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Abstract. G. Edelman, O. Sporns and G. Tononi have introduced the neural complexity of a family of random variables, defining it
as a specific average of mutual information over subfamilies. We show that their choice of weights satisfies two natural properties,
namely invariance under permutations and additivity, and we call any functional satisfying these two properties an intricacy. We
classify all intricacies in terms of probability laws on the unit interval and study the growth rate of maximal intricacies when the
size of the system goes to infinity. For systems of a fixed size, we show that maximizers have small support and exchangeable
systems have small intricacy. In particular, maximizing intricacy leads to spontaneous symmetry breaking and lack of uniqueness.

Résumé. G. Edelman, O. Sporns and G. Tononi ont introduit la complexité neuronale d’une famille de variables aléatoires, définie
comme une certaine moyenne de l’information mutuelle de ses sous-familles. On montre ici que leur choix des poids satisfait
deux propriétés naturelles: l’invariance par permutations et l’additivité. Nous appelons toute fonctionnelle satisfaisant ces deux
propriétés une intrication. Nous classifions toutes les intrications en termes de mesures de probabilité sur l’intervalle unité et nous
étudions le taux de croissance du maximum de l’intrication quand la taille du système tend vers l’infini. Pour un système de taille
fixée, nous montrons que les maximiseurs ont un petit support et que les systèmes échangeables ont une petite intrication. En
particulier, maximiser l’intrication mène à une rupture spontanée de symétrie et il n’y a pas d’unicité.
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1. Introduction

1.1. A functional over random systems

Natural sciences have to deal with “complex systems” in some obvious and not so obvious meanings. Such notions
first appeared in thermodynamics. Entropy is now recognized as the fundamental measure of complexity in the sense
of randomness and it is playing a key role as well in information theory, probability and dynamics [12]. Much more
recently, subtler forms of complexity have been considered in various physical problems [2,4,8,11,18], though there
does not seem to be a single satisfactory measure yet.

Related questions also arise in biology. In their study of high-level neural networks, G. Edelman, O. Sporns and
G. Tononi have argued that the relevant complexity should be a combination of high integration and high differen-
tiation. In [26] they have introduced a quantitative measure of this kind of complexity under the name of neural
complexity. As we shall see, this concept is strikingly general and has interesting mathematical properties.
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In the biological [10,15,16,19–23,27,28] and physical [3,9] literature, several authors have used numerical experi-
ments based on Gaussian approximations and simple examples to suggest that high values of this neural complexity
are indeed associated with non-trivial organization of the network, away both from complete disorder (maximal en-
tropy and independence of the neurons) and complete order (zero entropy, i.e., complete determinacy).

The aim of this paper is to provide a mathematical foundation for the Edelman–Sporns–Tononi complexity, which
turns out to belong to a natural class of functionals, the averages of mutual informations satisfying invariance under
permutations and weak additivity (see below and the Appendix for the needed facts of information theory). The
former property means that the functional is invariant under permutations of the system. The latter that it is additive
over independent systems. We call these functionals intricacies and give a unified probabilistic representation of them.

One of the main thrusts of the above-mentioned work is to understand how systems with large neural complexity
look like. From a mathematical point of view, this translates into the study of the maximization of such functionals
(under appropriate constraints).

This maximization problem is interesting because of the trade-off between high entropy and strong dependence
which are both required for large mutual information. Such frustration occurs in spin glass theory [24] and leads to
asymmetric and non-unique maximizers. However, contrarily to that problem, our functional is completely determin-
istic and the symmetry breaking (in the language of theoretical physics) occurs in the maximization itself: we show
that the maximizers are not exchangeable although the functional is invariant under permutations. We also estimate
the growth of the maximal intricacy of finite systems with size going to infinity and bound the size of the support of
maximizers.

The computation of the exact growth rate of the intricacy as a function of the size and the analysis of systems with
almost maximal intricacies build on the techniques of this paper, especially the probabilistic representation below, but
require additional ideas, so are deferred to another paper [6].

1.2. Neural complexity

We recall that the entropy of a random variable X taking values in a finite or countable space E is defined by

H(X) := −
∑
x∈E

PX(x) log
(
PX(x)

)
, PX(x) := P(X = x).

Given two discrete random variables defined over the same probability space, the mutual information between X and
Y is

MI(X,Y ) := H(X) + H(Y ) − H(X,Y ).

We refer to the Appendix for a review of the main properties of the entropy and the mutual information and to [7] and
[12] for introductions to information theory and to the various roles of entropy in mathematical physics, respectively.
For now, it suffices to recall that MI(X,Y ) ≥ 0 is equal to zero if and only if X and Y are independent, and therefore
MI(X,Y ) is a measure of the dependence between X and Y .

Edelman, Sporns and Tononi [26] consider systems formed by a finite family X = (Xi)i∈I of random variables and
define the following concept of complexity. For any S ⊆ I , they divide the system in two families

XS := (Xi, i ∈ S), XSc := (
Xi, i ∈ Sc

)
,

where Sc := I \ S. Then they compute the mutual informations MI(XS,XSc) and consider an average of these:

I(X) := 1

|I | + 1

∑
S⊆I

1(|I |
|S|

) MI(XS,XSc), (1.1)

where |I | denotes the cardinality of I and
(
n
k

)
is the binomial coefficient. Note that I(X) is really a function of the

law of X and not of its random values.
The above formula can be read as the expectation of the mutual information between a random subsystem XS and

its complement XSc where one chooses uniformly the size k ∈ {0, . . . , |I |} and then a subset S ⊆ I of size |S| = k.
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In this paper we prove that I fits into a natural class of functionals, which we call intricacies. We shall see that
these functionals have very similar, though not identical properties and admit a natural and technically very useful
probabilistic representation by means of a probability measure on [0,1].

Notice that I ≥ 0 and I = 0 if and only if the system is an independent family (see Lemma 3.4 below). In particular,
both complete order (a deterministic family X) and total disorder (an independent family) imply that every mutual
information vanishes and therefore I(X) = 0.

On the other hand, to make (1.1) large, X must simultaneously display two different behaviors: a non-trivial corre-
lation between its subsystems and a large number of internal degrees of freedom. This is the hallmark of complexity
according to Edelman, Sporns and Tononi. The need to strike a balance between local independence and global de-
pendence makes such systems not so easy to build (see however Example 2.4 below for a simple case). This is the
main point of our work.

1.3. Intricacies

Throughout this paper, a system is a finite collection (Xi)i∈I of random variables, each Xi , i ∈ I , taking value in the
same finite set, say {0, . . . , d − 1} with d ≥ 2 given. Since I has no particular structure, we can suppose without loss
of generality that I is a subset of the positive integers or simply {1, . . . ,N}. In this case it is convenient to write N

for I .
We let X (d, I ) be the set of such systems and M(d, I ) the set of the corresponding laws, that is, all probability

measures on {0, . . . , d − 1}I for any finite subset I . We often identify it with M(d,N) := M(d, {1, . . . ,N}) for
N = |I |. If X is such a system with law μ, we denote its entropy by H(X) = H(μ). Of course, entropy is in fact a
(deterministic) function of the law μ of X and not of the (random) values of X.

Intricacies are functionals over such systems (more precisely over their laws) formalizing and generalizing the
neural complexity (1.1) of Edelman–Sporns–Tononi [26].

We denote N
∗ := {1,2, . . .} the set of all positive integers and we write I � N

∗ if I is a finite subset of N
∗. A system

of coefficients is a family of numbers

c := (
cI
S : I � N

∗, S ⊆ I
)

satisfying, for all I and all S ⊆ I :

cI
S ≥ 0,

∑
S⊆I

cI
S = 1 and cI

Sc = cI
S, (1.2)

where Sc := I \ S. We denote the set of such systems by C(N∗). Notice that to a system of coefficients c ∈ C(N∗) there
corresponds a family (ZI , I � N

∗) of random finite subsets of N
∗ such that

P(ZI = S) = cI
S ∀S ⊆ I � N

∗. (1.3)

If c ∈ C(N∗), the corresponding mutual information functional is I c : X → R defined by

I c(X) :=
∑
S⊆I

cI
S MI(XS,XI\S) = E

(
MI(XZI

,XI\ZI
)
)
.

By convention, MI(X∅,XI ) = MI(XI ,X∅) = 0. If X ∈ X (d, I ) has law μ, we denote I c(X) = I c(μ). I c is non-null
if some coefficient cI

S with S /∈ {∅, I } is not zero.

Definition 1.1. An intricacy is a mutual information functional satisfying:

(1) invariance by permutations: if I, J � N
∗ and φ : I → J is a bijection, then I c(X) = I c(Y ) for any X := (Xi)i∈I ,

Y := (Xφ−1(j))j∈J ;
(2) weak additivity: I c(X,Y ) = I c(X) + I c(Y ) for any two independent systems (Xi)i∈I , (Yj )j∈J .
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Clearly, by (1.1), the neural complexity is a mutual information functional with cI
S = 1

|I |+1
1

(|I |
|S|)

, satisfying invari-

ance under permutations. Weak additivity is less trivial and will be proved in Theorem 1.2 below. We remark that the
factor (|I | + 1) in the denominator is not present in the original definition in [26] but is necessary for weak additivity
and the normalization (1.2) to hold.

