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CROSSINGS OF SMOOTH SHOT NOISE PROCESSES1
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and Université Paris Descartes

In this paper, we consider smooth shot noise processes and their expected
number of level crossings. When the kernel response function is sufficiently
smooth, the mean number of crossings function is obtained through an in-
tegral formula. Moreover, as the intensity increases, or equivalently, as the
number of shots becomes larger, a normal convergence to the classical Rice’s
formula for Gaussian processes is obtained. The Gaussian kernel function,
that corresponds to many applications in physics, is studied in detail and two
different regimes are exhibited.

1. Introduction. In this paper, we will consider a shot noise process which is
a real-valued random process given by

X(t) = ∑
i

βig(t − τi), t ∈ R,(1)

where g is a given (deterministic) measurable function (it will be called the ker-
nel function of the shot noise process), the {τi} are the points of a Poisson point
process on the line of intensity λν(ds), where λ > 0 and ν is a positive σ -finite
measure on R and the {βi} are independent copies of a random variable β (called
the impulse), independent of {τi}.

Shot noise processes are related to many problems in physics as they result from
the superposition of “shot effects” which occur at random. Fundamental results
were obtained by Rice [23]. Daley [10] gave sufficient conditions on the kernel
function to ensure the convergence of the formal series in a preliminary work.
General results, including sample paths properties, were given by Rosiński [24] in
a more general setting. In most of the literature the measure ν is the Lebesgue mea-
sure on R such that the shot noise process is a stationary one. In order to derive
more precise sample paths properties and especially crossings rates, mainly two
properties have been extensively exhibited and used. The first one is the Markov
property, which is valid, choosing a noncontinuous positive causal kernel func-
tion, that is, 0 for negative time. This is the case, in particular, of the exponential
kernel g(t) = e−t1t≥0 for which explicit distributions and crossings rates can be
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obtained [21]. A simple formula for the expected numbers of level crossings is
valid for more general kernels of this type but resulting shot noise processes are
nondifferentiable [4, 16]. The infinitely divisible property is the second main tool.
Actually, this allows us to establish convergence to a Gaussian process as the inten-
sity increases [15, 22]. Sample paths properties of Gaussian processes have been
extensively studied and fine results are known concerning the level crossings of
smooth Gaussian processes (see [2, 9], e.g.).

The goal of the paper is to study the crossings of a shot noise process in the gen-
eral case when the kernel function g is smooth. In this setting we lose Markov’s
property but the shot noise process inherits smoothness properties. Integral for-
mulas for the number of level crossings of smooth processes was generalized to
the non-Gaussian case by [18] but it uses assumptions that rely on properties of
some densities, which may not be valid for shot noise processes. We derive inte-
gral formulas for the mean number of crossings function and pay a special interest
in the continuity of this function with respect to the level. Exploiting further on
normal convergence, we exhibit a Gaussian regime for the mean number of cross-
ings function when the intensity goes to infinity. A particular example, which is
studied in detail, concerns the shot noise process where β = 1 almost surely and g

is a Gaussian kernel of width σ ,

g(t) = gσ (t) = 1

σ
√

2π
e−t2/2σ 2

.

Such a model has many applications because it is solution of the heat equation (we
consider σ as a variable), and it thus models a diffusion from random sources (the
points of the Poisson point process).

The paper is organized as follows. In Section 2, we consider crossings for gen-
eral smooth processes. We give an explicit formula for the Fourier transform of
the mean number of crossings function of a process X in terms of the character-
istic function of (X(t),X′(t)). One of the difficulties is then to obtain results for
the mean number of crossings of a given level α and not only for almost every α.
Thus we focus on the continuity property of the mean number of crossings func-
tion. Section 3 is devoted to crossings for a smooth shot noise process X defined
by (1). In order to get the continuity of the mean number of crossings function,
we study the question of the existence and the boundedness of a probability den-
sity for X(t). In Section 4, we show how, and in which sense, the mean number
of crossings function converges to the one of a Gaussian process when the inten-
sity λ goes to infinity. We give rates of this convergence. Finally, in Section 5, we
study in detail the case of a Gaussian kernel of width σ . We are mainly interested
in the mean number of local extrema of this process, as a function of σ . Thanks
to the heat equation, and also to scaling properties between σ and λ, we prove
that the mean number of local extrema is a decreasing function of σ , and give its
asymptotics as σ is small or large.
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2. Crossings of smooth processes. The goal of this section is to investigate
crossings of general smooth processes in order to get results for smooth shot noise
processes. This is a very different situation from the one studied in [4, 16, 21]
where shot noise processes are nondifferentiable. However, crossings of smooth
processes have been extensively studied, especially in the Gaussian processes
realm (see [2], e.g.) which are second order processes. Therefore, in the whole
section, we will consider second order processes which are both almost surely and
mean square continuously differentiable (see [1], Section 2.2, e.g.). This implies,
in particular, that the derivatives are also second order processes. Moreover, most
of known results on crossings are based on assumptions on density probabilities,
which are not well adapted for shot noise processes. In this section, we revisit these
results with a more adapted point of view based on characteristic functions.

When X is an almost surely continuously differentiable process on R, we can
consider its multiplicity function on an interval [a, b] defined by

∀α ∈ R NX(α, [a, b]) = #{t ∈ [a, b];X(t) = α}.(2)

This defines a positive random process taking integer values. Let us briefly recall
some points of “vocabulary.” For a given level α ∈ R, a point t ∈ [a, b] such that
X(t) = α is called “crossing” of the level α. Then NX(α, [a, b]) counts the num-
ber of crossings of the level α in the interval [a, b]. Now we have to distinguish
three different types of crossings (see, e.g., [9]): the up-crossings that are points
for which X(t) = α and X′(t) > 0, the down-crossings that are points for which
X(t) = α and X′(t) < 0 and the tangencies that are points for which X(t) = α and
X′(t) = 0.

Let us also recall that according to Rolle’s theorem, whatever the level α is,

NX(α, [a, b]) ≤ NX′(0, [a, b]) + 1 a.s.

Note that when there are no tangencies of X′ for the level 0, then NX′(0, [a, b]) is
the number of local extrema for X, which corresponds to the sum of the number of
local minima (up zero-crossings of X′) and of the number of local maxima (down
zero-crossings of X′).

Dealing with random processes, one may be more interested in the mean number
of crossings. We will denote by CX(α, [a, b]) the mean number of crossings of the
level α by the process X in [a, b],

CX(α, [a, b]) = E(NX(α, [a, b])) = E(#{t ∈ [a, b] such that X(t) = α}).(3)

Let us emphasize that this function is no more with integer values and can be con-
tinuous with respect to α. When, moreover, X is a stationary process, by the addi-
tivity of means, we get CX(α, [a, b]) = (b−a)CX(α, [0,1]) for α ∈ R. In this case
CX(α, [0,1]) corresponds to the mean number of crossings of the level α per unit
length. Let us also recall that when X is a strictly stationary ergodic process, the
ergodic theorem states that (2T )−1NX(α, [−T ,T ])−→T →+∞CX(α, [0,1]) a.s.
(see [9], e.g.).
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2.1. A Fourier approach for the mean number of crossings function. One way
to obtain results on crossings for almost every level α is to use the well-known
co-area formula which is, in fact, valid in the more general framework of bounded
variations functions (see, e.g., [12]). When X is an almost surely continuously
differentiable process on [a, b], for any bounded and continuous function h on R,
we have ∫

R

h(α)NX(α, [a, b]) dα =
∫ b

a
h(X(t))|X′(t)|dt a.s.(4)

In particular, when h = 1, this shows that α 
→ NX(α, [a, b]) is integrable on R and∫
R

NX(α, [a, b]) dα = ∫ b
a |X′(t)|dt is the total variation of X on [a, b]. Moreover,

taking the expected values we get by Fubini’s theorem that∫
R

CX(α, [a, b]) dα =
∫ b

a
E(|X′(t)|) dt.

Therefore, when the total variation of X on [a, b] has finite expectation, the
function α 
→ CX(α, [a, b]) is integrable on R. This is the case when X is also
mean square continuously differentiable since then the function t 
→ E(|X′(t)|)
is continuous on [a, b]. Let us emphasize that this implies, in particular, that
CX(α, [a, b]) < +∞ for almost every level α ∈ R but one cannot conclude for
a fixed given level. However, it allows us to use Fubini’s theorem such that, taking
expectation in (4), for any bounded continuous function h,∫

R

h(α)CX(α, [a, b]) dα =
∫ b

a
E(h(X(t))|X′(t)|) dt.(5)

In the following theorem we obtain a closed formula for the Fourier transform of
the mean number of crossings function, which only involves characteristic func-
tions of the process. This can be helpful when considering shot noise processes
whose characteristic functions are well known.

THEOREM 1. Let a, b ∈ R with a < b. Let X be an almost surely and mean
square continuously differentiable process on [a, b]. Then α 
→ CX(α, [a, b]) ∈
L1(R) and its Fourier transform u 
→ ĈX(u, [a, b]) is given by

ĈX(u, [a, b]) =
∫ b

a
E

(
eiuX(t)|X′(t)|)dt.(6)

Moreover, if ψt denotes the joint characteristic function of (X(t),X′(t)), then
ĈX(u, [a, b]) can be computed by

ĈX(u, [a, b]) = − 1

π

∫ b

a

∫ +∞
0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv dt

= − 1

π

∫ b

a

∫ +∞
0

1

v2

(
ψt(u, v) + ψt(u,−v) − 2ψt(u,0)

)
dv dt.
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PROOF. Choosing in equation (5) h of the form h(x) = exp(iux) for any u

real, shows that ĈX(u, [a, b]) = ∫ b
a E(eiuX(t)|X′(t)|) dt . Let us now identify the

right-hand term. Let μt(dx, dy) denote the law of (X(t),X′(t)). Then the joint
characteristic function ψt(u, v) of (X(t),X′(t)) is

ψt(u, v) = E
(
exp

(
iuX(t) + ivX′(t)

)) =
∫

R2
eiux+ivyμt (dx, dy).

Since the random vector (X(t),X′(t)) has moments of order two, then ψt is twice
continuously differentiable on R

2. Now, let us consider the integral

IA =
∫ A

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv

=
∫ A

v=0

∫
x,y∈R2

iyeiux+ivy − iyeiux−ivy

v
μt (dx, dy) dv

= −2
∫ A

v=0

∫
R2

yeiux sin(vy)

v
μt(dx, dy) dv

= −2
∫

R2
yeiux

∫ Ay

v=0

sin(v)

v
dvμt(dx, dy).

The order of integration has been reversed thanks to Fubini’s theorem
[|yeiux sin(vy)

v
| ≤ y2 which is integrable on [0,A] × R

2 with respect to dv ×
μt(dx, dy), since X′(t) is a second order random variable]. As A goes to +∞,
then

∫ Ay
v=0

sin(v)
v

dv goes to π
2 sign(y), and moreover, for all A, x and y, we have

|yeiux
∫ Ay
v=0

sin(v)
v

dv| ≤ 3|y|, thus by Lebesgue’s dominated convergence theorem,
the limit of − 1

π
IA exists as A goes to infinity and its value is

lim
A→+∞− 1

π

∫ A

0

1

v

(
∂ψt

∂v
(u, v) − ∂ψt

∂v
(u,−v)

)
dv

=
∫

R2
|y|eiuxμt (dx, dy) = E

(
eiuX(t)|X′(t)|).

The second expression in the proposition is simply obtained by integration by parts
in the above formula. �

The last expression considerably simplifies when X is a stationary Gaussian
process almost surely and mean square continuously differentiable on R. By in-
dependence of X(t) and X′(t) we get ψt(u, v) = φX(u)φX′(v) where φX , respec-
tively, φX′ , denotes the characteristic function of X(t), respectively, X′(t) (inde-
pendent of t by stationarity). Then, the Fourier transform of the mean number of
crossings function is given by

ĈX(u, [a, b]) = −b − a

π
φX(u)

∫
R

1

v

∂φX′

∂v
(v) dv.
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By the inverse Fourier transform we get a weak Rice’s formula

CX(α, [a, b]) = b − a

π

(
m2

m0

)1/2

e−(α−E(X(0)))2/2m0 for a.e. α ∈ R,(7)

where m0 = Var(X(t)) and m2 = Var(X′(t)). Let us quote that in fact Rice’s for-
mula holds for all level α ∈ R and as soon as X is a.s. continuous (see [2], Exer-
cise 3.2) in the sense that CX(α, [a, b]) = +∞ if m2 = +∞.

However, in general, the knowledge of ĈX(u, [a, b]) only allows us to get al-
most everywhere results on CX(α, [a, b]) itself, which can still be used in practice
as explained in [25].

2.2. Mean number of crossings for a given level. One way to derive results
on CX(α, [a, b]) for a given level α is to use Kac’s counting formula (see [2],
Lemma 3.1), which we recall now. When X is almost surely continuously differ-
entiable on [a, b] such that for α ∈ R

P
(∃t ∈ [a, b] s.t. X(t) = α and X′(t) = 0

) = 0 and
(8)

P
(
X(a) = α

) = P
(
X(b) = α

) = 0,

then,

NX(α, [a, b]) = lim
δ→0

1

2δ

∫ b

a
1|X(t)−α|<δ|X′(t)|dt a.s.(9)

The first part of assumption (8) means that the number of tangencies for the level α

is 0 almost surely. The following proposition gives a simple criterion to check this.

PROPOSITION 1. Let a, b ∈ R with a ≤ b. Let X be a real valued random
process almost surely C 2 on [a, b]. Let us assume that there exists φ ∈ L1(R) and
c > 0 such that

∀t ∈ [a, b] ∣∣E(
eiuX(t))∣∣ ≤ cφ(u).

Then,

∀α ∈ R P
(∃t ∈ [a, b],X(t) = α and X′(t) = 0

) = 0.

