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Abstract. A competition model on N2 between three clusters and governed by directed last passage percolation is considered. We
prove that coexistence, i.e. the three clusters are simultaneously unbounded, occurs with probability 6 — 8 log 2. When this happens,
we also prove that the central cluster almost surely has a positive density on N2. Our results rely on three couplings, allowing to
link the competition interfaces (which represent the borderlines between the clusters) to some particles in the multi-TASEP, and on
recent results about collision in the multi-TASEP.

Résumé. On étudie un modele de compétition sur N2 entre trois clusters et gouverné par la percolation dirigée de dernier passage.
On montre que la coexistence, c’est a dire que les trois clusters sont infinis simultanément, a lieu avec probabilité 6 — 8log2. Dans
ce cas, le cluster central admet une densité positive sur N2. Nos résultats reposent sur trois couplages qui permettent de relier les
interfaces de compétitions (qui représentent les frontieres entres les clusters) a certaines particules du multi-TASEP, ainsi qu’a des
résultats récents sur la collision dans le multi-TASEP.
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1. Introduction

The directed last passage percolation (LPP) model has been much studied recently. In dimension 2, it is closely
related to some queueing networks, to random matrix theory and to some combinatorial problems such as the longest
increasing subsequence of a random permutation. See Martin [11] for a quite complete survey.

Throughout this paper, N denotes the nonnegative integer set. We consider i.i.d. random variables w(z), z € N2,
exponentially distributed with parameter 1. Let P be the Borel probability measure induced by these variables on the
product space §2 = [0, oo)Nz. The last passage time to 7 is defined by

G(2) :m)fix Zw(z )

ey

where the above maximum is taken over all directed paths from the origin to z (see Section 2 for precise definitions).
The maximum G(z) is a.s. reached by only one path, called the geodesic to z. As a directed path, this geodesic goes
through one and only one of the three sites (0, 2), (1, 1) and (2, 0), called sources. Let the cluster C(s) be the set
of sites z € N whose geodesic goes by the source s. Hence each configuration w € £2 yields a random partition of
{(x,y) e N?>:x +y >2}, see Fig. 1.
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Fig. 1. Two simulations of the clusters C(0, 2), C(1, 1) and C(2,0) which have been colored with respectively dark blue, light blue and red. To
the left, C(1, 1) seems to be unbounded (there might be coexistence) whereas, to the right, it is bounded. Note that such a simulation of bounded
but large cluster C(1, 1) is very rare.

We focus on the competition (in space) between the three clusters C(0,2), C(1,1) and C(2,0). The directed
character of the model implies the first and the third ones are unbounded. But this is not necessary the case for the
second one; we will talk about coexistence when the cluster C (1, 1) is unbounded.

Our main result (Theorem 1) states that coexistence occurs with probability 6 — 8log?2, which is close to 0.4548.
As far as we know, there is no other model where such a coexistence probability is exactly computed. For instance,
in the (undirected) first passage percolation model, the competition between two clusters growing in the same space
leads to two situations: either one cluster surrounds the other one, stops it and then infects all the other sites of 72 or
the two clusters grow mutually unboundedly, which is also called coexistence. And in the case of independent expo-
nential weights, Haggstrom and Pemantle [7] have proved that coexistence occurs with positive probability. Garet and
Marchand [6] have since generalized this result to ergodic stationary passage times and to random environment. Sim-
ilar results to these were obtained independently using different techniques by Hoffman in [8] and further developed
in [9].

Our second result (Theorem 2) completes the first one. When the cluster C (1, 1) is unbounded then it almost surely
has a positive density in the following sense:

1
lim — Card(C(1, 1) N[0, n]*) > 0.
n—-oon

The proofs of Theorems 1 and 2 are mainly based on three couplings: see Thorisson [15] for a complete reference
on couplings. The first one is due to Rost. In [13], he builds a totally asymmetric simple exclusion process (TASEP)
from the LPP model, using the last passage times G(z), z € N2, as jump times. A background on exlusion processes
can be found in the book [10] (Part IIT) of Liggett. The borderlines between the clusters C(1, 1) and C(0,2) and
between C(1, 1) and C(2,0) are modeled by two infinite directed paths, called the competition interfaces. Ferrari
and Pimentel [5], thus Ferrari, Martin and Pimentel [4] have studied their asymptotic behaviors. These competition
interfaces play an important role here since the cluster C(1, 1) is bounded whenever they collide. Rost’s coupling
allows to link these competition interfaces to two tagged pairs [co 1] in the TASEP, where labels co and 1 respectively
represent holes and particles. In particular, the coexistence phenomenon is equivalent to the fact that these two tagged
pairs never collide (Lemma 9).
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The second coupling allows to turn the two tagged pairs into two second class particles whose labels are denoted by
2 and 3 (Lemma 3). A second class particle is an extra particle which interacts with particles like a hole and interacts
with holes like a particle. Its trajectory has been studied by Mountford and Guiol [12]. See also Seppildinen [14]. The
idea to represent a second class particle as a hole-particle pair [co 1] is due to Ferrari and Pimentel [5].

Ferrari, Gongalves and Martin [3] have studied the collision phenomenon of two second class particles. Thanks
to the two previously announced couplings, they deduced (Theorem 4.1) that coexistence occurs in the LPP model
with probability 1/3. However, they assume for that some constraining initial conditions, namely w (0, 0) = @ (1,0) =
(0, 1) = 0. We will explain why their coexistence result is a partial version of Theorem 1.

Finally, the third coupling, usually called basic coupling ([10], p. 215), allows to consider the two second class
particles (i.e. the 2 and 3 particles) in a more general exclusion process, the multi-TASEP. Recently, Amir, Angel and
Valko [1] have proved many results about this process. Some of them are expressed in terms of second class particles
(Proposition 4 and Lemma 5), thanks to that third coupling.

To sum up, these three couplings state a strong link between the multi-TASEP and the LPP model, leading to
Theorems 1 and 2.

