutoff 0.65 was chosen so that the resulting network was
neither too dense, including many false positive interactions, nor too sparse, fail-
ing to include many true positive interactions. As a comparison, a cutoff of 0.6
would lead to 147,563 interactions, while a cutoff of 0.7 would result in 46,666
interactions. We also performed sensitivity analysis to investigate how robust the
network-based analysis results are to different cutoffs for the co-expression net-
work (see Section 4.3 for details).



340 P. WEI AND W. PAN

The functional coupling gene network was induced from the Gene Ontology
(GO), a compendium of existing knowledge, derived from various sources, about
gene function. GO is structured as a directed acyclic graph (DAG): each node
corresponds to a GO category; a parent node represents a more general biological
function, whereas its child node is a subclass or a part of it; any gene in a child
node is necessarily in its parent node. For example, GO category GO:0033554
with annotation “cellular response to stress” has a child node GO:0009432 with a
more specific annotation “SOS response.” The GO similarity between two genes
is defined as the maximum number of common nodes in all paths back to the root
node of the ontology (“biological process”) from all nodes to which those genes
are assigned [see Wu et al. (2005) for more details]. If the GO similarity between
two genes is large, then at a very specific level the two genes are involved in at
least one common biological process. Figure 2 illustrates a DAG induced from

FIG. 2. The combined directed acyclic graph (DAG) of DAGs induced from the GO terms “DNA
repair” (GO:0006281) and “SOS response” (GO:0009432). lexA and dinG, two known target genes
of TF LexA, are annotated in both terms. Because there are 6 and 5 nodes in the longest paths from
“DNA repair” and “SOS response” to the root node “biological process,” respectively (the root node
itself is not counted), the GO similarity between lexA and dinG is 6. The graph was adapted from
QuickGO GO Browser (http://www.ebi.ac.uk/QuickGO/ ).

http://www.ebi.ac.uk/QuickGO/
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TABLE 2
Summary statistics of the two gene networks used in the analysis

Percentiles of # of direct neighbors

Network # of nodes # of edges 0% 25% 50% 75% 100%

Co-expression 3,208 86,791 1 5 20 64 424
Functional coupling (GO) 1,644 116,422 1 48 102 249 708

the GO. We computed the GO similarity for each pair of genes. Two genes were
direct neighbors on the induced functional coupling network if their GO similarity
was no less than five, which means there were at least five common nodes in their
shared longest path back to the root node “biological process” from all nodes in
which they are annotated. Figure 2 shows an example of how to calculate the GO
similarity between two genes. The induced network has 1,644 nodes and 116,422
edges.

Some summary statistics and sample subnetworks of the two gene networks can
be found in Table 2 and Figure 1, respectively. The networks differ substantially in
the density of edges due to different definitions of gene–gene interactions.

3. Statistical methods.

3.1. Notation. Our goal is to identify regulatory target genes of a given TF
based on given ChIP-chip binding, gene expression and DNA sequence data. We
assume that the three data sources have been summarized as (Bi,Ei, Si) for each
gene i, for i = 1, . . . ,G, as described in Section 2.1. Depending on the latent
(unobserved) state of gene i, that is, whether it is a target or not, we have Ti = 1
or Ti = 0, respectively. Denote the distribution functions of (Bi,Ei, Si) for Ti = 1
and Ti = 0 as f1 and f0, respectively.

3.2. Standard mixture joint model. We first consider joint modeling of bind-
ing, expression and sequence data without incorporating gene networks. We have
the following standard mixture joint model (SMJM):

f (Bi,Ei, Si) = (1 − π1)f0(Bi,Ei, Si) + π1f1(Bi,Ei, Si),(3.1)

where π1 = Pr(Ti = 1) is the prior probability of gene i being a target. Note that
it is the same for all the genes. We further specify the conditional distribution
fj = φ(·;μj ,�j ), a multivariate normal density function with mean vector μj and
covariance matrix �j for j = 0,1. Here we allow the conditional covariance ma-
trix �j to have a general structure, that is, the three data sources can be correlated
given Ti . A special case is diagonal covariance matrix �j = Diag(σ 2

B,σ 2
E,σ 2

S ),
that is, the three data sources are conditionally independent, as assumed in Pan,
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Wei and Khodursky (2008). When only one type of data, for example, gene expres-
sion data, is considered, the conditional distributions f0 and f1 become univariate
normal density functions, and we call the corresponding model “standard mixture
model” (SMM).

