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When a model may be fitted separately to each individual statistical
unit, inspection of the point estimates may help the statistician to under-
stand between-individual variability and to identify possible relationships.
However, some information will be lost in such an approach because esti-
mation uncertainty is disregarded. We present a comparative method for ex-
ploratory repeated-measures analysis to complement the point estimates that
was motivated by and is demonstrated by analysis of data from the CADET
II breast-cancer screening study. The approach helped to flag up some un-
usual reader behavior, to assess differences in performance, and to identify
potential random-effects models for further analysis.

1. Introduction. In this article we propose an approach for exploratory
repeated-measures analysis. The term repeated measures is used in a loose sense
to mean that more than one datum is recorded on each individual unit. However,
the measurements themselves will be permitted to have any data structure with a
likelihood function, perhaps ranging from replicated readings of the same quan-
tity to multivariate measurements of a stochastic process through time. The ex-
ploratory method was motivated and is applied to data from the computer aided
detection evaluation trial (CADET) II trial, where 27 human readers inspected dis-
tinct mammograms (breast x-rays) for cancer screening. Our analysis aim is to
determine whether real differences in behavior exist between the individual read-
ers, including whether any might be outliers, and then if heterogeneity is observed,
to seek possible groups of similar individuals, and factors that correlate with the
differences. The proposal is partly motivated by the difficulty of such an objec-
tive when the sample size is 27, even when up to several thousand measurements
are observed on each reader. The approach is developed in the next section and
then it is demonstrated using the data. Conclusions follow a section discussing the
application of the method to other data sets.
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2. Method. The general data structure is first described and the main simi-
larity-matrix idea is defined. Then, some properties of the matrix are recorded and
we comment on some ways in which it may be used for exploratory repeated-
measures analysis.

2.1. Setup. Suppose there are n individual units (i = 1, . . . , n) with ni re-
peated measurements yi = (yi,1, . . . , yi,ni

) observed. The application in this pa-
per has the units as humans who interpret mammograms for cancer screening.
We assume that there is a suitable model form for the probability mass or density
function p(y|ui ) parametrized by ui = (ui1, . . . , uim), where m is the dimension
of each ui . For example, if the results are binary indicators for recall (y = 1) or no
action (y = 0), then p(y|ui) might be a binomial model (m = 1) with parameter
ui interpreted as i’s probability of recall. More generally, p(y|ui ) could be devel-
oped from a data analysis, or knowledge of the problem, but we assume that the
ui occur in the same form for each individual p(yi |ui). The statistical modeling
goal taken here is to understand variability of the ui’s, perhaps through a model
for p(u), or p(u|x) with explanatory variables xi = (xi1, . . . , xir ). This two-stage
model structure taken is also taken in other areas, such as in applications using
linear mixed models [Crowder and Hand (1990)].

Note that the setup considered is different to generalized estimating equations
(GEE). These are used to estimate marginal (population-averaged) regression coef-
ficients β in a repeated measures context where E(yi ) = μ(xi;β), but without as-
suming a full probability model for yi or even a “true” covariance structure for yi .
In this paper we have a full (conditional) probability model for yi , p(yi |ui), that is
based on subject-specific parameters (random effects) and the focus is upon their
distribution over the population.

2.2. The similarity matrix. The exploratory measure that we call a similarity
matrix is obtained in two steps:

(1) Compute consistent ûi for i = 1, . . . , n, such as maximum likelihood esti-
mates of ui ; then

(2) calculate the z-matrix with row i = 1, . . . , n and column j = 1, . . . , n en-
tries from

zij = p(yi |ûj )∑n
k=1 p(yi |ûk)

.(1)

A likelihood function p(data|θ) reveals the relative plausibilities of different pa-
rameter θ -values in the light of the data. Here zij ∝ p(yi |ûj ) does likewise for the
uj (j = 1, . . . , n) in light of the data yi . The zij quantity thus explores the similar-
ity of the uj ’s via their estimates, by measuring how close individual j ’s parameter
fit is to individual i’s data.
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If yil is a sequence of l = 1, . . . , ni binary indicators as above, and a binomial
likelihood is assumed for p(yi |ui), then using the notation yi+ = ∑ni

l=1 yil , we
have

zij = û
yi+
j (1 − ûj )

(ni−yi+)

∑n
k=1 û

yi+
k (1 − ûk)(ni−yi+)

,(2)

because
(ni

yi

)
cancels in the numerator and denominator.

2.3. Some properties of the matrix.

(1) 0 ≤ zij ≤ 1.
(2) zij = O(1/n). The practical significance is that larger matrices will have

smaller zij terms.
(3) zi+ = ∑n

j=1 zij = 1.
(4) zij ≤ zii for j �= i if maximum-likelihood estimation is used [because

p(yi |u) ≤ p(yi |ûi) for all u].
(5) The matrix follows from Bayes’ rule

pe(u|yi ) ∝ p(yi |u)pe(u),

where pe(u) is a probability mass function that approximates variation of the ran-
dom effect u across individuals p(u) by assigning mass 1/n to each of the points
(û1, . . . , ûn). The e subscript is used in the notation to make explicit the reference
to this empirical distribution. That is, zij = Pe(ui = ûj |yi ), and the zij quantities
are posterior ui mass values where the u distribution has been restricted to the
points in pe(u).

(6) z is not symmetric unless Pe(uj = ûi |yj ) equals Pe(ui = ûj |yi ). Thus, it
is not a similarity matrix in the usual sense.