There is a large literature on entropy inequalities and on the distinguished role of certain linear combinations
of entropies that is relevant to this paper, starting with the foundational papers [13,14,25] (see the notion of “total
correlations,” which have a similar form to components of the neural complexity, although not directly related). The
survey [17] will provide the reader with the most recent developments as well as the history of this literature.

1.4. Main results

Our first result is a characterization of systems of coefficients c generating an intricacy, i.e. a permutation-invariant
and weak additive mutual information functional. These properties are equivalent to a probabilistic representation
of c.

We say that a probability measure λ on [0,1] is symmetric if it is the distribution of a random variable W such that
W and 1 − W are equal in law. Finally, we say that a system of coefficients c ∈ C(N∗) is projective if there exists a
random subset Z ⊆ N

∗ such that, recalling (1.3), Z ∩ I is equal in law to ZI for all I � N
∗, i.e. such that

P(Z ∩ I = S) = cI
S ∀I � N

∗,∀S ⊆ I. (1.4)

Theorem 1.2. Let c ∈ C(N∗) be a system of coefficients and I c the associated mutual information functional.

(1) I c is an intricacy, i.e. permutation-invariant and weakly additive, if and only if c is projective and cI
S = c

|I |
|S|

depends only on the cardinality of S and I , for all S ⊆ I � N
∗.

(2) I c is an intricacy iff there exists a symmetric probability measure λc on [0,1] such that

cI
S =

∫
[0,1]

x|S|(1 − x)|I |−|S|λc(dx) ∀I � N
∗,∀S ⊆ I. (1.5)

In this case λc is uniquely determined by I c . Moreover I c is non-null iff λc(]0,1[) > 0 and in this case cI
S > 0

for all coefficients with S ⊆ I , S /∈ {∅, I }.
(3) For the neural complexity (1.1), we have

1

|I | + 1

1(|I |
|S|

) =
∫

[0,1]
x|S|(1 − x)|I |−|S| dx ∀S ⊆ I, (1.6)

i.e., λc in this case is the Lebesgue measure on [0,1] and the neural complexity is indeed permutation-invariant
and weakly additive, i.e. an intricacy.

If I c is an intricacy and Z is the random subset of N
∗ associated with c, then for all X ∈ X (d, I )

I c(X) = E
(
MI(Z ∩ I )

)
, MI(S) := MI(XS,XI\S).

The representation formula (1.5) is a simple consequence of De Finetti’s theorem, see [1], Theorem 3.1, and the proof
of Theorem 1.2 below. Notice that if c ∈ C(N∗) is projective, then we have an explicit representation of the associated
random set Z . If {Wc,Yi, i ∈ N

∗} is an independent family such that Wc has law λc and Yi is uniform on [0,1], then
the random set

Z := {
i ∈ N

∗: Yi ≥ Wc

}
has the desired property by (1.5). We discuss other explicit examples besides (1.6) in Lemma 3.3 below. In (1.5) and
throughout the paper we use the convention 00 := 1.
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Our next result concerns the maximal value of intricacies. As discussed above, this is a subtle issue since large
intricacy values require compromises. This can also be seen in that intricacies are differences between entropies, see
(2.1) and therefore not concave.

The weak additivity of intricacies is the key to how they grow with the size of the system. This property of neural
complexity having been brought to the fore, we obtain linear growth and convergence of the growth speed quite
easily. The same holds subject to an entropy condition, independently of the softness of the constraint (measured in
Theorem 1.3 below by the speed at which δN converges to 0).

Denote by I c(d,N), respectively I c(d,N,x), x ∈ [0,1], the supremum of I c(X) over all X ∈ X (d,N), respec-
tively over all X ∈ X (d,N) such that H(x) = xN logd :

I c(d,N) := sup
{

I c(μ): μ ∈ M(d,N)
}
, (1.7)

I c(d,N,x) := sup
{

I c(μ): μ ∈ M(d,N),H(μ) = xN logd
}
. (1.8)

Notice that if x = 0 or x = 1, then I c(d,N,x) = 0, since this corresponds to, respectively, deterministic or indepen-
dent systems, for which all mutual information functionals vanish.

Theorem 1.3. Let I c be a non-null intricacy and let d ≥ 2 be some integer.

(1) The following limits exist for all x ∈ [0,1]

I c(d) := lim
N→∞

I c(d,N)

N
, I c(d, x) := lim

N→∞
I c(d,N,x)

N
, (1.9)

and we have the bounds

[
x ∧ (1 − x)

]
κc ≤ I c(d, x)

logd
≤ I c(d)

logd
≤ 1

2
, (1.10)

where

κc := 2
∫

[0,1]
y(1 − y)λc(dy) > 0, (1.11)

and λc is defined in Theorem 1.2.
(2) Let (δN)N≥1 be any sequence of non-negative numbers converging to zero and x ∈ [0,1]. Then

I c(d, x) = lim
N→∞

1

N
sup

{
I c(X): X ∈ X (d,N),

∣∣∣∣ H(X)

N logd
− x

∣∣∣∣ ≤ δN

}
.

Remark 1.4. 1. By considering a set of independent, identically distributed (i.i.d. for short) random variables on
{0, . . . , d −1}, it is easy to see that for any 0 ≤ h ≤ N logd , there is X ∈ X (d,N) such that H(X) = h and I c(X) = 0.
Hence minimization of intricacies is a trivial problem also under fixed entropy.

2. For any (x, y), 0 ≤ x ≤ 1 such that 0 ≤ y < I c(d, x)/ logd , for any N large enough, there exists X ∈ X (d,N)

with H(X) = xN logd and I c(X) = yN logd . Observe, for instance, that I c is continuous on the contractile space
M(d,N).

3. In the above theorem, the assumption that each variable Xi takes values in a set of cardinality d can be relaxed
to H(Xi) ≤ logd . It can be shown that this does not change I c(d) or I c(d, x).

Thus maximal intricacy grows linearly in the size N of the system. What happens if we restrict to smaller classes
of systems, enjoying particular symmetries? Since intricacies are invariant under permutations, their value does not
change if we permute the variables of a system. Therefore it is particularly natural to consider (finite) exchangeable
families of random variables.

We denote by EX(d,N) the set of random variables X ∈ X (d,N) which are exchangeable, i.e., for all permutations
σ of {1, . . . ,N}, X := (X1, . . . ,XN) and Xσ := (Xσ(1), . . . ,Xσ(N)) have the same law.
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Theorem 1.5. Let I c be an intricacy.

(1) Exchangeable systems have small intricacies. More precisely

sup
X∈EX(d,N)

I c(X) = o
(
N2/3+ε

)
, N → +∞,

for any ε > 0. In particular

lim
N→∞

1

N
max

X∈EX(d,N)
I c(X) = 0.

(2) For N large enough and fixed d , maximizers of X (d,N) � X 
→ I c(X) are neither unique nor exchangeable.

By the first assertion, the invariance under permutations of intricacies is not inherited by the law of their maximiz-
ers. Indeed, exchangeable systems are very far from maximizing, since the maximum of I c over EX(d,N) is o(Np)

for any p > 2/3 whereas the maximum of I c over X (d,N) is proportional to N . This “spontaneous symmetry break-
ing” again suggests the complexity of the maximizers. We remark that numerical estimates suggest that the intricacy
of any X ∈ EX(d,N) is in fact bounded by const logN .

The second assertion of Theorem 1.5 follows from the first one: for N sufficiently large, the maximal intricacy
is not attained at an exchangeable law; therefore, by permuting a system with maximal intricacy we obtain different
laws, all with the same maximal intricacy.

We finally turn to a property of exact maximizers, namely that their support is concentrated on a small subset of all
possible configurations. We denote Λd,N := {0, . . . , d − 1}N for d,N ∈ N

∗.

Theorem 1.6. Let I c be a non-null intricacy. Let d ≥ 2. For N a large enough integer, the following holds. For any
X maximizing I c over X (d,N), the law μ of X has small support, i.e.

#
{
ω ∈ Λd,N : μ(ω) = 0

} ≥ constdN

for some const > 0 that depends only on c ∈ C(N∗).

1.5. Further questions

As noted above, the exact computation of the functions I c(d) and I c(d, x) from Theorem 1.3 in terms of their
probabilistic representation from Theorem 1.2 will be the subject of [6] where we shall study systems with intricacy
close to the maximum.

Secondly, to apply intricacy one needs to compute it for systems of interests. It might be possible to compute it
exactly for some simple physical systems, like the Ising model. A more ambitious goal would be to consider more
complex models, like spin glasses, to analyze the possible relation between intricacy and frustration [24].

A more general approach would be to get rigorous estimates from numerical ones (see [26] for some rough com-
putations). A naive approach results in an exponential computational complexity and this raises the question of more
efficient algorithms, perhaps probabilistic ones. A related question is the design of statistical estimators for intricacies.
These estimators should be able to decide many-variables correlations, which might require a priori assumptions on
the systems.