3.3. MRF-based mixture joint model. Because neighboring genes on a net-
work, for example, a co-expression or functional coupling network, tend to be
co-regulated by a TF and there is more than one gene network available, each
containing complementary yet partial information about gene–gene interactions, it
is desired to incorporate multiple gene networks into joint modeling of genomic
data. Here we propose an MRF-based Mixture Joint Model (MRF-MJM) to ac-
complish this goal. In contrast to assuming a priori i.i.d. gene state Ti ’s as in the
SMJM, we model the state vector T = (T1, . . . , TG)′ as MRFs defined on multi-
ple neighborhood systems, each corresponding to a gene network. Specifically, we
propose the following auto-logistic model for the distribution of Ti , conditional on
T(−i) = {Tl; l �= i}:

logit Pr
(
Ti = 1|T(−i),�

) = logit Pr
(
Ti = 1|T(

⋃K
k=1 ∂i(k)),�

)
(3.2)

= γ +
K∑

k=1

βk

[
n

(k)
i (1) − n

(k)
i (0)

]
/m

(k)
i ,

where � = (γ,β1, . . . , βK), γ ∈ R, βk ≥ 0, ∂i(k) is the set of indices for gene i’s
direct neighbors on network Gk for k = 1, . . . ,K , n

(k)
i (j) is the number of gene i’s

neighbors having state j on network Gk for j = 0,1, and thus n
(k)
i (1) − n

(k)
i (0) =∑

l∈∂i(k)(2Tl − 1); m
(k)
i = n

(k)
i (0) + n

(k)
i (1) is the corresponding total number of

neighbors. The conditional probability of gene i being a target only depends on
the states of its neighbors, as defined on the K networks, which is often referred
to as the “local dependency” property. Note that we assume the contribution of
each network to logit Pr(Ti = 1|T(−i),�) is additive, weighted by the nonnegative
parameters βk’s. Larger βk would induce more similar states (target or nontarget)
among neighboring genes on network Gk . In addition, the conditional distribution
of the observed data (Bi,Ei, Si) given Ti is the same as that in the SMJM.

The advantage of our proposed model is to combine all available gene network
information, and thus to boost the statistical power for detecting target genes as
much as possible. For example, as shown is Figure 1, oraA is a true target that is not
connected to any other target genes in the GO-induced network, but is connected
to other targets in the co-expression network. As a result, in contrast to using the
GO-induced network alone, oraA’s prior probability of being a target can still be
boosted by using the proposed model here to combine both networks. Moreover,
because [n(k)

i (1)−n
(k)
i (0)]/m

(k)
i is always between −1 and 1, βk’s are comparable

and may be used to measure how informative network Gk is. When β1 = · · · =
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βK = 0, the MRF-MJM is reduced to the SMJM. This can be seen by noticing
that logit Pr(Ti = 1|T(−i),�) = γ = logit Pr(Ti = 1) = logit(π1), or, equivalently,
π1 = eγ

1+eγ , where π1 is the prior probability of being a target as defined in (3.1) in
the SMJM.

Singleton genes, that is, those without any neighbors in a network, are allowed
in the proposed MRF-MJM here. Denote Sk as the set of indices for singletons in
gene network Gk . For singleton gene i ∈ Sk , we set [n(k)

i (1) − n
(k)
i (0)]/m

(k)
i = 0.

If i ∈ ⋂K
k=1 Sk , then logit Pr(Ti = 1|T(−i),�) = logit Pr(Ti = 1) = γ .

Due to the unknown normalizing constant C(�) in the joint distribution of T =
(T1, . . . , TG)′, the likelihood l(T;�) does not have a closed form. Instead, we
propose to use the pseudolikelihood of Besag (1986):

pl(T;�) =
G∏

i=1

p
(
Ti |T(

⋃K
k=1 ∂i(k)),�

)
(3.3)

=
G∏

i=1

exp{Ti(γ + ∑K
k=1 βk[n(k)

i (1) − n
(k)
i (0)]/m

(k)
i )}

1 + exp{γ + ∑K
k=1 βk[n(k)

i (1) − n
(k)
i (0)]/m

(k)
i } .