(7) When zij = zii , then yi is equally well conditioned on ûi and ûj , and
Pe(ui = ûj |yi ) = Pe(ui = ûi |yi ).

(8) z+j > 1 means that ûj is very likely the value for many i and/or zjj is
relatively large.

(9) An alternative measure z+j /zjj can be used to assess the importance of
ûj over the i �= j .

(10) A measure of the overall concentration of the estimates is trace(z)/n ∈
(0,1). Since z++ = n, trace(z)/n attains maximum value 1 when zii = 1 for all i.

(11) (z11, z22, . . . , znn), or diag(z) provides a comparative measure of concen-
tration in the estimates. This is because point estimates ûi with relatively high (or
close to 1) zii entries may be interpreted as good predictions since

Ee(ui |yi ) =
n∑

j=1

ûjPe(ui = ûj |yi )

(3)

=
n∑

j=1

zij ûj .
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So for zii close to one (and therefore zij close to 0 for j �= i), a prediction from
(3) is likely to be very close to ûi ; for zii not close to 1, the point-estimate ûi may
be misleading because a prediction from (3) is subject to nonnegligible averaging
(shrinkage).

(12) If the ui are distinct, then as ni → ∞ for each i the z-matrix will con-
verge to the identity matrix because a consistent estimator of u is used. In practice,
this means that when the ui are different, then a data set with large ni and well-
estimated ui will have a z-matrix close to the identity matrix. Conversely, little
structure is likely to be seen when all the ni are small, but it may still be worth
applying the method to see if this is the case. The most useful case is likely to be
when some of the ni are moderate.

(13) A referee suggested a possible connection with Rubin’s propensity score
[Rosenbaum and Rubin (1983)]. In that setting individuals are matched (one a case,
the other a control) by a propensity score e(xi ) = P(ci = 1|xi ), where c is an in-
dicator of being a case. In our setup individuals are matched to each other through
zij = Pe(ui = ûj |yi ). The propensity score reduces the dimension of multivariate
matching on xi to a univariate measure; the z-matrix transforms the dimensionality
of matching individuals on ui to a two-dimensional matrix.

2.4. Why use the matrix for exploratory analysis? The first step in the com-
putation of the z-matrix is to obtain point estimates (û1, . . . , ûn). These might be
plotted in exploratory analysis to look for clusters, outliers and other structural re-
lationships or trends across individuals in the data. For example, one can plot the
parameter fits ûi against each other, and against other covariates by using a matrix
scatter plot. An example demonstrating the use of this approach for exploratory
analysis with hierarchical linear models is Bowers and Drake (2005). One issue
with the plots is that uncertainty in the point estimates is disregarded and so ap-
parent trends may be less impressive than first appears, or masked by sampling
variation.

A first way that the above properties of the z-matrix can be used to add to the
information in the plots is by helping to quantify the concentration of each individ-
ual’s estimate ûi by inspection of diag(z). A second way is by making comparisons
between the estimates ûi and ûj from two individuals i and j , through the zij and
zji terms. An example of where these properties are useful is when the zij en-
tries are zero, except for those within an identifiable cluster of u-values from the
plots. This would suggest that the individuals form a fairly homogeneous group.
A third way is to improve the point-estimates ûj (j = 1, . . . , n) themselves, by
using equation (3) to shrink the estimates through Ee(ui |yi ). A fourth way is by
using quantities such as z+j − zjj or zjj /z+j for j = 1, . . . , n to show the more
important ûj , or to identify outliers. Some techniques to draw attention to these
and other features are next described.
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3. Exploratory analysis with the z-matrix. In this section we propose a
number of ways to present the z-matrix. They will be demonstrated using the
breast-screening data later on.

3.1. Tabular presentation of the matrix. When printing out the matrix it is
important to display it in such a way that important aspects of the data are clearly
visible. With this in mind we next suggest a way to display the matrix in tabular
form:

• Print out the transpose of z, not z. When making comparisons between individ-
uals the main interest is comparing zij for j = 1, . . . , n. The transpose of the
z-matrix is better because, as in tables, it is easier to compare down columns
than across rows [LGDUW (2004)].

• Multiply the matrix by a power of 10 (e.g., 1,000) and do not display (multi-
plied) values less than 1. The point here is to focus the eye’s attention on the
difference between large, small and negligible proportions by using the number
of digits displayed in a number. For example, the number 1,000 is seen to be
larger than 10 because it has twice the number of digits; it is more difficult to
see at first glance that 0.1000 is bigger than 0.0010 because they have the same
number of digits. The choice of multiplication factor should depend on n since
zij = O(1/n).

• Experiment with the order of individuals. The order used might be based on
an examination of one z-matrix, to regroup similar individuals, or it might be
made using the covariate xi data. A recommended first order is by one of the u
components, or a function of interest using the u’s.

3.2. Graphical presentation of the matrix. An alternative to printing the ma-
trix is to use a plot. Since

∑n
j=1 zij = 1, a recommended display is a histogram

variety, where there is one bar for each cell in the matrix. Such a chart can be
produced using a symbols plot, with rectangles of area proportional to zij . It is
arguably easier to compare the shape of histograms down a page (one for each of
the n units), so it might be better to leave the matrix untransposed in this instance.
Use of the transpose for printing and the untransposed matrix for plotting might
also help the statistician to see different features.