Third, one would like to understand the intricacy from a dynamical point of view: which physically reasonable
processes (say with dynamics defined in terms of local rules) can lead to high intricacy systems and at what speeds?

One could also consider a natural generalization of intricacies, already proposed in [26] but not explored further,
given in terms of general partitions π of I : if π = {S1, . . . , Sk} with

⋃
i Si = I and Si ∩Sj = ∅ for i �= j , then we can

set

MI(Xπ) := H(XS1) + · · · + H(XSk
) − H(X), X ∈ X (d, I ), (1.12)
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and for some non-negative coefficients (cπ )π

J c(X) :=
∑
π

cπ MI(Xπ). (1.13)

Most results of this paper extend to the case where the coefficients (cπ )π have a probabilistic representation in terms
of the so-called Kingman paintbox construction [5], Chapter 2.3.

One might also be interested in extending the definition of intricacy to infinite (e.g., stationary) processes, continu-
ous or structured systems, e.g., taking into account a connectivity or a dependence graph (such constraints have been
considered in numerical experiments performed by several authors [3,9,21]).

Finally, our work leaves out the properties of exact maximizers for a given size. As of now, we have no description
of them except in very special cases (see Examples 2.3 and 2.4 below) and we do not know how many there are, or
even if they are always in finite number. We do not have reasonably efficient ways to determine the maximizers which
we expect to lack a simple description in light of the lack of symmetry established in Theorem 1.5.

1.6. Organization of the paper

In Section 2, we discuss the definition of intricacies, giving some basic properties and examples. Section 3 proves
Theorem 1.2, translating the weak additivity of an intricacy into a property of its coefficients. As a by-product, we
obtain a probabilistic representation of all intricacies. We check that neural complexity corresponds to the uniform
law on [0,1]. In Section 4 we prove Theorem 1.3 by showing the existence of the limits I c(d), I c(d, x). Finally,
in Section 5 we prove Theorem 1.5 and, in Section 6, Theorem 1.6. The Appendix recalls some basic facts from
information theory for the convenience of the reader and to fix notations.

2. Intricacies

2.1. Basic properties of intricacies

Recall that X (d,N) is the set of Λd,N -valued random variables, where Λd,N = {0, . . . , d − 1}N . We identify it with

the standard simplex in R
dN

in the obvious way.
As MI(XS,XSc) = MI(XSc ,XS), the symmetry condition cI

Sc = cI
S can always be satisfied by replacing cI

S with
1
2 (cI

S + cI
Sc ) without changing the functional. Also

∑
S⊆I cI

S = 1 is simply an irrelevant normalization when studying
systems with a given index set I .

Lemma 2.1. Let I c be a mutual information functional. For each d ≥ 2 and N ≥ 1, I c : M(d,N) → R is continuous.
In particular, the suprema I c(d,N) and I c(d,N,x), introduced in (1.7) and (1.8), are achieved.

If I c is a non-null intricacy, then it is neither convex nor concave.

Proof. Continuity is obvious and existence of the maximum follows from the compactness of the finite-dimensional
simplex M(d,N). To disprove convexity and concavity of non-null intricacies, we use the following examples. Pick
I with at least two elements, say 1 and 2. Observe that K := cI{1} + cI{2} is positive as I c is non-null (see Theorem 1.2,
point 2). Fix d ≥ 2.

First, for i = 0,1, let μi over {0, . . . , d − 1}I be defined by μi(i, i,0, . . . ,0) = 1. We have:

I c

(
μ0 + μ1

2

)
≥ K · log 2 >

I c(μ0) + I c(μ1)

2
= 0.

Second, let ν0 be defined by ν0(0,0,0, . . . ,0) = ν0(1,1,0, . . . ,0) = 1/2 and ν1 by ν1(0,1,0, . . . ,0) = ν1(1,0,0, . . . ,

0) = 1/2. We have:

I c

(
ν0 + ν1

2

)
= 0 < K · log 2 ≤ I c(ν0) + I c(ν1)

2
. �
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For any mutual information functional I c and X ∈ X (d,N)

I c(X) = 2

(∑
S⊆I

cI
SH(XS)

)
− H(X). (2.1)

The result readily follows from MI(X,Y ) = H(X) + H(Y ) − H(X,Y ), cI
S = cI

Sc , and
∑

S cI
S = 1. The expression

(2.1) of a mutual information functional as a non-convex combination of the entropy of subsystems is crucial to
its understanding. See [13] and the references therein for a similar (though not directly related) definition, the total
correlation of a family of random variables.

We have also the following general bound for any intricacy I c and any system X ∈ X (d,N)

0 ≤ I c(X) ≤ N

2
logd. (2.2)

The inequalities follow from basic properties of the mutual information (see the Appendix):

0 ≤ MI(XS,XSc) ≤ min
{
H(XS),H(XSc )

} ≤ min
{|S|,N − |S|} logd ≤ N

2
logd.

2.2. Simple examples

We give some examples of finite systems and compute their intricacies both for illustrative purposes and for their use
in some proofs below.

Let Xi take values in {0, . . . , d − 1} for all i ∈ I , a finite subset of N
∗. The first example shows that both total

disorder and total order make the intricacy vanish.

Example 2.2 (Total disorder and total order). If X = (Xi, i = 1, . . . ,N) is independent then each mutual information
is zero and therefore: I c(X) = 0. If Y = (Yi, i = 1, . . . ,N) is a.s. equal to a constant in {0, . . . , d − 1}N , then, for any
S �= ∅, H(YS) = 0. Hence, I c(Y ) = 0.

For N = 2,3, each mutual information can be maximized separately: there is no frustration and it is easy to
determine the maximizers of non-null intricacies.

Example 2.3 (Size N = 2). Let first N = 2 and I c be a non-null intricacy. Then by Theorem 1.2 cI
S = c

|I |
|S| and

therefore

I c(X) = (
c
{1,2}
{1} + c

{1,2}
{2}

)
MI(X1,X2) = 2c2

1 MI(X1,X2), X ∈ X (d,2),

and moreover c2
1 > 0. Therefore the maximizers of I c over X (d,2) are the maximizers of X 
→ MI(X1,X2). Now,

MI(X1,X2) ≤ min{H(X1),H(X2)}, and MI(X,Y ) = H(X1) = H(X2) iff each variable is a function of the other, see
the Appendix.

Therefore, the maximizers are exactly the following systems X = (X1,X2). X1 is a uniform r.v. over {0, . . . , d − 1}
and the other is a deterministic function of the first: X2 = σ(X1) for a given permutation σ of {0, . . . , d − 1}. In the
case of the neural complexity, maxX∈X (d,2) I(X) = (logd)/3.

Example 2.4 (Size N = 3). Let N = 3 and I := {1,2,3}. By Theorem 1.2, cI
S = c

|I |
|S|, c3

1 = c3
2 and therefore

I c(X) = 2c3
1

(
MI(X1,X{2,3}) + MI(X2,X{1,3}) + MI(X3,X{1,2})

)
,

and moreover c3
1 > 0. Here we can independently maximize each of these mutual informations. The optimal choice is

a system (X1,X2,X3) where every pair (Xi,Xj ), i �= j , is uniform over {0, . . . , d − 1}2, and the third variable is a
function of (Xi,Xj ). This is realized iff (X1,X2) is uniform over {0, . . . , d − 1}2 and X3 = φ(X1,X2), where φ is a
(deterministic) map such that, for any i ∈ {0, . . . , d − 1}, φ(i, ·) and φ(·, i) are permutations of {0, . . . , d − 1}. For
instance: φ(x1, x2) = x1 + x2 modd . In the case of the neural complexity, maxX∈X (d,3) I(X) = (logd)/2.
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The maximizers of Examples 2.3 and 2.4 are very special. For instance, they are exchangeable, contrarily to the
case of large N according to Theorem 1.5. For N = 4 and beyond it is no longer possible to separately maximize each
mutual information and we do not have an explicit description of the maximizers. We shall however see that, as in the
above examples, maximizers have small support, see Proposition 1.6.

Example 2.4 nevertheless has an interesting interpretation: for N = 3, a system with large intricacy shows in a
simple way a combination of differentiation and integration, as it is expected in the biological literature, see the Intro-
duction. Indeed, any subsystem of two variables is independent (differentiation), while the whole system is correlated
(integration).

Another interesting case is that of a large system where one variable is free and all others follow it deterministically.

Example 2.5 (A totally synchronized system). Let X1 be a uniform {0, . . . , d − 1}-valued random variable. We define
now (X2, . . . ,XN) := φ(X1), where φ is any deterministic map from {0, . . . , d − 1} to {0, . . . , d − 1}N−1. Then, for
any S �= ∅, H(XS) = logd and, if additionally Sc �= ∅, H(XS |XSc) = 0 so that each mutual information MI(XS,XSc)

is logd if S /∈ {∅, I }. Hence,

I c(X) =
∑

S⊆I\{∅,I }
cI
S · logd = (

1 − cI
∅ − cI

I

)
logd.

In the next example we build for every x ∈]0,1[ a system X ∈ X (d,2) with entropy H(X) = x logd2 and positive
intricacy.