The maximizer of the pseudolikelihood was shown to be a consistent estimator of
the MRF parameters � [Winkler (2003), page 272], while Rydén and Titterington
(1998) showed that the pseudolikehood pl(T;�) provides a good approximation
to the genuine likelihood l(T;�) in Bayesian hierarchical modeling as adopted
here. We found the approximation works well in our real data analysis and simu-
lation study.

Note that our proposed MRF defined on multiple neighborhoods is similar to
that used by Deng, Chen and Sun (2004) in the context of protein function predic-
tion, rather than detection of the target genes of a TF here.

3.4. Prior distributions. We use vague or noninformative prior distributions.
We denote by MVN(μ,�) the multivariate normal distribution with mean vector
μ and covariance matrix �, and denote by W((ρR)−1, ρ) the Wishart distribu-
tion with mean vector R−1. Reparameterize the component-wise mean vector as
μ1 = μ0 + θ . We use the following priors for the parameters in the conditional dis-
tribution of the observed data: μ0 ∼ MVN(0,C), θ ∼ MVN(0,C)I (θ > 0), where
C = diag(106,106,106); �−1

j ∼ W((3R)−1,3) for j = 0,1, where R is taken as
the estimated marginal covariance matrix of the three data sources whose off-
diagonal elements are close to zero. Since we have E(�−1

j ) = R−1, R is approxi-
mately the expected prior variance of �j . This is considered as a very vague prior
with respect to the correlation parameters [Carlin and Louis (2009), page 338].
For the SMJM, we have π1 ∼ Beta(1,1). For the MRF-MJM, we have γ ∝ 1 and
βk ∝ I (0 ≤ βk < 6), k = 1, . . . ,K .
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3.5. Statistical inference. We carry out statistical inference in a fully Bayesian
framework via MCMC sampling. The MCMC algorithm for the SMJM can be
implemented in WinBUGS V1.40 [Spiegelhalter et al. (2003)], while we wrote an
R program to implement the MCMC algorithm for the MRF-MJM. The WinBUGS
code for the SMJM is provided in the supplemental article [Wei and Pan (2011)].
The MCMC algorithm for the MRF-MJM can be found in the Appendix, and the
R program is available upon request.

We run three parallel chains of our MCMC algorithms starting from different
values, each run for 10,000 iterations after discarding the first 5,000 as burn-in
samples. We use the three parallel chains to monitor convergence and obtain more
stable posterior estimates by combining the three chains. We use trace plots and
the R̂ statistic of Gelman and Rubin (1992) to monitor the mixing of the Markov
chains; see Section 4.3 and Supplemental Figure 2. The posterior mean of any
parameter based on combining 10,000 MCMC samples after 5,000 burn-ins from
each of the three chains is used as its point estimate. In particular, we rank genes
based on the posterior probability of being a target p̂i = P̂r(Ti = 1|Data). False
Discovery Rate (FDR) can be estimated based on p̂i as discussed by Wei and Pan
(2010), which is not pursued in this study.

4. Application to LexA data.

4.1. Conditional independence assumption. We applied the SMJM to jointly
model the ChIP-chip binding, gene expression and DNA sequence data. Table 3
shows the point and interval estimates for the parameters in the conditional corre-
lation matrices of the three data sources. For the nontarget component, the three
sources of data appeared to be independent with each other. Interestingly, for the
target component, binding and sequence data were highly correlated, in contrast
to the other two pairs: binding and expression data, sequence and expression data,
which turned out to be only slightly correlated and independent, respectively. This
is consistent with the recent finding that LexA’s binding affinity to its regulatory
targets depends on the extent to which the binding site matches the consensus se-
quence for LexA [Butala, Zfur-Bertok and Busby (2009)]. In addition, our results

TABLE 3
Posterior estimates for component-wise (conditional) correlation matrices of binding (B),

expression (E) and sequence (S) data in the SMJM. Numbers in the parentheses are
95% credible intervals

Nontarget component Target component

B E S B E S

B 1 0.013 (−0.027, 0.047) −0.013 (−0.053, 0.023) B 1 0.119 (0.034, 0.184) 0.475 (0.427, 0.513)
E 1 0.010 (−0.029, 0.045) E 1 0.077 (−0.016, 0.147)
S 1 S 1
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suggest that LexA is quite efficient in repressing its target genes’ expression: weak
binding only decreases its repression effect slightly.