3.3. Graphs to assess the number of groups. For scalar ûi (i.e., each compo-
nent of ûi if a vector) order the individuals by ûi . Then a plot of (ûi , i/n) pro-
vides the estimated distribution function of u, based on the a priori pe(u). Such
an approach uses information in the separate u’s, but due to the equal weights, it
might be improved by using the data to change the weights from 1/n. The pro-
posal is to use an estimate of the density of uj from n−1z+j . If the ui’s are all
well estimated and different, then the weights will not change much from 1/n. If
some are more likely over the sample than others, then they will be up-weighted,



EXPLORATORY REPEATED-MEASURES ANALYSIS 2453

and others will be down-weighted. A related quantity is the distribution function
Zk = n−1 ∑k

j=1 z+j . Plots of the z-matrix density and distribution function can be
used to help assess the number of groups in the data.

3.4. Shrinking parameter fits. A way to incorporate estimation uncertainty
into any exploratory plots involving u is to use equation (3) to shrink the esti-
mates through Ee(ui |yi ). In this way, outliers might be more reliably identified, as
well as possible patterns.

3.5. Smoothing covariates. The matching of individuals through the z-matrix
may be used to show the average covariates x for a given ûi . This might aid in-
spection of possible correlations beyond using the observed covariates xi recorded
for each individual i = 1, . . . , n in plots against (functions of) parameters ûi . We
next show how x̃i = ∑n

k=1 xkzik/z+k can be derived as the expected x given ûi

from the z-approach.
Suppose we have data d, known to be one of the yi , but not which one, and have

prior P(d = yi ) = 1/n for i = 1, . . . , n. If we were interested in the probability
that the data i = 1, . . . , n were generated by parameter fit ûi , then we could use
Pe(d = yi |u = ûj ) = zij /z+j . Now

pe(x|u) =
n∑

k=1

p(x|d = yk,u)Pe(d = yk|u).(4)

In the case where the xi are distinct, we model P(x = xi |d = yk,u) by an empir-
ical distribution so that P(x = xi |d = yk,u) = 1 if i = k for k = 1, . . . , n, and 0
otherwise, then P(x = xk|u) = P(d = yk|u), leading to

Ee(x|u = ûi ) =
n∑

k=1

xkPe(d = yk|u = ûi)

(5)

=
n∑

k=1

xkzik

/
z+k.

In the case where the xi are not distinct, one can still use x̃i as defined above.
A crude way to think of the approach is that individuals are locally clustered de-
pending on their û’s, and the average covariate at that cluster is obtained. Thus,
given û, the variation in the x̃’s is much less than the original x’s. It is hoped that
the process will smooth out some sampling variation, making it easier to assess if
there are any real patterns of interest between x and u.

3.6. Graphical testing. A last exploratory approach is to follow Gelman
(2004), Buja et al. (2009) and others by comparing z-matrices or associated plots
against null model simulations.
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4. Background to application. Two human readers are presently used in
England to interpret mammograms (breast x-rays) from the breast-cancer screen-
ing program. This regimen is often called double reading, but we will call it dual
reading to emphasize that two independent readers inspect each mammogram. If
both readers find no abnormalities, the screenee is notified of the negative result
and no further action is taken. If both readers find a suspicious abnormality, the
screenee is recalled for further investigations. If the readers disagree, one common
practice is to have a third reader arbitrate. Typically, for 1,000 women undergoing
screening, around 42 might be recalled, of whom 8 are found to have cancer after
further investigation [NHS Breast Screening Programme (2009)]. Several studies
have shown that two readers can detect more cancers than a single reader [Taylor
and Potts (2008)]. The computer aided detection evaluation trial (CADET) II was
designed to assess whether a single reader using a computer-aided detection tool
could match the performance of two readers.

In the trial 31,057 mammograms were read at three centers in England, such
that a ratio of 1 : 1 : 28 were, respectively, dual reading only; single-reading with
CAD (computer-aided detection) only; and both dual reading and single reading
with CAD. Most of the screens were therefore matched pairs from dual reading
and single reading with CAD. The reason why some screens were only read by
one of the regimens was to reduce the possibility of bias from readers changing
their behavior due to the knowledge that a further reading of the case would take
place. Only the 28,204 matched-pair cases are considered from now on. The main
detection result was that 199 out of the 227 cancers detected were recalled by dual
reading, and 198 by single reading with CAD. 170 of the cases were detected by
both, so the single readers with CAD detected 28 cases missed by dual reading;
dual reading detected 29 cases missed by the single reader with CAD (and 170 +
28 + 29 = 227). The overall recall rate for dual reading was 3.4% and for single
reading with CAD it was slightly higher at 3.9%. The analysis of the trial in Gilbert
et al. (2008) found that single reading with computer-aided detection could be an
alternative to dual reading.

The primary analysis published in Gilbert et al. (2008) addressed the question
of whether detection and recall rates differ between dual reading versus single
reading with CAD. Further questions may be posed of the data to help improve
best practice in other areas: if factors can be identified that predict outcomes prior
to the screen being read, then steps might be taken to mitigate risks. The aim of the
analysis in this article is to assess whether individual readers behaved differently,
and to determine if any factors might influence whether a reader missed more
cancers, or recalled more often than others. In the data available from the trial we
had information on their training (radiologist, radiographer, other) and the number
of years they had read mammograms prior to the trial, and we explore whether any
differences between them might be related to these two factors. Although there are
a large number of screens, the total number of readers involved in the trial was 27,
and so drawing inference is more difficult than might appear from consideration
of the large number of 28,204 cases.
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5. Reader recall and detection rates. In this section we use data from
CADET II to demonstrate the z-matrix exploratory analysis as a precursor to
model building. The aim of the analysis is to explore the data to assess if and
why some readers performed differently to others.