Example 2.6 (A system with positive intricacy and arbitrary entropy). First consider x ∈]0,1/2]. Let X1 be
{0, . . . , d − 1}-valued with H(X1) = 2x logd . Such a variable exists because entropy is continuous over the connected
simplex of probability measures on {0, . . . , d − 1} and attains the values 0 over a Dirac mass and logd over the
uniform distribution. We define now X2 := X1 and X := (X1,X2) ∈ X (d,2). Therefore H(X) = 2x logd = x logd2,
MI(X1,X2) = H(X1) = 2x logd and, arguing as in Example 2.3

I c(X) = 2c2
1 MI(X1,X2) = 4xc2

1 logd > 0.

We now consider x ∈]1/2,1[. Let (Y1, Y2,B) be an independent triple such that Yi is uniform over {0, . . . , d − 1}
and B is Bernoulli with parameter p ∈ [0,1] and set

X1 := Y1, X2 := 1(B=0)Y1 + 1(B=1)Y2, X := (X1,X2).

1P denotes 1 if the property P holds, 0 otherwise. Then both X1 and X2 are uniform on {0, . . . , d − 1}. On the other
hand, it is easy to see that H(X), as a function of p ∈ [0,1], interpolates continuously between logd and 2 logd . Thus,
there is a p ∈ [0,1] such that H(X) = x logd2. In this case MI(X1,X2) = H(X1) + H(X2) − H(X) = 2(1 − x) logd

and we obtain

I c(X) = 2c2
1 MI(X1,X2) = 4(1 − x)c2

1 logd > 0.

Intricacy can indeed reach over X (d,N) the order N as in the upper bound in (2.2), as the next example shows.

Example 2.7 (Systems with uniform intricacy proportional to N ). Let us fix d ≥ 2. Let I U(X) be the uniform
intricacy defined in Lemma 3.3. For N ≥ 2, we are going to build a system (Xi)i∈I , I = {1, . . . ,N}, over the alphabet
{0, . . . , d2 − 1} for which I U(X)/N converges to (logd2)/4; later, in Example 3.5, we shall generalize this to an
arbitrary intricacy.

Let Y1, . . . , YN be i.i.d. uniform {0, . . . , d − 1}-valued random variables and define Xi := Yi + dYi+1 for i =
1, . . . ,N − 1, XN := YN . Note that X ∈ X (d2,N) and H(X) = N logd = (N/2) logd2. For S ⊆ I , set

ΔS := {
k = 1, . . . ,N − 1: 1S(k) �= 1S(k + 1)

}
,

US := {
k = 1, . . . ,N − 1: 1S(k) = 1 �= 1S(k + 1)

}
.
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Observe that H(XS) = (|S| + |US |) logd . Indeed, this is given by logd times the minimal number of Yi needed to
define XS ; every k ∈ S counts for one if k ∈ S \ US , for two if k ∈ US . Moreover, |US | + |USc | = |ΔS |. Therefore

MI(XS,XI\S) = (|US | + |S| + |USc | + ∣∣Sc
∣∣ − N

)
logd = |ΔS | logd.

Moreover we have a bijection:

S ∈ {0,1}{1,...,N} 
→ (
1S(1),ΔS

) ∈ {0,1} × {0,1}{1,...,N−1}.

Hence:

I U(X)

logd
= 2−N

∑
S⊆I

|ΔS | = 2−N × 2
∑

Δ⊂{1,...,N−1}
|Δ| = 2−N+1

N−1∑
k=0

(
N − 1

k

)
k

= 2−N+1(N − 1)2N−2 = N − 1

2
.

Therefore for this X ∈ X (d2,N):

I U(X) = N − 1

4
log

(
d2).

The following example will be useful to show that an intricacy I c determines its coefficients c ∈ C(N∗) in
Lemma 3.2 below.

Example 2.8 (A system with a synchronized sub-system). We consider a system of uniform variables, with a subset of
equal ones and the remainder independent. More precisely, let I � N

∗, ∅ �= K ⊂ I and fix i0 ∈ K . (Xi)i∈I ∈ X (d, I )

is the system satisfying:

(i) the family XKc∪{i0} is uniform on {0, . . . , d − 1}Kc∪{i0};
(ii) Xi = Xi0 for all i ∈ K .

It follows that

H(XS) = (|S \ K| + 1(S∩K �=∅)

)
logd

and therefore, recalling the notation MI(S) := MI(XS,XI\S),

MI(S) = (1(S∩K �=∅) + 1(Sc∩K �=∅) − 1) logd,

i.e. MI(S) = 0 unless S and Sc both intersect K and then MI(S) = logd . Thus

I c(X) = logd
∑
S⊆I

cI
S1(∅ �=S∩K �=K), H(X) = (∣∣Kc

∣∣ + 1
)

logd.

3. Weak additivity, projectivity and representation

In this section we prove Theorem 1.2, by studying the additivity of mutual information functionals and characterizing
it in terms of the coefficients. We establish a probabilistic representation of all intricacies and check that the neural
complexity is indeed an intricacy.

Throughout this section, X = (Xi)i∈I and Y = (Yi)i∈J , will be two systems defined on the same probability space
and we shall consider the joint family (X,Y ) = {Xi,Yj : i ∈ I, j ∈ J }. (X,Y ) is again a system and its index set is the
disjoint union I � J of I and J .
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3.1. Projectivity and additivity

We recall that a system of coefficients c ∈ C(N∗) is projective if there exists a random subset Z ⊆ N
∗ such that

P(Z ∩ I = S) = cI
S , ∀I � N

∗, S ⊆ I . This is easily seen to be equivalent to the compatibility condition

∀J � N
∗,∀I ⊆ J,∀S ⊆ I cI

S =
∑

T ⊆J\I
cJ
S∪T . (3.1)

We show that weak additivity and invariance under permutations can be read off the coefficients and that non-null
intricacies are neither sub-additive nor super-additive.

Proposition 3.1. Let I c be a mutual information functional. Then

(1) I c is invariant under permutations if and only if cI
S depends only on |I | and |S|.

(2) I c is weakly additive if and only if the system of coefficients c is projective.
(3) Let I c be an intricacy. Then, for non-necessarily independent systems X,Y , we have I c(X,Y ) ≥ max{I c(X),

I c(Y )} and∣∣I c(X) + I c(Y ) − I c(X,Y )
∣∣ ≤ MI(X,Y ).

(4) Except for the null intricacy, I c fails to be super-additive or sub-additive.

To prove this proposition we shall need the following fact:

Lemma 3.2. Let d ≥ 2 and I be a finite set. The data I c(X) for X ∈ X (d, J ) for all J ⊆ I determine c ∈ C(I ).

Proof. Using cI
Sc = cI

S , we restrict ourselves to coefficients with |S| ≤ |Sc|, i.e., |S| ≤ |I |/2. Let us first consider a
system (Xi)i∈I ∈ X (d, I ) where all variables are equal: Xi = Xj for all i, j ∈ I and Xi is uniform on {0, . . . , d − 1}.
Then MI(S) := MI(XS,XSc) = 0 for S = ∅ or S = I , otherwise MI(S) = logd . Hence, using the normalization
1 = ∑

S cI
S :

1 − I c(X)

logd
=

∑
S

cI
S −

∑
∅�S�I

cI
S = cI

∅ + cI
I .

In particular, cI
∅ = cI

I = (1 − I c(X)/ logd)/2.
For each K ⊂ I , let XK be the system as in Example 2.8. Recall that MI(S) is 0 if S ⊃ K or Sc ⊃ K , and is logd

otherwise. Assume by induction that, for 1 ≤ s ≤ |I |/2, cI
S is determined for |S| < s (a trivial assertion for s = 1).

Picking K ⊂ I with |K| = |I | − s ≥ |I |/2 ≥ |Kc| = s, we get, for S ⊂ I :

• if |S| < s, cI
S is known by the inductive assumption;

• if S = K or S = Kc , then MI(S) = 0;
• if s ≤ |S| ≤ |K|, S ⊃ K implies S = K , S ⊂ Kc implies S = Kc since s = |Kc|. In all other cases: MI(S) = logd .

Therefore,

I c(XK)

logd
= 2

∑
S⊆I

cI
S

MI(S)

logd
− H(XK)

logd

= 4
∑

|S|<|I |/2

cI
S

MI(S)

logd
+ 2

∑
|S|=|I |/2

cI
S

MI(S)

logd
− H(XK)

logd

= 4
∑
|S|<s

cI
S

MI(S)

logd
+ 4

∑
s≤|S|<|I |/2

cI
S + 2

∑
|S|=|I |/2

cI
S − 2

(
cI
K + cI

Kc

) − H(XK)

logd
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(the sum over |S| = |I |/2 is non-zero only if |I | is even). Using
∑

S cI
S = 1 and cI

S = cI
Sc , we get:

I c(XK)

logd
+ H(XK)

logd
= 4

∑
|S|<s

cI
S

(
MI(S)

logd
− 1

)
+ 2 − 2

(
cI
K + cI

Kc

)

= 4
∑
|S|<s

cI
S

(
MI(S)

logd
− 1

)
+ 2 − 4cI

Kc .