4.2. Predictive performance. We evaluated the different methods’ predictive
performance by comparing the ranks given by each method for 26 LexA’s known
and putative targets annotated in RegulonDB (v6.4), as shown in Table 4. Note
that known target genes of LexA were those experimentally verified via binding
of purified proteins, which was considered as “strong” evidence by RegulonDB
[Gama-Castro et al. (2008)], whereas putative target genes were those supported
only by some “weak” evidence, for example, gene expression analysis or compu-
tational prediction based on similarity to consensus sequence. Thus, evaluations
based on known targets are much more reliable than those based on putative ones.
As a result, we first focused on LexA’s known targets.

In general, incorporating gene networks and combining additional types of ge-
nomic data increased the chance of detecting the true targets as compared to using
a single type of genomic data alone; this was evidenced by higher, in some cases
substantially higher, ranks based on the integrative analyses than those based on
using binding, expression, or sequence data alone. When network information was
not utilized, many of LexA’s known targets did not have consistently high rank-
ing based on any of the three genomic data sources alone. For example, oraA and
dinF were ranked 82nd and 2,471st, respectively, based on binding data alone,
while they were ranked 1,206th and tied first, respectively, based on sequence
data alone. In contrast, the majority of LexA’s known targets (14 out of 17) were
boosted to a highest rank, that is, tied at the first with posterior probability equal
to 1, by combining all three sources of genomic data. On the other hand, incorpo-
rating multiple gene networks into modeling of a single source of genomic data
also led to dramatic rank improvement. For example, ruvA and uvrB were ranked
146th and 172nd based on expression data alone, but with the incorporation of
gene networks their ranks improved to a tied first and 133rd, respectively. This
was achieved without the aid of additional genomic data such as binding and se-
quence data, demonstrating the extra power gained by incorporating multiple gene
networks. Compared with the significant rank improvement by the network-based
analyses of a single type of genomic data, integrating multiple networks with all
three sources of genomic data resulted in less dramatic improvement in predictive
performance over joint modeling of genomic data only, possibly because the latter
already had very high predictive power.

In addition, several features are noticeable. First, using a general conditional co-
variance structure in the SMJM did not lead to improved rankings as compared to
using a diagonal conditional covariance structure. As a result, we used a diagonal
conditional covariance structure in all MRF-based analyses for better predictive
performance. Second, when integrating more than one gene network, we observed
that the predictive performance tended to be compromised, that is, the ranks based
on both networks were often between those based on the co-expression network
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TABLE 4
Ranks given by various methods based on posterior probabilities for known (marked by *) and putative target genes of LexA annotated in RegulonDB.
“SMM”: standard mixture model; “S”: SMJM with diagonal covariance; “S.mul”: SMJM with general covariance; “co-exp”: co-expression network;