5.1. Data. We present two exploratory analyses, one for the first reader in a
dual-reader pair, the second for a single reader with CAD. In the case of a first
reader i from a dual reading the response is detection of cancer: y = 1 when a
cancer is detected, 0 otherwise. In the case of a single reader i with CAD the
response is recall: y = 1 if a case is recalled, 0 if not. There are k = 1, . . . , ni

screens by individual i, and we take

p(yi |ui) ∝ u
yi+
i (1 − ui)

ni−yi+,

thus assuming that the yik are conditionally independent with P(yik = 1) = ui .
These data are shown in Tables 1 and 2. The total number of readers in both reg-
imens differs partly due to not all of them being trained to used CAD. Further
details about the data are in Gilbert et al. (2008).

Exploratory analyses were also conducted on other combinations of interest,
such as on detection rate for single readers with CAD and for second readers in
a dual-reader pair. The two presented are chosen because they show how the z-
matrix can help to identify similar groups of readers.

5.2. Exploratory analysis with similarity matrix. For detection rate the point
estimates ûi in Table 1 show a group of three individuals with much higher detec-
tion rates than the others. Although these readers saw a relatively small number
of cases, and the numbers detected are not larger than other readers, the z-matrix
[Supplementary Table 1, Brentnall et al. (2011)] suggests the differences are not
due to chance. The z-matrix has a block structure with one block corresponding to
the 3 outlying readers, and the other block to everyone else. This can also be seen
in Figure 1, which contains plots introduced in Section 3.1. The charts suggest that
the results might be too extreme to be due to random variation, and that there are
two groups. Further evidence of this is seen in the zii measures of concentration
for first dual reader detection rate, shown in Table 1: are all low.

For single-readers with CAD the z-matrix based on data in Table 2 is shown in
Table 3. The number of digits reading down each column gives an impression of
the size of each zij for j = 1, . . . ,18, and the table shows a center effect where the
clearest difference is between centers 2 and 3, with readers from center 1 straddling
the two.

5.3. Model. The exploratory analysis suggests that a continuous model of
p(u) might be inappropriate because there appear to be clusters, or at least there
is not enough information to separate individuals within the clusters. Therefore,
a more plausible approach than a continuous distribution is to take a discrete
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TABLE 1
Number of cases detected and recalled by first 26 dual readers. Analysis is undertaken

for detection rate ui

Cancers Screens MLE (%) Concentration
Center yi+ Recalls ni ûi = yi+/ni (zii × 1,000)

2 2 10 18 11.1 290
2 8 26 92 8.7 375
2 4 19 53 7.5 363
3 5 11 355 1.4 108
1 5 16 394 1.3 92
3 9 27 805 1.1 103
2 11 36 1,022 1.1 109
1 15 62 1,412 1.1 124
1 6 24 628 1.0 73
2 18 76 1,922 0.9 124
2 11 46 1,384 0.8 83
2 14 67 2,128 0.7 82
1 8 62 1,221 0.7 68
3 5 25 769 0.7 60
1 1 3 160 0.6 47
3 6 29 997 0.6 64
3 12 61 2,002 0.6 76
2 7 34 1,180 0.6 66
3 5 23 906 0.6 63
3 7 27 1,312 0.5 69
1 8 51 1,571 0.5 74
1 10 57 2,132 0.5 86
2 7 40 1,556 0.4 82
1 3 21 735 0.4 72
3 8 48 2,166 0.4 124
1 4 46 1,284 0.3 127

OVERALL 199 947 28,204 0.7 −

distribution for u, with unknown locations uj and masses θj for j = 1, . . . , k,
where k ≤ n. That is, P(u = uj ; θ) = θj . The nonparametric maximum likelihood
(NPML) estimate of p(u) is a discrete distribution and has the benefit of not requir-
ing specification of the form of p(u). An expectation-maximization (EM) algo-
rithm is used to next obtain the NPML estimates [Laird (1978)], and a likelihood-
ratio test is used to compare the model fit against a null model with a single atom.
The p-values presented follow Self and Liang (1987), and are used as a way to
show the evidence for the fitted model, rather than to formally control type I error.
This is relevant because the test is post hoc based on exploratory analysis, so there
is an element of multiple testing.
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TABLE 2
Number of cases detected and recalled by 18 computer-assisted readers. Three cancer cases from

center 2 had a missing reader identifier. Analysis is carried out on recall rate ui

Recalls Screens MLE (%) Concentration
Center Cancers yi+ ni ûi = yi+/ni (zii × 1,000)

2 11 57 953 6.0 170
2 11 64 1,080 5.9 170
2 14 59 1,012 5.8 160
2 7 61 1,062 5.7 156
2 9 69 1,257 5.5 156
2 9 49 921 5.3 143
1 16 113 2,408 4.7 257
2 8 46 993 4.6 168
2 5 46 1,037 4.4 183
1 12 87 2,150 4.0 322
2 5 36 1,037 3.5 172
1 11 76 2,266 3.4 249
3 9 61 2,045 3.0 171
1 17 79 2,713 2.9 180
3 7 27 953 2.8 141
3 25 84 3,089 2.7 188
3 9 48 1,835 2.6 183
3 10 35 1,390 2.5 192