It follows that cI
K = cI

Kc is determined for any K with |K| = s. This completes the induction step and the proof of the
lemma. �

Proof of Proposition 3.1. The characterization of invariance under permutations is a direct consequence of
Lemma 3.2.

Let us prove the second point. We first check that weak additivity implies projectivity. For any X ∈ X (d, I ) with
I ⊆ J � N

∗, we consider Z = (Zj )j∈J\I with each Zj a.s. constant and we obtain

I c(X) = I c(X,Z) =
∑
S⊆I

∑
T ⊆J\I

cJ
S∪T MI(XS,XI\S).

Lemma 3.2 then implies that (3.1) holds. Moreover, (A.3) yields the monotonicity claimed in point (3) of the propo-
sition.

For the approximate additivity of point (3), we consider (A.4) for any S ⊆ I , T ⊆ J :

MI
(
(XS,YT ), (XSc , YT c )

) = MI(XS,XSc) + MI(YT ,YT c ) ± MI(X,Y ),

where ±MI(X,Y ) denotes a number belonging to [−MI(X,Y ),MI(X,Y )]. The projectivity now gives:

I c(X,Y ) =
∑

S⊆I,T ⊆J

cI�J
S�T MI(S � T )

=
∑

S⊆I,T ⊆J

cI�J
S�T

(
MI(XS,XSc) + MI(YT ,YT c ) ± MI(X,Y )

)
= I c(X) + I c(Y ) ± MI(X,Y ).

If X and Y are independent, then MI(X,Y ) = 0, proving the weak additivity.
We finally give the counter-examples for point (4) under the assumption that the intricacy is non-null. For sub-

additivity, we consider X = Y a single random variable uniform on {1,2} and compute:

I c(X) = I c(Y ) = 0 whereas I c(X,Y ) = 2c2
1 log 2 > 0.

For super-additivity, we observe that, using point (2) of Theorem 1.2 (whose proof is independent of this counter-
example) that

cI
∅ + cI

I <
1

2
+ cI�I

∅ + cI�I
I�I

2

and take X = Y a collection of N = |I | copies of the same variable uniform over {0,1}. Then MI(S) = log 2 except if
S ∈ {∅, I�I }, in which case MI(S) = 0. By Example 2.5

I c(X,Y )

log 2
= 1 − cI�I

∅ − cI�I
I�I < 2

(
1 − cI

∅ − cI
I

) = I c(X) + I c(Y )

log 2
. �
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Proof of Theorem 1.2. By Proposition 3.1, a mutual information functional I c is an intricacy if and only if c is
projective and cI

S = c
|I |
|S| for all S ⊆ I � N

∗.
Let us now consider an intricacy I c and its system of coefficients c ∈ C(N∗). Then there exists a random subset

Z such that P(Z ∩ I = S) = cI
S = c

|I |
|S| for all S ⊆ I � N

∗. We define the random variables Zi := 1(i∈Z ), i ∈ N
∗.

By the previous considerations, the sequence (Zi)i∈N∗ is exchangeable, so that by De Finetti’s theorem there exists a
probability measure λc on [0,1] such that

cn+k
n = P(Z1 = · · · = Zn = 1,Zn+1 = · · · = Zn+k = 0)

=
∫

[0,1]
xn(1 − x)kλc(dx) ∀n ≥ 0, k ≥ 0,

see [1], Theorem 3.1. Moreover λc must be symmetric since∫
[0,1]

xnλc(dx) = cn
n = cn

0 =
∫

[0,1]
(1 − x)nλc(dx) ∀n ≥ 0.

We prove now that the following are equivalent for an intricacy I c with associated measure λc:

(1) I c is non-null, i.e. cN
k > 0 for at least one choice of N ≥ 2 and 1 ≤ k < N ;

(2) cN
k > 0 for all N ≥ 2 and 1 ≤ k ≤ N − 1;

(3) λc(]0,1[) > 0.

We have:

cn
j =

∫
[0,1]

xj (1 − x)n−j λc(dx)

with xj (1 − x)n−j zero exactly at x ∈ {0,1} whenever 0 < j < n and strictly positive on ]0,1[. Thus (1) �⇒ (3) �⇒
(2) �⇒ (1). This concludes the proof of point (2). The last assertion of the theorem is proved in Lemma 3.3 below. �

3.2. Examples of intricacies

We show that the Edelman–Sporns–Tononi neural complexity (1.1) and two other natural examples of mutual infor-
mation functionals are intricacies.

Lemma 3.3. In the setting of Theorem 1.2:

(1) If Wc is uniform on [0,1] then I c is the Edelman–Sporns–Tononi neural complexity (1.1) with

cI
S = 1

|I | + 1

1(|I |
|S|

) .

(2) If Wc is uniform on {p,1 − p} then I c is given by

cI
S = 1

2

(
p|S|(1 − p)|I\S| + (1 − p)|S|p|I\S|)

and is called the p-symmetric intricacy I p; in the case p = 1/2, Wc = 1
2 a.s. yields the uniform intricacy I U

given by

cI
S = 2−|I |.

The coefficients of the Edelman–Sporns–Tononi intricacy I ensure that subsystems of all sizes contribute signif-
icantly to the intricacy. This is in sharp contrast to the p-symmetric coefficients for which subsystems of size far
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from pN or (1 − p)N give a vanishing contribution when N gets large. Notice that the above mutual information
functionals are trivially permutation-invariant, but weak-additivity is much less trivial.

Proof of Lemma 3.3. Let Wc be uniform on [0,1]. Then

P
(

Z ∩ I = {1, . . . , k}) = P(Z1 = · · · = Zk = 1,Zk+1 = · · · = ZN = 0)

=
∫

[0,1]
xk(1 − x)N−k dx =: a(k,N − k).

We claim now that for all k ≥ 1 and j ≥ 0

a(k, j) = j !
(k + 1) · · · (k + j + 1)

= 1

(k + j + 1)
(
k+j
k

) ,

i.e., the Edelman–Sporns–Tononi coefficient c
k+j
j . Indeed, for j = 0 this reduces to

∫ 1
0 xk dx = 1/(k + 1). To prove

the general case, one fixes k and uses induction on j . Indeed, suppose we have the result for j ≥ 0. Then∫ 1

0
xk(1 − x)j+1 dx =

∫ 1

0
xk(1 − x)j dx −

∫ 1

0
xk+1(1 − x)j dx

= 1

(k + j + 1)
(
k+j
k

) − 1

(k + j + 2)
(
k+j+1
k+1

) = 1

(k + j + 2)
(
k+j+1

k

) .

If Wc is uniform over {p,1 − p} then∫
[0,1]

xk(1 − x)N−k 1

2
(δp + δ1−p)(dx) = 1

2

(
pk(1 − p)N−k + (1 − p)kpN−k

)
,

which is the coefficient cN
k of I p . �

3.3. Further properties

Lemma 3.4. If I c is non-null, then I c(X) = 0 for a X ∈ X (d,N) if and only if X = (X1, . . . ,XN) is an independent
family.

Proof. It is enough to show that: I c(X) = 0 ⇐⇒ H(X) = ∑
i∈I H(Xi). If I c is non-null and I c(X) = 0, then by

Theorem 1.2 we have cI
S > 0 and therefore MI(S) = 0 for all S ⊆ I with S /∈ {∅, I }. Therefore H(X) = H(XS) +

H(XSc ) and an easy induction yields the claim. �

Example 3.5 (Systems with intricacy proportional to N ). We generalize Example 2.7 from I U to a non-null intricacy
I c . Considering the same system X as in Example 2.7, we get by Theorem 1.2

I c(X)

logd
=

∑
S⊆I

cI
S |ΔS | = E

(|ΔZ ∩I |
)

=
N−1∑
k=1

P
(
1Z (k) �= 1Z (k + 1)

) = (N − 1)P
(
1Z (1) �= 1Z (2)

)
.

By the probabilistic representation (1.5) through a random variable Wc with law λc on [0,1],

κc := P
(
1Z (1) �= 1Z (2)

) =
∫

[0,1]
2x(1 − x)λc(dx) ∈]0,1/2]. (3.2)
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Then we have obtained a system X ∈ X (d2,N) such that

I c(X) = κc

2
(N − 1) logd2. (3.3)

4. Bounds for maximal intricacies

In this section we prove Theorem 1.3. We recall the definition (3.2) for a non-null intricacy I c

κc = 2
∫

[0,1]
x(1 − x)λc(dx) = 2c2

1 > 0. (4.1)

Recall that I c(d,N) and I c(d,N,x), defined in (1.7) and (1.8), denote the maximum of I c over M(d,N), respec-
tively over {μ ∈ M(d,N): H(μ) = xN logd}. We are going to show the following proposition.

Proposition 4.1. Let I c be a non-null intricacy and d ≥ 2. Then for all N ≥ 2

κc logd

2

(
1 − 1

N

)
≤ I c(d,N)

N
≤ logd

2
, (4.2)

and for any x ∈ [0,1]
[
x ∧ (1 − x)

]
κc logd

(
1 − 1

N

)
≤ I c(d,N,x)

N
≤ 1

2
logd, (4.3)

where κc > 0 is defined in (4.1).