“GO”: functional coupling network induced by GO

Expression Binding + Expression + Sequence

MRF-MJM
Binding
SMM

Sequence
SMM

MRF-MJM

Targets SMM co-exp GO co-exp + GO S S.mul co-exp GO co-exp + GO

umuD* 1 1 1 1 1 1 1 1 1 1 1
recN* 1 1 1 1 1 1 1 1 1 1 1
recA* 1 1 1 1 1 1 1 1 1 1 1
lexA* 1 1 1 1 1 1 1 1 1 1 1
dinI* 1 1 1 1 1 48 1 1 1 1 1
ydjM* 1 1 1 1 1 70 1 1 1 1 1
oraA* 1 1 1 1 82 1,206 1 1 1 1 1
polB* 1 1 1 1 156 153 1 1 1 1 1
umuC* 1 1 1 1 192 3,500 1 1 1 1 1
sulA 1 1 1 1 1 1 1 1 1 1 1
ssb 129 1 133 1 1 1 1 1 1 1 1
ruvA* 146 1 133 1 127 1 1 1 1 1 1
uvrA* 163 134 159 133 1 1 1 1 1 1 1
uvrB* 172 134 175 133 1 1 1 1 1 1 1
t150 172 176 167 169 2,118 50 173 215 178 172 174
dinF* 216 182 214 178 2,471 1 1 145 1 1 1
uvrD* 245 259 249 261 262 1 1 1 1 1 1
ruvB* 311 226 313 231 2,118 1,456 644 576 367 614 373
dinG* 450 311 439 314 96 136 168 168 142 166 144
rpsU 1,190 1,810 2,694 2,445 470 1,091 886 955 1,021 1,105 1,266
phrB 1,738 2,858 2,819 3,137 1,334 531 1,460 1,686 2,031 1,898 2,154
uvrC 2,534 1,401 2,715 1,467 3,022 3,334 3,080 2,980 1,937 2,978 1,956
dnaG 3,060 3,119 3,100 3,266 2,471 781 2,831 3,169 2,897 2,978 3,087
rpoD 3,336 3,727 2,422 2,969 2,471 791 2,622 3,169 2,897 2,199 2,685
ftsK* 3,723 3,583 2,313 2,727 75 128 169 171 180 166 174
uvrY 3,723 3,472 2,313 2,727 3,022 3,500 3,080 2,964 3,173 2,789 2,884

# Tied rank 1 128 133 132 132 53 36 145 144 141 145 143
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TABLE 5
Posterior means of parameters in the MRF-MJM (B: Binding; E: Expression; S: Sequence)

Genomic data Networks γ βco-expression βGO

B + E + S Co-expression −1.33 1.16 –
GO −1.72 – 0.84

Co-expression + GO −1.20 1.07 0.61

E Co-expression −0.88 1.35 –
GO −1.30 – 0.99

Co-expression + GO −0.73 1.26 0.71

alone and those based on the GO-induced network alone. For example, dinG was
ranked 142nd and 166th by the co-expression network-based and GO network-
based MRF-MJM, respectively, whereas it was ranked 144th by the MRF-MJM
that incorporated both networks. Third, as shown in Table 5, the relative magnitude
of the weights β’s for the two gene networks in the MRF-MJM were quite consis-
tent: the co-expression network had higher weight than did the GO-induced net-
work. Given the observation that the co-expression network-based analyses tended
to lead to higher ranks than the GO network-based analyses, especially for mod-
eling the gene expression alone, β may be used to measure how “good” a gene
network is. One possible reason why the GO-induced gene network was not as
good as the co-expression network was that the former network was much more
densely connected, as illustrated by Table 2 and Figure 1, resulting in higher prob-
ability of target and nontarget genes being direct neighbors in the network, and
thus, reduced power of the network-based methods.

Our joint modeling analyses also enabled us to potentially distinguish true tar-
gets of LexA from false positives in the putative target gene list. Among the nine
putative targets, three genes—sulA, ssb and t150—were consistently highly ranked
by various models based on different data sources, and thus were very likely to be
true targets of LexA. In contrast, the rest of the six putative targets had consistent
low rankings, suggesting that they were likely to be false positive target genes. In-
terestingly, as shown in Figure 1, sulA and ssb were both direct neighbors of some
known targets of LexA in both co-expression and GO gene networks, whereas
none and only three of the six genes that were likely to be false positives were
direct neighbors of known targets in the co-expression and GO network, respec-
tively.

We noticed that there were quite a few genes with tied rank ones, ranging from
36 to 145 genes across different data sources and networks (Table 4). Those genes’
genomic data, that is, binding, expression or sequence scores, were among the
highest, and, as a result of their falling in the farthest right tail of the mixture dis-
tribution, the MCMC ended up with always drawing Ti = 1 for those genes across
the entire finite iterations. It is noteworthy that the number of tied ones mainly
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depended on how much the two mixture components f0 and f1 in (3.1) were sep-
arated. Specifically, the expression data, whose two components had the best sep-
aration among the three data sources, led to 128 tied ones, whereas the sequence
data, least separated, had 36 tied ones. Combining the three sources resulted in a
higher number of tied ones than did any single source alone. Ties at other ranks
were possible due to finite iterations of the MCMC.