2 (Unk.) 3 3 3 − −
OVERALL 198 1,097 28,204 3.9 −

5.4. Results. For the first reader, the EM-algorithm fit has just two atoms
at (0.0066, 0.0855) with respective masses (0.891, 0.109) and log-likelihood
−1,170.151. This compares against a null model with a single point 0.0071 and
log-likelihood −1,184.125. A likelihood-ratio test to compare the models rejects
the hypothesis of no difference, with p-value < 0.001. The estimation results for
p(u) corroborate the exploratory analysis: the first location (0.0071) is for the ma-
jority of readers (the mass is 0.891); the second location (0.0855) is for the top 3
readers in Table 1 with much higher detection rates.

The model fit for recall rate by readers using CAD also confirms the exploratory
analysis. There are two points at (0.0293, 0.0507) with respective mass (0.449
0.551) and log-likelihood −4,606.186. The degenerate fit is 0.0389 and has log-
likelihood −4,637.097, so a likelihood-ratio p-value < 0.001.

5.5. Interpretation. The unusual group of three readers’ detection rates,
within the same center, can be explained by job title: they were the only radio-
graphers in that center. However, it is unlikely that radiographers are assigned
more cancer cases than radiologists because the outcome is unknown prior to the
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(a)

(b)

FIG. 1. Exploratory plots for detection rate, first dual reader. On the x-axis are ûi on a log10 scale.
The y-axis in (a) is Zk as defined in Section 3.1, on (b) it is z+j , which corresponds to the jump sizes
in (a).

screening. It seems more likely that center 2 used a post-event method of deciding
who to call the first reader. This is discussed further in the next section.

Single readers with CAD were found overall to have higher recall rates (3.9%)
than dual reading (3.4%). Table 2 shows that most of the readers with higher recall
rates were in center 2. The z-matrix in Table 3 and the model estimation results
point toward a difference that is linked to center 2. That is, the slight overall in-
crease in recall rate of single reading with CAD over dual reading might have been
caused by a policy difference, or difference in case-mix at one of the centers rather
than errant individual readers.

6. Categorical dual-reader outcomes. The analysis in the previous section
focused on binary outcomes. One of the advantages of the similarity matrix for ex-
ploratory analysis is that it can be readily applied to any likelihood model p(y|u).
In this section we show an exploratory analysis of dual-reader performance when
6 categorical outcomes are considered and the likelihood of multinomial form.

6.1. Data. In this analysis each screenee belongs to a state Slm, where l = 1,2,
respectively, denote a decision to recall or not by a reader from the dual-reading
regimen; m = 1 for cancer present, m = 2 for cancer absent and m = 3 for cancer
unknown. Thus, P(yik = Slm) = uilm for each case k = 1, . . . , ni seen by reader i.

The different states arise because even if a reader does not flag (or does flag)
a case for recall, they may (or, respectively, may not) be recalled in the trial. More
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TABLE 3
(zT × 1,000)-matrix for reader recall rates using CAD. Within center the individuals are ordered ascending by ûi . Note that the z-matrix is transposed

in all the tables in this article, and so, for example, the diagonal is the largest value down each column, not row

Center 3 3 3 3 3 1 1 1 1 2 2 2 2 2 2 2 2 2

3 192 176 146 117 73 80 13 31
3 187 183 176 130 102 115 27 45 1
3 172 176 188 138 132 150 50 1 62 1 1
3 148 156 174 141 158 175 87 2 84 3 1
3 111 117 128 136 171 176 149 7 115 7 3
1 129 136 152 140 168 180 118 4 100 5 2
1 37 35 24 93 109 77 249 72 1 169 33 18 1
1 2 1 19 7 1 57 322 75 109 150 111 25 7 5 4 2 3
1 2 2 112 257 26 169 168 97 67 46 41 31 33
2 24 21 11 76 80 47 238 117 2 172 49 27 2
2 5 1 8 216 214 51 183 161 64 34 22 19 13 15
2 3 2 135 255 31 174 168 89 58 39 35 26 28
2 7 97 3 78 104 143 151 130 124 116 114
2 3 55 2 56 80 139 156 147 143 140 137
2 1 19 1 31 50 122 145 156 159 164 162
2 12 25 42 114 137 155 160 168 167
2 8 19 34 104 126 152 159 170 170
2 6 16 30 99 119 148 157 169 170
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specifically, when a case was flagged for recall and it was recalled for further tests
it is known whether there was a cancer. When it was not recalled by the dual
readers or the single reader with CAD we call it “unknown” because no further
tests are undertaken, but the vast majority of such cases will not have a cancer
present. Cases that are flagged for recall but are unknown were not recalled after
arbitration, or were not flagged for recall by the single reader with CAD. Cases
that were not flagged for recall but the outcome is known might have been recalled
after arbitration, or recalled by the single reader with CAD.

The data are found in Supplementary Table 2. All dual readers are included, so
we ignore whether the reader was marked as a first or second reader. Some of the
second reader identifiers at center 2 were missing, but all data were available for
the other centers.