PROOF. Let M > 0 and let denote AM the event corresponding to

max
t∈[a,b] |X

′′(t)| ≤ 2M

such that P(∃t ∈ [a, b],X(t) = α,X′(t) = 0) = limM→+∞ P(∃t ∈ [a, b],X(t) =
α,X′(t) = 0,AM). Let us assume that there exists t ∈ [a, b] such that X(t) =
α and X′(t) = 0. Then for any n ∈ N there exists kn ∈ [2na,2nb] ∩ Z such that
|t − 2−nkn| ≤ 2−n and, by the first order Taylor formula,

|X(2−nkn) − α| ≤ 2−2nM.(10)
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Therefore, let us denote

Bn = ⋃
kn∈[2na,2nb]∩Z

{|X(2−nkn) − α| ≤ 2−2nM}.

Since (Bn ∩ AM)n∈N is a decreasing sequence we get

P
(∃t ∈ [a, b];X(t) = α,X′(t) = 0,AM

) ≤ lim
n→+∞P(Bn ∩ AM).

But, according to assumption, for any n ∈ N the random variable X(2−nkn) admits
a uniformly bounded density function. Therefore, there exists c′ > 0 such that

P
(|X(2−nkn) − α| ≤ 2−2nM

) ≤ c′2−2nM.

Hence, P(Bn ∩ AM) ≤ (b − a + 1)c′2−nM, which yields the result. �

Now taking expectation in (9) gives an upper bound on CX(α, [a, b]), according
to Fatou’s lemma,

CX(α, [a, b]) ≤ lim inf
δ→0

1

2δ

∫ b

a
E

(
1|X(t)−α|<δ|X′(t)|)dt.

This upper bound is not very tractable without assumptions on the existence of a
bounded joint density for the law of (X(t),X′(t)). As far as shot noise processes
are concerned, one can exploit the infinite divisibility property by considering the
mean number of crossings function of the sum of independent processes. The next
proposition gives an upper bound in this setting. Another application of this propo-
sition will be seen in Section 5 where we will decompose a shot noise process into
the sum of two independent processes (for which crossings are easy to compute)
by partitioning the set of points of the Poisson process.

PROPOSITION 2 (Crossings of a sum of independent processes). Let a, b ∈ R

with a < b. Let n ≥ 2 and Xj be independent real-valued processes almost surely
and mean square two times continuously differentiable on [a, b] for 1 ≤ j ≤ n.
Assume that there exist constants cj and probability measures dμj on R such that
if dPXj (t) denotes the law of Xj(t), then

∀t ∈ [a, b] dPXj (t) ≤ cjdμj for 1 ≤ j ≤ n.

Let X be the process obtained by X = ∑n
j=1 Xj and assume that X satisfies (8)

for α ∈ R. Then

CX(α, [a, b]) ≤
n∑

j=1

(∏
i 
=j

ci

)(
CX′

j
(0, [a, b]) + 1

)
.(11)

Moreover, in the case where all the Xj are stationary on R,

CX(α, [a, b]) ≤
n∑

j=1

CX′
j
(0, [a, b]).
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PROOF. We first need an elementary result. Let f be a C1 function on [a, b],
then for all δ > 0, and for all x ∈ R, we have

1

2δ

∫ b

a
1|f (t)−x|≤δ|f ′(t)|dt ≤ Nf ′(0, [a, b]) + 1.(12)

This result (that can be found as an exercise at the end of Chapter 3 of [2])
can be proved this way: let a1 < · · · < an denote the points at which f ′(t) = 0
in [a, b]. On each interval [a, a1], [a1, a2], . . . , [an, b], f is monotonic and thus∫ ai+1
ai

1|f (t)−x|≤δ|f ′(t)|dt ≤ 2δ. Summing up these integrals, we have the an-
nounced result.

For the process X, since it satisfies the conditions of Kac’s formula (8), by (9)
and Fatou’s lemma,

CX(α, [a, b]) ≤ lim inf
δ→0

1

2δ

∫ b

a
E

(
1|X(t)−α|≤δ|X′(t)|)dt.

Now, for each δ > 0, we have

E
(
1|X(t)−α|≤δ|X′(t)|) ≤

n∑
j=1

E
(
1|X1(t)+···+Xn(t)−α|≤δ|X′

j (t)|
)
.

Then, thanks to the independence of X1, . . . ,Xn and to the bound on the laws of
Xj(t), we get∫ b

a
E

(
1|X1(t)+···+Xn(t)−α|≤δ|X′

1(t)|
)
dt

=
∫ b

a

∫
Rn−1

E
(
1|X1(t)+x2+···+xn−α|≤δ|X′

1(t)||
X2(t) = x2, . . . ,Xn(t) = xn

)
dPX2(t)(x2), . . . , dPXn(t)(xn) dt

≤
(

n∏
j=2

cj

)∫
Rn−1

∫ b

a
E

(
1|X1(t)+x2+···+xn−α|≤δ|X′

1(t)|
)
dt dμ2(x2), . . . , dμn(xn).

Now, (12) holds almost surely for X1, taking expectation we get

1

2δ

∫ b

a
E

(
1|X1(t)+x2+···+xn−α|≤δ|X′

1(t)|
)
dt ≤ CX′

1
(0, [a, b]) + 1.

Using the fact the dμj are probability measures we get

1

2δ

∫ b

a
E

(
1|X1(t)+···+Xn(t)−α|≤δ|X′

1(t)|
)
dt ≤

( n∏
j=2

cj

)(
CX′

1
(0, [a, b]) + 1

)
.

We obtain similar bounds for the other terms. Since this holds for all δ > 0, we
have the bound (11) on the expected number of crossings of the level α by the
process X.

When the Xj are stationary, things become simpler; we can take cj = 1 for all
1 ≤ j ≤ n, and also by stationarity we have that for all p ≥ 1 integer CX(α, [a, b+
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p(b − a)]) = (p + 1)CX(α, [a, b]). Now, using (11) for all p, then dividing by
(p + 1), we have that for all p, CX(α, [a, b]) ≤ ∑n

j=1 CX′
j
(0, [a, b]) + n

p+1 . Fi-
nally, letting p go to infinity, we have the result. �

As previously seen, taking the expectation in Kac’s formula only allows us to
get an upper bound for CX . However, under stronger assumptions (see [18], The-
orem 2), one can justify the interversion of the limit and the expectation. In par-
ticular, one has to assume that (X(t),X′(t)) admits a density pt continuous in a
neighborhood of {α} × R. Rice’s formula states that

CX(α, [a, b]) =
∫ b

a

∫
R

|z|pt(α, z) dz dt < +∞,(13)

such that, under appropriate assumptions, one can prove that the mean number of
crossings function α 
→ CX(α, [a, b]) is continuous on R.

3. Crossings of smooth shot noise processes. From now on, we focus on a
shot noise process X given by the formal sum (1), which can also be written as the
stochastic integral

X(t) =
∫

R×R

zg(t − s)N(ds, dz),(14)

where N is a Poisson random measure of intensity λν(ds)F (dz), with F the law
of the impulse β (see [17], Chapter 10, e.g.). We focus in this paper on station-
ary shot noise processes for which ν(ds) = ds is the Lebesgue measure. Such
processes are obtained as the almost sure limit of truncated shot noise processes
defined for νT (ds) = 1[−T ,T ](s) ds, as T tends to infinity. Therefore, from now on
and in all the paper, the measure ν(ds) is the Lebesgue measure ds or the measure
νT (ds). Then, assuming that the random impulse β is an integrable random vari-
able of L1(
) and that the kernel function g is an integrable function of L1(R),
it is enough to ensure the almost sure convergence of the infinite sum (see also
Campbell’s theorem and [15]). When, moreover, β ∈ L2(
) and g ∈ L2(R), the
process X defines a second order process.

3.1. Regularity and Fourier transform of the mean number of crossings func-
tion. Under further regularity assumptions on the kernel function we obtain the
following sample paths regularity for the shot noise process itself.

PROPOSITION 3. Let β ∈ L2(
). Let g ∈ C 2(R) such that g,g′, g′′ ∈ L1(R).
Then X is almost surely and mean square continuously differentiable on R with

X′(t) = ∑
i

βig
′(t − τi) ∀t ∈ R.
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PROOF. Let A > 0 and remark that for any s ∈ R and |t | ≤ A, since g ∈ C 1(R),

|g(t − s)| =
∣∣∣∣∫ t

0
g′(u − s) du + g(−s)

∣∣∣∣ ≤
∫ A

−A
|g′(u − s)|du + |g(−s)|,

such that by Fubini’s theorem, since g,g′ ∈ L1(R),∫
R

sup
t∈[−A,A]

|g(t − s)|ds ≤ 2A

∫
R

|g′(s)|ds +
∫

R

|g(s)|ds < +∞.

Therefore, since β ∈ L1(
), the series
∑

i βi supt∈[−A,A] |g(t − τi)| converges al-
most surely which means that

∑
i βig(· − τi) converges uniformly on [−A,A]

almost surely. This implies that the sample paths of X are almost surely continu-
ous on R. Similarly, since g′ ∈ C 1(R) and g′, g′′ ∈ L1(R), almost surely the series∑

i βig
′(· − τi) converges uniformly on [−A,A] and therefore X is continuously

differentiable on [−A,A] with X′(t) = ∑
i βig

′(t − τi) for all t ∈ [−A,A]. Note
that the same holds true on [−A + n,A + n] for any n ∈ Z, which concludes for
the almost sure continuous differentiability on R = ⋃

n∈Z[−A + n,A + n].
Now, let us be concerned with the mean square continuous differentiability.

First, g,g′ ∈ L1(R) implies that g ∈ L∞(R) ∩ L1(R) ⊂ L2(R) such that X is
a second order process since β ∈ L2(
). Its covariance function is given by
S(t, t ′) = Cov(X(t),X(t ′)) = λE(β2)

∫
R

g(t −s)g(t ′−s)ν(ds). Similarly, we also
have that g′ ∈ L2(R)∩L∞(R) and X′ is a second order process. According to [1],
Theorem 2.2.2, it is sufficient to remark that assumptions on g ensure that ∂2S

∂t ∂t ′ ex-

ists and is finite at any point (t, t) ∈ R
2 with ∂2S

∂t ∂t ′ (t, t) = λE(β2)
∫
R

g′(t − s)g′(t −
s)ν(ds). Therefore, for all t ∈ R, the limit limh→0

X(t+h)−X(t)
h

exists in L2(
) and
is equal to X′(t) by unicity. Moreover, the covariance function of X′ is given by
(t, t ′) 
→ λE(β2)

∫
R

g′(t − s)g′(t ′ − s)ν(ds). �

Iterating this result one can obtain higher order smoothness properties. In par-
ticular, it is straightforward to obtain the following result for Gaussian kernels.

EXAMPLE (Gaussian kernel). Let β ∈ L2(
), g(t) = g1(t) = 1√
2π

exp(−t2/2)

and X given by (1). Then, the process X is almost surely and mean square smooth
on R. Moreover, for any n ∈ N,

∀t ∈ R X(n)(t) = ∑
i

βig
(n)
1 (t − τi) = ∑

i

βi(−1)nHn(t − τi)g1(t − τi),

where Hn is the Hermite polynomial of order n.

From now on, in order to work with almost sure and mean square continuously
differentiable process, we make the following assumption:

g ∈ C 2(R) with g,g′, g′′ ∈ L1(R).(A)
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Therefore, choosing β ∈ L2(
), the shot noise process X satisfies the assump-
tions of Theorem 1 such that the Fourier transform of its mean number of cross-
ings function can be written with respect to ψt , the joint characteristic function of
(X(t),X′(t)), given by (see [17], Lemma 10.2, e.g.)

∀u, v ∈ R ψt(u, v) = E
(
eiuX(t)+vX′(t))

(15)

= exp
(∫

R×R

[
eiz(ug(t−s)+vg′(t−s)) − 1

]
λν(ds)F (dz)

)
.

In order to get stronger results on the mean number of crossings function we
first have to investigate the existence of a density when considering a shot noise
process X, or more precisely, a shot noise vector-valued process (X,X′). Then we
consider an R

d -valued shot noise process given on R by

Y(t) = ∑
i

βih(t − τi),(16)

where h : R 
→ R
d is a given (deterministic) measurable vectorial function in

L1(R). In this setting one can recover X given by (1) with d = 1 and h = g, or
recover (X,X′) (if it exists) with d = 2 and h = (g, g′). It will be particularly
helpful to see Y as the almost sure limit of a truncated shot noise process YT de-
fined for νT (ds) = 1[−T ,T ](s) ds, as T > 0 tends to infinity. Therefore, from now
on and in all the paper, we use the following notation.

NOTATION. For any T > 0, we denote by YT , respectively, XT , when d = 1,
the shot noise process given by (16), respectively, (1), obtained for νT (ds) =
1[−T ,T ](s) ds. We simply denote by Y , respectively, X, when d = 1, the shot noise
process obtained for ν the Lebesgue measure.

3.2. Existence of a density and continuity of the mean number of crossings func-
tion. Let us remark that for d ≥ 1 and T > 0, the shot noise process YT satisfies

YT (·) = ∑
|τi |≤T

βih(· − τi)
f.d.d.=

γT∑
i=1

βih
(· − U

(i)
T

)
,(17)

where

γT = #{i; τi ∈ [−T ,T ]}(18)

is a Poisson random variable of parameter λνT (R) = 2λT and {U(i)
T } are i.i.d. with

uniform law on [−T ,T ] independent from γT and {βi}. Here and in the sequel the

convention is that
∑0

i=1 = 0 and, as usual, f.d.d.= stands for the equality in finite
dimensional distributions.