4.3. Convergence diagnostics and sensitivity analysis. Given the large number
of parameters, we only visually check the MCMC convergence for the mixture
component and MRF parameters, that is, μ0, μ1, � and �, whose convergence
should also indicate that of the latent state vector T = (T1, . . . , TG)′. The trace
plots did not reveal any convergence problems and the R̂ statistics of Gelman and
Rubin (1992) were all close to 1, indicating that the multiple chains mixed with
each other and converged by 5,000 iterations; see Supplemental Figure 2. The
posterior probabilities p(Ti = 1) based on each individual Markov chain showed
very little difference; nevertheless, we combined the MCMC samples from the
three chains to obtain more stable posterior estimates.

In our proposed network-based joint model, we used noninformative or vague
priors for the mixture component and MRF parameters as described in Section 3.4,
whereas we used gene networks as informative priors for the latent state vector T.
As evidence of minimal influence of the adopted priors on the posterior estimates
of the mixture model parameters, the resulting posterior means in the SMJM were
very close to the maximum likelihood estimates (MLEs) obtained via the EM algo-
rithm [Dempster, Laird and Rubin (1977)] (results not shown). On the other hand,
we performed a sensitivity analysis to investigate how robust the network-based
results were to potential incomplete/misspecified gene networks. Specifically, we
applied the two co-expression networks with correlation coefficient cutoffs of 0.60
and 0.70 to the expression data alone as well as joint modeling of the three data
sources, and compared the results to those based on the co-expression network with
the cutoff of 0.65. Supplemental Figure 1 shows the three subnetworks, consisting
of LexA’s known and putative target genes, from the co-expression networks with
the cutoffs of 0.60, 0.65 and 0.70, respectively. The genes that formed a connected
subnetwork were the same for the cutoffs 0.60 and 0.65, whereas ydjM and ssb
became singletons in the subnetwork with the cutoff of 0.70. As shown in Sup-
plemental Table 1, in spite of quantitative difference in the known target genes’
ranks based on the co-expression networks with different cutoffs, the network-
based analyses consistently improved the predictive performance compared with
the analyses of genomic data alone. As of the singleton genes ydjM and ssb in the
co-expression subnetwork with the cutoff of 0.70, only ssb had slightly lower rank
based on the network-based analysis of expression data and all other network-
based analyses resulted in tied first for both genes due to strong genomic data
signals. Our results demonstrate that the network-based methods are reasonably
robust to misspecification of the network structures, consistent with previous sen-
sitivity analysis results [Wei and Pan (2008a, 2010), Wei and Li (2008)].
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5. Simulation study. To further evaluate the conditional independence as-
sumption and the effects of integrating multiple networks and diverse types of
genomic data, we conducted a simulation study that mimicked the real data: the
co-expression network was more informative than the GO-induced network and
the conditional covariance matrices in the simulation model were based on those
estimated from the real data. Specifically, the latent states vector T was based on
the fitted MRF-MJM that incorporated both gene networks, while, given T, the
observed genomic data were generated based on the fitted SMJM with a general
conditional covariance structure. We let the top 487 genes, which are π̂1 = 13%
of the total 3,779 genes, in the fitted MRF-MJM that incorporated both networks
be targets (Ti = 1) and the rest of the 3,292 genes be nontargets (Ti = 0). Note
that the posterior means for the weight parameters βco-exp and βGO were 1.06 and
0.61, respectively. Given T, we simulated the binding, expression and sequence
data from the fitted conditional normal distributions with nontarget mean vector
μ̂0 = (0.11,0.02,13.35)′, target mean vector μ̂1 = (0.50,0.26,14.58)′ and co-
variance matrices corresponding to the correlation matrices in Table 3.

We simulated 20 data sets and applied the SMJM with an either general or di-
agonal conditional covariance structure and the MRF-MJM to each of the data
sets. We used the ROC curves to compare the predictive performance. Figure 3
shows the ROC curves averaged across the 20 simulated data sets. When no net-
work information was utilized, as shown in Figure 3(a), joint modeling of the three
data sources, that is, the SMJM with either covariance structure, had much higher
predictive power than using a single source of genomic data. On the other hand,
although the simulated binding and sequence data were considerably correlated for
the target genes, assuming conditional dependence by adopting a general covari-
ance structure hardly made any difference in terms of predictive power. This may
be explained by the fact that the sequence data were the least informative among
the three data sources, as suggested by the ROC curves, making the strong corre-
lation between the binding and sequence data among the target genes much less
important in terms of predictive power.