Proof. The upper bound for I c(d,N)/N follows from (2.2). We show now the lower bound for I c(d,N,x)/N . Let
x ∈]0,1[. In Example 2.6 we have constructed a system X = (X1,X2) ∈ X (d,2) with

H(X) = x logd2, I c(X) = 2κc

[
x ∧ (1 − x)

]
logd > 0.

Let now (Y2i+1)i≥0 an i.i.d. family of copies of X1 and set Y2(i+1) := Y2i+1 for all i ≥ 0. Then, for M ≥ 1, Y :=
(Yi)i=1,...,2M ∈ X (d,2M) is the product of M independent copies of (X1,X2) and by weak additivity

I c(Y ) = MI c(X) = 2Mκc

[
x ∧ (1 − x)

]
logd, H(Y ) = 2Mx logd.

If S is a {0, . . . , d − 1}-valued random variable independent of Y with H(Z) = x logd , then Z := (Y1, . . . , Y2M,S) ∈
X (d,2M + 1) satisfies by weak additivity

I c(Z) = I c(Y1, . . . , Y2M) = 2Mκc

[
x ∧ (1 − x)

]
logd, H(Z) = (2M + 1)x logd.

Setting N = 2M , respectively N = 2M + 1, we obtain the upper bound for I c(d,N,x)/N . Taking the supremum
over x ∈ [0,1] in (4.3), we obtain (4.2). �

4.1. Super-additivity

We are going to prove that the maps N 
→ I c(d,N) and N 
→ I c(d,N,x) are super-additive. By Lemma 2.1, the
suprema defining I c(d,N) and I c(d,N,x) are maxima. The measures achieving the first supremum are called max-
imal intricacy measures.

Lemma 4.2. For any intricacy I c and d ≥ 2, the following limits exist. First,

I c(d) = lim
N→∞

I c(d,N)

N
= sup

N≥1

I c(d,N)

N
∈]0,+∞[ (4.4)
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and, for each x ∈]0,1[,

I c(d, x) = lim
N→∞

I c(d,N,x)

N
= sup

N≥1

I c(d,N,x)

N
∈]0,+∞[. (4.5)

Proof. We prove (4.5), (4.4) being similar and simpler. Fix x ∈]0,1[. For each N ≥ 1, let aN := I c(d,N,x). We
claim that this sequence is super-additive, i.e.,

aN+M ≥ aN + aM ∀N,M ≥ 1.

Indeed, let XN and XM be independent and such that I c(Xi) = ai , H(Xi) = xi logd , for i ∈ {N,M}. By weak-
additivity

I c
(
XN,XM

) = I c
(
XN

) + I c
(
XM

)
,

H
(
XN,XM

) = H
(
XN

) + H
(
XM

) = x(N + M) logd.

Thus aN + aM = I c(XN,XM) ≤ I c(d,N +M,x) = aN+M . Moreover, by Proposition 4.1, we have supN≥1 aN/N ≤
(logd)/2. Therefore, by Fekete’s Lemma aN/N → supM aM/M ≤ (logd)/2 as N → +∞. Moreover, the limit is
positive by (4.3). �

4.2. Adjusting entropy

To strengthen the previous result to obtain the second assertion of Theorem 1.3, we must adjust the entropy without
significantly changing the intricacy.

Lemma 4.3. Let X(1), . . . ,X(r) ∈ X (d,N). Let U be a random variable over {1, . . . , r}, independent of {X(1), . . . ,

X(r)}. Let Y := X(U) ∈ X (d,N), i.e., Y = X(u) whenever U = u. Then:

0 ≤ H(YS) −
r∑

u=1

P(U = u)H
(
X

(u)
S

) ≤ log r ∀S ⊂ {1, . . . ,N}, (4.6)

− log r ≤ I c(Y ) −
r∑

u=1

P(U = u)I c
(
X(u)

) ≤ 2 log r. (4.7)

Proof. We first prove (4.6). By (A.2),

H(YS |U) ≤ H(YS) ≤ H(YS,U) = H(YS |U) + H(U).

Now H(U) ≤ log r . (4.6) follows as:

H(YS |U) =
r∑

u=1

P(U = u)H(YS |U = u) =
r∑

u=1

P(U = u)H
(
X

(u)
S

)
.

(4.7) follows immediately, using (2.1) and (4.6). �

Lemma 4.4. Let 0 < x < 1 and ε > 0 and I c be some non-null intricacy. Then there exists δ0 > 0 and N0 < ∞ with
the following property for all 0 < δ < δ0 and N ≥ N0. For any X ∈ X (d,N) such that | H(X)

N logd
− x| ≤ δ, there exists

Y ∈ X (d,N) satisfying:

H(Y ) = xN logd,
∣∣I c(Y ) − I c(X)

∣∣ ≤ εN logd.
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Proof. We fix δ0 = δ0(ε, x) > 0 so small that:

δ0

min{1 − x − δ0, x − δ0} < ε/4

and N0 = N0(ε, x, δ0) so large that:

log 2

N0 min{1 − x − δ0, x − δ0} logd
< ε/4.

Let N ≥ N0 and X ∈ X (d,N) be such that | H(X)
N logd

− x| ≤ δ ≤ δ0. There are two similar cases, depending on whether
H(X) is greater or less than xN logd . We assume h := H(X)/N logd < x and shall explain at the end the necessary
modifications for the other case.

Let Z = (Zi, i = 1, . . . ,N) be i.i.d. random variables, uniform over {0, . . . , d − 1}. For t ∈ [0,1], we consider
Y t ∈ X (d,N) defined by

Y t := X1(U≤1−t) + Z1(U>1−t),

where U is a uniform random variable over [0,1] independent of X and Z. I c(Y 0) = I c(X) and I c(Y 1) = I c(Z) = 0.
Hence, by the continuity of the entropy, we get that there is some 0 < t0 < 1 such that H(Y t0) = xN logd . Let us check
that t0 is small.

By (4.6)

H
(
Y t

) − (1 − t)H(X) − tH(Z) = H
(
Y t

) − (1 − t)hN logd − tN logd =: α log 2

for some α ∈ [0,1]. Hence

x = (1 − t0)h + t0 + α log 2/N logd

and

0 < t0 = x − h

1 − h
− α log 2

N(1 − h) logd
≤ δ

1 − x − δ
<

ε

2
,

since δ ≤ δ0. Thus, by (4.7), setting Y := Y t0 ,∣∣I c(Y ) − (1 − t0)I c(X) − t0 I c(Z)
∣∣ = ∣∣I c(Y ) − (1 − t0)I c(X)

∣∣ ≤ 2 log 2,

and therefore by (4.2)

∣∣I c(Y ) − I c(X)
∣∣ ≤ t0 I c(X) + 2 log 2 ≤ ε

2
N logd + 2 log 2.

Dividing by N logd ≥ N0 logd we obtain the desired estimate.
For the case h > x, we use instead a system Z with constant variables, so that H(Z) = 0 = I c(Z) and a similar

argument gives the result. �

4.3. Proof of Theorem 1.3

Assertion (1) is already established: see Proposition 4.1. It remains to complete the proof of the second assertion.
Let us set for δ ≥ 0

I c(d,N,x, δ) := sup

{
I c(X): X ∈ X (d,N),

∣∣∣∣ H(X)

N logd
− x

∣∣∣∣ ≤ δ

}
.
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We want to prove that

I c(d, x) = lim
N→+∞

1

N
I c(d,N,x, δN)

for any sequence δN ≥ 0 converging to 0 as N → +∞. We first observe that (4.5) gives that the limit exists and is
equal to I c(d, x) if δN = 0, for all N ≥ 1. Consider now a general sequence of non-negative numbers δN converging
to zero. Obviously, I c(d,N,x, δN) ≥ I c(d,N,x,0), so that

lim inf
N→∞

1

N

(
I c(d,N,x, δN) − I c(d,N,x,0)

) ≥ 0.

Let us prove the reverse inequality for the lim sup. Let ε > 0. Let XN ∈ X (d,N) realize I c(d,N,x, δN). Let δ0

and N0 be as in Lemma 4.4. We may assume that N ≥ N0 and δN < δ0. It follows that there is some YN ∈ X (d,N)

with entropy Nx logd such that I c(YN) ≥ I c(XN) − εN . Hence, I c(d,N,x,0) ≥ I c(d,N,x, δN) − εN . We obtain

lim sup
N→∞

1

N

(
I c(d,N,x, δn) − I c(d,N,x,0)

) ≤ ε.

Assertion (2) follows by letting ε → 0.

5. Exchangeable systems

In this section we prove Theorem 1.5, namely we prove that exchangeable systems have small intricacy. In particular,
one cannot approach the maximal intricacy I c(d,N) with such systems for any large N .

Proposition 5.1. Let I c be any mutual information functional and d ≥ 2. Then for all ε > 0 there exists a constant
C = C(ε, d) such that for all exchangeable X ∈ X (d,N)

I c(X) ≤ CN2/3+ε, N ≥ 2. (5.1)

In particular

lim
N→∞

1

N
max

X∈EX(d,N)
I c(X) = 0.