6.2. Exploratory analysis. Inspection of a scatter-matrix plot of ûijk values
for the states Slm and reader experience, over readers i = 1, . . . ,27, does not show
any clear trends (Supplementary Figure 1) apart from a possible difference be-
tween the centers. However, a pattern is present in S13 vs. experience but it is
masked somewhat by between-center differences and sampling variation. The fol-
lowing exploration of the z-matrix in conjunction with the data helped to determine
if there were any systematic differences between the readers, and to identify and
show more clearly the correlation between experience and S13.

The difference between the centers is backed up by the overall z-matrix (Sup-
plementary Table 3): it has a block structure by center. Separate z-matrices were
produced to further investigate possible differences between readers within each
center. The z-matrix for center 1 is in Table 4. It shows that the readers with 0.5,
5 and 14 years experience appeared to be different from the other readers. It can be
seen from the z-matrix in Table 5 that readers in center 2 were harder to tell apart,
but there were possibly two distinct groups. However, these did not appear to be
correlated with reader experience. In passing, we note that little attention should

TABLE 4
(zT × 1,000)-matrix for dual-reader categorical outcomes within center 1. The data are in

Supplementary Table 2

Experience: 5 14 0.5 4 6 12 15 18

993 3
997 13 1

7 3 973 1 4 2
8 579 153 156 356 20

50 655 94 117 22
29 59 666 56 39

3 341 133 82 465 24
892
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TABLE 5
(zT × 1,000)-matrix for dual-reader categorical outcomes within center 2. The data are in

Supplementary Table 2

Experience: 3 7 22 5 4 4 6 8 17 0.5

746 214 159 6 78
176 475 179 7 3 22 24 12 62

75 170 446 107 9 8 2 3 71
3 32 162 867 48 2 1 69

3 20 12 835 35 4 26 2 55
43 21 72 437 188 207 77 55
53 9 12 192 425 225 123 44
10 2 20 242 263 309 298 43

1 2 62 93 216 499 35
489

be paid to the reader i with 0.5 years experience because z+i − zii = 0 and so their
parameter fit is incompatible with all other readers’ data; but zij > 0 for all j with
zjj = 0.489 and so i’s data are not incompatible with the other readers’ parameters.
This asymmetry occurs because they read relatively few mammograms (Supple-
mentary Table 2). Table 6 shows the z-matrix for center 3. This is quite different
to the other centers because the concentration measures zii are high for all except
one reader. Since the readers saw a similar number of screens to the other centers,
a systematic effect is likely to be present within the center. Further inspection of
experience against the ûi’s within center 3 showed a potential link between S13
and reader experience. To obtain further understanding, the categorical response
was dichotomized into S13 against the rest, and a z-matrix for centers 1 and 3 was
obtained (all readers in center 2 had S13 = 0), as shown in Supplementary Table 4.

TABLE 6
(zT × 1,000)-matrix for dual-reader categorical outcomes within center 3. The data are in

Supplementary Table 2

Experience: 0.1 0.25 2 3 4 6 9 10 18

1,000 2
770

53 980 18 44
31 14 982
75 1,000 11
19 994 65 16
19 6 924
31 5 940

1,000
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(a) (b)

(c) (d)

FIG. 2. Exploratory plots for recall-but-overruled rate vs. reader experience (years), based on data
from Supplementary Table 2 (S13 vs. the rest). The data show some evidence that dual readers with
less experience are more likely to be overruled in centers 1 and 3. Readers from center 2 are excluded
from the plots because that center did not record when a reader flagged a case for recall that was
not recalled (all S13 = 0). Plot (a) shows experience against the original estimates û, with center
number as the symbol. Plot (b) uses expected experience on the y-axis, following the approach in
Section 3.5. The plots are presented with experience on the y-axis because they show a quantity
for the expected experience given u. Plot (c) replaces the original estimate û by a prediction from
equation (3). Each dashed line (– –) is a loess smoother fit. Plot (d) shows how expected experience
relates to the original data.

The ordering of individuals by their estimate ûi appears to relate to experience
shown in the second row of the table, and the matrix pattern is inconsistent with
a null hypothesis where everyone has the same ui (Figure 3). The correlation to
experience is most clearly displayed in Figures 2(b), (c).

6.3. Interpretation. The readers in each center worked independently, and
made their recall decisions on their own. However, in center 2 the arbitration pro-
cess involved discussion between several readers, once a disagreement was found
between the first and second reader. This might be why readers in center 2 were
recorded as first or second reader after the outcomes had been observed, and why
the data (Supplementary Table 2) show that when a reader in center 2 flagged a
case for recall, the case was always recalled regardless of the other reader. In any
case, it is clear that, as originally recorded, it is difficult to compare readers from
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FIG. 3. Graphical testing of the z-matrix printed out in Supplementary Table 4. The top-left graphic
shows the z-matrix (not transposed as in Supplementary Table 4) where each cell is represented by
a rectangle with area proportional to zij . The rows are therefore histograms with the same total
area for each row. The other three graphics are simulated z-matrices using the overall û, obtained
by pooling all the data. The same number of screens (ni ) were simulated for each reader i as in the
data, and the matrices were ordered descending by simulated ûi , for consistency with Supplementary
Table 4. This graphical test suggests that there is some evidence to reject a null hypothesis that all
readers have the same recall-but-overruled rate.

center 2 with the others in this analysis, and so it is reasonable to leave them out
of Figure 2.