The paper is organized as follows. Section 2 contains the definition of the LPP model and statements of main
results with some comments. Section 3.1 introduces the TASEP. The tagged pairs [co 1] are identified in Section 3.2.
Sections 3.3 and 3.4 are respectively devoted to the second and the third coupling on which proofs of Theorems 1
and 2 are based. The first coupling is described in Section 4.1. Competition interfaces are defined in Section 4.3 and
linked to tagged pairs in the TASEP in Section 4.4. Finally, Theorems 1 and 2 are proved in Section 5.

2. Coexistence results

Recall that P denotes the law on 2 = [0, oo)Nz of the family {w(z), z € N?} of i.i.d. random variables exponentially
distributed with parameter 1.

A directed path y from (0, 0) to z is a finite sequence of sites (zo, 21, ..., 2x) With zo = (0,0), zx =z and z;+1 —
zi =(1,0) or (0, 1), for 0 <i <k — 1. The quantity ZZ,EV w(z') represents the time to reach z via y. The set of all
directed paths from (0, 0) to z is denoted by I"(z). The last passage time to z is defined by

G(z) = max w(@).
(z) yem);&; @)

Since each path of I"(z) goes by either z — (1, 0) or z — (0, 1), the function G satisfies the recurrence relation
G(2) =w(z) +max{G(z — (1,0)), G(z — (0, 1)} (D

(with boundary conditions G(z) =0 for z = (x, —1) or (—1, x) with x € N). A site z is said infected at time ¢t if
G(z) <t. Relation (1) can be interpreted as follows: once both sites z — (1,0) and z — (0, 1) are infected, z gets
infected at rate 1.

Recall that the cluster C(s) is the set of sites z € N?> whose geodesic goes by the source s. Let us point out the
directed character of the LPP model forces the clusters C(2,0) and C(0,2) to be unbounded. Indeed, if the site
z = (x,y) belongs to C(2,0), so do all the sites on its right. Similarly, if the site z = (x, y) belongs to C(0, 2) so do
all the sites above. Actually, only C(1, 1) can be bounded. Indeed, whenever

min{w(1,0) + ®(2,0), w(0, 1) + »(0,2)} > (1, 1) + max{w(1,0),»(0, )}, )

the last passage times G (2, 0) and G (0, 2) are both larger than G (1, 1). In this case, sites (2, 1) and (1, 2) respectively
belong to C(2, 0) and C(0, 2), hence the cluster C (1, 1) is reduced to its source. See also the right-hand side of Fig. 1
for the simulation of a larger (but bounded) cluster C(1, 1).

For any positive integer n, let

a(n) =Card(C(1, ) N{(x,y) eN?:x +y =n}).

We will say there is coexistence when the cluster C(1, 1) is unbounded, i.e. a(n) > O for all n > 2. When this holds,
each cluster C(s) contains sites whose last passage time is as large as wanted; the three clusters C(0,2), C(1, 1) and
C(2,0) coexist.
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Theorem 1. Coexistence probability is 6 — 8log?2:
P(Vn>2,a(n) >0)=6—8log?2.

It is already known that coexistence probability differs from O and 1. Indeed, it is clear that coexistence cannot hold
a.s. since the event defined in (2) occurs with positive probability. Moreover, in a previous work [2], we have shown
in particular that coexistence occurs with positive probability if and only if there exists at least one infinite geodesic
(different from the horizontal and the vertical axes) with positive probability; this last condition being proved in [5],
Proposition 7.

Let us compare our result to Theorem 4.1 of [3]. In that paper, Ferrari, Goncalves, and Martin prove that coexistence
occurs with probability 1/3, but they consider the LPP model under the initial condition

@(0,0) =w(1,0) =w(0,1)=0. (3)

Since the origin (0, 0) belongs to each geodesic, its weight does not affect the coexistence probability. However, the
cluster C(1, 1) benefits from max{w(1,0), w(0, 1)} whereas the clusters C(2,0) and C(0, 2) only use w(1,0) and
(0, 1) respectively. Assuming w (1, 0) = w(0, 1) = 0 amounts to removing this benefit. More precisely, let g : 2 —
§2 defined by g(w)(0,0) = g(w)(1,0) = g(w)(0, 1) =0 and g(w)(z) = w(z) otherwise. It then follows

C(1, D(g) cCcd, D(w).

Theorem 4.1 of [3] says C(1, 1)(g(w)) is unbounded with probability 1/3. This suggests that coexistence probability
in the LPP model (without initial conditions) is greater than 1/3. Actually, this remark has motivated the present work.

Our second result concerns the density of the cluster C(1, 1) in the quadrant N2. For s € {(0,2), (1, 1), (2, 0)}, let
us define the density of the cluster C(s) as

1 2
p(s) := lim — Card(C(s) N[0, n]*) “4)
n—-oon

when this limit exists. The event p(1, 1) > 0 obviously implies coexistence, but also means that the cluster C(1, 1) is
visible with the naked eye.

Theorem 2. The following statements hold:

(1) For any source s € {(0, 2), (1, 1), (2,0)}, the density p(s) exists with probability 1;
(i) Conditionally to coexistence, the cluster C(1, 1) has positive density:

P(p(l, 1) >0|Vn>2,a(n) > 0) =1;
(iii) The cluster C(1, 1) never fills up the quadrant:

P(p(1,1) <1)=1.

Let us notice that the first part of Theorem 2, i.e. the almost sure existence of p(s) for any source s, only derives
from geodesic arguments (namely Propositions 7 and 8 of [5]).

3. TASEP and related processes
3.1. Some definitions

In the sequel, TASEP stands for totally asymmetric simple exclusion process. It is a Markov process whose dynamics
can be easily described: at rate 1 (i.e. after an exponential time with parameter 1), particles (integer or co) at sites
x and x + 1 attempt to exchange their positions. The exchange occurs if the value at site x is less than the value at
site x + 1, otherwise nothing happens (total asymmetry property). There is at most one particle per site (exclusion
condition). The oo particle has thus a role of hole. Here is a precise definition:
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Definition 1. Set 7. = 7.U {oc}. Let S be a subset onZ. Consider the linear operator L on cylinder functions f on S
defined by

LI =Y Linan [ F () = fn]. )
X€Z
where n**+1 is obtained from n = {ny,y € Z} by exchanging values at x and x + 1:

x,x+1 _

't =M1 ify=x,

Tx fy=x+1L
A Markov process on Ry with configuration (or state) space S and with generator L is called:

(a) TASEP if the configuration space is S = {1, 0o}%,
(b) k-type TASEP if the configuration space is S = {1,2, ..., k, oo}%,
(c) multi-TASEP if the configuration space is S = Z.%.