Proof. Fix ε > 0. Throughout the proof, we denote by C constants which only depend on d and ε and which may
change value from line to line. We set k = (k1, . . . , kd) ∈ N

d , |k| := k1 + · · · + kd = n, x := 1
n

k and the multinomial
coefficients and the entropy function are denoted by:

(
n

k

)
= n!

k1!k2! · · ·kd ! , h(x) = −
d∑

i=1

xi logxi.

We are going to use the following version of Stirling’s formula

n! = √
2πn

(
n

e

)n

eζn ,
1

12n + 1
< ζn <

1

12n
,∀n ≥ 1.

Therefore, for all k ∈ N
d such that |k| = n(

n

k

)
=

[
enh(x)(2πn)1/2

∏
xi �=0

(2πnxi)
−1/2

]
g(k, n),
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where g(k, n) := exp(ζn − ζk1 − · · · − ζkd
) and therefore

exp(−d) ≤ g(k, n) ≤ exp(1).

In particular, as all non-zero xi satisfy xi ≥ 1/n,∣∣∣∣1

n
log

(
n

k

)
− h(x)

∣∣∣∣ ≤ C
logn

n
. (5.2)

Let X ∈ EX(d,N). We set for 0 ≤ n ≤ N and |k| = n

pn,k = P(X1 = · · · = Xk1 = 1, . . . ,Xk1+···+kd−1+1 = · · · = Xn = d).

These
(
n+d−1
d−1

)
numbers determine the law of any subsystem XS of size |S| = n. It is convenient to define also

Yi := #{1 ≤ j ≤ n: Xj = i} for i = 0, . . . , d − 1 and

qn,k := P(Yi = ki, i = 0, . . . , d − 1) =
(

n

k

)
pn,k.

Since the vector (qn,k)|k|=n gives the law of the vector (Y1, . . . , Yd) we have in particular∑
|k|=n

qn,k = 1.

Second, we observe that for |S| = n∣∣∣∣H(XS)

n
− 1

n

∑
|k|=n

qn,kh(x)

∣∣∣∣ ≤ C
logn

n
. (5.3)

Indeed

H(XS)

n
= −1

n

∑
|k|=n

qn,k log
qn,k(

n
k

) =
∑
|k|=n

qn,k
1

n
log

(
n

k

)
− 1

n

∑
|k|=n

qn,k logqn,k

= 1

n

∑
|k|=n

qn,kh(x) + G(n),
∣∣G(n)

∣∣ ≤ C
logn

n
,

where we use (5.2) and the fact that

−
∑
|k|=n

qn,k logqn,k = H(Y1, . . . , Yd) ≤ d logn,

since the support of the random vector (Y1, . . . , Yd) has cardinality at most nd .
Third, we claim that, for ε > 0, there exists a constant C such that for all N and all X ∈ EX(d,N), for all n ∈ [Ñ,N ]

with Ñ := �N2/3+ε + 1�,∣∣∣∣ ∑
|k|=n

qn,kh(x) −
∑

|K|=N

qN,Kh(X)

∣∣∣∣ ≤ CN−1/3+ε, (5.4)

where X := 1
N

K (no relation with the random variable X). By (5.3) and (5.4) we obtain for all n ∈ [Ñ,N ] and |S| = n∣∣∣∣H(XS)

n
− H(X)

N

∣∣∣∣ ≤ CN−1/3+ε. (5.5)
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Let us show how (5.5) implies (5.1). Using H(XS) ≤ logd · |S|, ∑
S⊆I cI

S = 1, we get∑
|S|<Ñ

cI
S MI(S) ≤

∑
S⊆I

cI
S × logd · Ñ = logd · Ñ .

Using (2.1), exchangeability of X,
∑N

n=0 cN
n

(
N
n

) = 1 and (5.5), we estimate

I c(X) ≤ 2 · logd · Ñ + 2
N∑

n=Ñ

(
N

n

)
cN
n H(X{1,...,n}) − H(X)

≤ 2
N∑

n=0

(
N

n

)
cN
n n

(
H(X)

N
+ CN−1/3+ε

)
− H(X) + CÑ.

Finally, using cN
n

(
N
n

) = cN
N−n

(
N

N−n

)
and

∑N
n=0 cN

n

(
N
n

) = 1

I c(X) ≤
(

2
N∑

n=0

cN
n

(
N

n

)
n

N
− 1

)
H(X) + CN × N−1/3+ε + CÑ

≤
(

N∑
n=0

cN
n

(
N

n

)(
n

N
+ N − n

N

)
− 1

)
H(X) + CN2/3+ε = CN2/3+ε

and (5.1) is proved.
We turn now to the proof of (5.4). We claim first that

pn,k =
∑

|K|=N,K≥k

pN,K

(
N − n

K − k

)
. (5.6)

Indeed, notice that

pn,k =
d∑

j=1

pn+1,k+δj ∀0 ≤ n < N, ∀|k| = n,

where δj := (δ
j

1 , . . . , δ
j
d ) with δ

j
i = 1 if i = j , 0 otherwise. This in particular yields (5.6) for N = n + 1. Moreover if

|K| = n + 1 then

(
n + 1

K

)
=

d∑
j=1

(
n

K − δj

)
1(K≥δj ).

Then, arguing by induction on N ≥ n and setting K′ = K + δj

pn,k =
∑

|K|=N,K≥k

pN,K

(
N − n

K − k

)
=

∑
|K|=N,K≥k

(
d∑

j=1

pN+1,K+δj

)(
N − n

K − k

)

=
d∑

j=1

∑
|K′|=N+1,K′≥k

pN+1,K′
(

N − n

K′ − k − δj

)
1(K−k≥δj )

=
∑

|K′|=N+1,K′≥k

pN+1,K′
(

N + 1 − n

K′ − k

)
.
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This proves (5.6).
We recall that qn,k = (

n
k

)
pn,k. Notice that it is enough to prove claim (5.4) in the case qN,k′ = δk′,K, i.e., pN,k′ =(

N
k′
)−1

for k′ = K and zero otherwise, if we find a constant C which does not depend on (N,n,K). Indeed, the two
expressions are linear and the average of CN−1/3+ε will remain of the same order. According to (5.6), we need to
estimate:

a(N,K, n,k) := qn,k =
(

n

k

)
×

(
N

K

)−1 (
N − n

K − k

)
.

Let x := k/n ∈ [0,1]d , X := K/N ∈ [0,1]d and ν =: n/(N − n). Formula (5.2) implies that 1
n

loga(N,K, n,k) is
equal to:

h(x) − (
1 + ν−1)h(X) + ν−1h

(
X + ν(X − x)

)︸ ︷︷ ︸
=:φν,X(x)

+G(N,n),

where |G(N,n)| ≤ κ(logN)/n, for some κ = κ(d).
Let us now write for all (x1, . . . , xd−1) ∈ [0,1]d−1 such that

∑
i xi ≤ 1

H(x1, . . . , xd−1) := h(x1, . . . , xd), xd := 1 − x1 − · · · − xd−1.

Observe that for i, j ≤ d − 1

∂H

∂xi

= log

(
xd

xi

)
,

∂2H

∂xi ∂xj

= − 1

xd

− 1

xi

1(i=j).

In particular the Hessian of H is negative-definite, since for all a ∈ R
d−1 \ {0}

d−1∑
i,j=1

aiaj

∂2H

∂xi ∂xj

= − 1

xd

(
d−1∑
i=1

ai

)2

−
d−1∑
i=1

1

xi

a2
i ≤ −

d−1∑
i=1

a2
i ,

where we use the fact that xi ≤ 1. Hence, h is concave and we obtain

φν,X(x) = ν + 1

ν

[
ν

ν + 1
h(x) + 1

ν + 1
h
(
(1 + ν)X − νx

) − h(X)

]
≤ 0,

so that the maximum of φν,X is 0 = φν,X(X). The second-order derivative estimate gives:

φν,X(x) ≤ −2‖x − X‖2, where ‖x‖ :=
√

x2
1 + · · · + x2

d .

Combining with the bound |G(N,n)| ≤ κ(logN)/n above, we get, for all n < N :

a(N,K, n,k) ≤ Nκ × e−2n‖x−X‖2
.

Recall n ≥ Ñ = N2/3+ε and set δ := N−1/3 and

ω := sup
‖x−X‖<δ

∥∥h(X) − h(x)
∥∥ ≤ Cδ log

1

δ
.

Finally, using h(x) ≤ logd ,∣∣∣∣∣ ∑
|k|=n

qn,kh(x) − h(X)

∣∣∣∣∣ ≤ ω
∑

‖x−X‖<δ

qn,k + logd
∑

‖x−X‖≥δ

qn,k

≤ Cδ log
1

δ
+ CndNκe−2Ñδ2 ≤ C(logN)N−1/3 + CNκ+de−2Nε ≤ CN−1/3+ε.
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Then (5.4) and the proposition are proved. �

6. Small support

In this section we prove Theorem 1.6, namely we show that exact maximizers have small support. Numerical experi-
ments suggest that this support has in fact cardinality of order dN/2. We are only able to prove the following weaker
estimate. For a fixed law μ ∈ M(d,N), we call forbidden configurations the elements of Λd,N := {0, . . . , d − 1}N
with zero μ-probability.

