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STOCHASTIC MODEL FOR CELL POLARITY

BY ANKIT GUPTA1

University of Wisconsin, Madison

Cell polarity refers to the spatial asymmetry of molecules on the cell
membrane. Altschuler, Angenent, Wang and Wu have proposed a stochastic
model for studying the emergence of polarity in the presence of feedback
between molecules. We analyze their model further by representing it as a
model of an evolving population with interacting individuals. Under a suit-
able scaling of parameters, we show that in the infinite population limit we
get a Fleming–Viot process. Using well-known results for such processes,
we establish that cell polarity is exhibited by the model and also study its
dependence on the biological parameters of the model.

1. Introduction. The phenomenon of polarity is ubiquitous in living organ-
isms. It is known to occur at many levels: from cellular to organismic. Polarity
is what causes one part of a biological system to be different from another. Un-
derstanding how polarity is established and maintained is a matter of fundamental
concern for biologists.

In this paper we are interested in polarity at the level of individual cells. Con-
sider a spherical cell consisting of the cytosol and the membrane. Suppose that it
contains numerous molecules that may either reside in the cytosol or on the mem-
brane. The phenomenon of cell polarity refers to an identifiable form of spatial
asymmetry of molecules on the membrane. Biologists generally consider a cell
to be in a polarized state when most of the membrane molecules appear to be
concentrated around a single site or located in a single hemisphere on the mem-
brane. It is known that many types of cells exhibit this phenomenon. The most
common example is the yeast cell (see [22, 30, 34, 35]), but there are many others
(see [9, 10]). As noted in [9], cell polarity is vital in the creation of functionally
specialized regions on the membrane, which can then facilitate cellular processes
such as localized membrane growth, activation of immune response, directional
cell migration and vectorial transport of molecules across cell layers.

Due to its importance, many attempts have been made to investigate the mech-
anisms responsible for cell polarity. Drubin and Nelson [9] mention that the exis-
tence of cell polarity involves positive feedback from the signaling molecules on
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the membrane. This feedback enables the signaling molecules to perform localized
recruitment, thereby causing concentration of molecules in a specified region on
the membrane. Examples of such signaling molecules include Cdc 42 in budding
yeast (see [3]), mPar3/mPar6 in neurons (see [38]), Rac in kidney cells (see [18])
and human chemotaxing neutrophils (see [44]). Even though the feedback mecha-
nism may bring the molecules together, it is unclear if it can generate cell polarity
alone. This is because the molecules on the membrane are constantly diffusing and,
hence, any clusters that form may disappear quickly with time. Biologists have pro-
posed that additional mechanisms like directed transport and coupled inhibitors are
required to counter the spatial diffusion and generate spatial asymmetry (see [19,
22, 31, 41, 43]). However, these additional mechanisms are not always found in
cells that exhibit polarity. Hence, the question arises whether feedback alone can
cause polarization.

Altschuler, Angenent, Wang and Wu [1] show that indeed feedback alone can
generate cell polarity when the number of molecules is small. They prove this re-
sult via a simple mathematical model derived by abstracting the feedback circuits
found in cells. In their model, the feedback mechanism is given by the following:
a molecule on the membrane may pull a molecule from the cytosol to its location
on the membrane. In a stochastic setting they show that their model exhibits recur-
ring cell polarity. However, the frequency of polarity is inversely proportional to
the number of molecules in the cell. This suggests that no polarity can persist in
the infinite population limit without any additional mechanisms to reinforce asym-
metry.

In this paper we will scale some parameters of the model in [1] and study the
resulting model. The main result of our paper is that if we let the feedback strength
of each membrane bound molecule increase linearly with the population size, then
we do get recurring cell polarity in the infinite population limit. Hence, under our
scaling, the model suggests that feedback alone can generate cell polarity in the
infinite population limit without any additional mechanisms. Our approach is to
express the dynamics of cell molecules as a measure-valued Markov process and
then prove that in the limit, the dynamics of molecules on the membrane can be
described by a Fleming–Viot process. This process was introduced by Fleming and
Viot [17] in 1979 and it has been very well studied since then. An excellent survey
of Fleming–Viot processes is given by Ethier and Kurtz [12]. Using the results
already known for such processes, we will first show that the limiting process is
ergodic and hence has a unique stationary distribution. We will then illustrate that
at stationarity the membrane molecules are arranged into clans of various sizes
and molecules in a clan are spatially clustered. Moreover, the distribution of clan
sizes and the expected spatial spread of the clans can be readily computed in terms
of the biological parameters of the model. Our results will allow us to deduce that
there are times when most of the molecules are part of a single clan and lie in a
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single hemisphere on the membrane, thereby causing a cell to polarize. We now
describe the model given in [1].