Moreover, for any M > T , one can write YM as the sum of two independent
processes YT and YM − YT such that the existence of a density for the random
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vector YT (t) implies the existence of a density for the random vector YM(t) and
therefore for Y(t). Note also that by stationarity Y(s) will also admit a density
for any s ∈ R. Such a remark can be used, for instance, to establish an integral
equation to compute or approximate the density in some examples [14, 20, 21].
However, the shot noise process may not have a density. For example, when h has
compact support, there exists A > 0 such that h(s) = 0 for |s| > A. Then, for any
T ≥ A, we get XT (0) = XA(0) = X(0) such that P(XT (0) = 0) = P(X(0) = 0) ≥
P(γA = 0) > 0, which proves that XT (0) and X(0) don’t have a density. Such a
behavior is extremely linked to the number of points of the Poisson process {τi}
that are thrown in the interval of study. Therefore, by conditioning we obtain the
following criterion.

PROPOSITION 4. If there exists m ≥ 1 such that for all T > 0 large enough,
conditionally on {γT = m}, the random variable YT (0) admits a density, then,
conditionally on {γT ≥ m}, the random variable YT (0) admits a density. Moreover,
Y(0) admits a density.

PROOF. Let T > 0 be large enough. First, let us remark that conditionally

on {γT = m}, YT (0)
d= ∑m

i=1 βih(U
(i)
T ). Next, notice that if a random vector V

in R
d admits a density fV then, for UT with uniform law on [−T ,T ] and β

with law F , independent of V , the random vector W = V + βh(UT ) admits
w ∈ R

d 
→ 1
2T

∫
R

∫ T
−T fV (w − zh(t)) dtF (dz) for density. Therefore, by induc-

tion, the assumption implies that
∑n

i=1 βih(U
(i)
T ) has a density, for any n ≥ m.

This proves that, conditionally on {γT ≥ m}, the random variable YT (0) admits a
density.

To prove that Y(0) admits a density, we follow the same lines as in [3], proof of
Proposition A.2. Let A ⊂ R

d be a Borel set with Lebesgue measure 0, since YT (0)

and Y(0) − YT (0) are independent

P
(
Y(0) ∈ A

) = P
(
YT (0) + (

Y(0) − YT (0)
) ∈ A

) =
∫

Rd
P

(
YT (0) ∈ A − y

)
μT (dy)

with μT the law of Y(0) − YT (0). But for any y ∈ R
d ,

P
(
YT (0) ∈ A − y

) = P

( γT∑
i=1

βih
(
U

(i)
T

) ∈ A − y

)

=
+∞∑
n=0

P

( γT∑
i=1

βih
(
U

(i)
T

) ∈ A − y
∣∣∣γT = n

)
P(γT = n)

=
m−1∑
n=0

P

(
n∑

i=1

βih
(
U

(i)
T

) ∈ A − y

)
P(γT = n),
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since A − y has Lebesgue measure 0 and
∑n

i=1 βi(h(U
(i)
T )) has a density for any

n ≥ m. Hence, for any T > 0 large enough,

P
(
Y(0) ∈ A

) ≤ P(γT ≤ m − 1).

Letting T → +∞ we conclude that P(Y (0) ∈ A) = 0 such that Y(0) admits a den-
sity. �

Let us emphasize that YT (0) does not admit a density since P(YT (0) = 0) ≥
P(γT = 0) > 0. Let us also mention that Breton [6] gives a similar assumption for
real-valued shot noise series in his Proposition 2.1. In particular, his Corollary 2.1
can be adapted in our vector-valued setting.

COROLLARY 1. Let h : R 
→ R
d be an integrable function and β = 1 a.s. Let

us define hd : Rd 
→ R
d by hd(x) = h(x1)+· · ·+h(xd), for x = (x1, . . . , xd) ∈ R

d .
If the hd image measure of the d-dimensional Lebesgue measure is absolutely
continuous with respect to the d-dimensional Lebesgue measure then the random
vector Y(0), given by (16), admits a density.

PROOF. Let A ⊂ R
d a Borel set with Lebesgue measure 0 then the assump-

tions ensure that
∫
Rd 1hd(x)∈A dx = 0. Therefore, for any T > 0, using the notation

of Proposition 4,

P

(
d∑

i=1

h
(
U

(i)
T

) ∈ A

)
= 1

(2T )d

∫
[−T ,T ]d

1hd(x)∈A dx = 0.

Hence,
∑d

i=1 h(U
(i)
T ) admits a density and Proposition 4 gives the conclusion. �

EXAMPLE (Gaussian kernel). Let g(t) = 1√
2π

exp(−t2/2), β = 1 a.s. and X

given by (1). Let us consider h = (g, g′) and h2 : (x1, x2) ∈ R
2 
→ h(x1) + h(x2).

The Jacobian of h2 is

J (h2)(x1, x2) = 1

2π
(1 + x1x2)(x1 − x2) exp

(−(x2
1 + x2

2)/2
)
.

Hence, the h2 image measure of the 2-dimensional Lebesgue measure is absolutely
continuous with respect to the 2-dimensional Lebesgue measure. Then, for any
t ∈ R, the law of the random vector (X(t),X′(t)) is absolutely continuous with
respect to the Lebesgue measure. Note that, in particular, this implies the existence
of a density for X(t). However, this density is not bounded (and therefore not
continuous) in a neighborhood of 0 as proved in the following proposition.

PROPOSITION 5. Let us assume for sake of simplicity that β = 1 a.s. and let
g denote the kernel function of the shot noise process. Then:
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1. If g is such that there exist α > 1 and A > 0 such that ∀|s| > A, |g(s)| ≤
e−|s|α , then ∃ε0 > 0 such that ∀0 < ε < ε0,

P(|X(t)| ≤ ε) ≥ 1
2e−2λTε where Tε is defined by Tε = (− log ε)1/α.

2. If g is such that there exists A > 0 such that ∀|s| > A, |g(s)| ≤ e−|s| and if
λ < 1/4, then ∃ε0 > 0 such that ∀0 < ε < ε0,

P
(|X(t)| ≤ ε

) ≥
(

1 − λ

(1 − 2λ)2

)
e−2λTε where Tε is defined by Tε = − log ε.

This implies in both cases that P(|X(t)| ≤ ε)/ε goes to +∞ as ε goes to 0, and
thus the density of X(t) (if it exists) is not bounded in a neighborhood of 0.

PROOF. We start with the first case. Let ε > 0 and let Tε = (− log ε)1/α . As-

sume that ε is small enough to have Tε > A. We have by definition X(t)
d= X(0)

d=∑
i g(τi). If we denote XTε(0) = ∑

|τi |≤Tε
g(τi) and RTε(0) = ∑

|τi |>Tε
g(τi),

then XTε(0) and RTε(0) are independent and X(0) = XTε(0) + RTε(0). We
also have P(|X(0)| ≤ ε) ≥ P(|XTε(0)| = 0 and |RTε(0)| ≤ ε) = P(|XTε(0)| =
0) × P(|RTε(0)| ≤ ε). Now, on the one hand, we have P(|XTε(0)| = 0) ≥
P (there are no τi in [−Tε, Tε]) = e−2λTε . On the other hand, the first moments
of the random variable RTε(0) are given by E(RTε(0)) = λ

∫ +∞
|s|>Tε

g(s) ds and

Var(RTε(0)) = λ
∫ +∞
|s|>Tε

g2(s) ds. Now, we use the following inequality on the tail

of
∫

e−sα
:

∀T > 0 e−T α =
∫ +∞
T

αsα−1e−sα

ds ≥ αT α−1
∫ +∞
T

e−sα

ds.

Thus, we obtain bounds for the tail of
∫

g and of
∫

g2,∫ +∞
T

e−sα

ds ≤ e−T α

αT α−1 and
∫ +∞
T

(e−sα

)2 ds ≤ e−2T α

2αT α−1 .

Back to the moments of RTε(0), since Tε = (− log ε)1/α we have

|E(RTε(0))| ≤ 2λε

αT α−1
ε

and Var(RTε(0)) ≤ λε2

αT α−1
ε

.

We can take ε small enough in such a way that we can assume that |E(RTε(0))| < ε.
Then, using Chebyshev’s inequality, we have

P
(|RTε(0)| ≤ ε

) = P
(−ε − E(RTε(0)) ≤ RTε(0) − E(RTε(0)) ≤ ε − E(RTε(0))

)
≥ 1 − P

(|RTε(0) − E(RTε(0))| ≥ ε − |E(RTε(0))|)
≥ 1 − Var(RTε(0))

(ε − |E(RTε(0))|)2 ≥ 1 − λ

αT α−1
ε (1 − 2λ/αT α−1

ε )2

which is larger than 1/2 for Tε large enough (i.e., for ε small enough).
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For the second case, we can make exactly the same computations by setting
α = 1 and get P(|RTε(0)| ≤ ε) ≥ 1 − λ/(1 − 2λ)2, which is > 0 when λ < 1/4.

�

Such a feature is particularly bothersome when considering crossings of these
processes since most of known results are based on the existence of a bounded
density for each marginal of the process. However, this is again linked to the num-
ber of points of the Poisson process {τi} that are thrown in the interval of study. By
conditioning, the characteristic functions are proved to be integrable such that con-
ditional laws have continuous bounded densities. The main tool is Proposition 10
(postponed to the Appendix) established using the classical stationary phase esti-
mate for oscillatory integrals (see, e.g., [26]).

PROPOSITION 6. Let us assume for sake of simplicity that β = 1 a.s., let
T > 0, a < b and assume that g ∈ L1(R) is a function of class C 2 on [−T +
a,T + b] such that

m = min
s∈[−T +a,T +b]

√
g′(s)2 + g′′(s)2 > 0 and

(19)
n0 = #{s ∈ [−T + a,T + b] s.t. g′′(s) = 0} < +∞.

Then, conditionally on {γT ≥ k0} with k0 ≥ 3, for all t ∈ [a, b] and M ≥ T , the
law of XM(t) admits a continuous bounded density. Therefore, for any t ∈ R, the
law of X(t), conditionally on {γT ≥ k0}, admits a continuous bounded density.

PROOF. Actually, we will prove that conditionally on {γT ≥ k0}, the law of the
truncated process XT (t) = ∑

|τi |≤T g(t − τi) admits a continuous bounded density
for t ∈ [a, b]. The result will follow, using the fact that for M ≥ T , XM(t) =
XT (t) + (XM(t) − XT (t)), with XM(t) − XT (t) independent of XT (t). So let us
denote ψT

t,k0
the characteristic function of XT (t) conditionally on {γT ≥ k0}. Then,

for all u ∈ R, we get

ψT
t,k0

(u) = 1

P(γT ≥ k0)

∑
k≥k0

E
(
eiuXT (t)|γT = k

)
P(γT = k)

= 1

P(γT ≥ k0)

∑
k≥k0

(
1

2T

∫ T

−T
eiug(t−s) ds

)k

e−2λT (2λT )k

k! .

Therefore,

|ψT
t,k0

(u)| ≤ (2T )−k0

∣∣∣∣∫ T +t

−T +t
eiug(s) ds

∣∣∣∣k0

.(20)

Hence, using Proposition 10 on [−T + t, T + t] ⊂ [−T +a,T +b], one can find C

a positive constant that depends on T , k0, λ, m and n0 such that for any |u| > 1/m

|ψT
t,k0

(u)| ≤ C|u|−k0/2.
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Then, since k0 ≥ 3, ψT
t,k0

is integrable on R and thanks to Fourier inverse theorem
it is the characteristic function of a bounded continuous density. �

Using similar ideas we obtain the following result concerning the continuity of
the mean number of crossings function.

THEOREM 2. Assume for sake of simplicity that β = 1 a.s. and that g is a
function of class C 4 on R satisfying (A). Let T > 0, a ≤ b and assume that for

all s ∈ [−T + a,T + b], the matrice �(s) = ( g′(s)
g′′(s)

g′′(s)
g(3)(s)

)
and its component-

wise derivative �′(s) = ( g′′(s)
g(3)(s)

g(3)(s)

g(4)(s)

)
are invertible. Then, conditionally on

{γT ≥ k0} with k0 ≥ 8, for all M ≥ T , the mean number of crossings function
α 
→ E(NXM

(α, [a, b])|γT ≥ k0) is continuous on R. Moreover,

E
(
NXM

(α, [a, b])|γT ≥ k0
) −→
M→+∞E

(
NX(α, [a, b])|γT ≥ k0

)
uniformly on α ∈ R.

PROOF. The result follows from Rice’s formula. To establish it we use [18],
Theorem 2, and thus we have to check assumptions (i) to (iii) related to joint den-
sities. Let t ∈ [a, b] and M ≥ T . We write XM(t) = XT (t) + (XM(t) − XT (t))

with XM − XT independent of XT . We adopt the convention that X∞ = X. Let us
write for M ∈ [T ,+∞] and ε small enough

ψM
t,ε,k0

= ψT
t,ε,k0

ψ
T,M
t,ε

with ψM
t,ε,k0

the characteristic function of (XM(t), (XM(t + ε) − XM(t))/ε), con-

ditionally on {γT ≥ k0}. Note that, XM −XT is independent of γT such that ψ
T,M
t,ε

is just the characteristic function of (XM(t)−XT (t), ((XM −XT )(t +ε)− (XM −
XT )(t))/ε). First we prove that there exists C > 0 such that, for all 0 ≤ j ≤ 3, for
all M ≥ T and ε > 0 small enough,∣∣∣∣ ∂j

∂vj
ψM

t,ε,k0
(u, v)

∣∣∣∣ ≤ C
(
1 +

√
u2 + v2

)−(k0−3)/2
.(21)

Let us remark that, since g′, g′′ ∈ L1(R) by (A), one has g,g′ ∈ L∞(R). It im-
plies, in particular, that g,g′ ∈ L1(R) ∩ L2(R) ∩ L3(R) such that the above partial
derivatives exist. Moreover, by Leibniz formula, for 0 ≤ j ≤ 3, one has

∂j

∂vj
ψM

t,ε,k0
(u, v) =

j∑
l=0

(
j

l

)
∂l

∂vl
ψT

t,ε,k0
(u, v)

∂j−l

∂vj−l
ψ

T,M
t,ε (u, v).(22)

On the one hand,∣∣∣∣ ∂j−l

∂vj−l
ψ

T,M
t,ε (u, v)

∣∣∣∣ ≤ E

(∣∣∣∣(XM − XT )(t + ε) − (XM − XT )(t)

ε

∣∣∣∣j−l)
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with ∣∣∣∣(XM − XT )(t + ε) − (XM − XT )(t)

ε

∣∣∣∣ ≤ ∑
T <|τi |≤M

|gε(t − τi)|,

where gε(s) = 1
ε

∫ ε
0 g′(s + x)dx is such that gε ∈ L∞(R) ∩ L1(R) with ‖gε‖∞ ≤

‖g′‖∞ and ‖gε‖1 ≤ ‖g′‖1. Then, using the moment formula established in [5], one
can find c > 0 such that for all 0 ≤ j ≤ 3, with (j − 1)+ = max(0, j − 1),∣∣∣∣ ∂j

∂vj
ψ

T,M
t,ε (u, v)

∣∣∣∣ ≤ E

(( ∑
T <|τi |≤M

|gε(t − τi)|
)j)

(23)
≤ c max(1,‖g′‖∞)(j−1)+ max(1, λ‖g′‖1)

j .

