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OPTIMAL SCALING OF RANDOM WALK METROPOLIS
ALGORITHMS WITH DISCONTINUOUS TARGET DENSITIES

BY PETER NEAL, GARETH ROBERTS AND WAI KONG YUEN

University of Manchester, University of Warwick and Brock University

We consider the optimal scaling problem for high-dimensional random
walk Metropolis (RWM) algorithms where the target distribution has a dis-
continuous probability density function. Almost all previous analysis has fo-
cused upon continuous target densities. The main result is a weak conver-
gence result as the dimensionality d of the target densities converges to ∞.
In particular, when the proposal variance is scaled by d−2, the sequence of
stochastic processes formed by the first component of each Markov chain
converges to an appropriate Langevin diffusion process. Therefore optimizing
the efficiency of the RWM algorithm is equivalent to maximizing the speed of
the limiting diffusion. This leads to an asymptotic optimal acceptance rate of
e−2 (=0.1353) under quite general conditions. The results have major practi-
cal implications for the implementation of RWM algorithms by highlighting
the detrimental effect of choosing RWM algorithms over Metropolis-within-
Gibbs algorithms.

1. Introduction. Random walk Metropolis (RWM) algorithms are widely
used generic Markov chain Monte Carlo (MCMC) algorithms. The ease with
which RWM algorithms can be constructed has no doubt played a pivotal role
in their popularity. The efficiency of a RWM algorithm depends fundamentally
upon the scaling of the proposal density. Choose the variance of the proposal to
be too small and the RWM will converge slowly since all its increments are small.
Conversely, choose the variance of the proposal to be too large and too high a pro-
portion of proposed moves will be rejected. Of particular interest is how the scaling
of the proposal variance depends upon the dimensionality of the target distribution.
The target distribution is the distribution of interest and the MCMC algorithm is
constructed such that the stationary distribution of the Markov chain is the target
distribution.

The Introduction is structured as follows. We outline known results for con-
tinuous independent and identically distributed product densities from [14] and
subsequent work. We highlight the scope and limitations of the results before in-
troducing the discontinuous target densities to be studied in this paper. While the
statements of the key results (Theorem 2.1) in this paper are similar to those given
for continuous target densities, the proofs are markedly different. A discussion of
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why a new method of proof is required for discontinuous target densities is given.
Finally, we give an outline of the remainder of the paper.

The results of this paper have quite general consequences for the implementa-
tion of Metropolis algorithms on discontinuous densities (as are commonly applied
in many Bayesian Statistics problems), namely:

(1) Full- (high-) dimensional update rules can be an order of magnitude slower
than strategies involving smaller dimensional updates. (See Theorem 3.3 below.)

(2) For target densities with bounded support, Metropolis algorithms can be an
order of magnitude slower than algorithms which first transform the target support
to R

d for some d .

In [14], a sequence of target densities of the form

πd(xd) =
d∏

i=1

f (xd
i )(1.1)

were considered as d → ∞, where f (·) is twice differentiable and satisfies certain
mild moment conditions; see [14], (A1) and (A2). The following random walk
Metropolis algorithm was used to obtain a sample Xd

0 ,Xd
1 , . . . from πd(·). Draw

Xd
0 from πd(·). For t ≥ 0 and i = 1,2, . . . , let Zt,i be independent and identically

distributed (i.i.d.) according to Z ∼ N(0,1) and Zd
t = (Zt,1,Zt,2, . . . ,Zt,d). At

time t , propose

Yd = Xd
t + σdZd

t ,(1.2)

where σd is the proposal standard deviation to be discussed shortly. Set Xd
t+1 = Yd

with probability

α(Xd
t ,Yd) ≡ 1 ∧ πd(Yd)

πd(Xd
t )

.(1.3)

Otherwise set Xd
t+1 = Xd

t . It is straightforward to check that {Xd
t } has stationary

distribution πd(·), and hence, for all t ≥ 0, Xd
t ∼ πd(·). The key question addressed

in [14] was: starting from the stationary distribution, how should σd be chosen to
optimize the rate at which the RWM algorithm explores the stationary distribution?
Since the components of Xd

t are i.i.d., it suffices to study the marginal behavior of
the first component, Xd

t,1. In [14], it was shown that if σd = l/
√

d (l > 0) and

Ud
t = Xd[td],1 (t ≥ 0), then

Ud ⇒ U as d → ∞,(1.4)

where U· satisfies the Langevin SDE

dUt = √
h(l) dBt + φ(l)

f ′(Ut )

2f (Ut )
dt(1.5)
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with U0 ∼ f (·) and h(l) = 2l2�(−l
√

I/2) with � being the standard normal c.d.f.
and I ≡ Ef [{f ′(X)/f (X)}2]. Note that the “speed measure” of the diffusion φ(l)

only depends upon f through I . The diffusion limit for Ud is unsurprising in that
for a time interval of length s > 0, O(d) moves are made each of size O(1/

√
d).

Therefore the movements in the first component (appropriately normalized) con-
verge to those of a Langevin diffusion with the “most efficient” asymptotic dif-
fusion having the largest speed measure h(l). Since the diffusion limit involves
speeding up time by a factor of d , we say that the mixing of the algorithm is O(d).
The optimal value of l is l̂ = 2.38/

√
I , which leads to an average optimal accep-

tance rate (aoar) of 0.234. This has major practical implications for practitioners,
in that, to monitor the (asymptotic) efficiency of the RWM algorithm it is sufficient
to study the proportion of proposed moves accepted.

There are three key assumptions made in [14]. First, Xd
0 ∼ πd(·), that is, the

algorithm starts in the stationary distribution and σd is chosen to optimize explo-
ration of the stationary distribution. This assumption has been made in virtually
all subsequent optimal scaling work; see, for example, [3, 7, 10, 11] and [15].
The one exception is [8], where Xd

0 is started from the mode of πd(·) with ex-
plicit calculations given for a standard multivariate normal distribution. In [8], it is
shown that σd = O(1/

√
d) is optimal for maximizing the rate of convergence to

the stationary distribution. Since convergence is shown to occur within O(logd)

iterations, the time taken to explore the stationary distribution dominates the time
taken to converge to the stationary distribution, and thus overall it is optimal to
choose σd = l̂/

√
d . It is difficult to prove generic results for Xd

0 �∼ πd . However,
the findings of [8] suggest that even when Xd

0 �∼ πd , it is best to scale the proposal
distribution based upon Xd

0 ∼ πd . It is worth noting that in [8] it was found that
for the Metropolis adjusted Langevin algorithm (MALA), the optimal scaling of
σd for Xd

0 started at the mode of a multivariate normal is O(d−1/4) compared to
O(d−1/6) for Xd

0 ∼ πd .
Second, πd(·) is an i.i.d. product density. This assumption has been relaxed by

a number of authors with σd = O(1/
√

d) and an aoar of 0.234 still being the case,
for example, independent, scaled product densities ([15] and [3]), Gibbs random
fields [7], exchangeable normals [10] and elliptical densities [17]. Thus the simple
rule of thumb of tuning σd such that one in four proposed moves are accepted holds
quite generally. In [4] and [17], examples where the aoar is strictly less than 0.234
are given. These correspond to different orders of magnitude being appropriate for
the scaling of the proposed moves in different components.

Third, the results are asymptotic as d → ∞. However, simulations have shown
that for i.i.d. product densities an acceptance rate of 0.234 is close to optimal for
d = 10; see, for example, [10]. Departures from the i.i.d. product density require
larger d for the asymptotic results to be optimal, but d = 100 is often seen in
practical MCMC problems. In [12] and [16], optimal acceptance rates are obtained
for finite d for some special cases.
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With the exceptions of [11, 12] and [17], in the above works πd is assumed to
have a continuous (and suitably differentiable) probability density function (p.d.f.).
The aim of the current work is to investigate the situation where the target distri-
bution has a discontinuous p.d.f., and specifically, target distributions confined to
the d-dimensional hypercube [0,1]d . That is, we consider target distributions of
the form

πd(xd) =
d∏

i=1

f (xd
i ),(1.6)

where

f (x) ∝ exp(g(x))1{0<x<1} (x ∈ R)(1.7)

and g(·) is twice differentiable upon [0,1] with

g∗ = sup
0≤y≤1

|g′(y)| < ∞.(1.8)

We then use the following random walk Metropolis algorithm to obtain a sample
Xd

0 ,Xd
1 , . . . from πd(·). Draw Xd

0 from πd(·). For t ≥ 0 and i = 1,2, . . . , let Zti

be independent and identically distributed (i.i.d.) according to Z ∼ U [−1,1] and
Zd

t = (Zt1,Zt2, . . . ,Ztd). At time t , propose

Yd = Xd
t + σdZd

t .(1.9)

Set Xd
t+1 = Yd with probability

α(Xd
t ,Yd) ≡ 1 ∧ πd(Yd)

πd(Xd
t )

.(1.10)

Otherwise set Xd
t+1 = Xd

t .
In [11] and [17], spherical and elliptical densities are considered which have

very different geometry to the hypercube restricted densities. Therefore different
approaches are taken in these papers with results akin to those obtained for con-
tinuous target densities. Densities of the form (1.7) have previously been studied
in [12], where the expected square jumping distance (ESJD) has been computed.
The ESJD is

Eπd

[ d∑
i=1

(Xd
1,i − Xd

0,i)
2
]

= dEπd
[(Xd

1,1 − Xd
0,1)

2],(1.11)

the mean squared distance between Xd
0 and Xd

1 , where Xd
0 ∼ πd . In [12], Ap-

pendix B, it is shown that for σd = l/d (l > 0) and f (x) = 1{0<x<1},

dEπd

[
d∑

i=1

(Xd
1,i − Xd

0,i)
2

]
→ l2

3
exp

(
− l

2

)
as d → ∞.(1.12)
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Thus asymptotically (as d → ∞) the ESJD is maximized by taking l̂ = 4 which
corresponds to an aoar of exp(−2) (=0.1353). In this paper, we show that σd = l/d

and an aoar of exp(−2) holds more generally for target distributions of the form
given by (1.6) and (1.7). Moreover, we prove a much stronger result than that given
in [12], in that, we prove that V d

s = Xd
[sd2],1 converges weakly to an appropriate

Langevin diffusion Vs with speed measure φ(l) = (l2/3) exp(−l/(2f ∗)) as d →
∞, where f ∗ = limx↓0{(f (x)+f (1−x))/2}. This gives a clear indication of how
the Markov chain explores the stationary distribution. By contrast the ESJD only
gives a measure of average behavior and does not take account of the possibility
of the Markov chain becoming “stuck.” If EZd [α(xd,xd + Zd)] is very low, the
Markov chain started Xd

0 = xd is likely to spend a large number of iterations at
xd before accepting a move away from xd . Note that since V d

s involves speeding
up time by a factor of d2, we say that the mixing of the algorithm is O(d2). The
ESJD is easy to compute and asymptotically, as d → ∞, the ESJD (appropriately
scaled) converges to φ(l). Thus in discussing possible extensions of the Langevin
diffusion limit proved in Theorem 2.1 for i.i.d. product densities of the form given
in (1.6) and (1.7), we make considerable use of the ESJD. However, we highlight
the limitations of the ESJD in discussing extensions of Theorem 2.1.

In most previous work on optimal scaling, the components of Zd are taken to be
independent and identically distributed Z ∼ N(0,1) random variables. The reason
for choosing Z ∼ U [−1,1] for discontinuous target densities is mathematical con-
venience. The results proved in this paper hold with Gaussian rather than uniform
proposal distributions, but some elements of the proof are less straightforward. For
discussion of the ESJD for densities (1.6) for general Z subject to E[Z2] < ∞,
see [12], Appendix B.

While the key result, a Langevin diffusion limit for the movement in the first
component, is the same as [14], the proof is markedly different. Note that, for
finite d , Ud and V d are not Markov chains since whether or not a proposed move
is accepted depends upon all the components in πd(·). In [14], it is shown that
there exists {Fd} such that P(

⋃[T d]
t=0 {Xd

t /∈ Fd}) → 0 as d → ∞ and

sup
xd∈Fd

∣∣∣∣E[α(xd,xd + σdZd)] − 2�

(
− l

√
I

2

)∣∣∣∣ ≤ εd,(1.13)

where εd → 0 as d → ∞. While (1.13) is not explicitly stated in [14], it is the
essence of the requirements of the sets {Fd}, stating that for large d , with high
probability over the first T d iterations the acceptance probability of the Markov
chain is approximately constant, being within εd of 2�(−l

√
I/2). (Note n rather

than d is used for dimensionality in [14].) Thus in the limit as d → ∞ the effect
of the other components on movements in the first component converges to a de-
terministic acceptance probability 2�(−l

√
I/2). The situation is more complex

for πd(·) of the form given by (1.6) and (1.7) as the acceptance rate in the limit as
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d → ∞ is inherently stochastic. For example, suppose πd(·) is the uniform distri-
bution on the d-dimensional hypercube so that α(Xd

t ,Yd) = 1{Yd∈[0,1]d }. Letting
RL

d = (0, σd) and RU
d = (1 − σd,1), this gives

E[α(xd,xd + σdZd)] = ∏
i∈RL

d

(
1

2
+ xi

2σd

)
× ∏

i∈RU
d

(
1

2
+ 1 − xi

2σd

)
.(1.14)

Thus the acceptance probability is totally determined by the components at the
boundary (within σd of 0 or 1). The total number of components in RL

d ∪ RU
d is

Bin(d,2l/d) which converges in distribution to Po(2l) as d → ∞. Thus the num-
ber of components close to the boundary is inherently stochastic. Moreover, the
location of the components within RL

d ∪ RU
d plays a crucial role in the accep-

tance probability; see (1.14). Therefore there is no hope of replicating directly the
method of proof applied in [14] and subsequently, in [7] and [10].

We need a homogenization argument which involves looking at Xd· over [dδ]
steps; cf. [11]. In particular, we show that the acceptance probability converges
very rapidly to its stationary measure, so that over [dδ] iterations approximately
exp(−lf ∗/2)[dδ] proposed moves are accepted. By comparison, |Xd

[dδ],1 −Xd
0,1| ≤

[dδ]σd ; thus the value of an individual component only makes small changes over
[dδ] iterations. That is, we show that there exists {F̃d} such that, for any T > 0,

P(
⋃[T d2]

t=0 {Xd
t /∈ F̃d}) → 0 as d → ∞ and for δ > 0,

sup
xd∈F̃d

∣∣∣∣∣ 1

[dδ]
[dδ]−1∑
t=0

E[α(Xd
t ,Xd

t + σdZd
t )|Xd

0 = xd ] − exp
(
− lf ∗

2

)∣∣∣∣∣ ≤ εd(1.15)

for some εd → 0 as d → ∞. For large d , with high probability over the first [T d2]
iterations the Markov chain stays in F̃d , where the average number of accepted
proposed moves in the following [dδ] iterations is exp(−lf ∗/2)dδ + o(dδ). The
arguments are considerably more involved than in [11], where spherically con-
strained target distributions were studied, due to the very different geometry of the
hypercube and spherical constraints applied in this paper and [11], respectively. In
particular, in [11], σd = l/

√
d with an aoar of 0.234.