DESCRIPTION 1.1. There are N molecules in the cell (cytosol and mem-
brane). The cell itself is a sphere of radius R. The following four events can change
the molecular configuration in the cell:

• Spontaneous membrane association: A molecule in the cytosol moves to a ran-
dom location on the membrane at rate kon.

• Spontaneous membrane dissociation: A molecule on the membrane moves back
into the cytosol at rate koff.

• Membrane association through recruitment (feedback mechanism): A molecule
on the membrane recruits another molecule from the cytosol at rate kfb ×
(fraction of molecules in the cytosol).

At the time of recruitment, the recruited particle moves to the location of the
recruiting particle.

• Membrane diffusion: Each molecule on the membrane does Brownian motion
with speed D.

The parameters of the model N , D, R, kon, kfb and koff have clear biological
interpretations. As mentioned in [1], kfb and koff are comparable and throughout
this paper we will assume the following:

ASSUMPTION 1.2.

kfb > koff > 0.

In this paper we scale up kfb and koff by the population size N and leave kon
the same. We show that under this scaling the model becomes mathematically
tractable as N → ∞. In Section 3 we will discuss the choice of this scaling and
the necessity of Assumption 1.2.

Since we will be relating this model to a well-known model in population genet-
ics, it is convenient to think of cell molecules as individuals in an evolving popu-
lation. Consider the membrane molecules as being alive and the cytosol molecules
as being dead. Each membrane molecule has two attributes: location and clan indi-
cator. When a membrane molecule recruits another molecule from the cytosol, this
new molecule gets initially assigned the same location and clan indicator as the re-
cruiting molecule. The location of this new molecule will change subsequently, as
it does its own Brownian motion but its clan indicator remains the same. We can
think of membrane recruitment as a birth process in which the recruiting mem-
brane molecule (the parent) passes its characteristics to the recruited molecule (the
offspring). The membrane molecules that have the same clan indicator are said to
be in the same clan, which implies that they have a common ancestor. When a
molecule spontaneously associates itself to the membrane, we assign it a new clan
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indicator and a randomly chosen location on the membrane. Therefore, we can
think of spontaneous association as immigration in which the individuals bring
new genetic traits into the population. When a membrane molecule spontaneously
dissociates from the membrane and goes into the cytosol, it loses both its attributes.
So we can think of spontaneous dissociation as death. Note that a molecule that
dies can get reincarnated.

At any time, the membrane molecules can be classified into clans based on
their ancestry. Since the molecules in a clan have a common ancestor, if the dif-
fusion constant D is small, we can expect them to be clustered on the membrane.
However, the molecular diffusion may cause a clan to spread apart with time. Sur-
prisingly, this does not happen in our model. We mentioned before that in the
infinite population limit, the cell dynamics is ergodic and reaches a stationary state
at which the spatial spread of the clans does not change with time. This is due to
the extremely fast nature of the birth and death mechanisms in our model which
causes most of the molecules in a clan to be newly born. Hence, they have been
unable to move away from their common ancestor by too much. We will show that
in the limit there are infinitely many clans present in the population at stationarity,
but there are only a few large clans. These two results together imply that spatial
asymmetry is present and persistent. We will then argue that there will be times
when most of the population will be part of one large clan and also appear to con-
centrate around a single point. Consequently, the cell is polarized at these times.
This shows that unlike the original model, cell polarity is present in our rescaled
model as the population size goes to infinity. For a detailed study of the model
considered here, we refer the readers to [21].

This paper is organized as follows. In Section 2 we give the main results of
our paper. In Section 3 we interpret these results in the context of biology and
compare our results with the results provided in [1] for the original model. We
also state some interesting research questions that we were unable to answer in
this paper. Finally, in Section 4 we provide the proofs of our results.