{ny ifyé¢{x,x+1},

Let us add that the order relation < on Z is extended to Z as follows: i < oo if and only if i belongs to Z.

. S . . . . . . 7
Besides, it will be convenient to locate some particles of interest in a configuration. Let 1 be a configurationin § C Z
containing exactly one k particle (k € Z). The position of this k particle in 7 is denoted by

k[n]. (6)

For a further use, it is convenient to introduce the following particular configurations, described in Figs 2, 3 and 4. For
any integer m:

e Let n™ € {1, co}” defined by

m_ [l ifxef..,=3,=2U{0}U{m+2},
Ny = . (7
oo otherwise.
o Let ™ e (1,2, 3, 00} defined by
1 ifxe{..,—=3,-2,—1},
Gm _ 2 ifx=0, 8
x 3 ifx=m+1, ®)
oo otherwise.
e Let n(® e Z% defined by
N =x (xe). 9)

3.2. Tagged pairs in the TASEP

We want to follow the evolution of two pairs of particles over time in the TASEP with initial configuration " defined
in (7). A pair consists of a couple (oo, 1) tagged with brackets. In the configuration ™, there are exactly two pairs
[oco 1], the left one is called — pair and the right one + pair (see Fig. 2).

Let us describe the evolution rule of the two pairs. Let ¢ € {—, +}. When a 1 particle jumps (from the left and at
rate 1) over the hole oo of the ¢ pair, this one moves one unit to the left:

%
1[oo 1] becomes [oo 1]1. (10)
When the 1 particle of the ¢ pair jumps to the right (over a hole co and at rate 1) then the ¢ pair moves one unit to the
right:

[ l]rgo becomes oco[oo 1]. (11)
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Fig. 2. Configuration n with the two tagged pairs [0o 1]. They are separated by m “holes™ co. On the axis Z, the origin is marked with a vertical
arrow.

Definition 2. For ¢ € {—, +}, let us denote by H®(t) the hole’s position of the ¢ pair, at time t, in the TASEP with
initial configuration n™:

H=(1) HT (1)

The collision time is defined as
Teol =inf{t > 0: H- (1) = H" (1)}, (12)

with the convention inf @ = oo.

The two tagged pairs merge together at the jump time 7t and there remains only one tagged pair so that H ™ (¢) =
HT(t)=: H(t) forall t > Ty

[ oo 1][ oo 1] becomes oo oo 1]1.
H=() H* (1) H()

Finally, let us point out that the process {H®(¢), t > 0}, for & € {—, +}, is not markovian but {(£(¢), H™ (¢t), H* (1)), t >

0} is, where & = {£(¢), t > 0} is a TASEP with initial configuration ™. The reader can refer to [10] to get more details

on tagged particle processes.

3.3. From tagged pairs to three-type TASEP

Two ideas may help the reading of this section. First, a tagged pair in a TASEP behaves like a single particle of a certain
extra type with respect to the other ones. Second, changing types by applying an increasing function f : Z — Z on
them does not affect the dynamics of a k-type TASEP or in a multi-TASEP.

Recall that in a k-type TASEP, a i particle can pass a j particle if and only if i < j. But the above evolution rule
shows that each tagged pair behaves like any single i particle with respect to a co particle — see (11) — and also with
respect to a 1 particle — see (10) — provided i is more than 1 and finite. If we turn the — pair into a 2 particle and the +
pair into a 3 particle (for instance), we obtain a three-type TASEP. More precisely, consider transformations

Y = (W), (1, 00} — (1,2, 3, 00}
defined by:
1. Forx+2<y,

n.—1 ifz <x,

2 ifz=x+1,
vy =4, ifx+2<z<y—1,
3 ifz=1y,

N+1 ifz>y+1.

2. Forx =y,
n,—1 ifz<x-—1,
, 3 ifz=ux,
v n = 2 ifz=x+1

Ner1 ifz>x+2.
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m
—A—

@@(%) D -z

Fig. 3. Configuration r)(3)*’”. The two particles 2 and 3 are separated by m holes oco.

For example, ¥ ~1"*1 transforms ™ (Fig. 2) into ™ (Fig. 3).
In what follows, we focus on the evolution of the two particles 2 and 3 over time in the three-type TASEP until the
collision time 7¢]. The applications ¥*-Y provide the following coupling:

Lemma 3. Let &£ = {£(t), t > 0} be a TASEP with initial configuration n"™ and collision time T, as defined in (12).
Then, the process

g = (W OH O (£(1)) 0 <1 < Teo)

is a three-type TASEP on [0, Tco1] with initial configuration n(3)'m. In particular, with the notation (6), it follows:

() Fort <Teo, 2[E' )] =H(t)+ 1 and 3[§'(t1)) = HY (1),
(i) Fort=Te, 2['(0)]=HY(t)+1=H () + 1 and 3[E' ()] = HT(t) = H™(1).

It is crucial to remark this coupling holds until time 7o (70 included thanks to the part (b) in the definition of
Yy,

In the three-type TASEP &/, particles 2 and 3 can be seen as second class particles: both are allowed to jump to the
right if there’s a hole (oo particle) and both can be passed from their left by 1 particles.

3.4. From three-type TASEP to multi-TASEP

The goal of this section is to couple a three-type TASEP with initial configuration 7" and a multi-TASEP with
initial configuration () using the basic coupling (see [10]). To do so, let us consider a family {N,(¢),t >0, x € Z}
of independent Poisson processes with parameter 1. At each event time N, () and for the two processes, the particles
located respectively at site x and x + 1 exchange their positions if permitted by the order <, nothing changes otherwise.
Hence, the two processes evolve simultaneously on the same probability space. See Fig. 4.