On the other hand,

P(γT ≥ k0)ψ
T
t,ε,k0

(u, v) = ∑
k≥k0

E
(
eiuXT (t)+iv(XT (t+ε)−XT (t))/ε|γT = k

)
P(γT = k)

= ∑
k≥k0

χT
t,ε(u, v)kP(γT = k),

where

χT
t,ε(u, v) = (2T )−1

∫ T +t

−T +t
eiug(s)+ivgε(s) ds

is the characteristic function of (g(t − UT ), gε(t − UT )), with UT a uniform ran-
dom variable on [−T ,T ]. It follows that |χT

t,ε(u, v)| ≤ 1, so that one can find c > 0
such that for all 0 ≤ j ≤ 3,∣∣∣∣ ∂j

∂vj
ψT

t,ε,k0
(u, v)

∣∣∣∣ ≤ c max(1,‖g′‖∞)(j−1)+ max(1, λ‖g′‖1)
j

× P(γT ≥ k0 − j)

P(γT ≥ k0)
|χT

t,ε(u, v)|k0−j .

This, together with (23) and (22), implies that one can find c > 0 such that for all
0 ≤ j ≤ 3,∣∣∣∣ ∂j

∂vj
ψt,ε,k0(u, v)

∣∣∣∣ ≤ c max(1,‖g′‖∞)(j−1)+ max(1, λ‖g′‖1)
j

(24)

× P(γT ≥ k0 − j)

P(γT ≥ k0)
|χT

t,ε(u, v)|k0−j .

Moreover, let �ε(s) = ( g′(s)
g′′(s)

g′
ε(s)

g′′
ε (s)

)
and �′

ε(s) = ( g′′(s)
g(3)(s)

g′′
ε (s)

g
(3)
ε (s)

)
. Then det�ε(s)

converges to det�(s) as ε → 0, uniformly in s ∈ [−T − a,T + b]. The assump-
tion on � ensures that one can find ε0 such that for ε ≤ ε0, the matrix �ε(s) is
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invertible for all s ∈ [−T − a,T + b]. The same holds true for �′
ε(s). Denote

m = mins∈[−T −a,T +b],ε≤ε0 ‖�ε(s)
−1‖−1 > 0, where ‖ · ‖ is the matricial norm in-

duced by the Euclidean one. According to Proposition 10 with n0 = 0,

∀(u, v) ∈ R
2 s.t.

√
u2 + v2 >

1

m
,

|χT
t,ε(u, v)| = (2T )−1

∣∣∣∣∫ T +t

−T +t
eiug(s)+ivgε(s) ds

∣∣∣∣ ≤ 24
√

2√
m

√
u2 + v2

.

Therefore, one can find a constant ck0 > 0 such that, for all 0 ≤ j ≤ 3,

| ∂j

∂vj ψT
t,ε,k0

(u, v)| is less than

ck0(2T )−k0+3 max(1,‖g′‖∞)(j−1)+ max(1, λ‖g′‖1)
j

× P(γT ≥ k0 − j)

P(γT ≥ k0)

(
1 +

√
u2 + v2

)−(k0−3)/2
.

Letting ε tend to 0 we obtain the same bounds as (21) for ψM
t,k0

the charac-
teristic function of (XM(t),X′

M(t)) conditionally on {γT ≥ k0}. Since k0 ≥ 8,
(21) for j = 0 ensures that ψM

t,ε,k0
∈ L1(R2), respectively, ψM

t,k0
∈ L1(R2), such

that, conditionally on {γT ≥ k0}, (XM(t), (XM(t + ε) − XM(t))/ε), respectively,
(XM(t),X′

M(t)), admits pM
t,ε,k0

(x, z) = 1
4π2

∫
R2 e−ixu−izvψM

t,ε,k0
(u, v) dudv, re-

spectively, pM
t,k0

= 1
4π2

∫
R2 e−ixu−izvψM

t,k0
(u, v) dudv, as density. Moreover:

(i) pM
t,ε,k0

(x, z) is continuous in (t, x) for each z, ε, according to Lebesgue’s
dominated convergence theorem using the fact that XM is almost surely continuous
on R.

(ii) Since XM is almost surely continuously differentiable on R we clearly
have for any (u, v) ∈ R

2, ψM
t,ε,k0

(u, v) → ψM
t,k0

(u, v) as ε → 0. Then by Lebesgue’s
dominated convergence theorem, using (21) for j = 0 we check that
pM

t,ε,k0
(x, z) → pM

t,k0
(x, z) as ε → 0, uniformly in (t, x) for each z ∈ R.

(iii) For any z 
= 0, integrating by parts we get

pM
t,ε,k0

(x, z) = i

4π2z3

∫
R2

e−ixu−izv ∂3

∂v3 ψM
t,ε,k0

(u, v) dudv,

such that by (21) for j = 3, we check that pM
t,ε,k0

(x, z) ≤ Ch(z) for all t, ε, x with

h(z) = (1 + |z|3)−1 satisfying
∫
R

|z|h(z) dz < +∞ and C a positive constant.
Therefore, [18], Theorem 2, implies that

E
(
NXM

(α, [a, b])|γT ≥ k0
) =

∫ b

a

∫
R

|z|pM
t,k0

(α, z) dz dt,

which concludes the proof, using pM
t,k0

(α, z) = i
4π2z3

∫
R2 e−iαu−izv ∂3

∂v3 ×
ψM

t,k0
(u, v) dudv and (21) for j = 3. �
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Note that, despite that we have closed forms, these crossings formulas are not
very tractable for general shot noise processes. However, as the intensity λ of the
shot noise process X tends to infinity, due to its infinitely divisible property and
since it is of second order, we obtain, after renormalization, a Gaussian process at
the limit. It is then natural to hope for the same kind of asymptotics for the mean
number of crossings function. This behavior is studied in detail in the next section.

4. High intensity and Gaussian field.

4.1. General feature. It is well known that, as the intensity λ of the Poisson
process goes to infinity, the shot noise process converges to a normal process. Pre-
cise bounds on the distance between the law of X(t) and the normal distribution are
given by Papoulis [22]. Moreover, Heinrich and Schmidt [15] give conditions of
normal convergence for a wide class of shot noise processes (not restricted to pro-
cesses defined on R, nor to Poisson processes). In this section we obtain a stronger
result for smooth stationary shot noise processes by considering convergence in
law in the space of continuous functions. In all of this section we continue to as-
sume that X is a stationary shot noise process obtained for ν the Lebesgue measure
on R, and we will denote Xλ the strictly stationary shot noise process given by (1)
with intensity λ > 0. Let us define the normalized shot noise process

Zλ(t) = 1√
λ

(
Xλ(t) − E(Xλ(t))

)
, t ∈ R.(25)

Then, we obtain the following result.

PROPOSITION 7. Let β ∈ L2(
) and g satisfying (A). Then,

Yλ =
(

Zλ

Z′
λ

)
f.d.d.−→

λ→+∞

√
E(β2)

(
B

B ′
)

,

where B is a stationary centered Gaussian process almost surely and mean square
continuously differentiable, with covariance function

Cov(B(t),B(t ′)) =
∫

R

g(t − s)g(t ′ − s) ds.

When, moreover, g′′ ∈ Lp(R) for p > 1, the convergence holds in distribution on
the space of continuous functions on compact sets endowed with the topology of
the uniform convergence.

PROOF. We begin with the proof of the finite dimensional distributions con-
vergence. Let k be an integer with k ≥ 1 and let t1, . . . , tk ∈ R and w1 =
(u1, v1), . . . ,wk = (uk, vk) ∈ R

2.
Let us write

k∑
j=1

Yλ(tj ) · wj = 1√
λ

(∑
i

βi g̃(τi) − E

(∑
i

βi g̃(τi)

))
,
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for g̃(s) = ∑k
j=1(ujg(tj − s) + vjg

′(tj − s)). Therefore

log E
(
e
i
∑k

j=1 Yλ(tj )·wj
) = λ

∫
R×R

(
eiz(g̃(s)/

√
λ) − 1 − iz

g̃(s)√
λ

)
dsF (dz).

Note that as λ → +∞,

λ

(
eiz(g̃(s)/

√
λ) − 1 − iz

g̃(s)√
λ

)
→ −1

2
z2g̃(s)2,

with, for all λ > 0,∣∣∣∣λ exp
(
iz

(
g̃(s)√

λ

)
− 1 − iz

g̃(s)√
λ

)∣∣∣∣ ≤ 1

2
z2g̃(s)2.

By the dominated convergence theorem, since g̃ ∈ L2(R) and β ∈ L2(
), we get
that, as λ → +∞,

E

(
exp

(
i

k∑
j=1

Yλ(tj ) · wj

))
→ exp

(
−1

2
E(β2)

∫
R

g̃(s)2 ds

)
.

Let us identify the limiting process. Let us recall that Xλ is a second order pro-
cess with covariance function given by Cov(Xλ(t),Xλ(t

′)) = λE(β2)S(t − t ′)
with S(t) = ∫

R
g(t − s)g(−s) ds. Hence, one can define B to be a stationary

Gaussian centered process with (t, t ′) 
→ S(t − t ′) as covariance function. The
assumptions on g ensure that the function S is twice differentiable. Therefore B

is mean square differentiable with B ′ a stationary Gaussian centered process with
(t, t ′) 
→ −S′′(t − t ′) = ∫

R
g′(t − t ′ − s)g′(−s) ds as covariance function. More-

over,

E
((

B ′(t) − B ′(t ′)
)2) = 2

(
S′′(0) − S′′(t − t ′)

) ≤ 2‖g′‖∞‖g′′‖1|t − t ′|,
such that by [1], Theorem 3.4.1., the process B ′ is almost surely continuous on R.
Therefore, as in [11], page 536, one can check that almost surely B(t) = B(0) +∫ t

0 B ′(s) ds, such that B is almost surely continuously differentiable. We conclude
for the f.d.d. convergence by noticing that∫

R

g̃(s)2 ds = Var

(
k∑

j=1

ujB(tj ) + vjB
′(tj )

)
.

Let us prove the convergence in distribution on the space of continuous functions
on compact sets endowed with the topology of the uniform convergence. It is
enough to prove the tightness of the sequence (Yλ)λ according to [17], Lemma 14.2
and Theorem 14.3. Let t, s ∈ R and remark that for any q ≥ 1, on the one hand,

E
((

Zλ(t) − Zλ(t
′)

)2) = E(β2)

∫
R

(
g(t − s) − g(t ′ − s)

)2
ds

≤ E(β2)‖g′‖q‖g′‖1|t − t ′|2−1/q .
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On the other hand,

E
((

Z′
λ(t) − Z′

λ(t
′)

)2) = E(β2)

∫
R

(
g′(t − s) − g′(t ′ − s)

)2
ds

≤ E(β2)‖g′′‖q‖g′′‖1|t − t ′|2−1/q .

Note that, assuming that g′′ ∈ Lp(R), it allows us to choose q = p > 1 in the
second upper bound such that 2 − 1/q > 1. Moreover, assumption (A) implies
that g′ ∈ L∞(R) ∩ L1(R) ⊂ Lp(R) such that one can also choose q = p in the
first upper bound. Then, (Yλ)λ satisfies a Kolmogorov–Chentsov criterion which
implies its tightness according to [17], Corollary 14.9. �

In particular, when a < b, the functional (f, g) 
→ ∫ b
a h(f (t))|g(t)|dt is clearly

continuous and bounded on C([a, b],R)× C([a, b],R) for any continuous bounded
function h on R. Then, Proposition 7 implies that∫ b

a
E(h(Zλ(t))|Z′

λ(t)|) dt −→
λ→+∞

∫ b

a
E(h(B(t))|B ′(t)|) dt.

By the co-area formula (4), this means the weak convergence of the mean number
of crossings function, that is,

CZλ(·, [a, b]) ⇀λ→+∞ CB(·, [a, b]).
This implies also the pointwise convergence of Fourier transforms. Such a result
can be compared to the classical central limit theorem. Numerous improved results
can be obtained under stronger assumptions than the classical ones. This is the
case, for instance, for the rate of convergence derived by the Berry–Esseen theorem
or the convergence of the densities. We refer to [13], Chapters 15 and 16. Adapting
the technical proofs allows us to get similar results for crossings in the next section.