By exploiting the homogenization argument it is possible to prove that V d con-
verges weakly to an appropriate Langevin diffusion V , given in Theorem 2.1. In
Section 2, Theorem 2.1 is presented along with an outline of the proof. Also in
Section 2, a description of the pseudo-RWM algorithm is given. The pseudo-RWM
algorithm plays a key role in the proof of Theorem 2.1. The pseudo-RWM process
moves at each iteration and the moves in the pseudo-RWM process are identical
to those of the RWM process, conditioned upon a proposed move in the RWM
process being accepted. The proof of Theorem 2.1 is long and technical with the
details split into three key sections which are given in the Appendix; see Section 2
for more details. In Section 3, two interesting extensions of Theorem 2.1 are given.
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In particular, Theorem 3.3 has major practical implications for the implementation
of RWM algorithms by highlighting the detrimental effect of choosing RWM al-
gorithms over Metropolis-within-Gibbs algorithms. The target densities for which
theoretical results can be proved are limited, so discussion of possible extensions
of Theorem 2.1 are given. In particular, we discuss general πd restricted to the
hypercube, general discontinuities in f and Xd

0 �∼ πd .

2. Pseudo-RWM algorithm and Theorem 2.1. We begin by defining the
pseudo-random walk Metropolis (pseudo-RWM) process. We will then be in po-
sition to formally state the main theorem, Theorem 2.1. An outline of the proof of
Theorem 2.1 is given, with the details, which are long and technical, placed in the
Appendix.

For d ≥ 1, let

hd(zd) =
{

2−d, if zd ∈ (−1,1)d ,
0, otherwise.

Let Jd(xd) denote the probability of accepting a move in the RWM process given
the current state of the process is xd . Then

Jd(xd) =
∫

hd(zd)

{
1 ∧ πd(xd + σdzd)

πd(xd)

}
dzd .(2.1)

Let br
d(xd) = ∑d

j=1 1{xj∈Rr
d }, the total number of components of xd in Rr

d =
(0, r/d) ∪ (1 − r/d,1). By Taylor’s theorem for all 0 ≤ xi, xi + σdzi ≤ 1 and
−1 ≤ zi ≤ 1,

g(xi + σdzi) − g(xi) ≥ −g∗σd(2.2)

with g∗ defined in (1.8). Hence, for all xd ∈ [0,1]d ,

Jd(xd) =
∫

hd(zd)

{
1 ∧

d∏
i=1

exp(g(xi + σdzi))

exp(g(xi))

}
1{xd+σdzd∈[0,1]d } dzd

≥
∫

hd(zd){1 ∧ exp(−dg∗σd)}1{xd+σdzd∈[0,1]d } dzd

(2.3)
= exp(−lg∗)

∫
hd(zd)1{xd+σdzd∈[0,1]d } dzd

≥ exp(−lg∗)
(

1

2

)bl
d (xd )

.

This lower bound for Jd(xd) will be used repeatedly.
The pseudo-RWM process moves at each iteration, which is the key difference

to the RWM process. Furthermore, the moves in the pseudo-RWM process are
identical to those of the RWM process, conditioned upon a move in the RWM
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process being accepted, that is, its jump chain. For d ≥ 1, let X̂d
0 , X̂d

1 , . . . denote
the successive states of the pseudo-RWM process, where X̂d

0 ∼ πd(·). The pseudo-
RWM process is a Markov process, where for t ≥ 0, X̂d

t+1 = X̂d
t +σd Ẑd

t and given

that X̂d
t = xd , Ẑd

t has p.d.f.

ζ(zd |xd) = hd(zd)α(xd,xd + σdzd)/Jd(xd), zd ∈ (−1,1)d .

Note that ζ(zd |xd) = 0 for zd /∈ (−1,1)d . Since Xd
0 , X̂d

0 ∼ πd , we can couple the
two processes to have the same starting value Xd

0 . A continued coupling of the two
processes is outlined below. Suppose that Xd

t = xd . Then for any s ≥ 1,

P

(
s⋃

j=1

{Xd
t+j = xd}|Xd

t = xd

)
= (

1 − Jd(xd)
)s

.(2.4)

That is, the number of iterations the RWM algorithm stays at xd before moving
follows a geometric distribution with “success” probability Jd(xd). Therefore for
j ≥ 0, let Mj(·) denote independent geometric random variables, where for 0 <

p ≤ 1, Mj(p) denotes a geometric random variable with “success” probability p.
For s ∈ Z

+, let M̂d
s = Ms(J (X̂d

s )) and for t ∈ Z
+, let

Ud
t = sup

{
s ∈ Z

+ :
s−1∑
j=0

Mj(Jd(X̂d
j )) ≤ t

}
,

where the sum is zero if vacuous. For s ∈ Z
+, attach M̂d

s = Ms(J (X̂d
s )) to X̂d

s .
Thus M̂d

s denotes the total number of iterations the RWM process spends at
X̂d

s before moving to X̂d
s+1. Hence, the RWM process can be constructed from

(X̂d
0 , M̂d

0 ), (X̂d
1 , M̂d

1 ), . . . by setting Xd
0 ≡ X̂d

0 and for all s ≥ 1, Xd
s = X̂d

Ud
s

. Obvi-

ously the above process can be reversed by setting X̂d
t equal to the t th accepted

move in the RWM process.
For each d ≥ 1, the components of Xd

0 are independent and identically dis-
tributed. Therefore we focus attention on the first component as this is indicative
of the behavior of the whole process. For d ≥ 1 and t ≥ 0, let V d

t = Xd
[d2t],1 and

V̂ d
t = X̂d

[d2t],1.

THEOREM 2.1. Fix l > 0. For all d ≥ 1, let Xd
0 ∼ πd . Then, as d → ∞,

V d ⇒ V

in the Skorokhod topology on D[0,∞), where V· satisfies the (reflected) Langevin
SDE on [0,1]

dVt =
√

φ(l) dBt + 1
2φ(l)g′(Vt ) dt + dL0

t (V ) − dL1
t (V )(2.5)
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with V0 ∼ f . Note that Bt is standard Brownian motion,

φ(l) = l2

3
exp

(
−f ∗l

2

)

and f ∗ = limx↓0(
f (x)+f (1−x)

2 ).
Here {Ly

t , t ≥ 0} denotes the local time of V at y (=0,1) and the SDE (2.5)
corresponds to standard reflection at the boundaries 0 and 1 (see, e.g., Chapter VI
of [13]).

PROOF. As noted in Section 1, the acceptance probability of the RWM process
is inherently random and therefore it is necessary to consider the behavior of the
RWM process averaged over [dδ] iterations, for δ > 0. Fix 0 < 20γ < β < δ < δ +
γ < 1

2 and let {kd} be a sequence of positive integers satisfying [dβ] ≤ kd ≤ [dδ].
For s ∈ Z

+, let X̃d
s = Xd

s[dδ] and for t ≥ 0, let Ṽ d
t = X̃d

[td2/[dδ]],1. For all t ≥ 0,

|Xd
t+1,1 − Xd

t,1| ≤ σd and |[d2t] − [dδ] × [d2t/[dδ]]| ≤ [dδ]. Hence, for all T > 0,

sup
0≤s≤T

|Ṽ d
s − V d

s | ≤ [dδ]σd.(2.6)

Therefore by [5], Theorem 4.1, V d ⇒ V as d → ∞, if Ṽ d ⇒ V as d → ∞. Hence
we proceed by showing that

Ṽ d ⇒ V as d → ∞.(2.7)

Let Gδ
d be the (discrete-time) generator of X̃d and let H be an arbitrary test

function of the first component only. Thus

Gδ
dH(xd) = d2

[dδ]E[H(X̃d
1) − H(X̃d

0)|X̃d
0 = xd ].(2.8)

The generator G of the (limiting) one-dimensional diffusion V for an arbitrary test
function H is given by

GH(x) = φ(l)
{1

2g′(x)H ′(x) + 1
2H ′′(x)

}
(2.9)

for all x ∈ [0,1] at least for all H ∈ D, where D is defined in (2.10) below.
First note that the diffusion defined by (2.9) is regular; see [9], page 366. There-

fore by [9], Chapter 8, Corollary 1.2, it is sufficient to restrict attention to functions

H ∈ D ≡ {h :h ∈ Ĉ([0,1]) ∩ C2((0,1)) ∩ D∗,Gh ∈ Ĉ([0,1])},(2.10)

where C2((0,1)) is the set of twice differentiable functions upon (0,1), Ĉ[0,1] is
the set of bounded continuous functions upon [0,1] and D∗ is obtained by setting
qi = 0 (i = 0,1) in [9], page 367, (1.11) and is given by

D∗ = {h :h′(0) = h′(1) = 0}.(2.11)
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Let H ∗
1 = sup0≤y≤1 H ′(y) and H ∗

2 = sup0≤y≤1 H ′′(y). Then H ∈ C2((0,1)) com-
bined with H ∈ D∗ implies that H ∗

1 < ∞. It then follows from g′ being bounded
on [0,1] and GH ∈ Ĉ([0,1]) that H ∗

2 < ∞. These observations will play a key
role in Appendix C.

Now (2.7) is proved using [9], Chapter 4, Corollary 8.7, by showing that there
exists a sequence of sets {F̃d} such that for any T > 0,

P

([T d2/[dδ]]⋃
j=0

{Xd
j /∈ F̃d}

)
→ 0 as d → ∞(2.12)

and

sup
xd∈F̃d

|Gδ
dH(xd) − GH(x1)| → 0 as d → ∞.(2.13)

Let the sets {Fd} and {F̃d} be such that Fd = ⋂4
j=1 F

j
d and

F̃d =
{

xd;P

([dδ]⋃
j=0

{X̂d
j /∈ Fd}|X̂d

0 = xd

)
≤ d−3

}
,(2.14)

where F 1
d , F 2

d , F 3
d and F 4

d are defined below. Recall that br
d(xd) = ∑d

j=1 1{xj∈Rr
d },

the total number of components of xd in Rr
d = (0, r/d)∪ (1 − r/d,1). We term Rl

d

the rejection region, in that, for any component in Rl
d , there is positive probability

of proposing a move outside the hypercube with such moves automatically being
rejected. Let

F 1
d = {xd;bl

d(xd) ≤ γ logd},(2.15)

F 2
d =

[dδ]⋂
k=[dβ ]

{
xd; |bk3/4

d (xd) − E[bk3/4

d (Xd
0)]| ≤ √

k
}
,(2.16)

F 3
d =

{
xd; sup

[dβ ]≤kd≤[dδ]
sup

0≤r≤l

|λd(xd; r;kd) − λ(r)| ≤ d−γ
}
,(2.17)

F 4
d =

{
xd;

∣∣∣∣∣1

d

d∑
j=1

g′(xj )
2 − Ef [g′(X1)

2]
∣∣∣∣∣ < d−1/8

}
,(2.18)

where λd(xd; r;kd) = E[br
d(Xd

kd
)|Xd

0 = xd ] and λ(r) = f ∗r(1 + r/2l). In Ap-

pendix A, we prove (2.12) for the sets {F̃d} given in (2.14). Note that (2.12) follows
immediately from Theorem A.13, (A.74) since Xd

0 ∼ πd . An outline of the roles

played by each F
j
d (j = 1,2,3,4) is given below. For xd ∈ F 1

d (xd ∈ F 2
d ) the total

number of components in (close to) the rejection region are controlled. For xd ∈ F 3
d

after kd iterations the total number and position of the points {X̂d
kd

|X̂d
0 = xd} in Rl

d
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are approximately from the stationary distribution of X̂d . Finally, for xd ∈ F 4
d ,

1
d

∑d
j=1 g′(xj )

2 ≈ Ef [g′(X)2]; this is the key requirement for the sets {Fd} given
in [14], cf. [14], page 114, Rn(x2, . . . , xn).

The proof of (2.13) splits into two parts and exploits the pseudo-RWM process.
Let

Pd = max

{
K = 0,1, . . . , [dδ − 1]; 1

[dδ]
K−1∑
j=0

Mj(Jd(X̂d
j )) ≤ 1

}/
[dδ],(2.19)

the proportion of accepted moves in the first [dδ] iterations, where the sum is set
equal to zero if vacuous. Then X̃d

1 = Xd
[dδ] = X̂d

[Pddδ] and

Gδ
dH(xd) = d2

[dδ]E
[
H

(
X̂d

[Pddδ]
) − H(X̂d

0)|X̂d
0 = xd].(2.20)

In Appendix B, we show that for all xd ∈ F̃d , Pd |X̂d
0 = xd p−→ exp(−lf ∗/2) as

d → ∞. Consequently, it is useful to introduce Ĝ
δ,π
d H(xd) (0 ≤ π ≤ 1) which is

defined for fixed 0 ≤ π ≤ 1 as

Ĝ
δ,π
d H(xd) = d2

[dδ]E
[(

H
(
X̂d

[πdδ]
) − H(X̂d

0)
)|X̂d

0 = xd]

= d2

[dδ]
[πdδ−1]∑

j=0

E[H(X̂d
j+1) − H(X̂d

j )|X̂d
0 = xd ](2.21)

= 1

[dδ]
[πdδ−1]∑

j=0

E[ĜdH(X̂d
j )|X̂d

0 = xd ],

where

ĜdH(X̂d
j ) = d2

E[H(X̂d
1 − X̂d

0)|X̂d
0 = xd ].(2.22)

Finally in Appendix C, we prove in Lemma C.6 that

sup
0≤π≤1

sup
xd∈F̃d

|Ĝδ,π
d H(xd) − GH(x1)| → 0 as d → ∞.(2.23)

The triangle inequality is then utilized to prove (2.13) in Lemma C.6 using (2.23)

and Pd |Xd
0 = xd p−→ exp(−lf ∗/2) as d → ∞. �

It should be noted that in Appendix C, we assume that E[g′(X)2] > 0, in particu-
lar in Lemma C.1. In Appendixes A and B we make no such assumption. However,
E[g′(X)2] = 0 corresponds to f (x) = 1{0<x<1} (uniform distribution), and prov-
ing Lemma C.6 in this case follows similar but simpler arguments to those given
in Appendix C.
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A key difference between the diffusion limits for continuous and discon-
tinuous i.i.d. product densities is the dependence of the speed measure φ(l)

upon f . For continuous (suitably differentiable) f , φ(l) depends upon I ≡
Ef [{f ′(X)/f (X)}2], which is a measure of the “roughness” of f . For discontin-
uous densities of the form (1.7), φ(l) depends upon f ∗ = limx↓0{(f (x) + f (1 −
x))/2}, the (mean of the) limit of the density at the boundaries (discontinuities).
Discussion of the role of the density f in the behavior of the RWM algorithm is
given in Section 3.

The most important consequence of Theorem 2.1 is the following result.

COROLLARY 2.2. Let a(l) = exp(−f ∗l/2). Then

Eπd
E[Jd(Xd

0)] → a(l) as d → ∞.