First, let us remark some occurring jumps for the multi-TASEP, say between a i particle and a j particle (with
i < j), are not authorized for the three-type TASEP. This happens when the corresponding particles in the three-type
TASEP are the same or when i € {1, ..., m} and the corresponding particle to j in the three-type TASEP is 3. Then,
we deduce that up to the time where the 2 particle passes the 3 one in the three-type TASEP,

e the 2 particle in the three-type TASEP corresponds to the O particle in the multi-TASEP;
o the 3 particle in the three-type TASEP corresponds to the further right particle among particles 1, ...,m + 1 in the
multi-TASEP.

Hence, the time where the 2 particle and the 3 particle exchange their positions in the three-type TASEP is also the
time where the 0 particle has just overtaken all the particles 1, ..., m + 1 in the multi-TASEP. Theorem 7.1 of Amir,

Fig. 4. The configurations 77(3)*”’ and 7(%) are the starting points of the three-type TASEP and the multi-TASEP under the basic coupling. They

are aligned so that 2 and 3 particles in the three-type TASEP respectively correpond to 0 and m + 1 particles in the multi-TASEP (at time ¢ = 0).
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Angel and Valko [1] states this last event occurs with probability 2/(m + 3). Now, the basic coupling allows to transfer
this result to the three-type TASEP:

Proposition 4. Let P, be the probability measure of a three-type TASEP &' with initial configuration n3m . With
notation (6), it follows

2
P, (3 > 0.2[€'0)] > 3[€' 1)) = ——.

Note that, before results of [1], this result had been conjectured (and proved in the case m € {0, 1}) by Ferrari et al.
in [3].

Let us respectively denote by &’ and £” a three-type TASEP and a multi-TASEP with initial configurations 53"
and 1°. Until the end of this section, we assume that V¢, 2[£/(r)] < 3[£’(¢)]. The basic coupling described above
implies, at any time ¢, the 2 particle in the three-type TASEP corresponds to the O particle in the multi-TASEP, i.e.

V>0, 2[&'n]=0["®)],

and the 3 particle in the three-type TASEP eventually corresponds to one of the particles 1,...,m + 1 in the multi-
TASEDP, i.e.

Ik e{l,....om+1}, I, V=, 3[0)]=k["®)]

The fundamental result (Corollary 1.2) on which [1] is based is that in the multi-TASEP with initial configuration
n(®®), each particle chooses a speed. Precisely, for every k € Z,

. kg" ()]
m =

—00 t

U as.,

where {Uy, k € Z} is a family of random variables, each uniformly distributed on [—1; 1], called the TASEP speed
process. So, on the event {Vz, 2[£'(¢)] < 3[£(¢)]}, the ratios 2[£/(¢)]/t and 3[£'(¢)]/t converge respectively to Uy and
Uy, for a given k. To sum up, the event

{ . 3[E' (O] —2[5'D)]
1m

t—00 t

=0and Vr,2[£'(1)] < 3[5’@)]}

is a.s. included in

m+1

| {Uo=Ur and vt,0[&" ()] < k[£"(0)]}. (13)

k=1

Finally, Lemma 9.9 of [1] states, in the multi-TASEP with initial configuration >, every two particles with the same
speed swap eventually. So the event (13) has zero probability.

Lemma 5. Let P}, be the probability measure of a three-type TASEP &' with initial configuration n®" Then,

P, <tlim 3’1 -2[E' 0]

—00 t

— 0and 1, 2[¢'(1)] < 3[5'@)]) —0.

4. LPP model and tagged TASEP

The goal of this section is to state a coupling between the LPP model and the TASEP. This coupling allows to link the
competition interfaces (defined in Section 4.3) to some pairs of particles (identified in Section 4.2).
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m®®¢aaow

Py Py Py Hy H, Hy

ext

Fig. 5. Here is the configuration n°*" with labelled particles. On the axis Z, the origin is marked with the vertical arrow.

4.1. Rost’s coupling

In [13], Rost gives an explicit construction of the TASEP from the LPP model, using the last passage times G(z),
z € N2, as jump times. Let us describe this construction.

Let us start with the configuration n°*' € {1, 00} which is made up of 1 particles on nonpositive integers and oo
particles on positive ones. The Rost’s idea consists in labelling 1 particles from the right to the left by Py, Py, Ps>...
and oo particles from the left to the right by Hy, Hi, H> ... as in Fig. 5 and in following them over time. Letters P
and H refer to particle and hole.

The evolution rule is

P; and H; exchange their positions at time G (i, j). (14)

At time G (0, 0) = w (0, 0) the first exchange takes place between Py and Hy. The second one will concern Py and H;
if w(1,0) < w(0, 1) and P; and Hy otherwise. More generally, at time max{G({ — 1, j), G(i, j — 1)}, the exchanges
between P; and H;_1, and between P;_1 and H; have already taken place. Since labels of 1 particles and those of oo
particles remaining sorted over time, it follows P; is the left nearest neighbor of H;. From that moment, they exchange
their positions after the time w (i, j) (i.e. at rate 1) thanks to the recurrence relation (1):

w(i, j) =G, j) —max|{G(i — 1, ), GG, j — D}.

It then suffices to disregard labels P; and H; to get back the TASEP. Precisely, let us denote by P;(¢) and H;(t) the
positions of particles P; and H; at time ¢. At the beginning, P;(0) = —j and H;(0) =i + 1. Now, set for > 0 and
xeZ
E(1) = 1 if there exists j such that P;(z) = x,
M7 1 0o otherwise,

and let £(¢) be the configuration (&, (¢))xez. Then:
Lemma 6. The process & = {£(t), t > 0} is the TASEP with initial configuration n®**.

Let us end this section with describing an explicit way to obtain the configuration &(¢) from the infected region at
time 7, i.e. the set {z € N?: G(z) <t}

1. In the dual lattice (—%, — %) + N2, draw the border of the infected region at time ¢ and extend it on each side by
two half-line, as in Fig. 7. The obtained broken line consists of horizontal and vertical unit segments; it represents
the axis Z on which &(7) is defined.