4.2. High intensity: rate of convergence for the mean number of crossings
function. Let us remark that only E(β2) appears in the limit field. For sake of
simplicity we may assume that β = 1 a.s. Note that, according to Rice’s for-
mula [9], as recalled in equation (7), since the limit Gaussian field is stationary,
CB(α, [a, b]) = (b − a)CB(α, [0,1]) with

CB(α, [0,1]) = 1

π

(
m2

m0

)1/2

e−α2/2m0 ∀α ∈ R,

where m0 = Var(B(t)) = ∫
R

g(s)2 ds and m2 = Var(B ′(t)) = ∫
R

g′(s)2 ds. More-

over, its Fourier transform is given by ĈB(u, [0,1]) =
√

2m2
π

e−m0u
2/2. We obtain

the following rate of convergence, for which the proof is postponed to the Ap-
pendix.
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PROPOSITION 8. Let β = 1 a.s. and let g satisfy (A). There exist three con-
stants a1, a2 and a3 (depending only on g and its derivative) such that

∀λ > 0, ∀u ∈ R such that |u| < a1
√

λ then∣∣∣∣ĈZλ(u, [0,1]) −
√

2m2

π
e−m0u

2/2
∣∣∣∣ ≤ a2 + a3|u|√

λ
,

where m0 = ∫
R

g(s)2 ds and m2 = ∫
R

g′(s)2 ds.

Let us emphasize that this implies the uniform convergence of the Fourier trans-
form of the mean number of crossings functions on any fixed interval. Moreover,
taking u = 0, the previous upper bound may be a bit refined such that the following
corollary is in force.

COROLLARY 2. Let β = 1 a.s. and let g satisfy (A). The mean total variation
of the process satisfies

∀λ > 0
∣∣∣∣E(|X′

λ(t)|)√
λ

−
√

2m2

π

∣∣∣∣ ≤ 14m3

3πm2
√

λ
,

where m2 = ∫
R

g′(s)2 ds and m3 = ∫
R

|g′(s)|3 ds.

Under additional assumptions we obtain the following uniform convergence for
the mean number of crossings function. The proof is inspired by [13], Theorem 2,
page 516, concerning the central limit theorem for densities.

THEOREM 3. Let β = 1 a.s. Let us assume, moreover, that g is a function of

class C 4 on R satisfying (A) such that for all s ∈ [−1,2], �(s) = ( g′(s)
g′′(s)

g′′(s)
g(3)(s)

)
and �′(s) = ( g′′(s)

g(3)(s)

g(3)(s)

g(4)(s)

)
are invertible.

Let γλ = #{i; τλ,i ∈ [−1,1]} with {τλ,i}i the points of a Poisson point process
with intensity λ > 0.

Then

CZλ(α, [0,1]|γλ ≥ λ) −→
λ→+∞CB(α, [0,1]) = 1

π

(
m2

m0

)1/2

e−α2/2m0

uniformly in α ∈ R,

where m0 = ∫
R

g(s)2 ds and m2 = ∫
R

g′(s)2 ds.

PROOF. Let λ ≥ 8. Then, according to Theorem 1, ĈZλ(u, [0,1]|γλ ≥ λ) and
ĈB(u, [0,1]) are integrable such that CZλ(α, [0,1]|γλ ≥ λ) and CB(α, [0,1]) are
bounded continuous functions with, for any α ∈ R,

|CZλ(α, [0,1]|γλ ≥ λ) − CB(α, [0,1])|
≤ 1

2π

∫
R

|ĈZλ(u, [0,1]|γλ ≥ λ) − ĈB(u, [0,1])|du.
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Let u ∈ R, then

ĈZλ(u, [0,1]) − ĈZλ(u, [0,1]|γλ ≥ λ)

= 1

P(γλ ≥ λ)
E

(
eiuZλ(0)|Z′

λ(0)|1γλ<λ

) − P(γλ < λ)

P(γλ ≥ λ)
ĈZλ(u, [0,1]).

Note that |ĈZλ(u, [0,1])| ≤ E(|Z′
λ(0)|), which is bounded according to Corol-

lary 2, while by the Cauchy–Schwarz inequality,∣∣E(
eiuZλ(0)|Z′

λ(0)|1γλ<λ

)∣∣ ≤ E(Z′
λ(0)2)1/2

P(γλ < λ)1/2,

with E(Z′
λ(0)2) = Var(Z′

λ(0)) ≤ max(1,‖g′‖∞)‖g′‖1. Therefore, one can find
c1 > 0 such that

|ĈZλ(u, [0,1]) − ĈZλ(u, [0,1]|γλ ≥ λ)| ≤ c1
P(γλ < λ)1/2

P(γλ ≥ λ)
.

According to Markov’s inequality,

P(γλ < λ) = P
(
e− ln(2)γλ > e− ln(2)λ) ≤ E

(
e− ln(2)(γλ−λ)) = exp

(−(
1 − ln(2)

)
λ
)
.

Choosing λ large enough such that, in particular, P(γλ<λ)1/2

P(γλ≥λ)
≤ 1√

λ
, according to

Proposition 8 one can find c2 such that for all |u| < λ1/8,

|ĈZλ(u, [0,1]|γλ) − ĈB(u, [0,1])| ≤ c2λ
−3/8.

Thus we may conclude that∫
|u|<λ1/8

|ĈZλ(u, [0,1]|γλ ≥ λ) − ĈB(u, [0,1])|du −→
λ→+∞ 0.

Now, let us be concerned with the remaining integral for |u| ≥ λ1/8. According to
Theorem 1,

ĈZλ(u, [0,1]|γλ ≥ λ) = e−iu
√

λ
∫
R

g

√
λ

ĈXλ

(
u√
λ
, [0,1]|γλ ≥ λ

)
,

with ĈXλ(
u√
λ
, [0,1]|γλ ≥ λ) = ∫ 1

0 E(ei(u/
√

λ)Xλ(t)|X′
λ(t)||γλ ≥ λ)dt and

E
(
ei(u/

√
λ)Xλ(t)|X′

λ(t)||γλ ≥ λ
)

= − 1

π

∫ +∞
0

1

v

(
∂ψt,λ

∂v

(
u√
λ
,

v√
λ

)
− ∂ψt,λ

∂v

(
u√
λ
,− v√

λ

))
dv,

where ψt,λ is the characteristic function of (Xλ(t),X
′
λ(t)) conditionally on {γλ ≥

λ}. Integrating by parts we obtain∫ 1

0

1

v

(
∂ψt,λ

∂v

(
u√
λ
,

v√
λ

)
− ∂ψt,λ

∂v

(
u√
λ
,− v√

λ

))
dv

= − 1√
λ

∫ 1

0
ln(v)

(
∂2ψt,λ

∂v2

(
u√
λ
,

v√
λ

)
− ∂2ψt,λ

∂v2

(
u√
λ
,− v√

λ

))
dv.
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Then, according to (24), one can find a positive constant c3 > 0 such that∣∣E(
ei(u/

√
λ)Xλ(t)|X′

λ(t)||γλ ≥ λ
)∣∣

≤ c3λ
2 P(γλ ≥ λ − 2)

P(γλ ≥ λ)

×
∫

R

∣∣∣∣χt

(
u√
λ
,

v√
λ

)∣∣∣∣λ−2(
1√
λ
| ln(|v|)|10≤|v|≤1 + |v|−11|v|≥1

)
dv,

where χt(u, v) = 1
2

∫ 1+t
−1+t e

iug(s)+ivg′(s) ds is the characteristic function of (g(t −
U),g′(t − U)), with U a uniform random variable on [−1,1]. Then,∫

|u|≥λ1/8
|ĈZλ(u, [0,1]|γλ ≥ λ) − ĈB(u, [0,1])|du

≤
∫
|u|≥λ1/8

|ĈZλ(u, [0,1]|γλ ≥ λ)|du +
∫
|u|≥λ1/8

|ĈB(u, [0,1])|du

= I1(λ) + I2(λ).

Now, for θ ∈ [0,2π ], let us consider the random variable Vt,θ = cos(θ)g(t −
U)+ sin(θ)g′(t −U) such that for any r > 0, χt(r cos(θ), r sin(θ)) = E(eirVt,θ ) :=
ϕt,θ (r). By a change of variables in polar coordinates, since λ > 1, we get

I1(λ) ≤ c4(λ)

∫ +∞
λ1/8

∫ 2π

0

∣∣∣∣ϕt,θ

(
r√
λ

)∣∣∣∣λ−2

r
(| ln(r| sin(θ)|)| + 1

)
dθ dr,

with c4(λ) = c3λ
3/2 P(γλ≥λ−2)

P(γλ≥λ)
. Since det�(s) 
= 0 for any s ∈ [−1 + t,1 + t], we

have the following property (see [13], page 516): there exists δ > 0 such that

|ϕt,θ (r)| ≤ e−(κ(t)/4)r2 ∀r ∈ (0, δ], ∀θ ∈ [0,2π ] and

η = sup
r>δ,θ∈[0,2π ]

|ϕt,θ (r)| < 1,

with κ(t) = minθ∈[0,2π ] Var(Vt,θ ) > 0. Note also that according to Proposition 10,

|ϕt,θ (r)| ≤ 24
√

2
m

r−1/2 for any r > m with m = mins∈[−1,2] ‖�(s)−1‖−1, which

may be assumed to be larger than δ. Then, for λ large enough such that λ1/8 ∈
(e, δ

√
λ),

I1(λ) ≤ c5(λ)

(∫ δ
√

λ

λ1/8
e−(κ(t)/8)λ1/4

r ln(r) dr +
∫ m

√
λ

δ
√

λ
ηλ−2r ln(r) dr

+
(

24

√
2

m

)5 ∫ +∞
m

√
λ

ηλ−7r−3/2 ln(r) dr

)

with c5(λ) = c4(λ)(
∫ 2π

0 (2 + | ln(| sin(θ)|)|) dθ). This enables us to conclude that
I1(λ) −→λ→+∞ 0. This concludes the proof since clearly I2(λ) −→λ→+∞ 0. �
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Notice that to obtain the convergence in Theorem 3 without the conditioning
on {γλ ≥ λ} (which is an event of probability going to 1 exponentially fast as λ

goes to infinity), one simply needs to have an upper-bound polynomial in λ on the
second moment of the number of crossings NZλ(α, [0,1]).

5. The Gaussian kernel. In this section we will be interested in a real appli-
cation of shot noise processes in physics. Indeed, each time a physical model is
given by sources that produce each a potential in such a way that the global poten-
tial at a point is the sum of all the individual potentials, then this can be modeled
as a shot noise process. In particular, we will be interested here in the temperature
produced by sources of heat. Assuming that the sources are randomly placed as a
Poisson point process of intensity λ on the real line R, then the temperature after
a time σ 2 on the line is given by the following shot noise process Xλ,σ :

t ∈ R 
→ Xλ,σ (t) = ∑
i

1

σ
√

2π
e−(t−τi)

2/2σ 2
,

where the {τi} are the points of a Poisson process of intensity λ > 0 on R. In the
following, we will denote by gσ the Gaussian kernel of width σ defined for all
t ∈ R by

gσ (t) = 1

σ
√

2π
e−t2/2σ 2

.

We will be interested in the crossings of Xλ,σ because they provide information
on the way the temperature is distributed on the line. The number of local extrema
of Xλ,σ is also interesting for practical applications since it measures the way
the temperature fluctuates on the line. In a first part, we will be interested in the
crossings of Xλ,σ when λ and σ are fixed, and then, in a second part, we will
study how the number of crossings evolves when these two parameters change.
From the point of view of applications, this amounts to describing the fluctuations
of the temperature on the line when the time (recall that σ 2 represents the time)
increases, or when the number of sources changes.

5.1. Crossings and local extrema of Xλ,σ . We assume in this subsection that
λ > 0 and σ > 0 are fixed. Since the Gaussian kernel gσ , and its derivatives are
smooth functions which belong to all Lp spaces, many results of the previous
sections about crossings can be applied here. In particular, we have:

• the function α 
→ CXλ,σ (α, [a, b]) belongs to L1(R) (by Theorem 1);
• for any T > 0, the function α 
→ CXλ,σ (α, [a, b]|γT ≥ 8) is continuous (by The-

orem 2), with γT = #{τi ∈ [−T ,T ]}.
This second point comes from the fact that the Gaussian kernel satisfies the hy-
pothesis of Theorem 2. Indeed, the derivatives of gσ are given by g

(k)
σ (s) =
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1
σ
√

2π
e−s2/2σ 2 · (−1)k

σ k Hk(
s
σ
), where the Hk’s are the Hermite polynomials (H1(x) =

x ; H2(x) = x2 − 1; H3(x) = x3 − 3x and H4(x) = x4 − 6x2 + 3). Thus, using the
notation of Theorem 2, we get det�(s) = −1

σ 4 ( s2

σ 2 + 1)( 1
σ
√

2π
e−s2/2σ 2

)2 < 0 and

det�′(s) = −1
σ 6 ( s4

σ 4 + 3)( 1
σ
√

2π
e−s2/2σ 2

)2 < 0. These two matrices are thus invert-
ible for all s ∈ R.

The first point implies that for almost every α ∈ R, the expected number of
crossings of the level α by Xλ,σ is finite. We will now prove in the following
proposition that in fact, for every α ∈ R, CXλ,σ (α, [a, b]) < +∞, by considering
the zero-crossings of the derivative X′

λ,σ and using Rolle’s theorem.
In the sequel, we will denote by ρ(λ,σ ) the mean number of local extrema of

Xλ,σ in the interval [0,1]. It is the mean number of local extrema per unit length.

PROPOSITION 9. We have

P
(∃t ∈ [0,1] such that X′

λ,σ (t) = 0 and X′′
λ,σ (t) = 0

) = 0,

which implies that the local extrema of Xλ,σ are exactly the points where the
derivative vanishes; in other words ρ(λ,σ ) = E(NX′

λ,σ
(0, [0,1])). Moreover, we

have the following bounds:

∀α ∈ R CXλ,σ (α, [0,1]) ≤ ρ(λ,σ ) ≤ (
3λ(2 + 2σ) + 1

)
eλ.