Proposition 6.1. Let I c(X) be a non-null intricacy. Let d = 2 and N large enough. Let μ ∈ X (d,N) be a maximizer
of I c. The forbidden configurations are a lower-bounded fraction of all configurations:

#
{
ω ∈ Λd,N : μ(ω) = 0

} ≥ c(d)|Λd,N |
for some c(d) > 0 independent of N .

Proof. If I c is non-null, then λc({0,1}) = 2λc({0}) < 1 and therefore λc({0}) < 1/2. However we can without loss
of generality suppose that λc({0}) = 0: indeed it is enough to remark that

(1) the probability measure λ0 := δ0+δ1
2 is associated with the null intricacy I 0 ≡ 0,

(2) the correspondence λc 
→ I c is linear and one-to-one,
(3) we can write λc = αλ0 + (1 − α)λc′ , where

α := 2λc

({0}) < 1, λc′
([a, b]) = λc([a, b]∩ ]0,1[)

λc(]0,1[) ∀a ≤ b.

Therefore I c = αI 0 + (1 − α)I c′ = (1 − α)I c′
and I c′

has the same maximizers as I c but with λc′({0}) = 0.
We fix some large integer z (how large will be explained below), N > z and d ≥ 2 and we consider the intri-

cacy I c as a function defined on the simplex M(d,N) = {(pω)ω∈Λd,N
∈ R

dN

+ :
∑

ω∈Λd,N
pω = 1}. A straightforward

computation yields:

∂I c

∂pω

= −2
∑
S⊆I

cI
S log

( ∑
α≡ω[S]

pα

)
+ logpω − 1,

where α ≡ ω[S] iff αi = ωi for all i ∈ S. The second derivatives are:

∂2 I c

∂p2
ω

= −2
∑
S⊆I

cI
S∑

α≡ω[S] pα

+ 1

pω

,
∂2 I c

∂pω0 ∂pω1

= −2
∑
S⊆I

cI
S∑

α≡ω0[S] pα

1(ω0=ω1[S])

for ω0 �= ω1. Let p = (pω)ω∈Λd,N
be a maximizer of I c. We show that for each β ∈ {0, . . . , d − 1}N−z,

Ωβ := {
(α1, . . . , αz, β1, . . . , βN−z) ∈ {0, . . . , d − 1}N : α ∈ {0, . . . , d − 1}z}

must contain at least one configuration forbidden by p. The claim will follow since the cardinality of {0, . . . , d −1}N−z

is dN/dz.
We assume by contradiction the existence of some β ∈ {0, . . . , d − 1}N−z such that no configuration in Ωβ is

forbidden. Let ω0 ∈ Ωβ be such that

pω0 := min{pω: ω ∈ Ωβ} > 0.

Let now ω1 ∈ Ωβ \ {ω0}, which exists since |Ωβ | ≥ d ≥ 2, so that pω1 ≥ pω0 > 0. We set for t ∈]−ε, ε[ and
0 < ε < pω0

pt
ω :=

{pω1 + t, ω = ω1,
pω0 − t, ω = ω0,
pω, ω /∈ {ω0,ω1}.
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Then pt is still a probability measure for t ∈]−ε, ε[, since pω1 ≥ pω0 > ε > 0.
Since p is a maximizer, then ϕ(t) := I c(pt ) ≤ ϕ(0) := I c(p) for t ∈]−ε, ε[. Then

0 ≥ ϕ′′(0) = ∂2 I c

∂p2
ω0

+ ∂2 I c

∂p2
ω1

− 2
∂2 I c

∂pω0∂pω1

= 1

pω1

+ 1

pω0

− 2
∑
S⊆I

1(ω0=ω1[S])
[

cI
S∑

α∈[ω0]S pα

+ cI
S∑

α∈[ω1]S pα

]
,

where [ω]S = {α: α = ω mod[S]} is the equivalence class of ω. Therefore

0 ≥ 1

pω1

+ 1

pω0

(
1 − 2

∑
S⊆I

cI
S

|[ω0]S ∩ Ωβ | − 2
∑
S⊆I

cI
S

|[ω1]S ∩ Ωβ |
)

and for some ω ∈ Ωβ

∑
S⊆I

cI
S

|[ω]S ∩ Ωβ | >
1

4
. (6.1)

On the other hand, we have |[ω]S ∩ Ωβ | = d |Sc∩{1,...,z}| so that by Theorem 1.2 the left hand side of (6.1) is equal to

E
(
d−|Z c∩{1,...,z}|) =

∫
[0,1]

λc(dx)E

(
z∏

i=1

d−1(Yi<x)

)
=

∫
[0,1]

λc(dx)

(
x

d
+ (1 − x)

)z

= λc

({0}) +
∫

]0,1]
λc(dx)

(
x

d
+ (1 − x)

)z

.

Since we have reduced above to the case λc({0}) = 0, then the latter expression tends to 0 as z → +∞, contradicting
(6.1). �

Appendix: Entropy and mutual information

In this Appendix, we recall a few facts from basic information theory, see [7], Chapter 2, for proofs and details. The
main object is the entropy functional which may be said to quantify the randomness of a random variable.

Let X be a random variable taking values in a finite space E. We define the entropy of X

H(X) := −
∑
x∈E

PX(x) log
(
PX(x)

)
, PX(x) := P(X = x),

where we adopt the convention 0 · log(0) = 0 · log(+∞) = 0. We recall that

0 ≤ H(X) ≤ log |E|. (A.1)

If we have a E-valued random variable X and a F -valued random variable Y defined on the same probability space,
with E and F finite, we can consider the vector (X,Y ) as a E × F -valued random variable and its entropy H(X,Y ).
Then the conditional entropy of X given Y is:

H(X|Y) := H(X,Y ) − H(Y ).

We recall that

0 ≤ H(X|Y) ≤ H(X) ≤ H(X,Y ). (A.2)
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The conditional entropy H(X|Y) ∈ [0,H(X)] is a measure of the uncertainty associated with X if Y is known. It is
minimal iff X is a function of Y and it maximal iff X and Y are independent.

Finally, we recall the notion of mutual information between two random variables X and Y defined on the same
probability space:

MI(X,Y ) := H(X) + H(Y ) − H(X,Y ).

This quantity is a measure of the randomness “shared” by X and Y . We recall that MI(X,Y ) ∈ [0,min{H(X),H(Y )}].
MI(X,Y ) is minimal (zero) iff X,Y are independent and maximal, i.e. equal to min{H(X),H(Y )}, iff one variable is
a function of the other.

Mutual information is non-decreasing. Let X,X′, Y,Y ′, X̂, Ŷ be random variables such that X,X′, resp. Y,Y ′, are
(deterministic) functions of X̂, resp. Ŷ . Then:

MI(X,Y ) ≤ MI(X̂, Ŷ ). (A.3)

The mutual information is almost additive:∣∣MI
(
(X,Y ), (X′, Y ′)

) − (
MI

(
X,X′) + MI

(
Y,Y ′))∣∣ ≤ MI(X̂, Ŷ ). (A.4)

These properties follow from the properties of conditional entropy. First,

MI(X̂, Ŷ ) = H(X̂) + H(Ŷ ) − H(X̂, Ŷ )

= H(X) + H(X̂|X) + H(Y ) + H(Ŷ |Y) − H(X,Y ) − H(X̂|X,Y) − H(Ŷ |X̂, Y )

= MI(X,Y ) + (
H(X̂|X) − H(X̂|X,Y)

) + (
H(Ŷ |Y) − H(Ŷ |X̂, Y )

)
,

which follows from H(U |V,W) ≤ H(U |V ).
Second,

MI
(
(X,Y ),

(
X′, Y ′)) = H(X,Y ) + H

(
X′, Y ′) − H

(
X,X′, Y,Y ′)

= H(X) + H(Y ) − MI(X,Y ) + H
(
X′) + H

(
Y ′) − MI

(
X′, Y ′)

− H
(
X,X′) − H

(
Y,Y ′) + MI

((
X,X′), (Y,Y ′))

= H(X) + H
(
X′) − H

(
X,X′) + H(Y ) + H

(
Y ′) − H

(
Y,Y ′)

+ (
MI

((
X,X′), (Y,Y ′)) − MI(X,Y ) − MI

(
X′, Y ′))

= MI
(
X,X′) + MI

(
Y,Y ′) + (

MI
((

X,X′), (Y,Y ′)) − MI(X,Y ) − MI
(
X′, Y ′)).

The non-negativity of mutual information yields

−min
(
MI(X,Y ),MI

(
X′, Y ′)) ≤ MI

(
(X,Y ),

(
X′, Y ′)) − (

MI
(
X,X′) + MI

(
Y,Y ′))

≤ MI
((

X,X′), (Y,Y ′)).
(A.4) follows.
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