φ(l) is maximized by l = l̂ = 4/f ∗ with

a(l̂) = exp(−2) = 0.1353.

Clearly, if f (·) is known, l̂ can be calculated explicitly. However, where MCMC
is used, f (·) will often only be known up to the constant of proportionality. This
is where Corollary 2.2 has major practical implications, in that, to maximize the
speed of the limiting diffusion, and hence, the efficiency of the RWM algorithm,
it is sufficient to monitor the average acceptance rate, and to choose l such that
the average acceptance rate is approximately e−2. Therefore there is no need to
explicitly calculate or estimate the constant of proportionality.

3. Extensions. In this section, we discuss the extent to which the conclusions
of Theorem 2.1 extend beyond πd being an i.i.d. product density upon the d-
dimensional hypercube and Xd

0 ∼ πd . First we present two extensions of Theo-
rem 2.1. The second extension, Theorem 3.3, is an important practical result con-
cerning lower-dimensional updating schema.

Suppose that f (·) is nonzero on the positive half-line. That is,

f (x) ∝ exp(g(x)) (x > 0)(3.1)

and f (x) = 0 otherwise.

THEOREM 3.1. Fix l > 0. For all d ≥ 1, let Xd
0 ∼ πd , given by (3.1), with

supx≥0 |g′(x)| = g∗ < ∞. Then, as d → ∞,

V d ⇒ V

in the Skorokhod topology on D[0,∞), where V· satisfies the (reflected) Langevin
SDE on [0,∞)

dVt =
√

φ(l) dBt + 1
2φ(l)g′(Vt ) dt + dL0

t (V )

with V0 ∼ f , φ(l) = l2

3 exp(−f 
l/4) and f 
 = limx↓0 f (x).
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PROOF. The proof of the theorem is virtually identical to the proof of Theo-
rem 2.1, and so, the details are omitted. �

Note that we have assumed that g′(·) is bounded on [0,∞). This assumption is
almost certainly stronger than necessary with g′(·) being Lipschitz and/or satisfy-
ing certain moment conditions probably being sufficient; cf. [14].

Theorem 3.1 is unsurprising with the speed of the diffusion depending upon the
number of components close to the discontinuity at 0.

COROLLARY 3.2. Let πd(xd) = ∏d
i=1 f (xi) where f satisfies (3.1). Then

Eπd
[Jd(Xd

0)] → exp(−f 
l/4) ≡ a(l) as d → ∞.

φ(l) is maximized by l = l̂ = 8/f 
 with

a(l̂) = exp(−2) = 0.1353.

Therefore the conclusions are identical to Corollary 2.2 that in order to max-
imize the speed of the limiting diffusion it is sufficient to choose l such that the
average acceptance rate is e−2.

The second and more important extension of Theorem 2.1 follows on from [10].
In [10], the Metropolis-within-Gibbs algorithm was considered, where only a pro-
portion c (0 < c ≤ 1) of the components are updated at each iteration. For given
d ≥ 1, at each iteration cdd of the components are chosen uniformly at random
and new values for these components are proposed using random walk Metropo-
lis with proposal variance σ 2

d,cd
= (l/d)2. The remaining (1 − cd)d components

remain fixed at their current values. Finally, it is assumed that cd → c as d → ∞.
The following result assumes that f (·) is nonzero on (0,1) only. The extension

to the positive half-line is trivial.

THEOREM 3.3. Fix 0 < c ≤ 1 and l > 0. For all d ≥ 1, let Xd
0 = (Xd

0,1,X
d
0,2,

. . . ,Xd
0,d) be such that all of its components are distributed according to f (·).

Then, as d → ∞,

V d ⇒ V

in the Skorokhod topology, where V0 ∼ f (·) and V satisfies the (reflected)
Langevin SDE on [0,1]

dVt =
√

φc(l) dBt + 1
2φc(l)g

′(Vt ) dt + dL0
t (V ) − dL1

t (V ),

where Bt is standard Brownian motion, φc(l) = cl2

3 exp(−cf ∗l/2) and f ∗ =
limx↓0

f (x)+f (1−x)
2 .
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Let a
cd

d (l) denote the average acceptance rate of the RWM algorithm in d di-
mensions where a proportion cd of the components are updated at each iteration.
Let

ac(l) = exp(−cf ∗l/2).

We then have the following result which mirrors Corollaries 2.2 and 3.2.

COROLLARY 3.4. Let cd → c as d → ∞. Then

a
cd

d (l) → ac(l) as d → ∞.

For fixed 0 < c ≤ 1, φc(l) is maximized by

l = l̂c = 4

cf ∗

and

φc(l̂c) = 1

c
φ1(l̂1).

Also

a(l̂c) = exp(−2) = 0.1353.

Corollary 3.4 is of fundamental importance from a practical point of view, in
that it shows that the optimal speed of the limiting diffusion is inversely propor-
tional to c. Therefore the optimal action is to choose c as close to 0 as possi-
ble. Furthermore, we have shown that not only is full-dimensional RWM bad for
discontinuous target densities but it is the worst algorithm of all the Metropolis-
within-Gibbs RWM algorithms.

We now go beyond i.i.d. product densities with a discontinuity at the boundary
and Xd

0 ∼ πd . We consider general densities on the unit hypercube, discontinuities
not at the boundary and Xd

0 �∼ πd . As mentioned in Section 1, for i.i.d. product
densities, the speed measure of the limiting one-dimensional diffusion, φ(l), is
equal to the limit, as d → ∞, of the ESJD times d . Therefore we consider the
ESJD for the above-mentioned extensions as being indicative of the behavior of
the limiting Langevin diffusion. We also highlight an extra criterion which is likely
to be required in moving from an ESJD to a Langevin diffusion limit.

Using the proof of Theorem 2.1, it is straightforward to show that

φ(l) = l2

3
exp

(
− lf ∗

2

)

= l2
E[Z2

1] lim
d→∞E

[
1{Xd

0+σdZd
1∈[0,1]d }

]
(3.2)

= l2

3
lim

d→∞E

[(
3

4

)bl
d (Xd

0 )]
.
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The first equality in (3.2) can be proved using Lemma A.6, (A.26), where for
Z1 ∼ U(−1,1), E[Z2

1] = 1/3. The second equality in (3.2) comes from the fact
that for 0 < x < σd , f (x) + f (1 − x) = 2f ∗ + O(1/d) and for a component Xd

0,i

uniformly distributed on (0, l/d) or (1 − l/d,1), P(Xd
0,i + σdZd

i ∈ [0,1]) = 3/4.
That is, the acceptance probability of a proposed move is dominated by whether
or not the proposed move lies inside the d-dimensional unit hypercube. Proposed
moves inside the hypercube are accepted with probability 1 − o(d−α) for any α <

1/2; see Lemma A.7. Thus it is the number and behavior of the components at the
boundary of the hypercube (the discontinuity) which determine the behavior of the
RWM algorithm. This is also seen in Theorems 3.1 and 3.3.

First, we consider discontinuities not at the boundary. Suppose that πd(xd) =∏d
i=1 f (xi), where

f (x) ∝ 1{x∈[a,b]} exp(g(x)) (x ∈ R)(3.3)

for some a, b ∈ R. Further suppose that g(·) is continuous (twice differentiable)
upon [a, b] except at a countable number of points, P = {a1, a2, . . . , ak}, say,
on (a, b). Set a0 = a and ak+1 = b, with σd = l/d . For j = 0,1, . . . , k + 1,
let f −

j = limx→aj− f (x) and f +
j = limx→aj+ f (x), with Y−

j ∼ Po(lf −
j /4) and

Y+
j ∼ Po(lf +

j /4), where f −
0 = f +

k+1 = Y−
0 = Y+

k+1 = 0. Then following [12],
(4.23), we can show that d times the ESJD

dE

[
d∑

i=1

(Xd
1,i − Xd

0,i)
2

]
→ l2

3
E

[
1 ∧

k+1∏
j=0

(f −
j

f +
j

)Y+
j −Y−

j

]
as d → ∞.(3.4)

Thus the optimal scaling of σd is again of the form l/d and the acceptance or re-
jection of a proposed move is determined by the components close to the disconti-
nuities. Furthermore, it is straightforward to show that for each j = 0,1, . . . , k+1,

l2(f −
j /f +

j )
Y+

j −Y−
j

p−→ 0 as l → ∞, implying that the optimal choice of l lies in
(0,∞). Proving a Langevin diffusion for the (normalized) first component of the
RWM algorithm should be possible with appropriate local time terms at the dis-
continuities in f . While (3.4) holds regardless of f −

j and f +
j for a diffusion limit

we require that min1≤j≤k+1 f −
j ,min0≤j≤k f +

j > 0, that is, the density is strictly
positive on (a, b). (If this is not the case, the RWM algorithm is reducible in the
limit as d → ∞.) Extensions to the case where either a = −∞ and/or b = ∞ are
straightforward.

Second, we consider general densities which are zero outside the d-dimensional
hypercube, πd(xd) ∝ 1{xd∈[0,1]d } exp(μd(xd)), where μd(·) is assumed to be con-
tinuous and twice differentiable. Let σd = l/d and assuming that

exp
(
μd(Xd

0 + σdZd
1) − μd(Xd

0)
) p−→ 1 as d → ∞,(3.5)
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we have that d times the ESJD satisfies

dE

[
d∑

i=1

(Xd
1,i − Xd

0,i)
2

]
→ l2

3
lim

d→∞ E

[(
3

4

)bl
d (Xd

0 )]
as d → ∞.(3.6)

Note that (3.5) is a weak condition and should be straightforward to check using

a Taylor series expansion of μd . For i.i.d. product densities, bl
d(Xd

0)
D−→ Po(2lf ∗)

as d → ∞. More generally, the limiting distribution of bl
d(Xd

0) will determine the
limit of the right-hand side of (3.6). In particular, so long as there exist δ > 0 and
K ∈ N such that P(limd→∞ bl

d(Xd
0) ≤ K) > δ, the right-hand side of (3.6) will be

nonzero for l > 0. It is informative to consider what conditions upon πd are likely
to be necessary for a diffusion limit, whether it be one-dimensional or infinite-

dimensional as in [7]. Suppose that bl
d(Xd

0)
D−→ B as d → ∞. For a diffusion limit

we will require moment conditions on B , probably requiring that there exists ε > 0
such that E[exp(εB)] < ∞. This will be required to control the probability of the
RWM algorithm getting “stuck” in the corners of the hypercube. This highlights a
key difference between studying the ESJD and a diffusion limit. For the ESJD, we
want a positive probability that the total number of components at the boundary of
the hypercube is finite in the limit as d → ∞. For the diffusion limit, as seen with
the construction of {F 1

d } in Theorem 2.1, we want that the probability of there
being a large number of components (O(logd)) at the boundary is very small
(o(d−2)).

Third, suppose that Xd
0 �∼ πd . There are very bad starting points in the “cor-

ners” of the hypercube. For example, if Xd
0 = (exp(−d), exp(−d), . . . , exp(−d)),

Jd(Xd
0) ≈ (0.5 + exp(−d))d which even for d = 100 is less than 1 × 10−30. Thus

the RWM process is likely to be “stuck” at its starting point for a very long period
of time. This is rather pathological and a more interesting question is the situation
when Xd

0 = Sd , where the components of Sd are i.i.d. In particular, suppose that
Sd

1 ∼ U [0,1], so that Xd
0 is chosen uniformly at random over the hypercube. Note

that, if Sd is the uniform distribution,

dE

[
d∑

i=1

(Xd
1,i − Xd

0,i )
2|Xd

0
D= Sd

]
→ l2

3
exp

(
− l

2

)
as d → ∞(3.7)

with the right-hand side maximized by taking l̂ = 4 compared with l̂ = 4/f ∗ for
Xd

0 ∼ πd . We expect to see similar behavior to [8], in that the optimal σd (in terms
of the ESJD) will vary as the algorithm converges to the stationary distribution but
will be of the form σd = l/d throughout. The RWM algorithm is unlikely to get
“stuck” with it conjectured that for any T > 0 and γ > 0,

P

([T d2]⋃
t=0

{bl
d(Xd

t ) ≥ γ logd}|Xd
0

D= Sd

)
→ 0 as d → ∞.
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Simulations with f (x) ∝ 1{0<x<1} exp(−2x) and f (x) ∝ 1{0<x<1} exp(−(x −
0.5)2/2) and d = 10,20, . . . ,200 suggest that convergence occurs in O(d2) itera-
tion. For convergence, we monitor the mean of Xd

t for f (x) ∝ 1{0<x<1} exp(−2x)

and the variance of Xd
t for f (x) ∝ 1{0<x<1} exp(−(x − 0.5)2/2).

APPENDIX A: CONSTRUCTION OF THE SETS {Fd} AND {F̃d}
The sets Fd consist of the intersection of four sets F i

d (i = 1,2,3,4). For
i = 1,2,3,4, we will define F i

d and discuss the role that it plays in the proof of
Theorem 2.1, one at a time. Furthermore, we show that in stationarity it is highly
unlikely that Xd

t does not belong to Fd . Since we rely upon a homogenization
argument, it is necessary to go further than the sets Fd to the sets F̃d ⊂ Fd . In par-
ticular, if X̂d

0 ∈ F̃d , then it is highly unlikely that any of X̂d
1 , X̂d

2 , . . . , X̂d
[dδ] do not

belong to Fd . The above statement is made precise in Theorem A.13 below, where
the constructions of {Fd} and {F̃d} are drawn together.

It is possible that all d components of Xd
0 are in Rl

d . However, this is highly
unlikely and we show in Lemma A.1 that with high probability, there are at most
γ logd components in the rejection region. Let F 1

d = {xd;bl
d(xd) ≤ γ logd}.

LEMMA A.1. For any κ > 0,

dκ
P(Xd

0 /∈ F 1
d ) → 0 as d → ∞.

PROOF. Fix κ > 0. Note that Xd
0 /∈ F 1

d if and only if bl
d(Xd

0) > γ logd . How-
ever,

bl
d(Xd

0) ∼ Bin
(
d,

∫ l/d

0
{f (x) + f (1 − x)}dx

)

with

d

∫ l/d

0
{f (x) + f (1 − x)}dx → 2f ∗l as d → ∞.(A.1)

Fix ρ > κ/γ . By Markov’s inequality and using independence of the compo-
nents of Xd

0 ,

dκ
P
(
bl
d(Xd

0) > γ logd
)

≤ dκ
E[exp(ρbl

d(Xd
0))]/ exp(ργ logd)

= dκ
E
[
exp

(
ρ1{Xd

0,1∈Rl
d }

)]d
/dργ(A.2)

= dκ

(
1 + (eρ − 1)

∫ l/d

0
{f (x) + f (1 − x)}dx

)d/
dργ

≤ dκ−ργ exp
(
(eρ − 1)d

∫ l/d

0
{f (x) + f (1 − x)}dx

)
.
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The lemma follows since (A.1) implies that the right-hand side of (A.2) converges
to 0 as d → ∞. �

For xd ∈ F 1
d , it follows from (2.3) that

Jd(xd) ≥ exp(−lg∗)2−bl
d (xd ) ≥ exp(−lg∗)2−γ logd ≥ exp(−lg∗)d−γ .(A.3)

This is a useful lower bound for the acceptance probability and as a result the
random walk Metropolis algorithm does not get “stuck” at values of xd ∈ F 1

d . To
assist with the homogenizing arguments, we define {F̃ 1

d } by

F̃ 1
d =

{
xd;P

([dδ]⋃
j=0

X̂d
j /∈ F 1

d |X̂d
0 = xd

)
≤ d−3

}
.(A.4)

That is, by starting in F̃ 1
d it is highly unlikely that the pseudo-RWM algorithm

leaves F 1
d in [dδ] iterations. To study F̃ 1

d and later F̃d we require the following
lemmas.