The statistical structure shown by the z-matrix exploration and in Figure 2,
where the less-experienced readers tended to be overruled more often, fits with
a training effect. It is common practice in dual reading to pair experienced readers
with less experienced ones. Thus, the increased rate of overruled recall flags (by
3 different readers: the other, generally more experienced dual reader, an arbitra-
tor and the independent reader with CAD) might be linked with less experienced
readers being more cautious in their recall decision. Overall, dual reading miti-
gates this by pairing inexperienced readers with experienced ones who are able to
overrule unnecessary recalls. It is unclear whether single reading with CAD would
similarly mitigate this because, although the average experience of readers using
CAD in CADET II was similar to dual reading, the minimum experience was 4
years (compare Figure 2). Thus, in any implementation of screening based on a
single reader with CAD, it might be worth monitoring recall rates for readers with
less than 4 years experience.

7. Dual reading vs. CAD false recall. So far we have considered analysis of
the two screening regimens separately. Further modeling may be used to look at
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them together. We end by investigating the difference in recall rate between single
readers with CAD (3.9%) and dual reading (3.4%). To show the technique from a
different angle, we proceed as if we did not know about the z-matrix, and first fit a
statistical model to the data. Then, the z-matrix will be used to help provide more
understanding of what the model has found.

7.1. Data. Let yik = 1 if CAD reader i recalls case k = 1, . . . , ni where no
cancer is detected on recall but dual reading does not, and yik = 0 if CAD reader i

does not recall the case where no cancer is detected on recall but dual reading does.
Note that the comparison to be made is between the cases where single readers with
CAD or dual readers flag for recall in error (but not both of them). The data from
the trial are shown in Table 7: if ûi < 0.5, then the CAD reader did better than dual
readers, and if ûi > 0.5, then they did worse.

7.2. Model. Consider a model

logit{P(yik = 1|xi , vi;β, σ 2)} = xikβ
′ + vi,

where β = (β0, β1, β2) are parameters and xi = (xi1, xi2, xi3) are covariates; vi

is a random effect taken (for convenience) to be from a Normal distribution with

TABLE 7
Number of noncancers recalled by CAD reader (yi+) when dual

readers did not recall, for all cases recalled in error by either CAD
readers or dual readers (but not both)

Center Experience yi+ ni ûi

1 4 21 43 0.488
1 6 20 59 0.339
1 12 29 50 0.580
1 14 17 32 0.531
1 15 13 28 0.464

2 4 38 65 0.585
2 4 27 42 0.643
2 5 29 45 0.644
2 5 28 44 0.636
2 6 18 35 0.514
2 7 26 43 0.605
2 8 29 42 0.690
2 17 34 42 0.810
2 22 38 62 0.613

3 4 35 92 0.380
3 6 46 96 0.479
3 9 61 103 0.592
3 18 45 88 0.511
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mean 0 and variance σ 2; and logit(·) denotes the logistic function. The covariates
are a constant (xi1 = 1), a factor for center 2 (xi2 = 1 for center 2, 0 otherwise)
and a factor for reader experience (xi3), whose form is explored below. Thus, the
baseline is for centers 1 and 3 and readers with the reference reader experience.
Other covariates [about the screen: first ever screen (incident) or not (prevalent),
age, a score from the CAD algorithm predicting the likelihood of cancer; and about
the reader: training (radiographer, radiologist, other)] were explored but did not
significantly improve the model fit.

Maximum-likelihood estimation (the routine xtlogit in the computer soft-
ware STATA that uses Gauss–Hermite quadrature for the likelihood) is used to
find odds ratios and Wald 95% confidence bounds on the effects. The first defi-
nition of reader experience is a binary variable xi3 = 1 when reader i has more
than six years experience, 0 otherwise. This definition was chosen because it
roughly balances the readers by center, as seen in Table 7. The estimated odds
ratios for center 2 and reader experience effects are, respectively, 1.542.012.61 and
1.231.592.06, where we use the useful notation from Louis and Zeger (2009) to
present the point estimate surrounded by a 95% confidence interval. Using this def-
inition of experience seems to account for most between-reader variation because
ln(σ̂ 2) = −13.6(43.0) [again following Louis and Zeger (2009) to put the standard
error as a subscript]. Indeed, identical odds ratios are found from a straight logistic
regression without vi . Other definitions of reader experience suggest that a linear
relationship is not a good one: if years of experience are used, then the odds ratio
estimate is 1.001.021.05, and the random-effect term becomes more important with
ln(σ̂ 2) = 0.15(0.01). Another possibility is to use log(experience), which resulted
in an estimated reader experience odds ratio of 1.041.331.70.

The model fits provide some evidence that, perhaps surprisingly, the less expe-
rienced readers were less likely to recall in error with CAD than the experienced
ones. This is different to the trend seen in Astley et al. (2006), although that was
a retrospective study. Taken together with the results in Section 6.3, this might be
interesting because it suggests that CAD might help the less experienced readers
(<7 years) avoid unnecessary recall decisions. However, given that n = 18, one
might be interested in understanding more about the data’s structure, especially
given the change in effect size depending on reader experience definition. We will
proceed to further investigate using the z-matrix and some of the plots previously
used.