Incorporating gene networks via the MRF-MJM led to dominating ROC curves
over those based on genomic data alone, as shown in Figure 3(b). Consistent with
the real data analysis results, the improved power by the MRF-MJM was more
dramatic for using the expression data alone than joint modeling of the three data
sources. As pointed out by Wei and Pan (2010), the posterior probability of being a
target in the MRF-based mixture models was jointly determined by the prior prob-
ability and the likelihood function, which depended on the gene networks and the
observed genomic data, respectively. When the likelihood was very informative,
such as the one for joint modeling of the three data sources here, it might dominate
the prior probabilities, making the contribution of the gene networks less signif-
icant. In addition, when only one network was incorporated, the ROC curve for
the co-expression network dominated that for the GO network, which was true
in both scenarios, using expression data alone or combining three data sources,
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(a) (b)

FIG. 3. ROC curves (averaged over 20 simulated data sets) for (a) modeling genomic data alone
(“B” for binding, “E” for expression, “S” for sequence, “multi” and “ind” for a general and a di-
agonal conditional covariance structure, resp.) and (b) MRF-MJM (“GO” for GO-induced network,
“coexp” for co-expression network, “2net” for both networks).

suggesting that the weight parameter β can be useful in comparing the “informa-
tiveness” of different gene networks. Finally, incorporating both networks resulted
in improved predictive performance over using a single network, especially the
GO network, demonstrating the flexibility and efficiency gains with the proposed
MRF-MJM for integrating multiple gene networks.

6. Discussion. We have presented a flexible and powerful mixture model,
based on the use of multiple MRFs, for integrating diverse types of genomic data
and multiple gene networks to identify regulatory target genes of a TF. Rather
than assuming conditional independence of ChIP-chip binding, gene expression
and DNA sequence data, we allow multiple sources of data to be conditionally
correlated. Due to a fully Bayesian approach, inference about model parameters
can be easily carried out based on MCMC samples. Application to the LexA data,
together with simulation studies, demonstrates the utility and statistical efficiency
gains with the proposed joint model. An interesting biological finding is that the
binding and sequence data were highly correlated for target genes only, which
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helps elucidate the regulation mechanism of LexA, an important TF involved in
DNA repair in E. coli. Interestingly, ignoring the conditional correlations even led
to slightly improved predictive performance. Our simulation study that mimicked
the LexA real data confirmed that incorrectly assuming conditional independence
did not result in deteriorated performance, possibly due to simpler models as well
as only moderate predictive power of the sequence data. Further study on this
problem is needed.

Although our application concerns identification of target genes of a TF in
E. coli, it may be possible to adapt the proposed method to address other prob-
lems for other organisms, for example, identifying genes predisposed to complex
human diseases by integrating multiple types of data such as SNP, epigenomic,
gene expression, proteomic, metabolomic data and gene networks/pathways. It
has been recently proposed to incorporate a single gene network into analysis of
genome-wide association study (GWAS) data via a MRF model [Chen, Cho and
Zhao (2011)]. In light of our study here, it would be interesting to consider multiple
gene networks in network-based analysis of GWAS.

Based on the LexA data, we found that combining both gene networks might
result in compromised predictive performance. This raises a question: shall we
integrate as many gene networks as possible or choose to use the “best” gene net-
work? If the former, as demonstrated by the simulation results, the MRF-MJM
provides a very flexible and efficient framework to combine multiple networks by
down-weighting more noisy ones. If the latter, how to compare gene networks is
still an open question. A possible perspective is to look at the structural or topolog-
ical differences between the networks. For example, as illustrated by Table 2 and
Figure 1, the GO-induced network may be too dense, directly connecting many tar-
get and nontarget genes, and thus is less preferred compared to the co-expression
network. On the other hand, the weight parameter β in the MRF-MJM has been
demonstrated, by analyses of the LexA data as well as the simulation results, to be
a promising criterion for quantitative comparison of gene networks. Nevertheless,
considering that each of the gene networks contains partial yet complementary in-
formation about gene–gene interactions, integrating multiple networks is likely to
achieve higher predictive power on average, for example, as measured by the area
under the ROC curve (AUC). This could be a direction of future research.