LEMMA A.2. For a random variable X, suppose that there exist δ, ε > 0 such
that

P(X ∈ A|X ∈ B) ≤ δε(A.5)

and for all x ∈ DC , P(X ∈ A|X = x) ≥ ε. Then

P(X /∈ D|X ∈ B) ≤ δ.(A.6)

PROOF. First note that

P(X ∈ A|X ∈ B) ≥ P(X ∈ A ∩ X ∈ DC |X ∈ B)
(A.7)

= P(X ∈ A|X ∈ DC,X ∈ B)P(X /∈ D|X ∈ B).

The lemma follows from rearranging (A.7) and using (A.5) and P(X ∈ A|X ∈
DC,X ∈ B) ≥ ε. �

LEMMA A.3. Suppose that a sequence of sets {F

d } is such that there exists

κ > 0 such that

dκ
P(Xd

0 /∈ F

d ) → 0 as d → ∞.(A.8)

Fix ε > 0 and let

F̃ 

d =

{
xd;P

([dδ]⋃
i=0

{X̂d
i /∈ F


d ∩ F 1
d }|X̂d

0 = xd

)
≤ d−ε

}
.(A.9)

Then

dκ−(2+δ+γ+ε)
P(X̂d

0 /∈ F̃ 

d ) → 0 as d → ∞.(A.10)
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PROOF. Since Xd
i ∼ πd ,

P

([d2+δ+γ ]⋃
i=0

{Xd
i /∈ F


d ∩ F 1
d }

)
≤ d2+δ+γ

P(Xd
0 /∈ F ∗

d ∩ F 1
d ).(A.11)

Therefore for all sufficiently large d ,

P(Xd
0 ∈ F ∗

d ∩ F 1
d ) ≥ 1 − P(Xd

0 /∈ F ∗
d ) − P(Xd

0 /∈ F 1
d ) ≥ 1

2 .(A.12)

By Bayes’s theorem, P(A|B) = P(A ∩ B)/P(B) ≤ P(A)/P(B). Therefore taking

A = ⋃[d2+δ+γ ]
i=0 {Xd

i /∈ F ∗
d ∩ F 1

d } and B = {Xd
0 ∈ F ∗

d ∩ F 1
d }, it follows from (A.11)

and (A.12) that

P

([d2+δ+γ ]⋃
i=0

{Xd
i /∈ F


d ∩ F 1
d }|Xd

0 ∈ F

d ∩ F 1

d

)
≤ d2+δ+γ

P(Xd
0 /∈ F


d ∩ F 1
d )

1/2
.(A.13)

Let

F̂ 

d =

{
xd;P

([d2+δ+γ ]⋃
i=0

{Xd
i /∈ F


d ∩ F 1
d }|Xd

0 = xd

)
≤ d−ε

}
.(A.14)

It follows from Lemmas A.1 and A.2 that

dκ−(2+δ+γ+ε)
P(Xd

0 /∈ F̂ 

d |Xd

0 ∈ F

d ∩ F 1

d ) → 0 as d → ∞.(A.15)

Since dκ
P(Xd

0 /∈ F

d ∩ F 1

d ) → 0 as d → ∞, it follows from (A.15) that

dκ−(2+δ+γ+ε)
P(Xd

0 /∈ F̂ 

d ) → 0 as d → ∞.(A.16)

For d ≥ 1 and i = 0,1,2, . . . , let {θd
i } be independent and identically dis-

tributed Bernoulli random variables with P(θd
0 = 1) = exp(−lg∗)2−γ logd where

g∗ = max{0≤x≤1}|g′(x)|. It is straightforward using Hoeffding’s inequality to show
that

dκ
P

([d2+δ+γ ]∑
i=1

θd
i < dδ

)
→ 0 as d → ∞.(A.17)

Now {θd
j } and {Xd

j } can be constructed upon a common probability space

such that if θd
j = 1 and Xd

j ∈ F 1
d , Xd

j+1 �= Xd
j . For k,n ≥ 0, consider X̂d

k , if∑n
i=1 θd

i ≥ k and
⋂n

j=0{Xd
j ∈ F ∗

d ∩ F 1
d }, a coupling exists such that there ex-

ists Jk ∈ {k, k + 1, . . . , n} such that X̂d
k = Xd

Jk
∈ F ∗

d ∩ F 1
d . Exploiting the above

coupling,
⋂[d2+δ+γ ]

j=0 {Xd
j ∈ F


d ∩ F 1
d } and

∑[d2+δ+γ ]
i=1 θd

i ≥ dδ together imply that⋂[dδ]
j=0{X̂d

j ∈ F

d ∩ F 1

d }. Thus

P(X̂d
0 /∈ F̃ 


d ) ≤ P(Xd
0 /∈ F̂ 


d ) + P

([d2+δ+γ ]∑
i=1

θd
i < dδ

)
,(A.18)
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and (A.10) follows from (A.16), (A.17) and (A.18). �

As noted in Section 2, we follow [11] by considering the behavior of the random
walk Metropolis algorithm over steps of size [dδ] iterations. We find that a single
component moves only a small distance in [dδ] iterations, while over [dδ] itera-
tions the acceptance probability, which is dominated by the number and position
of components in Rl

d , “forgets” its starting value. Moreover, we show that approx-
imately exp(−f ∗l/2)[dδ] of the proposed moves are accepted. However, we need
to control the number of components which are close to the rejection region (F 2

d )
and the distribution of the position of the components in the rejection region after
[dβ] iterations (F 3

d ), where 0 < β < δ.
For any k ≥ 1, let

F̂ 2
d (k) = {

xd : |bk3/4

d (xd) − E[bk3/4

d (Xd
0)]| ≤ √

k
}

and let

F 2
d =

[dδ]⋂
k=[dβ ]

F̂ 2
d (k).(A.19)

Before studying F 2
d , we state a simple, useful result concerning the central mo-

ments of a sequence of binomial random variables.

LEMMA A.4. Let Bd ∼ Bin(d,pd). Suppose that pd → 0 and dpd → ∞ as
d → ∞; then for any m ∈ N,

E
[
(Bd − E[Bd ])2m]

/(dpd)m →
m∏

j=1

(2j − 1) as d → ∞.(A.20)

LEMMA A.5. For any κ > 0 and sequence of positive integers {kd} satisfying
[dβ] ≤ kd ≤ [dδ],

dκ
P
(
Xd

0 /∈ F̂ 2
d (kd)

) → 0 as d → ∞.(A.21)

Consequently, for any κ > 0, dκ
P(Xd

0 /∈ F 2
d ) → 0 as d → ∞.

PROOF. Fix κ > 0. By stationarity and Markov’s inequality, for all m ∈ N,

dκ
P
(
Xd

0 /∈ F̂ 2
d (kd)

) = dκ
P
(|bk

3/4
d

d (Xd
0) − E[bk

3/4
d

d (Xd
0)]| ≥ √

kd

)
(A.22)

≤ dκ

km
d

E
[(

b
k

3/4
d

d (Xd
0) − E[bk

3/4
d

d (Xd
0)])2m]

.

However, b
k

3/4
d

d (Xd
0) ∼ Bin(d,

∫ k
3/4
d /d

0 {f (x)+f (1 − x)}dx), so by Lemma A.4 for
any m ∈ N, for all sufficiently large d ,

E
[(

b
k

3/4
d

d (Xd
0) − E[bk

3/4
d

d (Xd
0)])2m] ≤ Kmk

3m/4
d ,
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where Km = ∏m
j=1(2j − 1) + 1. Since kd ≥ [dβ], the right-hand side of (A.22)

converges to 0 as d → ∞ by taking m > 4κ/β , proving (A.21).
Note that

dκ
P(Xd

0 /∈ F 2
d ) ≤ dκ

[dδ]∑
k=[dβ ]

P
(
Xd

0 /∈ F̂ 2
d (k)

)
.(A.23)

The right-hand side of (A.23) converges to 0 as d → ∞ since (A.21) holds with κ

replaced by κ + δ. �

Before considering F 3
d , the distribution of the position of the components in the

rejection region after [dβ] iterations, we introduce a simple random walk on the
hypercube (RWH). The biggest problem in analyzing the RWM or pseudo-RWM
algorithm is the dependence between the components. However, the dependence is
weak and whether or not a proposed move is accepted is dominated by whether or
not the proposed moves lies inside or outside the hypercube. Therefore we couple
the RWM algorithm to the simpler RWH algorithm.

For d ≥ 1, define the RWH algorithm as follows. Let Wd
k denote the position of

the RWH algorithm after k iterations. Then

Wd
k+1 =

{
Wd

k + σdZd
k+1, if Wd

k + σdZd
k+1 ∈ [0,1]d ,

Wd
k , otherwise.

(A.24)

That is, the RWH algorithm simply accepts all proposed moves which re-
main inside the hypercube and rejects all proposed moves outside the hyper-
cube. Define the pseudo-RWH algorithm in the obvious fashion with Ŵd

k =
(Ŵ d

k,1, Ŵ
d
k,2, . . . , Ŵ

d
k,d) denoting the position of the pseudo-RWH algorithm at

iteration k. Then for 1 ≤ i ≤ d , Ŵ d
k+1,i = Ŵ d

k,i + σdẐd
k+1,i , where Ẑd

k+1,i ∼
U [(−Ŵ d

k,i/σd) ∨ −1, (Ŵ d
k,i/σd) ∧ 1].

For our purposes it will suffice to consider the coupling of the pseudo-RWM
and pseudo-RWH algorithms over [dδ] iterations and study how the pseudo-RWH
algorithm evolves over [dδ] iterations. Note that the RWH algorithm coincides
with the RWM algorithm with a uniform target density over the d-dimensional
cube, so in this case the coupling is exact.

The components of the pseudo-RWH algorithm behave independently. For
x ∈ (0,1), let ωd(x) = P(0 < x + σdZ < 1) and for xd ∈ (0,1)d , let �d(xd) =∏d

j=1 ωd(xj ). Then �d(xd) is the probability that a proposed move from xd is
accepted in the RWH algorithm.

LEMMA A.6. For any α < 1
2 and xd ∈ [0,1]d , there exists a coupling such

that

dα
P(Xd

1 �= Wd
1 |Xd

0 ≡ Wd
0 = xd) → 0 as d → ∞.(A.25)
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PROOF. Let U ∼ U [0,1]; then we can couple Xd
1 and Wd

1 using Zd
1 and U as

follows. Let

Wd
1 =

{
xd + σdZd

1 , if xd + σdZd
1 ∈ [0,1]d ,

xd, otherwise,

Xd
1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xd + σdZd
1 , if xd + σdZd

1 ∈ [0,1]d

and U ≤ 1 ∧ exp

(
d∑

j=1

{g(xj + σdZ1,j ) − g(xj )}
)

,

xd, otherwise.

Therefore, Xd
1 �= Wd

1 if xd + σdZd
1 ∈ [0,1]d and U > 1 ∧ exp(

∑d
j=1{g(xj +

σdZ1,j ) − g(xj )}). Thus

dα
P(Xd

1 �= Wd
1 |Xd

0 ≡ Wd
0 = xd)

= dα
P

(
xd + σdZd

1 ∈ [0,1]d,

U > 1 ∧ exp

(
d∑

j=1

{g(xj + σdZ1,j ) − g(xj )}
))

(A.26)

= dα
E

[
d∏

j=1

1{0<xj+σdZ1,j<1}

×
{

1 − 1 ∧ exp

(
d∑

j=1

{g(xj + σdZ1,j ) − g(xj )}
)}]

≤ dα
E

[∣∣∣∣∣
d∑

j=1

{g(xj + σdZ1,j ) − g(xj )}
∣∣∣∣∣
]
,

since for all y ∈ R, |1 − {1 ∧ exp(y)}| ≤ |y|.
By Taylor’s theorem, for 1 ≤ j ≤ d , there exists ξd

j lying between 0 and σdZ1,j

such that

g(xj + σdZ1,j ) − g(xj ) = g′(xj )σdZ1,j + g′′(xj + ξd
j )

2
(σdZ1,j )

2.(A.27)

Since g(·) is continuously twice differentiable on (0,1), there exists K < ∞ such
that ∣∣∣∣∣

d∑
j=1

{g(xj + σdZ1,j ) − g(xj )}
∣∣∣∣∣ ≤

∣∣∣∣∣ l

d

d∑
j=1

g′(xj )Z1,j

∣∣∣∣∣ + Kl2

2d
.(A.28)
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Since the components of Zd
1 are independent, by Jensen’s inequality, (A.28) and

E[(X + c)2] ≤ 2E[X2] + 2c2, for any random variable X and constant c, we have
that

dα
P(Xd

1 �= Wd
1 |Xd

0 ≡ Wd
0 = xd)

≤ dα

(
2

{
l2

3d2

d∑
j=1

g′(xj )
2 + K2l4

4d2

})1/2

(A.29)

→ 0 as d → ∞,

and the lemma is proved. �

COROLLARY A.7. Fix 0 < α < 1
2 − δ.

For any xd ∈ [0,1]d , there exists a coupling such that

dα
P

([dδ]⋃
j=0

{Xd
j �= Wd

j }|Xd
0 ≡ Wd

0 = xd

)
→ 0 as d → ∞.(A.30)

Moreover, if xd ∈ F̃ 1
d and α + δ + γ < 1

2 , there exists a coupling such that

dα
P

([dδ]⋃
j=0

{X̂d
j �= Ŵd

j }|Xd
0 ≡ Wd

0 = xd

)
→ 0 as d → ∞.(A.31)

For r ≥ 0 and k = 0,1,2, . . . , let

χd
j (xj ; r;k) =

{
1, if Ŵ d

k,j ∈ Rr
d given that Ŵ d

0,j = xj ,
0, otherwise.

(A.32)

Let qd(x; r;k) = E[χd
1 (x; r;k)] and let λd(xd; r;k) = ∑d

j=1 qd(xj ; r;k). Note
that the movement of the components of the pseudo-RWH algorithm are indepen-
dent.

The next stage in the proof is to show that, if X̂d
0 is started in F 3

d , then after kd

iterations of the pseudo-RWM algorithm has forgotten its starting value in terms
of the total number and position of the components in Rl

d (the rejection region).
Moreover, the total number and position of the components in Rl

d after kd iterations
of the pseudo-RWM algorithm are approximately from the stationary distribution
of X̂d· . Before defining and studying {F 3

d }, we require the following lemma and
associated corollary concerning the distribution of the components in the rejection
region after kd steps.