Notation. We now introduce some notation that will be used throughout the
paper. Let (S, d) be a compact metric space. Then by B(S)(C(S)) we refer to
the set of all bounded (continuous) real-valued Borel measurable functions. Since
(S, d) is compact, C(S) ⊂ B(S). Both B(S) and C(S) are Banach spaces under
the sup norm ‖f ‖ = supx∈S |f (x)|. For any differentiable manifold M and k ≥ 1,
let Ck(M) be the space of functions which are k-times continuously differentiable.
Let B(S) be the Borel sigma field on S. The space of all positive Borel measures
with total measure bounded above by 1 is denoted by M1(S) and P(S) is the
space of all Borel probability measures. Since (S, d) is compact, Prohorov’s theo-
rem implies that both P(S) and M1(S) are compact under the topology of weak
convergence. For any μ ∈ M1(S) and f :S → R let

〈f,μ〉 =
∫
S
f (s)μ(ds).



STOCHASTIC MODEL FOR CELL POLARITY 831

If μ ∈ M1(S), then for any positive integer m, μm ∈ M1(S
m) refers to the m-fold

product of μ. If μ is an atomic measure of the form an

∑n
i=1 δxi

for some an > 0,
then μ(m) is the symmetric m-fold product of μ defined by

μ(m) = 1

n(n − 1) · · · (n − m + 1)

∑
1≤i1 �=i2 �=···�=im≤n

δ(xi1 ,xi2 ,...,xim),(1.1)

where the sum is over all distinct m-tuples of {1,2, . . . , n}. If m > n, then the sum
above is empty and μ(m) is taken to be 0. Observe that μ(m) does not depend on
an and for n > m it is a probability measure over Sm. Also note that if μ is a
probability measure (i.e., an = 1/n), then for large n, μ(m) is approximately equal
to μm.

The space of cadlag functions (i.e., right continuous functions with left limits)
from [0,∞) to S is called DS[0,∞) and it is endowed with the Skorohod topol-
ogy (for details see Chapter 3, Ethier and Kurtz [11]). The space of continuous
functions from [0,∞) to S is called CS[0,∞) and it is endowed with the topology
of uniform convergence over compact sets.

For any operator A ⊂ B(S) × B(S), let D(A) and R(A) designate the domain
and range of A. The notion of the martingale problem associated to an operator
A is introduced and developed in Chapter 4, Ethier and Kurtz [11]. In this paper,
by a solution of the martingale problem for A, we mean a measurable stochastic
process X with paths in DS[0,∞) such that for any f ∈ D(A),

f (X(t)) −
∫ t

0
Af (X(s)) ds

is a martingale with respect to the filtration generated by X. For a given initial
distribution π ∈ P(S), a solution X of the martingale problem for A is a solution
of the martingale problem for (A,π) if π = PX(0)−1. If such a solution exists
uniquely for all π ∈ P(S), then we say that the martingale problem for A is well
posed.

2. The main results. Our first task in this section is to represent the dynam-
ics of cell molecules as a measure-valued Markov process. Suppose there are N

molecules in the cell (cytosol and membrane). The cell membrane will be denoted
by E and it is a sphere of radius R in R

3. As we mentioned before, each mem-
brane molecule has two attributes: location and clan indicator. The locations are
elements in E, while the clan indicators will be chosen as elements in the unit in-
terval [0,1]. Hence, E × [0,1] is the type space for the molecules. A molecule of
type x = (y, z) ∈ E × [0,1] is located at y on the membrane and has z as its clan
indicator. Note that a membrane molecule will change its type only due to Brow-
nian motion. Therefore, during its stay on the membrane, only its location (first
coordinate) changes while its clan indicator (second coordinate) remains fixed.
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If there are N molecules in the cell, then we assign mass 1/N to each molecule.
The membrane population at time t can be represented by an atomic measure as
follows:

μN(t) = 1

N

nN(t)∑
i=1

δxi(t),(2.1)

where nN(t) = N〈1,μN(t)〉 is the number of molecules on the membrane at time
t and x1(t), . . . , xnN(t) are their types. Viewed as a process, μN is Markov and its
state space is given by

MN
a (E × [0,1])

=
{

1

N

n∑
i=1

δxi
: 0 ≤ n ≤ N and x1, . . . , xn ∈ E × [0,1]

}
.

For any μ ∈ MN
a (E × [0,1]), the total mass 〈1,μ〉 ≤ 1 and, hence, MN

a (E ×
[0,1]) ⊂ M1(E ×[0,1]). If we endow MN

a (E ×[0,1]) with the topology of weak
convergence, then it is a compact space.