PROOF. For the first part of the proposition, we use Proposition 10
(in the Appendix) with the kernel function h = g′

σ on the interval [−T + 1, T ] for

T > 0. For this function we can compute h′(s) = 1
σ 3

√
2π

(−1 + s2

σ 2 )e−s2/2σ 2
and

h′′(s) = 1
σ 4

√
2π

(3 s
σ

− s3

σ 3 )e−s2/2σ 2
, and thus n0 = 3 and m(σ,T ) =

mins∈[−T ,T +1]
√

h′(s)2 + h′′(s)2 > 0 (we do not need to have an exact value for it

but notice that it is of the order of e−T 2/2σ 2
when T is large). Finally, as in (20),

we get that there is a constant c(T ,σ ) which depends continuously on σ and T

such that ∣∣E(
eiuX′

λ,σ (t)|γT ≥ 3
)∣∣ ≤ c(T ,σ )3

(1 + √|u|)3
,

with γT = #{τi ∈ [−T ,T ]}. We can now use Proposition 1 and we get that for all
T > 1,

P
(∃t ∈ [0,1] such that X′

λ,σ (t) = 0 and X′′
λ,σ (t) = 0|γT ≥ 3

) = 0.

Since the events {γT ≥ 3} are an increasing sequence of events such that P(γT ≥ 3)

goes to 1 as T goes to infinity, we obtain that P(∃t ∈ [0,1] such that X′
λ,σ (t) =

0 and X′′
λ,σ (t) = 0) = 0.

For the second part of the proposition, the left-hand inequality is simply a con-
sequence of Proposition 2 for the process X′

λ,σ and n = 1.
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To obtain the right-hand inequality [the bound on ρ(λ,σ )], we will apply Propo-
sition 2 to the process X′

λ,σ for the crossings of the level 0 on the interval [0,1].
We already know by the first part of the proposition and by Corollary 1 that con-
dition (8) for Kac’s formula is satisfied by X′

λ,σ . Then we write, for all t ∈ [0,1],

X′
λ,σ (t) = ∑

τi∈R

g′
σ (t − τi) = 1

σ
√

2π

∑
τi∈[−σ,1+σ ]

−(t − τi)

σ 2 e−(t−τi)
2/2σ 2

+ 1

σ
√

2π

∑
τi∈R\[−σ,1+σ ]

−(t − τi)

σ 2 e−(t−τi )
2/2σ 2

.

Let Y1(t) [resp., Y2(t)] denote the first (resp., second) term. We then have

Y ′
2(t) = 1

σ
√

2π

∑
τi∈R\[−σ,1+σ ]

(
(t − τi)

2

σ 4 − 1

σ 2

)
e−(t−τi )

2/2σ 2
.

Since (t − τi)
2 > σ 2 for all t ∈ [0,1] and all τi ∈ R\ [−σ,1+σ ], we get Y ′

2(t) > 0
on [0,1] and thus NY ′

2
(0, [0,1]) = 0 a.s. Note that when the event #{τi ∈ [−σ,1 +

σ ]} = 0 holds, then X′
λ,σ = Y2 such that NX′

λ,σ
(0, [0,1]) ≤ 1. On the other hand,

let us work conditionally on #{τi ∈ [−σ,1 + σ ]} ≥ 1. The probability of this event
is 1 − e−λ(1+2σ). To study the zero-crossings of Y ′

1, we first need an elementary
lemma.

LEMMA 1. Let n ≥ 1 be an integer. Let P1, . . . ,Pn be n real nonzero polyno-
mials and let a1, . . . , an be n real numbers, then

#

{
t ∈ R such that

n∑
i=1

Pi(t)e
ai t = 0

}
≤

n∑
i=1

deg(Pi) + n − 1.

This elementary result can be proved by induction on n. For n = 1, it
is obviously true. Assume the result holds for n ≥ 1, then we prove it for
n + 1 in the following way. For t ∈ R,

∑n+1
i=1 Pi(t)e

ai t = 0 ⇐⇒ f (t) :=
Pn+1(t) + ∑n

i=1 Pi(t)e
(ai−an+1)t = 0. Let k denote the degree of Pn+1. Thanks

to Rolle’s theorem, we have that Nf (0,R) ≤ Nf ′(0,R) + 1 ≤ Nf ′′(0,R) +
2 ≤ · · · ≤ Nf (k+1) (0,R) + k + 1. But f (k+1) can be written as f (k+1)(t) =∑n

i=1 Qi(t)e
(ai−an+1)t , where the Qi are polynomials of degree deg(Qi) ≤

deg(Pi). Thus by induction Nf (k+1) (0,R) ≤ ∑n
i=1 deg(Pi) + n − 1, and then

Nf (0,R) ≤ ∑n
i=1 deg(Pi) + n − 1 + k + 1 ≤ ∑n+1

i=1 deg(Pi) + n. This proves the
result for n + 1.

Thanks to this lemma, we get that NY ′
1
(0, [0,1]) ≤ 3#{τi ∈ [−σ,1 + σ ]} − 1

such that

E
(
NY ′

1
(0, [0,1])|#{τi ∈ [−σ,1 + σ ]} ≥ 1

) ≤ 3λ(1 + 2σ)/
(
1 − e−λ(1+2σ)) − 1.
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To use Proposition 2, we need to obtain uniform bounds on the laws of Y1(t) and
of Y2(t) when t ∈ [0,1]. As in the notation of the proposition, we will denote these
constants by c1 and c2. Let us start with Y1. Let U be a random variable following
the uniform distribution on [−1 − σ,1 + σ ]. For t ∈ [0,1], we can write U as
U = ηtUt + (1 − ηt )Vt , where Ut is uniform on [−1 −σ + t, σ + t], Vt is uniform
on [−1−σ,−1−σ + t]∪[σ + t, σ +1] and ηt is an independent Bernoulli random
variable with parameter 1+2σ

2+2σ
. We then have g′

σ (U) = ηtg
′
σ (Ut ) + (1 − ηt )g

′
σ (Vt ).

Thus the law of g′
σ (U) is the mixture of the law of g′

σ (Ut ) and of the one of g′
σ (Vt ),

with respective weights 1+2σ
2+2σ

and 1 − 1+2σ
2+2σ

. Consequently

∀t ∈ [0,1], ∀x ∈ R dPg′
σ (Ut )(x) ≤ 2 + 2σ

1 + 2σ
dPg′

σ (U)(x).

The law of Y1(t) conditionally on #{τi ∈ [−σ,1 + σ ]} ≥ 1 can be written as

dPY1(t)(x)

= 1

1 − e−λ(1+2σ)

+∞∑
k=1

e−λ(1+2σ) (λ(1 + 2σ))k

k!
(
dPg′

σ (Ut ) ∗ · · · ∗ dPg′
σ (Ut )

)
(x).

Thus, if we write f0 = dPg′
σ (U), we get

dPY1(t)(x)

≤ 1

1 − e−λ(1+2σ)

+∞∑
k=1

e−λ(1+2σ) (λ(1 + 2σ))k

k!
(

2 + 2σ

1 + 2σ

)k

(f0 ∗ · · · ∗ f0)(x)

= eλ 1 − e−λ(2+2σ)

1 − e−λ(1+2σ)
f̃0(x),

where f̃0(x) dx is a probability measure on R. This shows that we can take c1 =
eλ 1−e−λ(2+2σ)

1−e−λ(1+2σ) .
For Y2(t), we first notice that Y2(t) can be decomposed as the sum of two inde-

pendent random variables in the following way:

Y2(t) = ∑
τi∈(−∞,−1−σ+t]∪[1+σ+t,+∞)

g′
σ (t − τi)

+ ∑
τi∈(−σ−1+t,−σ)∪(1+σ,1+σ+t)

g′
σ (t − τi).

The first random variable in the sum above has a law that does not depend on t . For
the second random variable, using the same trick as above [i.e., decompose here a
uniform random variable on the interval (−1 − σ,−σ) ∪ (σ,1 + σ) as a mixture
with weights 1/2 and 1/2 of two uniform random variables: one on (−1−σ,−1−
σ + t) ∪ (t + σ,1 + σ), and the other one on the rest], we obtain that c2 = eλ.
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And finally the bound on the expectation of the number of local extrema is

ρ(λ,σ ) ≤
(
c1

3λ(1 + 2σ)

1 − e−λ(1+2σ)
+ c2

)(
1 − e−λ(1+2σ)) + e−λ(1+2σ)

≤ eλ 2 + 2σ

1 + 2σ

(
3λ(1 + 2σ)

) + eλ = (
3λ(2 + 2σ) + 1

)
eλ. �

5.2. Scaling properties. An interesting property of the shot noise process with
Gaussian kernel is that we have two scale parameters: the intensity λ of the Poisson
point process and the width σ of the Gaussian kernel. These two parameters are
linked in the sense that changing one of them amounts to change the other one in
an appropriate way. These scaling properties are described more precisely in the
following lemma.

LEMMA 2. We have the following scaling properties for the process Xλ,σ :

1. Changing σ and λ in a proportional way: for all c > 0,

{Xλ/c,cσ (t); t ∈ R} f.d.d.=
{

1

c
Xλ,σ

(
t

c

)
; t ∈ R

}
.

2. Increasing the width of the Gaussian kernel: for all σ1 and σ2, we have

{X
λ,

√
σ 2

1 +σ 2
2
(t); t ∈ R} a.s.= {(Xλ,σ1 ∗ gσ2)(t); t ∈ R}.

3. Increasing the intensity of the Poisson process: for all c > 0, we have

{X
λ
√

1+c2,σ
(t); t ∈ R} f.d.d.= {√

1 + c2 · (Xλ,σ ∗ gcσ )
(
t

√
1 + c2

); t ∈ R
}
.

4. The mean number ρ(λ,σ ) of local extrema of Xλ,σ per unit length satisfies

∀c > 0 cρ(λ, cσ ) = ρ(cλ,σ ).

PROOF. For the first property, let {τi} be a Poisson point process of intensity
λ/c on the line. Then

Xλ/c,cσ (t) = ∑
i

1

cσ
√

2π
e−(t−τi )

2/2c2σ 2 = 1

c

∑
i

gσ

(
t

c
− τi

c

)
.

Since the points {τi/c} are now the points of a Poisson process on intensity λ on
the line, we obtain the first scaling property. The second property comes simply
from the fact that if gσ1 and gσ2 are two Gaussian kernels of respective width σ1

and σ2, then their convolution is the Gaussian kernel of width
√

σ 2
1 + σ 2

2 . The third
property is just a consequence of combining the first and second properties.
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For the fourth property, we first compute

X′
λ,cσ (t) = 1

cσ
√

2π

∑
τi

−(t − τi)

c2σ 2 e−(t−τi )
2/2c2σ 2

= 1

c2σ
√

2π

∑
τi

−(t/c − τi/c)

σ 2 e−(t/c−τi/c)
2/2σ 2

,

where the {τi} are the points of a Poisson point process of intensity λ on R. Then,
since the {τi/c} are now the points of a Poisson point process of intensity cλ

on R, we have that the expected number of points t ∈ [0, c] such that X′
λ,cσ (t) = 0

[which, by definition, equals cρ(λ, cσ )], also equals the expected number of points
t ∈ [0,1] such that X

′
cλ,σ (t) = 0 [which is ρ(cλ,σ )]. �

To study how ρ(λ,σ ) varies when λ and σ vary, we first can use the result on
high intensity and convergence to the crossings of a Gaussian process obtained in
Theorem 3. Indeed, if the second moment of NX′

λ,σ
(0) is bounded by a polynomial

in λ, then we will get

ρ(λ,σ ) −→
λ→+∞

1

σπ

√
3

2
.

And thanks to the scaling properties, this also will imply that ρ(λ,σ ) is equivalent

to 1
σπ

√
3
2 as σ goes to +∞. These two facts have been empirically checked and

are illustrated on Figure 1. Now, notice that we can also observe on the left-hand
figure another regime when λ is small. Indeed, ρ(λ,σ ) seems to be almost linear
for small values of λ. Notice also on the right-hand figure that ρ(λ,σ ) seems to be

FIG. 1. On the left: empirical mean number of local extrema of Xλ,σ per unit length as a function
of λ (here σ = 1 and we have taken the mean value from 50 samples on the interval [−100,100]).
The horizontal dashed line is the constant 1

π

√
3
2 and the dotted line is the map λ 
→ 2λ. On the right:

empirical mean number of local extrema of Xλ,σ per unit length as a function of σ (here λ = 1 and
we have taken the mean value from 10 samples on the interval [−100,100]).
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a decreasing function of σ (this then indicates that, as time goes by, the temperature
on the line fluctuates less and less). The study of these two facts is the aim of the
next section.

5.3. Heat equation and local extrema. In this subsection we assume first that
λ > 0 is fixed. As we already mentioned it in the introduction of Section 5, one of
the main features of the shot noise process Xλ,σ is that it can be seen in a dynamic
way, which means that we can study how it evolves as the width σ of the Gaussian
kernel changes and consider it as a random field indexed by the variable (σ, t).
Then, the main tool is the heat equation which is satisfied by the Gaussian kernel

∀σ > 0, ∀t ∈ R

(26)
∂gσ

∂σ
(t) = σg′′

σ (t) and also consequently
∂g′

σ

∂σ
(t) = σg(3)

σ (t).

Since the Gaussian kernel gσ is a very smooth function, both in σ > 0 and t ∈ R, by
the same type of proof as the ones in Proposition 3, we have that (σ, t) 
→ Xλ,σ (t)

is almost surely and mean square smooth on (0,+∞) × R with

∂Xλ,σ

∂σ
(t) = ∑

i

∂gσ

∂σ
(t − τi) = σX′′

λ,σ (t) and also

(27)
∂X′

λ,σ

∂σ
(t) = σX

(3)
λ,σ (t).

We will see in the following that this equation will be of great interest to study the
crossings of Xλ,σ .