LEMMA A.8. Let {kd} be any sequence of positive integers satisfying [dβ] ≤
kd ≤ [dδ].
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For any sequence of {xd} such that xd ∈ F 1
d ∩ F 2

d ,

d2γ
d∑

i=1

qd(xd
i ; l;kd)2 → 0 as d → ∞.(A.33)

Also for all 0 < x < 1,

d2γ qd(x; l;kd) → 0 as d → ∞.(A.34)

PROOF. Fix xd ∈ F 1
d ∩ F 2

d and set Ŵd
0 = xd .

To prove (A.33) and (A.34) we couple the components of Ŵd
t to a simple re-

flected random walk process {Sd
t ; t ≥ 0}. Set Sd

0 = x for some 0 < x < 1. Let
Z̃1, Z̃2, . . . be i.i.d. according to U [−1,1]. For t ≥ 1, set Sd

t+1 = Sd
t + σdZ̃t+1

with reflection at the boundaries 0 and 1 so that Sd
t ∈ (0,1). For x ∈ (0,1), let

pd(x; l, kd) = P(Sd
kd

∈ Rr
d |Sd

0 = x).

Consider Ŵ d
t,1 with identical arguments applying for the other components

of Ŵd
t . Since kdσd → 0 as d → ∞, we assume that d is such that (kd + 1)σd < 1

2 .
Then

P
(
Ŵ d

kd ,1 ∈ Rr
d |Ŵ d

0,1 ∈ (
(kd + 1)σd,1 − (kd + 1)σd

)) = 0.(A.35)

For x ∈ (0, (kd + 1)σd) ∪ (1 − (kd + 1)σd,1) we can couple Sd
t and Ŵ d

t,1 such that

qd(x; l;kd) ≤ pd(x; l;kd).(A.36)

For σd < y < 1−σd , if Sd
t = Ŵ d

t,1 = y, then set Sd
t+1 = Ŵ d

t+1,1 = y+σdZ̃t+1. Now

if y < σd (y > 1 − σd), Z̃t+1 and Ẑd
t+1,1 can be coupled such that, if Sd

t = Ŵ d
t,1 =

y, then Sd
t+1 ≤ Ŵ d

t+1,1 (Sd
t+1 ≥ Ŵ d

t+1,1). Furthermore, for y1 < y2 < 1/2 (y1 >

y2 > 1/2), the above coupling can be extended to give, if Sd
t = y1 and Ŵ d

t,1 = y2,

then Sd
t+1 < Wd

t+1 (Sd
t+1 > Wd

t+1). Since in kd iterations either process can move
at most a distance kdσd , (A.36) follows from the above coupling.

Without loss of generality, we assume that 0 < x < (kd + 1)σd [symmetry ar-
guments apply for 1 − (kd + 1)σd < x < 1]. By the reflection principle,

pd(x; l;kd) = P

(
−σd < x + σd

kd∑
i=1

Z̃i < σd

)

(A.37)

= P

(
−1 <

x

σd

+
kd∑

i=1

Z̃i < 1

)
.

By the Berry–Esséen theorem, there exists a positive constant, K1 < ∞ say, such
that for all z ∈ R, ∣∣∣∣∣P

(√
3

kd

kd−1∑
i=0

Zi ≤ z

)
− �(z)

∣∣∣∣∣ ≤ K1√
kd

,(A.38)
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where �(·) denotes the c.d.f. of a standard normal. Therefore it follows from
(A.37) and (A.38) that there exists a positive constant, K2 < ∞ say, such that
for all x ∈ (0,1),

pd(x; l;kd) ≤ K2√
kd

.(A.39)

By Hoeffding’s inequality, for any ε > 0,

P

(∣∣∣∣∣
kd∑

i=1

Z̃i

∣∣∣∣∣ > εk
3/4
d

)
≤ 2 exp

(
−2(εk

3/4
d )2

22kd

)
(A.40)

= 2 exp
(−ε2

√
kd/2

)
.

Hence for k
3/4
d /d < x < (kd + 1)/d , by taking ε = 1/2l in (A.40), we have that

dpd(x; l;kd) = dP

(∣∣∣∣∣x + σd

kd∑
i=1

Z̃i

∣∣∣∣∣ < σd

)

≤ dP

(∣∣∣∣∣σd

kd∑
i=1

Z̃i

∣∣∣∣∣ > k
3/4
d

2d

)
(A.41)

≤ 2d exp
(
−

√
kd

8l2

)
→ 0 as d → ∞.

Furthermore, note that for (kd + 1)σd < x < 1 − (kd + 1)σd , p(x; l;kd) = 0.
Then (A.34) follows immediately from (A.36) and the above bounds for

p(x; l;kd) since d2γ /
√

kd → 0 as d → ∞.
Finally, for xd ∈ F 1

d ∩ F 2
d , it follows from (A.36), (A.38) and (A.39) that there

exists K3 < ∞ such that

d2γ
d∑

i=1

qd(xd
i ; l;kd)2 ≤ d2γ

d∑
i=1

pd(xd
i ; l;kd)2

(A.42)

≤ d2γ

{
K3k

3/4
d

(
K2√
kd

)2

+ 2d exp
(
−

√
kd

8l2

)}

with the right-hand side of (A.42) converging to 0 as d → ∞. �

COROLLARY A.9. For any m ≥ 2, any sequence {rd} satisfying 0 ≤ rd ≤ l

and any sequence of positive integers {kd} satisfying [dβ] ≤ kd ≤ [dδ], there exists
K < ∞, such that for all d ≥ 1,

E[qd(Xd
0,1; rd;kd)m] ≤ Kd−(1+βm/8).(A.43)
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PROOF. Fix m ≥ 2. Note that

E[qd(Xd
0,1; rd;kd)m] ≤ E[qd(Xd

0,1; l;kd)m]

=
∫ 1

0
qd(x; l;kd)mf (x) dx

(A.44)
=

∫
R

k
3/4
d

d

qd(x; l;kd)mf (x) dx

+
∫
(R

k
3/4
d

d )C
qd(x; l;kd)mf (x) dx.

The two terms on the right-hand side of (A.44) are bounded using (A.39) and
(A.41), respectively. Thus it follows from the proof of Lemma A.8 that there exist
constants K1,K2 < ∞ such that, for all d ≥ 1,

E[qd(Xd
0,1; rd;kd)m] ≤

∫
R

k
3/4
d

d

(
K1√
kd

)m

f (x) dx

+
∫
(R

k
3/4
d

d )C

{
2 exp

(
−

√
kd

8l2

)}m

f (x)dx

≤ P(Xd
0,1 ∈ R

k
3/4
d

d )

(
K1√
kd

)m

(A.45)

+ P(Xd
0,1 /∈ R

k
3/4
d

d ) × 2 exp
(
−

√
kd

8l2

)

≤ K2
k

3/4
d

d
k
−m/2
d + 2 exp

(
−

√
kd

8l2

)
.

The corollary follows from (A.45) since m ≥ 2 and kd ≥ [dβ]. �

We are now in position to define {F 3
d }. For any 0 ≤ r ≤ l and k ∈ Z

+, let

F̂ 3
d (r;k) = {xd : |λd(xd; r;k) − λ(r)| < d−γ /8},(A.46)

where λ(r) = f ∗r(1 + r/2l). Let

F 3
d =

{
xd : sup

[dβ ]≤kd≤[dδ]
sup

0≤r≤l

|λd(xd; r;kd) − λ(r)| < d−γ
}
.(A.47)

We study {F̂ 3
d (rd, kd)} as a prelude to analyzing {F 3

d } where rd and kd are defined
in Lemma A.10 below.

LEMMA A.10. For any sequence {rd} satisfying 0 ≤ rd ≤ l, any sequence of
positive integers {kd} satisfying [dβ] ≤ kd ≤ [dδ] and κ > 0,

dκ
P
(
Xd

0 /∈ F̂ 3
d (rd, kd)

) → 0 as d → ∞.(A.48)
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PROOF. By the triangle inequality,

dκ
P
(
Xd

0 /∈ F̂ 3
d (rd;kd)

)
≤ dκ

P
(|λd(Xd

0; rd;kd) − E[λd(Xd
0; rd;kd)]| > d−γ /16

)
(A.49)

+ dκ
P
(|E[λd(Xd

0; rd;kd)] − λ(rd)| > d−γ /16
)
.

In turn we show that the two terms on the right-hand side of (A.49) converge to 0
as d → ∞.

By Markov’s inequality, we have that for any m ∈ N,

dκ
P
(|λd(Xd

0; rd;kd) − E[λd(Xd
0; rd;kd)]| > d−γ /16

)

≤ 16mdκ+mγ
E

[(
d∑

j=1

{qd(X0,j ; rd;kd) − E[qd(X0,j ; rd;kd)]}
)m]

(A.50)

= 16mdκ+mγ
d∑

i1=1

· · ·
d∑

im=1

E

[
m∏

j=1

{qd(X0,ij ; rd;kd)

− E[qd(X0,ij ; rd;kd)]}
]
.

Since the components of Xd
0 are independent and identically distributed, we have

for any {i1, i2, . . . , im}, there exists 1 ≤ J ≤ m and l1, l2, . . . , lJ ≥ 1 with l1 + l2 +
· · · + lJ = m such that

E

[
m∏

j=1

{qd(X0,ij ; rd;kd) − E[qd(X0,ij ; rd;kd)]}
]

(A.51)

=
J∏

j=1

E
[{qd(X0,1; rd;kd) − E[qd(X0,1; rd;kd)]}lj ].

Note that if any lj = 1, then the right-hand side of (A.51) is equal to 0. By Corol-
lary A.9, if l1, l2, . . . , lJ ≥ 2, there exists K1 < ∞ such that the right-hand side
of (A.51) is less than or equal to

∏J
j=1{K1d

−(1+lj β/8)} = KJ
1 d−J d−mβ/8. Further-

more, there exists K2 < ∞ such that for any 1 ≤ J ≤ m and l1, l2, . . . , lJ ≥ 2, there
are at most K2d

J configurations of {i1, i2, . . . , im} such that for j = 1,2, . . . , J ,
lj of the components are the same. Therefore there exists K < ∞ such that

d∑
i1=1

· · ·
d∑

im=1

E

[
m∏

j=1

{qd(X0,ij ; rd;kd) − E[qd(X0,ij ; rd;kd)]}
]

(A.52)
≤ Kd−mβ/8.
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Taking m > κ/(β/8 − γ ), it follows from (A.52) that the right-hand side of (A.50)
converges to 0 as d → ∞.

The lemma follows by showing that for all sufficiently large d ,

|E[λd(Xd
0; rd;kd)] − λ(rd)| ≤ d−γ /16.(A.53)

Note that

E[λd(Xd
0; rd;kd)] = dE[qd(X0,1; r;kd)]

= d

∫ k
3/4
d /d

0
qd(x; rd;kd)f (x) dx

(A.54)

+ d

∫ 1−k
3/4
d /d

k
3/4
d /d

qd(x; rd;kd)f (x) dx

+ d

∫ 1

1−k
3/4
d /d

qd(x; rd;kd)f (x) dx.

By (A.41), the second integral on the right-hand side of (A.54) is bounded above
by d × 2 exp(−√

kd/8l2) → 0 as d → ∞. Let f
 = sup0≤x≤1|f ′(x)|. Then by

Taylor’s theorem, for 0 ≤ x ≤ k
3/4
d /d ,

|f (x) − f (0)| ≤ x sup
0≤y≤x

f ′(y) ≤ f
k
3/4
d /d.(A.55)

Thus

∣∣∣∣d
∫ k

3/4
d /d

0
qd(x; rd;kd)f (x) dx − f (0)d

∫ k
3/4
d /d

0
qd(x; rd;kd) dx

∣∣∣∣
(A.56)

≤ d × f


k
3/4
d

d
×

∫ k
3/4
d /d

0
qd(x; rd;kd) dx.

Similarly, we have that∣∣∣∣d
∫ 1

1−k
3/4
d /d

qd(x; rd;kd)f (x) dx − f (1)d

∫ 1

1−k
3/4
d /d

qd(x; rd;kd) dx

∣∣∣∣
(A.57)

≤ d × f


k
3/4
d

d
×

∫ 1

1−k
3/4
d /d

qd(x; rd;kd) dx.

By symmetry, qd(1 − x; rd;kd) = qd(x; rd;kd), so

dγ

∣∣∣∣E[λd(Xd
0; rd;kd)] − 2f ∗d

∫ 1

0
qd(x; rd;kd) dx

∣∣∣∣ → 0 as d → ∞.(A.58)
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Since
∫ 1

0 ωd(y) dy ≥ 1 − 2σd , using Lemma A.8, (A.34), we have that, for all
sufficiently large d ,

dγ

∣∣∣∣d
∫ 1

0
qd(x; rd;kd) dx − d

∫ 1

0
q(x; rd;kd)

ωd(x)∫ 1
0 ωd(y) dy

dx

∣∣∣∣
≤ 4d1+γ

∫ σd

0
qd(x; rd;kd) dx

(A.59)

+ d

∫ 1−σd

σd

{
1∫ 1

0 ωd(y) dy
− 1

}
qd(x; rd;kd) dx

≤ 4d1+γ σdd−2γ + d1+γ
∫ 1

0

2σd∫ 1
0 ωd(y) dy

qd(x; rd;kd) dx.

Let pd(x; rd;kd) be defined as in Lemma A.8. Note that U [0,1] is the stationary
distribution of a reflected random walk on (0,1). Therefore for any k ≥ 1,

∫ 1

0
pd(x; rd;k) dx =

∫ 1

0
pd(x; rd;0) dx = 2rd

d
.(A.60)

Therefore, it follows from Lemma A.8, (A.36), that

d

∫ 1

0
qd(x; rd;kd) dx ≤ d

∫ 1

0
pd(x; rd;kd) dx = 2rd .(A.61)

Hence the right-hand side of (A.59) converges to 0 as d → ∞.
Note that the stationary distribution of a single component of the pseudo-RWH

algorithm has p.d.f. ωd(x)/
∫ 1

0 ωd(y) dy (0 < x < 1). Therefore

d

∫ 1

0
qd(x; rd;kd)

ωd(x)∫ 1
0 ωd(y) dy

dx = d

∫ 1

0
qd(x; rd;0)

ωd(x)∫ 1
0 ωd(y) dy

dx

(A.62)

= rd

2

(
1 + rd

2l

)/(
1 − l

2d

)
.