2. Mark the last (from north to east) unit segment of the broken line before the diagonal y = x; it represents the origin
of Z.

3. Replace each vertical (resp. horizontal) unit segment of the broken line with a 1 (resp. co) particle.

For instance, the configuration of Fig. 6 is obtained thanks to the previous algorithm from the infected region given
by Fig. 7.

4.2. Initial conditions in the LPP model

Consider the integer valued random variable N defined by

N = {max{m > 1:0(1,0) + -+ o(m,0) <, 1)} if exists,
0 otherwise.
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() @ @ @] -7

Py P, Hy P H Hy  Hwa Py Hpo

Fig. 6. On {N =m + 1} and at time G (0, 1), the TASEP obtained by Rost’s coupling is equal to the configuration n”*. The — and + pairs defined
in Section 3.2 respectively consist of particles Hy and Py and particles H,,, and Py.

We first remark that {N > 1} = {w(1,0) < w(0, 1)} occurs with probability 1/2, by symmetry.

Lemma 7. Conditionally to {N > 1}, the random variable N is distributed according to the geometric law with
parameter %

This result based on the memoryless property of the exponential distribution will be proved in Section 5.1.

Let m be a nonnegative integer. The event {N = m + 1} implies that the first sites to be infected are in chronological
order (0, 0), (1,0), ..., (m—+1,0) and finally (0, 1); see Fig. 7. This provides the first moves of particles in the TASEP
& obtained by Rost’s coupling. Precisely, Py overtakes Hy, ..., Hy+1, thus at time G (0, 1) particle P; overtakes Hy.
To sum up, on the event {N =m + 1}, £(G(0, 1)) is equal to the configuration ", introduced in (7).

Since G (0, 1) is a stopping time, the strong Markov property implies

Lemma 8. Conditionally to {N = m + 1}, the shifted process &(- + G(0, 1)) is the TASEP with initial configura-
tion n™.

4.3. Competition interfaces

Let us recall that C(s) is the set of sites z € N2 whose geodesic goes by the source s, for s € {(0,2), (1, 1), (2,0)}.
The aim of this section is to define the borderlines between the clusters C(2,0) and C(1, 1), and between C(1, 1) and
C(0,2).

The — competition interface is a sequence (¢, )u>0 defined inductively as follows: ¢; = (0,0), ¢, = (0, 1) and
forn=>1,

_ _{¢n+(1,0) if o +(1,1) € C(0,2), as)

Pt = Lo +(0,1) ifg, +(1,1) e C(1,1) UC(2,0).

In an equivalent way, ¢, 1 chooses among the sites ¢, + (1,0) and ¢, + (0, 1) the first to be infected. Moreover, it
is easy to draw the competition interface (¢, ),>o from a realization of clusters C (2, 0), C(1, 1) and C(0, 2). Indeed,
@, is the only site (x,y) € N?suchthat x +y=n, (x + 1, y) belongs to C(1,1) UC(2,0) and (x,y + 1) to C(0, 2).
So, the directed path (¢, ),>0 well describes the borderline between the clusters C(1, 1) and C(0, 2).
In the same spirit, the borderline between C (2, 0) and C(1, 1) is described by the + competition interface. This is
a sequence (gon+ )n>0 defined inductively by <p8’ =(0,0), 901+ =(1,0) and forn > 1,
+ _Jeof+@0 if of+1,HeCcd,1HUC(0,2),
Pnil = o +(0,1) if ¢F +(1,1) € C(2,0).

When the competition interfaces (¢;7),>0 and (¢, ),>0 meet on a given site zo (see the right-hand side of Fig. 1) then
they coincide beyond that site zo which is the larger (with respect to the L'-norm) element of C(1, 1):

min{n >1,¢, :(p;,"} :max{x +y,(x,y)eC(, 1)}.
In particular, there is coexistence if and only if the two competition interfaces never meet:

Vn=2, ¢, ol
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4.4. From competition interfaces to tagged pairs

Let ¢ € {+, —}. Consider the competition interface (¢;),>0 and its continuous-time counterpart, the interface process
¢° defined by

Vi=0, ¢° ()= ¢ilicw).c, n@)-

n>0

Set
Vi>0, (I°(t), J°(1)) =" (t + G(0, 1)).

By construction of (¢, ),>0, ¢~ (¢) is (0, 0) until G(0, 1) and ¢~ (G (0, 1)) is (O, 1). Besides, on the event {N =m +1},
the point ¢ (G(0, 1)) is known too. Assume this event satisfied. On the one hand, sites (2,0), ..., (m + 1,0) are
infected before (1, 1), ..., (m, 1) which yields <ng =2,0),..., go;,’:H = (m+1, 0). On the other hand, at time G (0, 1),
neither site (m + 2, 0) nor site (m + 1, 1) are still infected which means goljg 4o is not yet determined. In conclusion,
¢ (G(0, 1)) is equal to (m + 1, 0). To sum up, on the event {N =m + 1},

(I7(0),J~ () =(©,1) and (I7(0),J*(©0)=(n+1,0). (16)

See also Fig. 7.

Let & be the TASEP given by Rost’s labelling and assume the event {N = m + 1} satisfied. Thanks to Lemma 8, we
know that the shifted process &(- + G (0, 1)) is the TASEP with initial configuration " . Recall that, in £(t + G (0, 1)),
the position of the oo particle of the e-pair is denoted by H*(¢) (Definition 2). Denote also by P#(t) the position of
the 1 particle of the e-pair. Of course, for any time ¢, P?(t) = H®(t) + 1. Moreover, at time ¢t = 0 (and always on
{N=m+1}),

(H=(0), P~(0)) =(—1,0) and (H*(0),P*(0)=(m+1,m+2). a7

The next result links competition interface (¢°(t + G(0,1));>0 to the & pair [co 1]. Precisely, the coordinates
(I8(1), JE (1)) are given by the labels of particles oo and 1 constituting the & pair at time ¢.