The convolution of a real function defined on R with a Gaussian kernel of in-
creasing width σ (which amounts to apply the heat equation) is a very common
smoothing technique in signal processing. One of its main properties is generally
formulated by the wide-spread idea that “Gaussian convolution on R cannot cre-
ate new extrema” (and it is in some sense the only kernel that has this property;
see [27]). This has been studied (together with its extension in higher dimension)
for applications in image processing by Lindeberg [19], and also by other authors
(e.g., to study mixtures of Gaussian distributions as in [8] and [7]). However, in
most cases, the correct mathematical framework for the validity of this property
is not exactly stated. Thus we start here with a lemma giving the conditions under
which one can obtain properties for the zero-crossings of a function solution of
the heat equation. The result, which proof is postponed to the Appendix, is stated
under a general form for a function h in the two variables σ and t . But we have
to keep in mind that we will want to apply this to h(σ, t) = X′

λ,σ (t) to follow the
local extrema of the shot noise process when σ evolves.
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LEMMA 3. Let σ0 > 0 and (σ, t) 
→ h(σ, t) be a C 2 function defined on
(0, σ0] × [a, b], which satisfies the heat equation

∀(σ, t) ∈ (0, σ0] × R
∂h

∂σ
(σ, t) = σ

∂2h

∂t2 (σ, t).

We assume that:

(a) there are no t ∈ [a, b] such that h(σ0, t) = 0 and ∂h
∂t

(σ0, t) = 0,
(b) there are no (σ, t) ∈ (0, σ0]× [a, b] such that h(σ, t) = 0 and ∇h(σ, t) = 0.

Then we have the following properties for the zero-crossings of h:

(i) Global curves: If t0 ∈ (a, b) is such that h(σ0, t0) = 0, there exists σ−
0 <

σ0 and a maximal continuous path σ 
→ �t0(σ ) defined on (σ−
0 , σ0] such that

�t0(σ0) = t0 and for all σ ∈ (σ−
0 , σ0] we have h(σ,�t0(σ )) = 0. Moreover, if

�t0(σ ) stays within some compact set of R for all σ , then σ−
0 = 0.

(ii) Nonintersecting curves: If t̃0 
= t0 is another point in (a, b) such that
h(σ0, t̃0) = 0, then for all σ ∈ (0, σ0] we have �t0(σ ) 
= �t̃0(σ ).

(iii) Local description of the curves: If (σ1, t1) ∈ (0, σ0] × R is such that
h(σ1, t1) = 0 then there exist a C 1 function η defined on a neighborhood of σ1
and such that h(σ, η(σ )) = 0 in this neighborhood of σ1, or a C 1 function ξ de-
fined on a neighborhood of t1 and such that h(ξ(t), t) = 0 in this neighborhood
of t1, and moreover, if ξ ′(t1) = 0, then ξ ′′(t1) < 0 (it is a local maximum).

The properties stated in Lemma 3 are illustrated on Figure 2, where the different
types of curves formed by the set of points {(t, σ ) ∈ R

2;h(σ, t) = 0} are shown for
some h satisfying the heat equation.

Let us consider again the shot noise process Xλ,σ . We now give the main result
for the number of local extrema of Xλ,σ as a function of σ . The intensity λ is
assumed to be fixed.

FIG. 2. Curves of h(σ, t) = 0 for some h satisfying the heat equation, in the (t, σ ) domain; here t is
along the horizontal axis and σ is along the vertical one. According to Lemma 3, the zeros-crossings
of h are a set of nonintersecting curves, that are locally else functions of σ or functions of t with no
local minima.
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THEOREM 4. Let σ0 > 0 and a ≤ b. Then,

P
(∃(σ, t) ∈ (0, σ0) × [a, b] such that X′

λ,σ (t) = 0 and ∇X′
λ,σ (t) = 0

) = 0.

Moreover, if we assume that for all 0 < σ1 < σ0

E
(
#{σ ∈ [σ1, σ0] such that X′

λ,σ (0) = 0}) < +∞,

then the function σ 
→ ρ(λ,σ ), which gives the mean number of local extrema of
Xλ,σ per unit length, is decreasing and it has the limit 2λ as σ goes to 0.

PROOF. Let us denote Y(σ, t) := X′
λ,σ (t) for all (σ, t) ∈ (0,+∞) × R. We

first check that the assumptions (a) and (b) of Lemma 3 are satisfied almost surely
for Y . Assumption (a) is already given by Proposition 9. For assumption (b), we
first notice that since Y(σ, t) satisfies the heat equation, we have

{Y(σ, t) = 0 and ∇Y(σ, t) = 0}
= {Y(σ, t) = 0 and Y ′(σ, t) = 0 and Y ′′(σ, t) = 0}.

Then a slight modification of the proof of Proposition 1, using the second-
order Taylor formula in (10), allows us to conclude that P(∃(σ, t) ∈ (0, σ0) ×
[a, b] such that Y(σ, t) = 0 and ∇Y(σ, t) = 0) = 0, using the same integrability
bound for the characteristic function of Y(σ, t) as the one obtained in the proof of
Proposition 9 [and considering first (σ, t) ∈ (σ1, σ0) for σ1 > 0, and conditioning
by {γT ≥ 3}]. This also proves the first part of the theorem.

Let 0 < σ1 < σ0 be fixed. By assumption, we have E(#{σ ∈ [σ1, σ0] such that
X′

λ,σ (0) = 0}) < +∞. Notice that by stationarity this expected value is indepen-
dent of the value of t (taken as 0 above). Let T > 0 and let us consider the ze-
ros of Y(σ, t) = X′

λ,σ (t) for (σ, t) ∈ [σ1, σ0] × [0, T ]. Let t0 ∈ [0, T ] be such that
Y(σ0, t0) = 0. By Lemma 3, there is a continuous path σ 
→ �t0(σ ) that will “cross
the left or right boundary of the domain,” that is, be such that there exists σ ∈ such
that �t0(σ ) = 0 or T , or will be defined until σ1 and such that �t0(σ1) ∈ [0, T ]. We
thus have

ρ(σ0, [0, T ]) ≤ 2E
(
#{σ ∈ [σ1, σ0] such that X′

λ,σ (0) = 0}) + ρ(σ1, [0, T ]).
Dividing both sides by T and letting T go to infinity then shows that ρ(σ0) ≤
ρ(σ1). Thus the function σ 
→ ρ(λ,σ ) is decreasing.

To find the limit of ρ(λ,σ ) as σ goes to 0 (that exists thanks to the bound
of Proposition 9), instead of looking at the local extrema of Xλ,σ in [0,1], we
will only look at the local maxima (which are the down-crossings of 0 by the
derivative) in [0,1]. Let DX′

λ,σ
(0, [0,1]) be the random variable that counts these

local maxima, and let ρ−(λ, σ ) = E(DX′
λ,σ

(0, [0,1])). By stationarity of Xλ,σ (t)

and because between any two local maxima, there is a local minima, we have
that ρ−(λ, σ ) = 1

2ρ(λ,σ ). Now, we introduce “barriers” in the following way:
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let Eσ0 be the event “there are no points of the Poisson point process in the in-
tervals [−2σ0,2σ0] and [1 − 2σ0,1 + 2σ0].” If we assume that Eσ0 holds, then
X′′

λ,σ (t) > 0 for all t in [−σ0, σ0] ∪ [1 − σ0,1 + σ0] and all σ ≤ σ0, and therefore
there are no local maxima of Xλ,σ in these intervals. Then by Lemma 3, we can
follow all the local maxima of Xλ,σ in [0,1] from σ = σ0 down to σ = 0. Thus
σ 
→ DX′

λ,σ
(0, [0,1])1Eσ0

is a decreasing function of σ for σ ≤ σ0. Moreover, we
can also check that the set of local maxima of Xλ,σ (t) in [0,1] converges, as σ goes
to 0, to the set of points of the Poisson process in [0,1]. This implies, in particu-
lar, that DX′

λ,σ
(0, [0,1]) goes to #{τi ∈ [0,1]} as σ goes to 0. Thus by monotone

convergence, it implies that ρ−(λ, σ |Eσ0) goes to E(#{τi ∈ [0,1]}|Eσ0). Since the
sequence of events Eσ0 is an increasing sequence of events as σ0 decreases to 0,
we finally get

lim
σ→0

ρ−(λ, σ ) = lim
σ0→0

E(#{τi ∈ [0,1]}|Eσ0) = E(#{τi ∈ [0,1]}) = λ. �

Thus, under the assumption that E(#{σ ∈ [σ1, σ0] such that X′
λ,σ (0) = 0}) <

+∞ for all 0 < σ1 < σ0, Theorem 4 asserts that the function σ 
→ ρ(λ,σ ) is a
decreasing function with limit 2λ when σ → 0. This fact was empirically observed
on Figure 1, and is also illustrated on Figure 3 where we “follow” the local extrema
as σ evolves. Now, these properties can be translated, using the scaling relations

FIG. 3. Top: three processes t 
→ Xλ,σ (t) obtained from the same Poisson point process of intensity
λ = 2 and for a Gaussian kernel of respective width σ = 0.1;0.3 and 0.8. Bottom: evolution of the
local extrema of t 
→ Xλ,σ (t) as σ goes from 0 to 1. The three values σ = 0.1;0.3 and 0.8 are plotted
as dotted line. They indicate the local extrema of the three processes above.
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of Lemma 2, into the following properties on λ 
→ ρ(λ,σ ):

∀c ≥ 1, ρ(cλ,σ ) ≤ cρ(λ,σ ); ρ(λ,σ ) ≤ 2λ and
ρ(λ,σ )

2λ
−→
λ→0

1.

This shows the second asymptotic linear regime observed for small values of the
intensity λ.

APPENDIX

A.1. Stationary phase estimate for oscillatory integrals.

PROPOSITION 10 (Stationary phase estimate for oscillatory integrals). Let
a < b and let ϕ be a function of class C 2 defined on [a, b]. Assume that ϕ′ and ϕ′′
cannot simultaneously vanish on [a, b] and denote m =
mins∈[a,b]

√
ϕ′(s)2 + ϕ′′(s)2 > 0. Let us also assume that n0 = #{s ∈ [a, b] s.t.

ϕ′′(s) = 0} < +∞. Then

∀u ∈ R s.t. |u| > 1

m

∣∣∣∣∫ b

a
eiuϕ(s) ds

∣∣∣∣ ≤ 8
√

2(2n0 + 1)√
m|u| .

Now, let ϕ1 and ϕ2 be two functions of class C 3 defined on [a, b]. Assume
that the derivatives of these functions are linearly independent, in the sense that

for all s ∈ [a, b], the matrix �(s) = ( ϕ′
1(s)

ϕ′′
1 (s)

ϕ′
2(s)

ϕ′′
2 (s)

)
is invertible. Denote m =

mins∈[a,b] ‖�(s)−1‖−1 > 0, where ‖ · ‖ is the matricial norm induced by the
Euclidean one. Assume, moreover, that there exists n0 < +∞ such that #{s ∈
[a, b] s.t. det(�′(s)) = 0} ≤ n0, where �′(s) = ( ϕ′′

1 (s)

ϕ
(3)
1 (s)

ϕ′′
2 (s)

ϕ
(3)
2 (s)

)
. Then

∀(u, v) ∈ R
2 s.t.

√
u2 + v2 >

1

m

∣∣∣∣∫ b

a
eiuϕ1(s)+ivϕ2(s) ds

∣∣∣∣ ≤ 8
√

2(2n0 + 3)√
m

√
u2 + v2

.

PROOF. For the first part of the proposition, by assumption, [a, b] is the union
of the three compact sets

{s ∈ [a, b]; |ϕ′′| ≥ m/2}, {s ∈ [a, b]; |ϕ′| ≥ m/2 and ϕ′′ ≥ 0} and

{s ∈ [a, b]; |ϕ′| ≥ m/2 and ϕ′′ ≤ 0}.
Therefore there exists 1 ≤ n ≤ 2n0 + 1 and a subdivision (ai)0≤i≤n of [a, b]
such that [ai−1, ai] is included in one of the previous subsets for any 1 ≤ i ≤
n. If [ai−1, ai] ⊂ {s ∈ [a, b]; |ϕ′′(s)| ≥ m/2}, according to [26], Proposition 2,
page 332, ∣∣∣∣∫ ai

ai−1

eiuϕ(s) ds

∣∣∣∣ =
∣∣∣∣∫ ai

ai−1

eiu(m/2)(2ϕ(s)/m) ds

∣∣∣∣ ≤ 8

√
2√

m|u| ,
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otherwise, ∣∣∣∣∫ ai

ai−1

eiuϕ(s) ds

∣∣∣∣ ≤ 6

m|u| .

The result follows from summing up these n integrals.
For the second part of the proposition, we use polar coordinates, and write

(u, v) = (r cos θ, r sin θ). For θ ∈ [0,2π), let ϕθ be the function defined on

[a, b] by ϕθ(s) = ϕ1(s) cos θ + ϕ2(s) sin θ . Then
(ϕ′

θ (s)

ϕ′′
θ (s)

) = �(s)
(cos θ

sin θ

)
, and thus

1 = ‖�(s)−1(ϕ′
θ (s)

ϕ′′
θ (s)

)‖. This implies that for all s ∈ [a, b],
√

ϕ′
θ (s)

2 + ϕ′′
θ (s)2 ≥

1/‖�(s)−1‖ ≥ m. Moreover, thanks to Rolle’s theorem, the number of points
s ∈ [a, b] such that ϕ′′

θ (s) = 0 is bounded by one plus the number of s ∈ [a, b]
such that ϕ′′

1 (s)ϕ′′′
2 (s) − ϕ′′′

1 (s)ϕ′′
2 (s) = 0, that is, by 1 + n0. Thus, we can apply

the result of the first part of the proposition to each function ϕθ and the obtained
bound will depend only on m, n0 and r = √

u2 + v2. �

A.2. Proof of Proposition 8. For k ≥ 0 and l ≥ 0 integers, let us denote mkl =∫ |g(s)|k|g′(s)|l ds. We will also simply denote m0 = m20 = ∫
g(s)2 ds and m2 =

m02 = ∫
g′(s)2 ds.