Finally, combining (A.58), (A.59) and (A.62), we have that (A.53) holds and the
lemma is proved. �

LEMMA A.11. For any κ > 0,

dκ
P(Xd

0 /∈ F 3
d ) → 0 as d → ∞.(A.63)

PROOF. Fix κ > 0. Fix a sequence of positive integers {kd} such that [dβ] ≤
kd ≤ [dδ]. Fix θ > γ and let Sd = {0, d−θ ,2d−θ , . . . , [ldθ ]d−θ , l}. Thus the ele-
ments of Sd are separated by a distance of at most d−θ .
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For any 0 ≤ r ≤ l and d ≥ 1, there exist r̃d , r̂d ∈ Sd such that r̃d ≤ r < r̂d with
r̂d − r̃d ≤ d−θ . By the triangle inequality,

|λd(Xd
0; r;kd) − λ(r)|

≤ λd(Xd
0; r;kd) − λd(Xd

0; r̃d;kd) + |λd(Xd
0; r̃d;kd) − λ(r̃d)|

+ λ(r) − λ(r̃d)

≤ λd(Xd
0; r̂d;kd) − λd(Xd

0; r̃d;kd) + |λd(Xd
0; r̃d;kd) − λ(r̃d)|

(A.64)
+ λ(r̂d) − λ(r̃d)

≤ |λd(Xd
0; r̂d;kd) − E[λd(Xd

0; r̂d;kd)]|
+ 2|λd(Xd

0; r̃d;kd) − E[λd(Xd
0; r̃d;kd)]|

+ 2|λ(r̂d) − λ(r̃d)|.
By Lemma A.10, for any sequence {rd} satisfying 0 ≤ rd ≤ l,

dκ+θ+δ
P

(
|λd(Xd

0; rd;kd) − λ(rd)| > d−γ

8

)
→ 0 as d → ∞.(A.65)

Hence

dκ+δ
P

(
max
r∈Sd

|λd(Xd
0; r;kd) − λ(r)| > d−γ

8

)
→ 0 as d → ∞.(A.66)

For all sufficiently large d ,

sup
0≤rd ,sd≤l,|rd−sd |≤d−θ

|λ(rd) − λ(sd)| ≤ d−γ

16
.(A.67)

Therefore it follows from (A.64), (A.66) and (A.67) that

dκ+δ
P

(
sup

0≤r≤l

|λd(Xd
0; r;kd) − λ(r)| > d−γ

)
→ 0 as d → ∞.(A.68)

Since (A.68) holds for any sequence {kd} satisfying [dβ] ≤ kd ≤ [dδ], the lemma
follows since

dκ
P

(
sup

[dβ ]≤k≤[dδ]
sup

0≤r≤l

|λd(Xd
0; r;k) − λ(r)| > d−γ

)
(A.69)

≤ dκ
[dδ]∑

k=[dβ ]
P

(
sup

0≤r≤l

|λd(Xd
0; r;k) − λ(r)| > d−γ

)
.

�

Finally, we consider

F 4
d =

{
xd;

∣∣∣∣∣1

d

d∑
j=1

g′(xj )
2 − E[g′(X1)

2]
∣∣∣∣∣ < d−1/8

}
.(A.70)
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The sets {F 4
d } mirror the sets {Fn} in [14] and are used when considering Gδ

dH(xd)

and Ĝ
δ,π
d H(xd) but play no role in analyzing Pd .

LEMMA A.12. For any κ > 0,

dκ
P(Xd

0 /∈ F 4
d ) → 0 as d → ∞.(A.71)

PROOF. Let g∗ = sup0≤y≤1 |g′(y)| and fix κ > 0. Then by Hoeffding’s in-
equality,

dκ
P(Xd

0 /∈ F 4
d ) = dκ

P

(∣∣∣∣∣
d∑

j=1

g′(X0,j )
2 − dE[g′(X0,1)

2]
∣∣∣∣∣ > d7/8

)

(A.72)

≤ dκ × 2 exp
(
− 2d7/4

d(g∗)4

)
→ 0 as d → ∞. �

Finally we are in position to consider {Fd} and {F̃d}. Recall that, for d ≥ 1,
Fd = F 1

d ∩ F 2
d ∩ F 3

d ∩ F 4
d and

F̃d =
{

xd;P

([dδ]⋃
j=0

X̂d
j /∈ Fd |X̂d

0 = xd

)
≤ d−3

}
.

Combining Lemmas A.1, A.5, A.11 and A.12, we have the following theorem.

THEOREM A.13. For any κ > 0,

dκ
P(Xd

0 /∈ Fd) → 0 as d → ∞.(A.73)

Hence, by Lemma A.3, for any κ > 0,

dκ
P(Xd

0 /∈ F̃d) → 0 as d → ∞.(A.74)

Also using the couplings outlined above, we have that

P

([dδ]⋃
j=0

{Ŵd
j /∈ Fd}|Ŵd

0 ∈ F̃d

)
→ 0 as d → ∞.(A.75)

APPENDIX B: PROOF OF Pd |Xd
0 = xd p−→ exp(−lf ∗/2)

We show that for any sequence {xd} such that xd ∈ F̃d ,

Pd |Xd
0 = xd p−→ exp(−lf ∗/2) as d → ∞.(B.1)

The key result is Lemma B.1 which states that after kd iterations, the configuration
of the components in the rejection region Rl

d resemble the configuration of the
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points of a Poisson point process with rate λ(r) = f ∗r(1 + r/2l) on the interval
[0, l].

For any n ∈ N and 1 ≤ i ≤ n, let

Sd
n (xd; i;k) =

d∑
j=1

{
χd

i (xj ; il/n;k) − χd
j

(
xj ; (i − 1)l/n; k)}

with

Sd
n(xd;k) = (Sd

n (xd;1;k), Sd
n (xd;2;k), . . . , Sd

n (xd;n;k)).

Let Sn = (S1
n, S2

n, . . . , Sn
n) where the components of Sn are independent Poisson

random variables with Si
n ∼ Po(λn,i) and

λn,i = λ(il/n) − λ
(
(i − 1)l/n

)
(1 ≤ i ≤ n).

LEMMA B.1. For any n ∈ N, any sequence of positive integers {kd} satisfying
[dβ] ≤ kd ≤ [dδ] and xd ∈ Fd ,

Sd
n(xd;kd)

D−→ Sn as d → ∞.

PROOF. Fix n ∈ N and xd ∈ Fd . Let

Šd
n(xd;kd) = (Šd

n (xd;1;kd), Šd
n (xd;2;kd), . . . , Šd

n (xd;n;kd)),

where for 1 ≤ i ≤ n, Šd
n (xd; i;kd) are independent Poisson random variables with

means

λd
n,i(x

d;kd) = λd(xd; il/n;kd) − λd

(
xd; (i − 1)l/n; kd

)
.

The lemma is proved by showing that

dTV(S̃d
n(xd;kd),Sn) ≤ dTV(Sd

n(xd;kd), Šd
n(xd;kd))

+ dTV(Šd
n(xd;kd),Sn)(B.2)

→ 0 as d → ∞.

By [1], Theorem 1,

dTV(S̃d
n(xd;kd), Šd

n(xd;kd)) ≤
d∑

i=1

qd(xi; l;kd)2.(B.3)

By Lemma A.8, (A.33) the right-hand side of (B.3) converges to 0 as d → ∞.
For the second term on the right-hand side of (B.2), it suffices to show that

Šd
n(xd;kd)

D−→ Sn as d → ∞.

(For discrete random variables convergence in distribution and convergence in total
variation distance are equivalent; see [2], page 254.)
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The components of Šd
n(xd;kd) and Sn are independent, and therefore it is suffi-

cient to show that, for all 1 ≤ i ≤ n,

Šd
n (xd; i;kd)

D−→ Sn,i as d → ∞.(B.4)

For all 1 ≤ i ≤ n, (B.4) holds, if

λd
n,i(x

d;kd) → λn,i as d → ∞.(B.5)

Therefore the lemma follows from (B.5) since [dβ] ≤ kd ≤ [dδ] and xd ∈ F 3
d . [See

(2.17) for the construction of {F 3
d }.] �

Lemma B.1 is the key result stating that if the pseudo-RWH process is started
from the set Fd , then after [dβ] iterations the distribution of the components
in the rejection region are approximately given by Sn. We show that studying
the pseudo-RWH algorithm over [dδ] iterations suffices in analyzing Td(π) =

1
[dδ]

∑[πdδ−1]
j=0 Mj(Jd(X̂d

j )). Note that Pd satisfies

Td(Pd) ≤ 1 < Td(Pd + 1/[dδ]).(B.6)

Let T̂d(π) = 1
[dδ]

∑[πdδ−1]
j=0 Mj(�d(Ŵd

j )). Before establishing a coupling be-

tween Td(π) and T̂d(π), we give a simple coupling for geometric random vari-
ables.

LEMMA B.2. Suppose that 0 ≤ q < p ≤ 1 and that X and Y are independent
geometric random variables with success probabilities p and q , respectively, that
is, X ∼ M(p) and Y ∼ M(q). Let A be a Bernoulli random variable with P(A =
1) = q/p and Z ∼ M(q). Then if A, X, Y and Z are mutually independent,

Y
D= X + (1 − A)Z.(B.7)

Therefore there exists a coupling of X and Y such that

P(X �= Y) = P(A = 0) = p − q

p
.(B.8)

LEMMA B.3. For any 0 < π ≤ 1 and xd ∈ F̃d , there exists a coupling of Td(π)

and T̂d(π) such that

P
(
Td(π) �= T̂d(π)|X̂d

0 ≡ Ŵd
0 = xd) → 0 as d → ∞.(B.9)

PROOF. For xd ∈ F̃d , by Corollary A.7, we have that

P

([dδ]⋃
j=0

{X̂d
j �= Ŵd

j }|X̂d
0 ≡ Ŵd

0 = xd

)
→ 0 as d → ∞.(B.10)
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Suppose that for j = 0,1, . . . , [dδ], Ŵd
j = X̂d

j ∈ F 1
d . Then using Lemma B.2,

(B.8), Mj(Jd(X̂d
j )) and Mj(�d(Ŵd

j )) can be coupled such that

P
(
Mj(Jd(X̂d

j )) �= Mj(�d(Ŵd
j ))|Ŵd

j = X̂d
j ∈ F 1

d

) ≤ �d(X̂d
j ) − Jd(X̂d

j )

�d(X̂d
j )

.(B.11)

Since X̂d
j ∈ F 1

d , �d(X̂d
j ) ≥ 2−γ logd ≥ d−γ , the right-hand side of (B.11) is less

than dγ {�d(X̂d
j ) − Jd(X̂d

j )}. Note that

P(Ŵd
j+1 �= X̂d

j+1|Ŵd
j = X̂d

j ∈ F 1
d ) = �d(X̂d

j ) − Jd(X̂d
j ),

so by Lemma A.6 for any α < 1
2 , dα−γ times the right-hand side of (B.11) con-

verges to 0 as d → ∞. Taking α such that δ + γ < α < 1
2 ,

[dδ]∑
j=0

P
(
Mj(Jd(X̂d

j )) �= Mj(�d(Ŵd
j ))|Ŵd

j = X̂d
j ∈ F 1

d

)
(B.12)

→ 0 as d → ∞.

The lemma then follows from (B.10) and (B.12). �

We show that it suffices to study T̃d(π) = 1
[dδ]

∑[πdδ−1]
j=0 �d(Ŵd

j )−1. In other

words, replace the mean of the geometric random variables {M(�d(Ŵd
0)),

M(�d(Ŵd
1)), . . . ,M(�d(Ŵd

[πdδ−1]))} by the mean of the means of the geometric
random variables.

LEMMA B.4. For any 0 < π ≤ 1 and for any sequence of {xd} such that

xd ∈ F̃d , T̂d(π)|Ŵd
0 = xd D−→ π exp(f ∗l/2) if T̃d(π)|Ŵd

0 = xd D−→ π exp(f ∗l/2)

as d → ∞.

PROOF. Let Ad = ⋃[dδ]
j=0{Ŵd

j /∈ Fd}. Then for any xd ∈ F̃d , P(Ad |Ŵd
0 =

xd) → 0 as d → ∞.
For any τ ∈ R with i = √−1, the characteristic function of T̂d(π) conditional

upon AC
d and Ŵd

0 = xd is given by

E[exp(iτ T̂d(π))|AC
d ,Ŵd

0 = xd ]

= E

[[πdδ−1]∏
j=0

E

[
exp

(
iτ

[dδ]Mj(�d(Ŵd
j ))

)∣∣∣AC
d , {Ŵd}

]∣∣∣AC
d ,Ŵd

0 = xd

]
(B.13)

= E

[[πdδ−1]∏
j=0

exp(iτ/[dδ])�d(Ŵd
j )

1 − (1 − �d(Ŵd
j )) exp(iτ/[dδ])

∣∣∣AC
d ,Ŵd

0 = xd

]
.
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Conditional upon AC
d , �d(Ŵd

j )−1 ≤ 2γ logd ≤ dγ . Hence, for all 0 ≤ j ≤ [πdδ −
1],

exp(iτ/[dδ])�d(Ŵd
j )

1 − (1 − �d(Ŵd
j )) exp(iτ/[dδ]) = 1 + iτ

[dδ]�d(Ŵd
j )−1 + o

(
1

[dδ]
)
.(B.14)

Thus E[exp(iτ T̂d(π))|AC
d ,Ŵd

0 = xd ] has the same limit as d → ∞ (should one
exist) as

E

[[πdδ−1]∏
j=0

(
1 + iτ

[dδ]�d(Ŵd
j )−1

)∣∣∣AC
d ,Ŵd

0 = xd

]
,(B.15)

which in turn has the same limit as d → ∞ as

E

[[πdδ−1]∏
j=0

exp
(

iτ

[dδ]�d(Ŵd
j )−1

)∣∣∣AC
d ,Ŵd

0 = xd

]

(B.16)
= E[exp(iτ T̃d(π))|AC

d ,Ŵd
0 = xd ].

The lemma follows since P(AC
d |Ŵd

0 = xd) → 1 as d → ∞. �

We shall show that T̃d(π)
p−→ exp(lf ∗/2) as d → ∞ using Chebyshev’s

inequality in Lemma B.9. We require preliminary results concerning
cov(�d(Ŵd

j )−1, �d(Ŵd
j+k)

−1|Ŵd
0 = xd) with the key results given in Lem-

ma B.8. First, however, we introduce useful upper and lower bounds for �d(xd)−1

which allow us to exploit Lemma B.1 and prove uniform integrability {T̃d(π)}.
For n ∈ N, 1 ≤ i ≤ n and xd ∈ (0,1)d , let b̃

n,i
d (xd) = b

il/n
d (xd) − b

(i−1)l/n
d (xd)

with b̃n
d(xd) = (b̃

n,1
d (xd), b̃

n,2
d (xd), . . . , b̃

n,n
d (xd)). For n ∈ N and s = (s1, s2, . . . ,

sn) ∈ R
n, let

ν̌n(s) =
n∏

j=1

(
1

2
+ j − 1

2n

)−sj

,(B.17)

ν̂n(s) =
n∏

j=1

(
1

2
+ j

2n

)−sj

.(B.18)

Then for all xd ∈ (0,1)d ,

ν̂n(b̃n
d(xd)) ≤ �d(xd)−1 ≤ ν̌n(b̃n

d(xd)) ≤ 2bl
d (xd ).(B.19)

LEMMA B.5. For any m ∈ N, any sequence of {xd} such that xd ∈ F̃d and any
sequence of positive integers {kd} satisfying [dβ] ≤ kd ≤ [dδ],

E
[(

2bl
d (Ŵd

kd
))m|Ŵd

0 = xd] → exp
(
(2m − 1)λ(l)

)
as d → ∞.(B.20)
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PROOF. Note that {bl
d(Ŵd

kd
)|Ŵd

0 = xd} = ∑d
j=1 χj (xj ; l;kd). Then since the

{χj (xj ; l;kd)} are independent Bernoulli random variables,

E
[(

2bl
d (Ŵd

kd
))m|Ŵd

0 = xd] =
d∏

j=1

E
[
(2m)χj (xj ;l;kd)|Ŵd

0 = xd]
(B.21)

=
d∏

j=1

{(
1 − qd(xj ; l;kd)

) + 2mqd(xj ; l;kd)
}
.