Lemma 9. The following identities hold on the event {N =m + 1}. Forany t >0 and ¢ € {+, —},
(H®(t), P*(1)) = (Hpe o) (t + G(0, 1)), Pyecry (1 + G(0, 1)), (18)
and

HE@) =15() — JE(p). (19)

Fig. 7. The infected region at time G (0, 1) conditionally to {N = m + 1}, delimited by the black broken line. The two black squares represent
¢~ (G(0,1)) and 1 (G(0, 1)). Since ‘/’ﬁ+1 chooses the earlier infected site among ¢5 + (1, 0) and ¢5 + (0, 1), the interface ¢*(¢) is always in
a corner formed by the black broken line. Combining with the algorithm given at the end of Section 4.1, this justifies heuristically why ¢° ()
corresponds to a pair [oo 1] in the TASEP & given by the Rost labels of particles.
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Moreover, for any t > 0,
H"W)=H (1) & ([It®0),J70)=I"@®),J 1) (20)
& ¢T(t+GO,D)=¢ (t+G(, D).

Recall that T is the time at which the tagged pairs collide (Definition 2). Assume N =m + 1 and T¢o < 00.
Then, just before time Tto, the two tagged pairs in the TASEP £(- + G (0, 1)) are side by side and their labels satisfy
I=(t)=1"(t)—1and J~(t) = J*(t) + 1 (thanks to (18)). Thus, at time To, the configuration - - - [oo 1][co 1] --
becomes - - - co[oo 1]1 - - - and thenceforward the two interfaces collide (thanks to (20)):

¢F (Teot + G0, 1)) = ¢~ (Teo1 + G(0, 1)).

Actually, Tco1 + G (0, 1) is the time at which the last site of C(1, 1) is infected. Finally, remark the correspondence
between competition interfaces and tagged pairs still holds after their collision.
Lemma 9 will be proved in Section 5.2.

5. Proofs
5.1. Proof of Lemma 7

Let m > 2 be an integer. First,
P(IN>mIN>1)=P(N>m|N>m—1)xP(N>m—1|N >1).
By the memoryless property of the exponential law,
P(N>m|N>m—1)
=P(w(1,0)+ - +w(m,0) <w®, De,0)+ - +wo@m—1,0) <w,1))
=P(w(m,0) <w(0,1))
=1/2.

Hence, by induction we get P(N > m|N > 1) = 2-m+1 which is also true for m = 1. This means that, conditionnally
to {N > 1}, N is geometrically distributed on {1, 2, ...} with parameter 1/2. In other words,

P(IN=m|N>1)=2"" (m=>1).
5.2. Proof of Lemma 9

Throughout this proof, we assume N =m 4 1. Let us start with proving (18) in the case ¢ = —. In order to lighten
formulas, let us denote by 7, the time G(¢, ) — G(0, 1). Since ¢ = (0, 1), 71 is equal to 0. At that time,

(H(0), P7(0)) = (—1,0)
= (Ho(G(0, 1)), P1(G(0, 1))
= (H;- (G0, D), P;- (G0, D)),

thanks to relations (16) and (17). So, (18) holds at time t; (and for ¢ = —). Let us proceed by induction on times
(Tw)n>1. Assume (18) holds at time t,, for a given n > 1, i.e. I~ (t,) and J~(7,) are the labels of particles oo and 1
of the — pair at time t,, and prove it still holds for any time ¢ € [t,; 7,41]. By definition, (/" (t,), J~(t,)) are the
coordinates of the competition interface ¢~ (t, + G(0, 1)) = ¢~ (G(g, ) = ¢, . At the next step, ¢, - 4 chooses the
earlier infected site among (I~ (t,) + 1, J~(t,)) and (I ~ (), J (1) + 1), say for example

(17 (@41, I~ (@) =0~ (T1 + GO, D) =9, = (I (m) + 1,7~ (w)).
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Then, at time 7,41 + G(0, 1) = G(¢, ), particles Hj-(,,) 41 and P, exchange their positions while H;-(,,) and
Pj-(z,)+1 have not yet done (see Rost’s rule (14)). This statement has two consequences. The first move of the —
pair after time 7, + G (0, 1) takes place at time 7,1 + G (0, 1): (18) holds for any time ¢ € [7,; 7,,41). Thus, at time
Tu+1 + G(0, 1), the — pair jumps one unit to the right and its particles co and 1 then become Hj- ()41 and Pj- ().
So,

(H™ (tas1), P~ (tnt1)) = (Hi- (1) +1 (a1 + GO, 1), Py, (tag1 + G (0, 1)))
= (Hi~ i) (t41 + GO D), Py, ) (tn1 + G(0, 1)),

i.e. (18) holds at time t,,4+1. The case Y= (I~ (zy), J ™ (zy) + 1) leads to the same conclusion.

The case ¢ = + is very similar. This time, put t, = G ((pjl‘ ) — G (0, 1). We have already seen that at time G (0, 1) and
on the event {N =m + 1}, (p;;H =(m+1,0) and (p:n'+2 is not yet determined. So 7,41 < 0 and 1,42 > 0. Relation
(18) holds at time ¢ = 0 thanks to (16) and (17):

(HT(0), PT(0)) = (m+1,m +2)
= (Hn+1(G(0, 1)), Po(G(0,1)))
= (H;+0)(G(0, 1)), Py+0)(G(0, 1))).

Thus, the same induction as before, but on times (0, T;;42, Tm+3 - - ), allows to conclude.

Let ¢ € {+, —}. It can be deduced from the previous remarks that when the ¢ pair jumps one unit to the right,
i.e. H? increases by 1, the label of its co particle increases by 1 whereas the one of its 1 particle remains the same.
Conversely, when the ¢ pair jumps one unit to the left, i.e. H® decreases by 1, the label of its 1 particle increases by 1
whereas the one of its co particle remains the same. To sum up, for any ¢,

HE (1) — HS(0) = 1°(1) — J*(1) — (I°(0) — J*(0)).
Combining with
H 0)=—1=1"(0)=J"(0) and HT0)=m+1=170) — JT(0),

we get (19).
It remains to prove (20). Thanks to (19), the equality HT(t) = H~(¢) is equivalent to

I~ =IT(@0)=J" ()= JT (). 1)

Now, the directed character of the LPP model implies the differences I~ (¢) — I 7 (¢) and J ~(t) — J ¥ (¢) are respectively
nonpositive and nonnegative. So, (21) forces I=(t) = I7(¢) and J~(t) = J T (¢).