While discrete MRFs were employed here to incorporate multiple gene net-
works, Gaussian MRFs [Wei and Pan (2008a, 2010)] could be similarly used.
However, unlike [n(k)

i (1) − n
(k)
i (0)]/m

(k)
i in (3.2), which is always between −1

and 1, the range of a similar term based on the Gaussian MRF would be the real
line. As a result, it is unclear how to effectively assign weights to different net-
works based on the use of multiple Gaussian MRFs. This, together with assigning
weights to different genomic data sources, would be an interesting topic for future
investigation.
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APPENDIX

A.1. MCMC algorithm for the MRF-MJM. We denote by (α| . . .) the full
conditional of α, that is, the distribution of α conditional on everything else in the
model. In addition, we denote by MVN(μ,�) the multivariate normal distribution
with mean vector μ and covariance matrix �, by φ(·;μ,�) the corresponding
density function, and by W((ρR)−1, ρ) the Wishart distribution with mean R−1.
The observed data are denoted as x = {xi = (Bi,Ei, Si)

′; i = 1, . . . ,G}. Model
specification and prior distributions for the MRF-MJM can be found in Sections
3.3 and 3.4. In particular, p(T|�) is specified by the pseudolikelihood (3.3). As
detailed below, we use Metropolis with Gibbs sampling to update �. The anxil-
iary variable-based Metropolis–Hastings algorithm of Møller et al. (2006) could
be used to update � in the presence of the unknown normalizing constant C(�),
which could, however, substantially slow down the computation, and is not pur-
sued here.

The joint posterior distribution is

(T,μ0, θ,�0,�1,�|x)

∝ p(x|T,μ0, θ,�0,�1)p(T|�)p(μ0)p(θ)p(�0)p(�1)p(�):

• Update μ0 by Gibbs sampling with the proposal given by

(μ0| . . .) ∼ MVN
(
(n0�

−1
0 + C−1)−1�−1

0

∑
{i : Ti=0}

xi, (n0�
−1
0 + C−1)−1

)
,

where n0 = |{i :Ti = 0}|.
• Update θ by Gibbs sampling with the proposal given by

(θ | . . .) ∼ MVN
(
(n1�

−1
1 + C−1)−1�−1

1

∑
{i : Ti=1}

(xi − μ0), (n1�
−1
1 + C−1)−1

)

× I (θ > 0),

where n1 = |{i :Ti = 1}|.
• Update �j , for j = 0,1, by Gibbs sampling with the proposal given by

(�−1
j | . . .) ∼ W

(( ∑
{i : Ti=j}

(xi − μj )(xi − μj )
′ + 3R

)−1

, nj + 3
)
,

where μ1 = μ0 + θ .
• Update Ti by Gibbs sampling with proposal given by

(Ti | . . .) ∼ Bernoulli
(

d

1 + d

)
,

where d = exp{γ + ∑K
k=1 βk[n(k)

i (1) − n
(k)
i (0)]/m

(k)
i }φ(xi;μ1,�1)

φ(xi;μ0,�0)
.
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• Update � = (γ,β1, . . . , βK) using a random walk Metropolis algorithm with
Gaussian proposal, which has diagonal covariance matrix. The acceptance ratio
is calculated using the full conditional of �, which is proportional to

exp{n1γ + ∑1
j=0

∑
i : Ti=j

∑K
k=1 βkn

(k)
i (j)/m

(k)
i }∏G

i=1{exp(
∑K

k=1 βkn
(k)
i (0)/m

(k)
i ) + exp(γ + ∑K

k=1 βkn
(k)
i (1)/m

(k)
i )} .

The Gaussian proposal was tuned such that the acceptance rate was around 0.23,
the optimal one [Carlin and Louis (2009), page 131].
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SUPPLEMENTARY MATERIAL

Supplemental tables and figures (DOI: 10.1214/11-AOAS502SUPP; .pdf).
WinBUGS codes, results for sensitivity analysis and MCMC convergence diag-
nostics plots can be found in the supplemental article.
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