By Lemma A.8, (A.33), for xd ∈ F̃d ,
∑d

j=1 qd(xj ; l;kd)2 → 0 as d → ∞, so the
right-hand side of (B.21) has the same limit as d → ∞ as

d∏
j=1

exp
(
(2m − 1)qd(xj ; l;kd)

) = exp
(
(2m − 1)λd(xd; l;kd)

)
.(B.22)

The lemma follows since for any xd ∈ F̃d , λd(xd; l;kd) → λ(l) as d → ∞. �

LEMMA B.6. Fix m,n ∈ N. For any sequence {xd} such that xd ∈ Fd , and any
sequence of positive integers {kd} satisfying [dβ] ≤ kd ≤ [dδ], we have that

E[ν̌n(S̃d
n(xd;kd))m] → E[ν̌n(Sn)

m] as d → ∞,

E[ν̂n(S̃d
n(xd;kd))m] → E[ν̂m

n (Sn)
m] as d → ∞.

PROOF. By [6], Theorem 29.2, and Lemma B.1

ν̌n(S̃d
n(xd;kd))m

D−→ ν̌n(Sn)
m as d → ∞,(B.23)

ν̂n(S̃d
n(xd;kd))m

D−→ ν̂n(Sn)
m as d → ∞.(B.24)

The lemma follows since (B.19) and Lemma B.5 ensure the uniform integrability
of the left-hand sides of (B.23) and (B.24). �

LEMMA B.7. For any sequence {xd} such that xd ∈ Fd and sequence of posi-
tive integers {kd} satisfying [dβ] ≤ kd ≤ [dδ],

E[�d(Ŵd
kd

)−1|Ŵd
0 = xd ] → exp(f ∗l/2) as d → ∞.(B.25)

For any xd ∈ F̃d and sequences of positive integers {id} and {kd} satisfying
[dβ] ≤ kd ≤ [dδ] and id + kd ≤ [dδ],

E[�d(Ŵd
id+kd

)−1|Ŵd
id

,Ŵd
0 = xd ] p−→ exp(f ∗l/2) as d → ∞.(B.26)
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PROOF. An immediate consequence of Lemma B.6 is that

lim
d→∞ E[ν̌n(S̃d

n(xd;kd))], lim
d→∞E[ν̂n(S̃d

n(xd;kd))] → exp(f ∗l/2) as n → ∞,

from which (B.25) follows by (B.19).
By Theorem A.13, (A.75), P(Ŵd

id
∈ Fd |Ŵd

0 ∈ F̃d) → 1 as d → ∞, so (B.26)
follows from (B.25). �

LEMMA B.8. For any sequence {xd} such that xd ∈ F̃d and any sequences of
positive integers {id} and {kd} satisfying [dβ] ≤ id , kd ≤ [dδ],

cov
(
�d(Ŵd

id
)−1,�d(Ŵd

id+kd
)−1|Ŵd

0 = xd) → 0 as d → ∞(B.27)

and

var
(
�d(Ŵd

kd
)−1|Ŵd

0 = xd)
(B.28)

→ exp
(
f ∗l

{
4 log 2 − 3

2

}) − exp(f ∗l) as d → ∞.

PROOF. Using (B.19), Lemma B.5 and Markov’s inequality, it is straightfor-
ward to show that for any δ > 0, there exists K < ∞ such that

P
(
�d(Ŵd

jd
)−1 > K|Ŵd

0 = xd) ≤ P
(
2bl

d (Ŵd
jd

)
> K|Ŵd

0 = xd) ≤ δ.(B.29)

Therefore it follows from Lemma B.7 that, for any sequence {xd} such that xd ∈
F̃d ,

�d(Ŵd
jd

)−1{E[�d(Ŵd
jd+kd

)−1|Ŵd
jd

,Ŵd
0 = xd ]

− E[�d(Ŵd
jd+kd

)−1|Ŵd
0 = xd ]}|Ŵd

0 = xd(B.30)

p−→ 0 as d → ∞.

The uniform integrability of the left-hand side of (B.30) follows from (B.19) and
Lemma B.5. Hence (B.27) follows.

It is straightforward to show that E[ν̌n(Sn)
2],E[ν̂n(Sn)

2] → exp(f ∗l(4 log 2 −
3/2)) as n → ∞. Therefore from (B.19) and Lemma B.5, we have that

E[�d(Ŵd
kd

)−2|Ŵd
0 = xd ] → exp

(
f ∗l(4 log 2 − 3/2)

)
as d → ∞.(B.31)

Then (B.28) follows immediately. �

We are now in position to prove Lemma B.9, which is the final step in proving

that for any sequence {xd} such that xd ∈ F̃d , Pd |Xd
0 = xd p−→ exp(−f ∗l/2) as

d → ∞.

LEMMA B.9. For any 0 < π ≤ 1 and any sequence {xd} such that xd ∈ F̃d ,

T̃d(π)|Ŵd
0 = xd p−→ π exp(f ∗l/2) as d → ∞.(B.32)
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PROOF. Fix a sequence {xd}. Let T̃ 1
d (π) = 1

[dδ]
∑[dβ−1]

j=0 �d(Ŵd
j )−1 and let

T̃ 2
d (π) = 1

[dδ]
∑[πdδ−1]

j=[dβ ] �d(Ŵd
j )−1. Thus T̃d(π) = T̃ 1

d (π) + T̃ 2
d (π).

Let Ad = ∑[dδ]
j=0{Ŵd

j /∈ F 1
d }. By Theorem A.13, (A.75), P(Ad |Ŵd

0 = xd) → 0 as

d → ∞ and conditional upon AC
d , T̃ 1

d (π) ≤ [dβ ]dγ

[dδ] . Hence T̃ 1
d (π)|Ŵd

0 = xd p−→ 0
as d → ∞.

By Lemma B.7, (B.25),

E[T̃ 2
d (π)|Ŵd

0 = xd ] = 1

[dδ]
[πdδ−1]∑
j=[dβ ]

E[�d(Ŵd
j )−1|Ŵd

0 = xd ]
(B.33)

→ π exp(f ∗l/2).

By Chebyshev’s inequality, for any ε > 0,

P
(∣∣T̃ 2

d (π) − E[T̃ 2
d (π)|Ŵd

0 = xd ]∣∣ > ε|Ŵd
0 = xd)

(B.34)

≤ 1

ε2[dδ]2

[πdδ−1]∑
j=[dβ ]

[πdδ−1]∑
l=[dβ ]

cov
(
�d(Ŵd

j )−1,�d(Ŵd
l )−1|Ŵd

0 = xd).
Since for all j, l,

cov
(
�d(Ŵd

j )−1,�d(Ŵd
l )−1|Ŵd

0 = xd)
(B.35)

≤ var
(
�d(Ŵd

j )−1|Ŵd
0 = xd)1/2 var

(
�d(Ŵd

l )−1|Ŵd
0 = xd)1/2

,

it is straightforward to show, using Lemma B.8, that the right-hand side of (B.34)

converges to 0 as d → ∞. Thus T̃ 2
d (π)|Ŵd

0 = xd p−→ π exp(f ∗l/2) as d → ∞
and the lemma follows immediately. �

THEOREM B.10. For any sequence {xd} such that xd ∈ F̃d ,

Pd |Xd
0 = xd p−→ exp(−f ∗l/2) as d → ∞.(B.36)

PROOF. For any 0 < π ≤ 1, by Lemmas B.3, B.4 and B.9,

Td(π)|X̂d
0 = xd p−→ π exp(f ∗l/2).(B.37)

Since Pd satisfies Td(Pd) ≤ 1 < Td(Pd + 1/[dδ]), for any ε > 0,

P
(|Pd − exp(−f ∗l/2)| > ε|Xd

0 = xd)
≤ P

(
Td

(
exp(−f ∗l/2) − ε/2

)
> 1|X̂d

0 = xd)(B.38)

+ P
(
Td

(
exp(−f ∗l/2) + ε/2

) ≤ 1|X̂d
0 = xd)

for all sufficiently large d . The lemma follows, since (B.37) ensures that the right-
hand side of (B.38) converges to 0 as d → ∞. �
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APPENDIX C: PROOF OF (2.13)

From Appendix B, we have that for any sequence {xd}, such that xd ∈ F̃d ,

Pd |Xd
0 = xd p−→ exp(−lf ∗/2) as d → ∞. Therefore we proceed by showing that,

for any 0 ≤ π ≤ 1,

sup
xd∈Fd

|Ĝδ,π
d H(xd) − πĜH(x1)| → 0 as d → ∞,(C.1)

where Ĝ
δ,π
d H(xd) = d2

[dδ]E[(H(X̂d
[πdδ]) − H(X̂d

0))|X̂d
0 = xd ] is defined in (2.21)

and

ĜH(x) = l2

3

{
1

2
g′(x)H ′(x) + 1

2
H ′′(x)

}
.(C.2)

Equation (2.13) will then be proved using the triangle inequality.
We analyze ĜdH(X̂d

j ) = d2
E[H(X̂d

1 − X̂d
0)|X̂d

0 = xd ], which is defined in

(2.22), before using (2.21) to study Ĝ
δ,π
d H(xd). However, first we require some

definitions and preliminary results. Throughout we will utilize the following
key facts noted in Section 2: H ′(0) = H ′(1) = 0 and that H ∗

1 ,H ∗
2 < ∞, where

H ∗
1 = sup0≤y≤1|H ′(y)| and H ∗

2 = sup0≤y≤1|H ′′(y)|.
We follow [7] and [10] in noting that, for any function h which is a twice dif-

ferentiable function on R, the function z �→ 1 ∧ eh(z) is also twice differentiable,
except at a countable number of points, with first derivative given Lebesgue almost
everywhere by the function

d

dz
1 ∧ eh(z) =

{
h′(z)eh(z), if h(z) < 0,
0, if h(z) ≥ 0.

The second derivative can similarly be obtained but will not be explicitly required
for our calculations.

For −1 ≤ z ≤ 1, let J z
d (xd) denote the probability of accepting a move in the

RWM algorithm given that Z1,1 = z and let

J̃ 0
d (xd) = E

[
exp

(
d∑

j=2

{g(xj + σdZ1,j ) − g(xj )}
)

(C.3)

× 1{∑d
j=2(g(xj+σdZ1,j )−g(xj ))<0}

d∏
j=2

1{0<xj+σdZ1,j<1}
]
.

Then for all xd , using Taylor’s theorem,

J z
d (xd) = 1{0<x1+σdz<1}{J 0

d (xd) + σdg′(x1)zJ̃
0
d (xd) + O(σ 2

d )}.(C.4)

Therefore for x1 ∈ (σd,1 − σd),

Jd(xd) = J 0
d (xd) + O(σ 2

d ).(C.5)
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LEMMA C.1.

sup
xd∈Fd

∣∣∣∣ J̃
0
d (xd)

J 0
d (xd)

− 1

2

∣∣∣∣ → 0 as d → ∞.(C.6)

PROOF. Let �̃0
d(xd) = E[∏d

j=2 1{0<xj+σdZ1,j<1}1{∑d
j=2(g(xj+σdZ1,j )−g(xj ))<0}]

and let �0
d(xd) = E[∏d

j=2 1{0<xj+σdZ1,j<1}], the probability a proposed move
stays inside the unit cube given that the first component does not move. The
proof of (A.26) can be adapted to show that, for any α < 1

2 , dα|�0
d(xd) −

J 0
d (xd)|, dα|�̃0

d(xd) − J̃ 0
d (xd)| → 0 as d → ∞. Therefore since for xd ∈ Fd ,

J 0
d (xd),�0

d(xd) ≥ exp(−lg∗)d−γ , (A.3), we have that

sup
xd∈Fd

∣∣∣∣ J̃
0
d (xd)

J 0
d (xd)

− �̃0
d(xd)

�0
d(xd)

∣∣∣∣ → 0 as d → ∞.(C.7)

Let Bd(xd) = {2 ≤ j ≤ d;xj ∈ Rl
d} and let Id(xd) = ∑

j /∈Bd (xd ) σdg′(xj )Z1,j .
Since |Bd(xd)| ≤ γ logd , we have that∣∣∣∣ ∑

j∈Bd (xd )

(
g(xj + σdZ1,j ) − g(xj )

)∣∣∣∣ ≤ (γ logd)σdg∗.(C.8)

Then using a Taylor series expansion, there exists K < ∞ such that, for all xd ∈
Fd ,

Id(xd) − K logd

d
≤

d∑
j=2

(
g(xj + σdZj ) − g(xj )

) ≤ Id(xd) + K logd

d
.(C.9)

Since Z1,1,Z1,2, . . . , are independent, and whether or not a proposed move from
xd stays inside the hypercube depends only upon Bd(xd),

�0
d(xd)P

(
Id(xd) < −K logd/d

)
(C.10)

≤ �̃0
d(xd) ≤ �0

d(xd)P
(
Id(xd) < K logd/d

)
.

For all xd ∈ Fd , 1
d

∑d
j=1 g′(xj )

2 → E[g′(X1)
2], so

√
dId(xd)

D−→ N(0,E[g′(X1)
2]) as d → ∞.

Therefore it follows that

sup
xd∈Fd

∣∣∣∣�̃
0
d(xd)

�0
d(xd)

− 1

2

∣∣∣∣ → 0 as d → ∞(C.11)

with the lemma following from (C.7) and (C.11) by the triangle inequality. �
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LEMMA C.2. For x1 ∈ (σd,1 − σd) and xd ∈ Fd ,

ĜdH(xd) = l2

3

{
1

2
H ′′(x1) + J̃ 0

d (xd)

J 0
d (xd)

g′(x1)H
′(x1)

}
+ εd,(C.12)

where εd → 0 as d → ∞.
For x1 ∈ Rl

d ,

|ĜdH(xd)| ≤ 3
2H ∗

2 l2.(C.13)

PROOF. For d ≥ 1, fix xd ∈ Fd and suppose that x1 ∈ (σd,1 − σd). Then

ĜdH(xd) = d2
E[H(X̂d

1) − H(X̂d
0)|X̂d

0 = xd ]
(C.14)

= d2

Jd(xd)
E

[(
H(xd + σdZd) − H(xd)

){
1 ∧ πd(xd + σdZd)

πd(xd)

}]
.