5.3. Proof of Theorem 1

In Section 4.3, the coexistence phenomenon has been described in terms of competition interfaces:
Vn>2, a,>0 & Vn>2, ¢ #or.

Let m be a nonnegative integer. Relation (20) of Lemma 9 states that, on the event {N = m 4 1}, the two competition
interfaces (¢, )u>1 and (¢, ),>1 never meet if and only if the collision time T¢o of the tagged pairs in the shifted
process £(-+ G (0, 1)) obtained by Rost’s coupling, is infinite. Moreover, conditionally to {N =m + 1}, £(-+ G(0, 1))
is the TASEP with initial configuration n™ (Lemma 8). Let P, be its probability measure. Then,

P(Vn>2,¢, #¢ IN=m+1) =P, (Teol = 00).

The coupling stated in Section 3.3 between a TASEP with initial configuration n™ and a three-type TASEP &’ with
initial configuration 7®" implies

Py (Teol = 00) = P, (V2,2[€'(1)] < 3[€'0)]),
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where P/, denotes the probability measure of &'. Finally, the previous probability is equal to 1 — 2/(m + 3) (Proposi-
tion 4). Combining the previous identities, it follows:

2
PVn>2,a, >0N=m+1)=1— ——. (22)
m+3

We conclude using symmetry of the LPP model, P(N > 1) = 1/2, Lemma 7 and (22):

P(Vvn>2,a,>0)=2P(Vn>2,a, >0, N > 1)

o0
=22P(Vn22,an>O,N=m+1)

m=0

o0
=2ZP(VnZ2,an>O|N=m+1)

m=0

xP(N=m+1IN = DP(N = 1)

(e

- om+1 m-3
m=0

=6 — 8log?2.

The last equality comes from the formula

1
10g2 = Z mam’
m=1

Let us point out here that, thanks to the memoryless property of the exponential distribution, initial conditions
w(0,0) =w(1,0) = w(0,1) =0 used in [3] amounts to conditioning by the event {N = 1}. So, their coexistence
result (Theorem 4.1) corresponds to (22) with m = 0:

1
P(Vn>2,0, >0|N=1)= 3
5.4. Proof of Theorem 2

For ¢ € {4+, —} and n > 1, let us denote by 6; the angle formed by the half-line [(0, 0), ¢;) with the axis y = 0:

&
Dn — ei@;f.
(7]

First, we are going to prove the competition interfaces (¢, ),>0 and (gon+ )n>0 have asymptotic directions, i.e. the
sequences (6, )y>0 and (8,7 ),>0 a.s. converge to (random) angles 6~ and 6. This then implies the existence of
the densities p(s), for s € {(0, 2), (1, 1), (2,0)}. Our proof follows the ideas of [S]. It is based on the tree structure
of the collection of geodesics to any z € N2, Let us define the highest infinite geodesic passing by the source (2, 0).
This path denoted by y; is inductively built as follows. Set zg = (0,0), z1 = (1,0) and zo = (2,0). If z, € 1, n > 2,
has exactly one child, say z,,, with infinitely many descendant in the geodesic tree, then we put z,,+1 = z),. Otherwise
(it has two such children), we put z,+1 = z, + (0, 1). In the same way, we define the lowest geodesic passing by the
site (0, 1), say y». By Proposition 7 of [5], y1 and y» a.s. have asymptotic directions. Say respectively 6; and 6. By
construction, almost surely,

. . + . +
01 <liminf6 <limsupb,” <6s,
n—o00 n— 00
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and all the geodesics trapped between y; and y» are to be finite. But this is possible only if the angles 6; and 6, are
equal, by Proposition 8 of [S]. Hence, the almost sure convergence of (9,;“ In>o0 (to 01 =6, = 0,) follows. The same
conclusion holds for (6, ),>0.

At present, our goal is to prove that coexistence almost surely implies positive density:

P(Vn>2,a(n) >0and p(1,1) =0) =0. (23)

Statements a(n) > 0 and p(1, 1) = 0 respectively mean 6, > 6,7 and 6~ = 6T. Hence, using the symmetry of the
LPP model with respect to the diagonal x = y, it is sufficient to prove

P(Vn>2,0, > 6, and0~ =60F|IN>1)=0
or, in an equivalent way, that the conditional probability

P(Vn>2,0, > 6, and0~ =0F|IN=m+1) (24)

*n

is null for any m € N.

Let m be a nonnegative integer. In [5], Ferrari and Pimentel have studied the asymptotic behavior of the border
between the two subsets D(1,0) and D(0, 1) of N? formed by sites whose geodesic respectively goes by (1, 0) and
(0, 1). This border is described as a sequence (¢,,),>0 —a competition interface — defined by ¢ = (0, 0) and for n > 0,

e+ (1.0) ifg,+(1,1)e DO, 1),
Pntl =1 0, +(0,1) if g, + (1, 1) € D(1,0).

When w(1,0) < w(0, 1) the geodesic of (1, 1) goes by (0, 1) rather than (1, 0). In this case,
D(1,0) = {(1,0)} UC2,0) and D(0,1)= {(0, 1)} UcC@,2)ucC(,l).