Let ψλ(u, v) denote the joint characteristic function of (Zλ(t),Z
′
λ(t)), then

ψλ(u, v) = E
(
ei(u/

√
λ)Xλ+i(v/

√
λ)X′

λ
)
e−iu

√
λ

∫
g

= exp
(
λ

∫
R

(
ei(u/

√
λ)g(s)+i(v/

√
λ)g′(s) − 1 − i

u√
λ
g(s)

)
ds

)
.

We now use the fact
∫

g′ = 0, and we thus have ψλ(u, v) = exp(Hλ(u, v)) where

Hλ(u, v) = λ

∫
R

(
ei(u/

√
λ)g(s)+i(v/

√
λ)g′(s) − 1 − i

u√
λ
g(s) − i

v√
λ
g′(s)

)
ds.

We need to notice that

∀(u, v) ∈ R
2 |ψλ(u, v)| = | exp(Hλ(u, v))| = |E(eiuZλ+ivZ′

λ)| ≤ 1.

In the following, we will also need these simple bounds:

∀x ∈ R

∣∣∣∣eix − 1 − ix + x2

2

∣∣∣∣ ≤ |x|3
3! and

(28)
∀z ∈ C |ez − 1| ≤ |z|e|z|.

We first estimate Hλ(u,0). We have

Hλ(u,0) = λ

∫ (
ei(u/

√
λ)g(s) − 1 − i

u√
λ
g(s)

)
ds = −1

2
u2m0 + Kλ(u),
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where Kλ(u) = λ
∫
(ei(u/

√
λ)g(s) − 1 − i u√

λ
g(s) + 1

2
u2

λ
g2(s)) ds. Then, thanks to

the simple bounds (28), we get

|Kλ(u)| ≤ |u|3m30

6
√

λ
and consequently

∣∣eHλ(u,0) − e−(1/2)u2m0
∣∣ ≤ |u|3m30

6
√

λ
e−(1/2)u2m0e|u|3m30/(6

√
λ).

We then estimate Hλ(u, v) − Hλ(u,0),

Hλ(u, v) − Hλ(u,0) = λ

∫ (
ei(u/

√
λ)g(s)+i(v/

√
λ)g′(s) − ei(u/

√
λ)g(s))ds

= λ

∫
ei(u/

√
λ)g(s)

(
ei(v/

√
λ)g′(s) − 1 − i

v√
λ
g′(s)

)
ds

= −v2

2

∫
g′(s)2ei(u/

√
λ)g(s) ds + Fλ(u, v),

where Fλ(u, v) = λ
∫

ei(u/
√

λ)g(s)(ei(v/
√

λ)g′(s) −1− i v√
λ
g′(s)+ v2

2λ
g′(s)2) ds. And

again, thanks to the simple bounds (28), we get |Fλ(u, v)| ≤ |v|3m03

6
√

λ
. This implies

that ∣∣eHλ(u,v)−Hλ(u,0) − e−v2/2
∫

g′(s)2ei(u/
√

λ)g(s) ds
∣∣

≤ ∣∣e−v2/2
∫

g′(s)2ei(u/
√

λ)g(s) ds
∣∣ · ∣∣eFλ(u,v) − 1

∣∣
≤ |v|3m03

6
√

λ
e−v2/2

∫
g′(s)2 cos((u/

√
λ)g(s)) ds+|v|3m03/(6

√
λ).

Let us now compute ĈZλ(u, [0,1]). By Proposition 1, we know that

−πĈZλ(u, [0,1]) =
∫ +∞

0

1

v2

(
ψλ(u, v) + ψλ(u,−v) − 2ψλ(u,0)

)
dv.

Let V > 0 be a real number. We split the integral above in two parts, and write it as
the sum of the integral between 0 and V , and of the integral between V and +∞.
Since for all (u, v), we have |ψλ(u, v)| ≤ 1, we get∣∣∣∣∫ +∞

V

1

v2

(
ψλ(u, v) + ψλ(u,−v) − 2ψλ(u,0)

)
dv

∣∣∣∣ ≤ 4
∫ +∞
V

1

v2 dv = 4

V
.

On the other hand, let IV (u) denote the integral between 0 and V . We have

IV (u) =
∫ V

0

1

v2 eHλ(u,0)(eHλ(u,v)−Hλ(u,0) + eHλ(u,−v)−Hλ(u,0) − 2
)
dv.
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We then decompose this into

IV (u) =
∫ V

0

1

v2 eHλ(u,0)(eHλ(u,v)−Hλ(u,0) + eHλ(u,−v)−Hλ(u,0)

− 2e−v2/2
∫

g′(s)2ei(u/
√

λ)g(s) ds)dv

+
∫ V

0

1

v2 eHλ(u,0)(2e−v2/2
∫

g′(s)2ei(u/
√

λ)g(s) ds − 2e−(v2/2)m2
)
dv

+
∫ V

0

1

v2

(
eHλ(u,0) − e−(1/2)u2m0 + e−(1/2)u2m0

)(
2e−(v2/2)m2 − 2

)
dv.

Using the bounds we computed above, we get that∣∣∣∣IV (u) − 2e−(1/2)u2m0

∫ V

0

e−(v2/2)m2 − 1

v2 dv

∣∣∣∣
≤ 2

∫ V

0

vm03

6
√

λ
e−v2/2

∫
g′(s)2 cos((u/

√
λ)g(s)) ds+|v|3m03/(6

√
λ) dv

+ 2
∫ V

0

1

v2

∣∣e−v2/2
∫

g′(s)2ei(u/
√

λ)g(s) ds − 2e−(v2/2)m2
∣∣dv

+ 2
∣∣eHλ(u,0) − e−(1/2)u2m0

∣∣ ∫ V

0

1 − e−(v2/2)m2

v2 dv.

Let J
(n)
V (u), for n = 1,2,3, respectively, denote the three terms above. To give

an upper bound for J
(1)
V (u), we will need the following basic inequality: ∀x ∈ R,

cos(x) ≥ 1 − x2

2 . This gives us the bound

J
(1)
V (u) ≤ 2

∫ V

0

vm03

6
√

λ
e−v2m2/2+(v2/2)(u2m22/(2λ))+|v|3m03/(6

√
λ) dv.

For the second term, we use∣∣e−v2/2
∫

g′(s)2ei(u/
√

λ)g(s) ds − 2e−(v2/2)m2
∣∣

≤ e−(v2/2)m2
∣∣e−(v2/2)

∫
g′(s)2(ei(u/

√
λ)g(s)−1) ds − 1

∣∣
≤ e−(v2/2)m2

∣∣∣∣v2

2

∫
g′(s)2(

ei(u/
√

λ)g(s) − 1
)
ds

∣∣∣∣e|(v2/2)
∫

g′(s)2(ei(u/
√

λ)g(s)−1) ds|.

But | ∫ g′(s)2(ei(u/
√

λ)g(s) − 1) ds| ≤ ∫
g′(s)2 |u|√

λ
g(s) ds = |u|√

λ
m12 and thus

J
(2)
V (u) ≤ |u|√

λ
m12

∫ V

0
e−(v2/2)m2+(v2/2)(|u|/√λ)m12 dv.
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For the third term, we use an integration by parts to obtain that∫ V

0

1 − e−(v2/2)m2

v2 dv = e−(V 2/2)m2 − 1

V
+

∫ V

0
m2e

−(v2/2)m2 dv ≤ 1

2

√
2πm2,

which gives

J
(3)
V (u) ≤ √

2πm2
|u|3m30

6
√

λ
e−(1/2)u2m0+|u|3m30/(6

√
λ).

Moreover, we also have∣∣∣∣2 ∫ V

0

1 − e−(v2/2)m2

v2 dv − √
2πm2

∣∣∣∣ ≤ 1 − e−(V 2/2)m2

V
+

∫ +∞
V

m2e
−(v2/2)m2 dv

≤ 2

V
.

The partial conclusion of all these estimates is that∣∣πĈZλ(u, [0,1]) − √
2πm2e

−m0u
2/2∣∣

≤ 4

V
+ 2e−m0u

2/2

V
+ J

(1)
V (u) + J

(2)
V (u) + J

(3)
V (u).

We now have to choose V in an appropriate way. The choice of V will be given by
the bound on J

(1)
V (u). Assume in the following that u satisfies the condition (U1)

given by u2m22
2λ

≤ m2
4 , and let us set

V = 3
√

λm2

4m03
.

Then for all v ∈ [0,V ], −v2m2
2 + v2

2
u2m22

2λ
+ |v|3m03

6
√

λ
≤ −v2m2

4 , and thus

J
(1)
V (u) ≤ m03

3
√

λ

∫ V

0
ve−v2m2/4 dv ≤ 2m03

3m2
√

λ
.

For the term J
(2)
V (u), we notice that if u satisfies the condition (U2) given by

|u|√
λ
m12 ≤ m2

2 , then for all V > 0, we can bound J
(2)
V (u) by

J
(2)
V (u) ≤ |u|√

λ
m12

∫ V

0
e−(v2/4)m2 dv ≤ |u|√

λ
m12

√
π

m2
.

Finally, for the third term, we have that if u satisfies the condition (U3) given by
|u|m30

3
√

λ
≤ 1

2m0, then J
(3)
V (u) can be bounded, independently of V , by

J
(3)
V (u) ≤ √

2πm2
|u|3m30

6
√

λ
e−(1/4)u2m0 ≤ √

2πm2
2|u|m30

3m0
√

λ
e−1
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because of the fact that for all x ≥ 0, then xe−x ≤ e−1.
The final conclusion of all these computations is that if we set a1 = min(

√
m2

2m22
,

m2
2m12

,
3m0
2m30

), then for all u and λ > 0 we have

|u| ≤ a1
√

λ �⇒ ∣∣πĈZλ(u, [0,1]) − √
2πm2e

−m0u
2/2∣∣ ≤ a2√

λ
+ a3|u|√

λ
,

where a2 = 24m30+2m03
3m2

and a3 = m12

√
π
m2

+ 2
√

2πm2m30e
−1

3m0
.

A.3. Proof of Lemma 3. The proof of this lemma relies upon the implicit
function theorem. Let us start with the proof of (i); let (σ0, t0) be a point such that
h(σ0, t0) = 0. By Assumption (a), we have that ∂h

∂t
(σ0, t0) 
= 0. Then, thanks to

the implicit function theorem, there exist two open intervals I = (σ−
0 , σ+

0 ) and
J = (t−0 , t+0 ) containing, respectively, σ0 and t0, and a C1 function η : I → J

such that η(σ0) = t0 and ∀(σ, t) ∈ I × J , h(σ, t) = 0 ⇔ t = η(σ). Let us now
denote η = �t0 . We need to prove that we can take σ−

0 = 0 when �t0 remains
bounded. Assume we cannot; the maximal interval on which �t0 is defined is
(σ−

0 , σ+
0 ) with σ−

0 > 0. By assumption, there is an M0 > 0 such that for all
σ ∈ (σ−

0 , σ+
0 ), then |�t0(σ )| ≤ M0. We can thus find a subsequence (σk) con-

verging to σ−
0 as k goes to infinity and a point t1 ∈ [−M0,M0] such that �t0(σk)

goes to t1 as k goes to infinity. By continuity of h, we have h(σ−
0 , t1) = 0. Now,

we also have ∂h
∂t

(σ−
0 , t1) = 0. Indeed, if it were 
= 0, we could again apply the

implicit function theorem in the same way at the point (σ−
0 , t1), and get a con-

tradiction with the maximality of I = (σ−
0 , σ+

0 ). Then, by Assumption (b), we
have ∂h

∂σ
(σ−

0 , t1) 
= 0. We can again apply the implicit function theorem, and we
thus obtain that there exist two open intervals I1 = (σ−

1 , σ+
1 ) and J1 = (t−1 , t+1 )

containing, respectively, σ−
0 and t1, and a C1 function ξ :J1 → I1 such that

ξ(t1) = σ−
0 and ∀(σ, t) ∈ I1 × J1, h(σ, t) = 0 ⇔ σ = ξ(t). Moreover, we can

compute the derivatives of ξ at t1. We start from the implicit definition of ξ :
h(ξ(t), t) = 0. By differentiation, we get ξ ′(t) ∂h

∂σ
(ξ(t), t) + ∂h

∂t
(ξ(t), t) = 0. Tak-

ing the value at t = t1, we get ξ ′(t1) = 0. We can again differentiate, and find
ξ ′′(t) ∂h

∂σ
(ξ(t), t)+ ξ ′(t)2 ∂2h

∂σ 2 (ξ(t), t)+2ξ ′(t) ∂2h
∂σ ∂t

(ξ(t), t)+ ∂2h
∂t2 (ξ(t), t) = 0. Tak-

ing again the value at t = t1, we get

ξ ′′(t1) = − 1

ξ(t1)
= − 1

σ−
0

< 0.

Thus it shows that ξ has a strict local maximum at t1; there exist a neighborhood
U1 of σ−

0 = ξ(t1) and a neighborhood V1 of t1 such that for all points in U1 × V1,
then h(σ, t) = 0 implies σ = ξ(t) ≤ ξ(t1) = σ−

0 , which is in contradiction with the
definition of �t0 on (σ−

0 , σ+
0 ). This ends the proof of (i), and also of (iii).
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For (ii), assume that t0 and t̃0 are two points such that h(σ0, t0) = h(σ0, t̃0) =
0 and such that there exists σ1 < σ0 such that �t0(σ1) = �t̃0(σ1) = t1. Then, if
∂h
∂t

(σ1, t1) 
= 0, the implicit function theorem implies that �t0(σ ) = �t̃0(σ ) for all
σ ∈ [σ1, σ0] and in particular t0 = t̃0. But now, if ∂h

∂t
(σ1, t1) = 0, then, as above,

this implies that ∂h
∂σ

(σ1, t1) 
= 0 and using again the implicit function theorem, this
would be in contradiction with the fact �t0(σ ) is defined for σ ∈ [σ1, σ0].
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