The right-hand side of (C.14) is familiar in that it is the generator of the RWM-
algorithm divided by the acceptance probability; see, for example, [14], page 113.

First, note that

H(x1 + σdZ1) − H(x1) = σdZ1H
′(x1) + σ 2

d

2
Z2

1H
′′(x1)

+ σ 2
d

2
Z2

1{H ′′(x1 + ψd
1 ) − H ′′(x1)}.

Using (C.4), (C.5) and noting that 0 < x1 + σdZ1 < 1, we have that

ĜdH(xd) = d2

J 0
d (xd) + O(σ 2

d )

× E

[{
σdZ1H

′(x1) + σ 2
d

2
Z2

1H ′′(x1)

+ σ 2
d

2
Z2

1{H ′′(x1 + ψd
1 ) − H ′′(x1)}

}

× {J 0
d (xd) + J̃ 0

d (xd)σdg′(x1)Z1 + O(σ 2
d )}1{0<x1+σdZ1<1}

]

= d2J 0
d (xd)

J 0
d (xd) + O(σ 2

d )
σdE[Z1]H ′(x1)

+ d2J 0
d (xd)

J 0
d (xd) + O(σ 2

d )

σ 2
d

2
E[Z2

1]H ′′(x1)

+ d2J 0
d (xd)

J 0
d (xd) + O(σ 2

d )

σ 2
d

2
E[Z2

1{H ′′(x1 + ψd
1 ) − H ′′(x1)}](C.15)
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+ d2J̃ 0
d (xd)

J 0
d (xd) + O(σ 2

d )
σ 2

d g′(x1)H
′(x1)E[Z2

1]

+ d2

J 0
d (xd) + O(σ 2

d )
O(σ 3

d ).

The first term on the right-hand side of (C.15) is 0. Since H ∗
2 < ∞, by the con-

tinuous mapping theorem, {H ′′(x1 + ψd
1 ) − H ′′(x1)} p−→ 0 as d → ∞ and then

since Z1 is bounded the third term on the right-hand side of (C.15) converges to 0
as d → ∞. For xd ∈ Fd , J 0

d (xd) ≥ e−lg∗
d−γ , and so, the right-hand side of (C.15)

equals

l2

3

{
1

2
H ′′(x1) + J̃ 0

d (xd)

J 0
d (xd)

g′(x1)H
′(x1)

}
+ εd,

where εd → 0 as d → ∞. Thus (C.12) is proved.
The proof of (C.13) follows straightforwardly using Taylor series expansions

since H ′(0) = H ′(1) = 0. �

Since g∗ = sup0≤y≤1|g′(y)|,H ∗
1 ,H ∗

2 < ∞, an immediate consequence of
Lemma C.2 is that, there exists K∗ < ∞ such that

sup
d

sup
xd∈Fd

|ĜdH(xd)| ≤ K∗.(C.16)

LEMMA C.3. For any sequence of positive integers {kd} satisfying [dβ] ≤
kd ≤ [dδ],

sup
xd∈F̃d

∣∣E[ĜdH(X̂d
kd

)|X̂d
0 = xd ] − ĜH(x1)

∣∣ → 0 as d → ∞.(C.17)

PROOF. Fix {kd} and note that

E[ĜdH(X̂d
kd

)|X̂d
0 = xd ]

= P(X̂d
kd

∈ Fd |X̂d
0 = xd)E[ĜdH(X̂d

kd
)|X̂d

0 = xd, X̂d
kd

∈ Fd ](C.18)

+ P(X̂d
kd

/∈ Fd |X̂d
0 = xd)E[ĜdH(X̂d

kd
)|X̂d

0 = xd, X̂d
kd

/∈ Fd ].

Since H ∈ D, H ∗
0 = sup0≤y≤1 |H(y)| < ∞. Therefore, for all yd ∈ [0,1]d ,

ĜdH(yd) ≤ 2d2H ∗
0 . By (2.14), supxd∈F̃d

d2
P(X̂d

kd
/∈ Fd |X̂d

0 = xd) → 0 as d → ∞.
Thus the latter term on the right-hand side of (C.18) converges to 0 as d → ∞.
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Now

E[ĜdH(X̂d
kd

)|X̂d
0 = xd, X̂d

kd
∈ Fd ]

= P(X̂d
kd ,1 /∈ Rl

d |X̂d
0 = xd, X̂d

kd
∈ Fd)

× E[ĜdH(X̂d
kd

)|X̂d
0 = xd, X̂d

kd
∈ Fd, X̂d

kd,1 /∈ Rl
d ](C.19)

+ P(X̂d
kd ,1 ∈ Rl

d |X̂d
0 = xd, X̂d

kd
∈ Fd)

× E[ĜdH(X̂d
kd

)|X̂d
0 = xd, X̂d

kd
∈ Fd, X̂d

kd,1 ∈ Rl
d ].

Consider first the latter term on the right-hand side of (C.19). By Lemma C.2,
(C.13),

E[ĜdH(X̂d
kd

)|X̂d
0 = xd, X̂d

kd
∈ Fd, X̂d

kd,1 ∈ Rl
d ] ≤ 3

2 l2H ∗
2 .(C.20)

Note that

P(X̂d
kd ,1 ∈ Rl

d |X̂d
0 = xd, X̂d

kd
∈ Fd) = P(X̂d

kd ,1 ∈ Rl
d, X̂d

kd
∈ Fd |X̂d

0 = xd)

P(X̂d
kd

∈ Fd |X̂d
0 = xd)

(C.21)

≤ P(X̂d
kd ,1 ∈ Rl

d |X̂d
0 = xd)

P(X̂d
kd

∈ Fd |X̂d
0 = xd)

.

By (2.14), for xd ∈ F̃d , P(X̂d
kd

∈ Fd |X̂d
0 = xd) → 1 as d → ∞. Use Corol-

lary A.7 and Lemma A.8 to show that P(X̂d
kd ,1 ∈ Rl

d |X̂d
0 = xd) → 0 as d → ∞.

Hence, the right-hand side of (C.21) converges to 0 as d → ∞ and consequently
the latter term on the right-hand side of (C.19) converges to 0 as d → ∞.

It follows from the above arguments that

min
xd∈F̃d

P(X̂d
kd ,1 /∈ Rl

d, X̂d
kd

∈ Fd |X̂d
0 = xd) → 1 as d → ∞.(C.22)

Also it follows from (C.16) that there exists K < ∞ such that

sup
d

sup
xd∈F̃d

E[ĜdH(X̂d
kd

)|X̂d
0 = xd, X̂d

kd
∈ Fd, X̂d

kd,1 /∈ Rl
d ] ≤ K.(C.23)

Therefore, it is straightforward using (C.18), (C.19) and the triangle inequality to
show that

sup
xd∈F̃d

∣∣E[ĜdH(X̂d
kd

)|X̂d
0 = xd ]

− E[ĜdH(X̂d
kd

)|X̂d
0 = xd, X̂d

kd
∈ Fd, X̂d

kd,1 /∈ Rl
d ]∣∣(C.24)

→ 0 as d → ∞.
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By Lemma C.2, (C.12), there exists ε1
d → 0 as d → ∞, such that

sup
xd∈F̃d

∣∣E[ĜdH(X̂d
kd

) − ĜH(X̂d
kd ,1)|X̂d

0 = xd, X̂d
kd

∈ Fd, X̂d
kd,1 /∈ Rl

d ]∣∣

≤ l2

3
sup

0≤y≤1
|g′(y)H ′(y)|

(C.25)

× sup
xd∈F̃d

E

[∣∣∣∣ J̃
0
d (X̂d

kd
)

J 0
d (X̂d

kd
)

− 1

2

∣∣∣∣∣∣∣X̂d
0 = xd, X̂d

kd
∈ Fd, X̂d

kd,1 /∈ Rl
d

]
+ ε1

d

≤ l2

3
g∗H ∗

1 sup
yd∈Fd

∣∣∣∣ J̃
0
d (yd)

J 0
d (yd)

− 1

2

∣∣∣∣ + ε1
d .

By Lemma C.1, the right-hand side of (C.25) converges to 0 as d → ∞.
Using the triangle inequality, the lemma follows by showing that

sup
xd∈F̃d

∣∣E[ĜH(X̂d
kd ,1)|X̂d

0 = xd, X̂d
kd

∈ Fd, X̂d
kd,1 /∈ Rl

d ] − ĜH(x1)
∣∣

(C.26) → 0 as d → ∞.

Note that |X̂d
kd ,1 − x1| ≤ kdσd , and so, (C.26) follows since ĜH(·) is continuous.

�

We are in position to prove (C.1).

LEMMA C.4. For any 0 ≤ π ≤ 1,

sup
xd∈F̃d

|Ĝδ,π
d (xd) − πĜH(x1)| → 0 as d → ∞.(C.27)

PROOF. Since (C.27) trivially holds for π = 0, we assume that π > 0. For all
sufficiently large d , by the triangle inequality,

|Ĝδ,π
d (xd) − πĜH(x1)|

=
∣∣∣∣∣ 1

[dδ]
[πdδ−1]∑

j=0

E[ĜdH(X̂d
j )|X̂d

0 = xd ] − πĜH(x1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

[dδ]
[dβ ]−1∑
j=0

E[ĜdH(X̂d
j )|X̂d

0 = xd ]
∣∣∣∣∣(C.28)

+ 1

[dδ]
[πdδ−1]∑
j=[dβ ]

∣∣E[ĜdH(X̂d
j )|X̂d

0 = xd ] − ĜH(x1)
∣∣

+
(
π − [πdδ] − [dβ]

[dδ]
)
ĜH(x1).
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Since

E[ĜdH(X̂d
j )|X̂d

0 = xd ]
= E[ĜdH(X̂d

j )|X̂d
0 = xd, X̂d

j ∈ Fd ]P(X̂d
j ∈ Fd |X̂d

0 = xd)(C.29)

+ E[ĜdH(X̂d
j )|X̂d

0 = xd, X̂d
j /∈ Fd ]P(X̂d

j /∈ Fd |X̂d
0 = xd),

it is straightforward, following a similar argument to the proof of Lemma C.3,
(C.23), to show that there exists K̃ < ∞ such that, for all 0 ≤ j ≤ [dδ],

sup
xd∈F̃d

∣∣E[ĜdH(X̂d
j )|X̂d

0 = xd ]∣∣ ≤ K̃.(C.30)

Therefore the first term on the right-hand side of (C.29) is bounded by [dβ]K̃/[dδ].
By Lemma C.3 the supremum over xd ∈ F̃d of the second term on the right-hand
side of (C.28) converges to 0 as d → ∞ and the lemma follows. �

COROLLARY C.5.

sup
0≤π≤1

sup
xd∈F̃d

|Ĝδ,π
d (xd) − πĜH(x1)| → 0 as d → ∞.(C.31)

PROOF. Fix ε > 0 and let �ε = {0, ε,2ε, . . . , [1/ε]ε,1}. It follows from
Lemma C.4 that, for all sufficiently large d ,

max
π∈�ε

sup
xd∈F̃d

|Ĝδ,π
d (xd) − πĜH(x1)| ≤ ε.(C.32)

Consider any 0 ≤ π ≤ 1. There exists π̃ ∈ �ε such that π̃ ≤ π < π̃ + ε. By the
triangle inequality,

|Ĝδ,π
d H(xd) − πĜH(x1)|

≤ |Ĝδ,π
d H(xd) − Ĝ

δ,π̃
d H(xd)| + |Ĝδ,π̃

d H(xd) − π̃ĜH(x1)|(C.33)

+ (π − π̃)|ĜH(x1)|.
Again by the triangle inequality,

sup
xd∈F̃d

|Ĝδ,π
d H(xd) − Ĝ

δ,π̃
d H(xd)|

(C.34)

≤ 1

[dδ]
[πdδ−1]∑
j=[π̃dδ]

sup
xd∈F̃d

∣∣E[ĜdH(X̂d
j )|X̂d

0 = xd ]∣∣.
Since for all sufficiently large d , ([πdδ − 1] − [π̃dδ])/[dδ] ≤ 2ε, it follows from
(C.30) that the right-hand side of (C.34) is bounded by 2K̃ε, where K̃ is defined
in Lemma C.4.
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Let K̂ = 2K̃ + 1 + sup0≤y≤1 |ĜH(y)|. Note that since g∗,H ∗
1 ,H ∗

2 < ∞, we

have that K̂ < ∞. Therefore it follows from (C.33) that for all sufficiently large d ,

sup
xd∈F̃d

|Ĝδ,π
d H(xd) − πĜH(x1)| ≤ K̂ε.(C.35)

Since (C.35) holds for all 0 ≤ π ≤ 1 and ε > 0, the lemma follows. �

Finally we are in position to prove (2.13), and hence complete the proof of
Theorem 2.1.

LEMMA C.6.

sup
xd∈F̃d

|Gδ
dH(xd) − GH(x1)| → 0 as d → ∞.(C.36)

PROOF. Note that Gδ
dH(xd) is given by (2.8) and GH(x1) = exp(−lf ∗/2) ×

ĜH(x1). Therefore by the triangle inequality,

sup
xd∈F̃d

|Gδ
dH(xd) − GH(x1)|

= sup
xd∈F̃d

∣∣∣∣ d2

[dδ]E
[
H

(
X̂d

[Pddδ]
) − H(X̂d

0)|X̂d
0 = xd] − exp(−lf ∗/2)ĜH(x1)

∣∣∣∣
≤ sup

xd∈F̃d

∣∣∣∣E
[

d2

[dδ]
(
H

(
X̂d

[Pddδ]
) − H(X̂d

0)
) − PdĜH(x1)|X̂d

0 = xd

]∣∣∣∣
+ sup

xd∈F̃d

∣∣E[PdĜH(x1)|X̂d
0 = xd ] − exp(−lf ∗/2)ĜH(x1)

∣∣
(C.37)

≤ sup
0≤π≤1

sup
xd∈F̃d

∣∣∣∣E
[

d2

[dδ]
(
H

(
X̂d

[πdδ]
) − H(X̂d

0)
) − πĜH(x1)|X̂d

0 = xd

]∣∣∣∣
+ sup

xd∈F̃d

∣∣E[Pd |X̂d
0 = xd ] − exp(−lf ∗/2)

∣∣ sup
0≤y≤1

|ĜH(y)|

≤ sup
0≤π≤1

sup
xd∈F̃d

|Ĝδ,π
d H(xd) − πĜH(x1)|

+ sup
xd∈F̃d

∣∣E[Pd |X̂d
0 = xd ] − exp(−lf ∗/2)

∣∣ sup
0≤y≤1

|ĜH(y)|.

By Corollary C.5, the first term on the right-hand side of (C.37) converges to
0 as d → ∞. By Theorem B.10, for any sequence {xd} such that xd ∈ F̃d ,
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Pd |Xd
0 = xd p−→ exp(−lf ∗/2) as d → ∞. Hence the latter term on the right-

hand side of (C.37) converges to 0 as d → ∞, since g∗,H ∗
1 ,H ∗

2 < ∞ implies
that sup0≤y≤1 |ĜH(y)| < ∞. �
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