So the sequences (¢;,),>0 and ((p,f)nzo coincide on the event {N =m + 1} included in {N > 1} ={w(1,0) < w(0, 1)}.
Hence, Proposition 5 of [5] applies to the random angle 6, almost sure limit of (9;r In>0:

It —-J @)
lim ————~ =

t—00 t

f(6%), (25)

where f is a deterministic function (whose expression is without interest here). When 8~ = 8, results of [5] apply
again and yield (25) replacing + with —. Therefore, (24) is upperbounded by

limy o0t~ (IH (@) = JH @) = (I = T~ () =0] , _
P( t and Ve, I=(t) —J (1) <IT(t) — JT (1) N_mH)'

Now, thanks to Rost’s coupling (Lemmas 8 and 9, relation (19)), the above conditional probability is equal to

+ _ -
Pm< fim OO o nave, H (1) < H+(t)>, (26)

t—00 t

where P, denotes the probability measure of the TASEP with initial configuration n. Finally, using Lemma 3, the
quantity (26) becomes

IE%,,( lim O] -2E" 01 _ 0 and vz, 2[€'(1)] < 3[5@)]),

t—00 t

where &’ is a three-type TASEP with initial configuration 7> and [P/, its probability measure. Lemma 5 achieves
the proof of (23).

It remains to prove that a.s. the density of the cluster C(1, 1) cannot be equal to 1. By symmetry with respect to
the diagonal x = y, it suffices to show that

P(p(1,1)=1and (1,0) < (0, 1)) =0. @7
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When the density of the cluster C (1, 1) equals to 1, that of cluster C(2, 0) is null. In this case, the competition interface
(;))n=0 is asymptotically horizontal: the sequence (6,),>0 converges to 6 = 0. Furthermore, under the condition
w(1,0) < w(0, 1), the competition interfaces (go,jr )n>0 and (@,)n>0 — previously introduced in this proof — coincide.
So do their directions: 67 = 4. To sum up,

P(p(1,1)=1and w(1,0) < (0, 1)) <P =0).

Now, Theorem 1 of [5] says the distribution of # has no atom and this yields (27).

It derives from the above arguments that cluster C(2, 0) has a positive density on the event {w(1,0) < w(0, 1)},
i.e. with probability one half. Actually, this holds with probability 1 and the same is true for C (0, 2): a.s. p(2,0) > 0
and p(0,2) > 0. To do so, let us remark that the cluster C(2,0) grows when the weights w(1,0) and w(0, 1) are
exchanged, provided w (1, 0) is smaller than @ (0, 1). It then can be proved that

IP’( lim 6 =0 and w(1,0) > (0, 1)) < ]P’( lim 6, =0and w(1,0) < w(0, 1)).
n—0o0 n— 00

We have shown that the right hand side of the above inequality is null. Consequently, the probability of the event
{lim 6" = 0} is null which implies that the cluster C(2, 0) has a.s. a positive density.

Acknowledgments

The authors thank P. A. Ferrari and L. P. R. Pimentel for the communicating enthusiasm of their paper [5]. They also
thank P. A. Ferrari and J. B. Martin for having focus our attention on some recent results in [1].

References

[11 G. Amir, O. Angel and B. Valko. The tasep speed process. Available at arXiv:0811.3706, 2008.
[2] D. Coupier and P. Heinrich. Stochastic domination for the last passage percolation model. Markov Process. Related Fields 17 (2011) 37-48.
[3] P. A. Ferrari, P. Gongalves and J. B. Martin. Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri
Poincaré Probab. Stat. 45 (2009) 1048-1064. MR2572163
[4] P. A. Ferrari, J. B. Martin and L. P. R. Pimentel. A phase transition for competition interfaces. Ann. Appl. Probab. 19 (2009) 281-317.
MR2498679
[5] P. A. Ferrari and L. P. R. Pimentel. Competition interfaces and second class particles. Ann. Probab. 33 (2005) 1235-1254. MR2150188
[6] O. Garet and R. Marchand. Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15 (2005) 298-330. MR2115045
[7]1 O. Héggstrom and R. Pemantle. First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 (1998) 683-692.
MR1659548
[8] C.Hoffman. Coexistence for Richardson type competing spatial growth models. Ann. Appl. Probab. 15 (2005) 739-747. MR2114988
[9] C. Hoffman. Geodesics in first passage percolation. Ann. Appl. Probab. 18 (2008) 1944-1969. MR2462555
[10] T.M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer-Verlag, Berlin, 1999. MR1717346
[11] J. B. Martin. Last-passage percolation with general weight distribution. Markov Process. Related Fields 12 (2006) 273-299. MR2249632
[12] T. Mountford and H. Guiol. The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab.
15 (2005) 1227-1259. MR2134103
[13] H. Rost. Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 (1981)
41-53. MR0635270
[14] T. Seppéldinen. Second class particles as microscopic characteristics in totally asymmetric nearest-neighbor K -exclusion processes. Trans.
Amer. Math. Soc. 353 (2001) 4801-4829 (electronic). MR1852083
[15] H. Thorisson. Coupling, Stationarity, and Regeneration. Probability and its Applications (New York). Springer-Verlag, New York, 2000.
MR1741181


http://arxiv.org/abs/0811.3706
http://www.ams.org/mathscinet-getitem?mr=2572163
http://www.ams.org/mathscinet-getitem?mr=2498679
http://www.ams.org/mathscinet-getitem?mr=2150188
http://www.ams.org/mathscinet-getitem?mr=2115045
http://www.ams.org/mathscinet-getitem?mr=1659548
http://www.ams.org/mathscinet-getitem?mr=2114988
http://www.ams.org/mathscinet-getitem?mr=2462555
http://www.ams.org/mathscinet-getitem?mr=1717346
http://www.ams.org/mathscinet-getitem?mr=2249632
http://www.ams.org/mathscinet-getitem?mr=2134103
http://www.ams.org/mathscinet-getitem?mr=0635270
http://www.ams.org/mathscinet-getitem?mr=1852083
http://www.ams.org/mathscinet-getitem?mr=1741181

	Introduction
	Coexistence results
	TASEP and related processes
	Some definitions
	Tagged pairs in the TASEP
	From tagged pairs to three-type TASEP
	From three-type TASEP to multi-TASEP

	LPP model and tagged TASEP
	Rost's coupling
	Initial conditions in the LPP model
	Competition interfaces
	From competition interfaces to tagged pairs

	Proofs
	Proof of Lemma 7
	Proof of Lemma 9
	Proof of Theorem 1
	Proof of Theorem 2

	Acknowledgments
	References