7.3. z-matrix analysis. The z-matrix is shown in Supplementary Table 5. The
data driving the experience effect from the model are that two readers with 6 and
4 years experience have relatively low ûi , with their zij close to the other’s zji ,
and they are relatively concentrated; and one reader with 17 years experience has
the highest ûi , which is also more concentrated than those in between. A center
structure can also be observed: center 2 against the others. The experience pattern
is also seen in Figure 4, where the three readers are clear in plots (b) and (c). How-
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(a) (b)

(c) (d)

FIG. 4. Exploratory plots for single reader with CAD recall-in-error rate (relative to double read-
ing) vs. reader experience (years). Plot (a) shows experience against the original estimates û, with
center number as the symbol. Plot (b) uses expected experience on the y-axis, following the ap-
proach in Section 3.5. Plot (c) replaces the original estimate û by a prediction from equation (3).
Plot (d) shows how expected experience relates to the original data.

ever, some caution in interpreting the reader experience correlation is required:
differences are seen between the null and observed z-matrices in Supplementary
Figure 2, but the pattern of two low ûi and a single high ûi might be due to chance.
The plot casts doubt on whether the pattern is real, or whether it was (mis)fortune
that led to the reader experience effect. A z-matrix examination therefore showed
that the correlation between reader experience and ui was driven by 3/18 read-
ers with behaviors in opposite directions, but also showed that it is quite a weak
finding.

7.4. Other techniques. The model fit may be explored in other ways. We end
by using prediction to show that the center 2 effect is a more robust finding. If a
noncancer case is not recalled by the single reader with CAD, then, using centers
1 and 3, we fit a logistic-regression model for the probability of recall by dual
reading with covariates for incidence/prevalence (first or subsequent screen) and
whether the case was arbitrated. A prediction from this model is that 156 such
cases could be expected at center 2. This compares against an observed number
of 130, so the dual readers did slightly better than might be expected. A similar
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logistic-regression model was fitted to centers 1 and 3 for recall by the single reader
with CAD, given the case was not a cancer and was not recalled by dual reading.
A covariate for incidence/prevalence status was used together with a continuous
variable correlated to the probability of cancer according to the computer tool.
This model predicted a total of 140 such cases, but 267 were observed.

8. Application of the exploratory approach to other data. The z-matrix
applies quite generally to the two-stage statistical setup described in Section 2.
A similar data structure is found in other applications, such as the effect of physical
tasks of patients, blood glucose levels and rat body weights that are in Crowder
and Hand (1990); as well as many others including sport where individuals have
repeated attempts to, for example, hit a ball in cricket, or score a goal in football; or
in the workforce when productivity is measured by number of items processed by
the worker. Thus, the technique might be used for growth curves, point processes
or any other data structure where it is possible to write down a likelihood function
for the individual.

One aim is to use the data to find structure among the units that would be seen
again in future samples. A common approach to this problem is to fit a two-stage
model, which, as seen in the above data analysis, might produce similar findings to
the z-matrix approach. However, some strengths of the z-matrix as an exploratory
technique, relative to use of full statistical models, include the following:

• As seen in Section 2.2, zij is a comparative measure that has a direct interpreta-
tion in terms of how close individual j ’s parameter fit is to individual i’s data.
Although other approaches can be used to estimate p(ui |y), they lose the direct
comparative aspect that arises in the z-approach from restricting the u support to
only contain Ûn = (û1, . . . , ûn). For example, when using NPML in Section 5
an equivalent “zij ” would have j = 1,2 because there are two support points.

• Plots such as Figure 1 show that the z-matrix can be used to provide an indica-
tion of how many distinct groups there might be; NPML simply gives the most
likely number. For exploratory analysis both are useful.

• The measure can be interpreted in a similar manner for different p(y|u) like-
lihoods, and the information from ui vectors is shown in the same two-
dimensional way for any dimension of ui . That is, the approach standardizes
comparisons between the ui vectors for different types of response variables.

• The approach is quite general and can be easily applied to different p(y|u) like-
lihoods. Although with a binomial likelihood many other approaches are fea-
sible using statistical software, this will not always be the case. For example,
the z-approach was used for prediction when the likelihood function was of a
self-exciting point process form in Brentnall, Crowder and Hand (2008).

• For prediction the approach provides a simple approximate route to BLUP’s
(best linear unbiased predictors), or posterior means, through equation (3). Some
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evidence of the benefit of predictions formed in this way using real data, com-
pared with parametric empirical Bayes predictions, is found in Brentnall, Crow-
der and Hand (2010).

• Finally, while computationally-intensive methods may be justified for statistical
modeling, it seems much less attractive to have to wait for exploratory analy-
sis to run. Once the point estimates have been obtained, the method requires
O(n2) computations for equation (1). This makes it most appealing for small to
moderate n.

9. Conclusion. In this work we developed a method of exploratory analysis
for applications in which repeated measurements have been recorded on a group
of individuals. The aim of the approach is to draw attention to groups of similar
behaviors, outliers and trends in the data. It does so by helping to quantify pre-
diction uncertainty between individual point estimates through a “similarity” mea-
sure. This z-matrix used can be viewed as a discrete approximation to an empirical
Bayes posterior distribution. The approach was motivated by an analysis of reader
performance in CADET II. We showed its application to binary and multinomial
response variables, and illustrated some identified properties of the measure using
the data. One avenue for future research is to extend the approach to explicitly ac-
count for more than two levels in the hierarchical data structure. Such an extension
would be useful for cancer screening since readers are sampled from screening
centers.
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SUPPLEMENTARY MATERIAL

Supplement to “A method for exploratory repeated-measures analysis ap-
plied to a breast-cancer screening study” (DOI: 10.1214/11-AOAS481SUPP;
.zip). Some additional tables and charts to accompany this paper.
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