The generator of any Markov process is an operator which captures the rate of
change of the distribution of the process. For a detailed discussion on generators,
see Chapter 4 in Ethier and Kurtz [11]. For a speed D Brownian motion on the
membrane E, the generator is given by D

2 �, where � is the Laplace–Beltrami
operator on E. Note that C2(E) ⊂ D(�), where C2(E) is the space of twice con-
tinuously differentiable functions on E. Next we define the classes of functions
that we will use in this paper.

DEFINITION 2.1.

C = {
f ∈ C

(
(E × [0,1])m)

such that f (·, z) ∈ C2(Em)

for all z ∈ [0,1]m, and ∇f (x, ·),�f (x, ·) ∈ C([0,1]m)

for all x ∈ Em and m ≥ 1
}
.

DEFINITION 2.2.

C̄ = {
F(μ) = 〈

f,μ(m)〉 such that f ∈ C and m ≥ 1
}
.

We now specify the generator A
N for the process μN , which captures the dy-

namics of the cell population. For any f ∈ C let �if denote the action of the
Laplace–Beltrami operator on f by considering it as a function of its ith coordi-
nate. Let the domain of the operator A

N be D(AN) = C̄ and for F ∈ C̄ of the form
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〈f,μ(m)〉, define

A
NF(μ) = D

2

m∑
i=1

〈
�if,μ(m)〉

+ konN(1 − h)

∫
E

∫
[0,1]

(
F

(
μ + 1

N
δ(y,z)

)
− F(μ)

)
ϑ(dy)dz

(2.2)

+ koffN
2
∫
E×[0,1]

(
F

(
μ − 1

N
δx

)
− F(μ)

)
μ(dx)

+ kfbN
2(1 − h)

∫
E×[0,1]

(
F

(
μ + 1

N
δx

)
− F(μ)

)
μ(dx),

where h = 〈1,μ〉 and ϑ(·) is the surface area measure on the sphere E normal-
ized to have total area as 1. Terms in the operator above correspond to the surface
diffusion of the membrane molecules, spontaneous association, spontaneous dis-
sociation and membrane recruitment, in that order. The martingale problem for A

N

is well posed and this can be seen by viewing the operator A
N as a bounded pertur-

bation of the diffusion operator (given by the first term of A
N ). It is easy to argue

that the martingale problem for the diffusion operator is well posed and the solu-
tion for any initial distribution is just the empirical measure process of a system
of particles doing independent speed D Brownian motion on E. Proposition 10.2
and Theorem 10.3 in Chapter 4 of Ethier and Kurtz [11] imply the well-posedness
of the martingale problem for A

N .
It will soon become evident that the initial distribution of cell molecules is not

important for the discussion in this paper. For definiteness we will assume that the
membrane is initially empty. Let π̄0 ∈ P(MN

a (E × [0,1])) be the distribution that
puts all the mass at the 0 measure. From now on μN will be the unique Markovian
solution to the martingale problem corresponding to (AN, π̄0).

We define another process hN by

hN(t) = 〈1,μN(t)〉 = nN(t)

N
, t ≥ 0.(2.3)

At any time t , hN(t) is the fraction (or the total mass) of cell molecules that are on
the membrane. We will refer to hN as the fraction process. Observe that hN(0) = 0.

We are interested in showing the convergence of the sequence of processes {μN }
as N → ∞. Note that the last two terms in A

N [see (2.2)] do not appear to converge
independently. This is because terms like∫

E×[0,1]

(
F

(
μ ± 1

N
δx

)
− F(μ)

)
μ(dx)

will typically be of order 1/N and we are multiplying them by N2 outside. How-
ever, convergence does happen because these two terms combine to give a second-
order term. Instead of directly dealing with the sequence of generators {AN }, we
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will prove the convergence result in Section 4 by using the particle construction
introduced by Donnelly and Kurtz in [8]. This construction provides a more prob-
abilistic way of passing to the limit.

Define an operator A as follows. For any F ∈ C(M1(E × [0,1])) of the form
F(μ) = ∏m

i=1〈fi,μ〉, where fi ∈ C ∩ C(E × [0,1]) for all i = 1,2, . . . ,m and
m ≥ 1, define

AF(μ) = D

2

m∑
i=1

〈�fi,μ〉 ∏
j �=i

〈fj ,μ〉

+ kon
(1 − heq)

heq
(2.4)

×
m∑

i=1

∫
E

∫
[0,1]

(
fi(y, z)ϑ(dy) dz − fi(x)μ(dx)

) ∏
j �=i

〈fj ,μ〉

+ kfb(1 − heq)

heq

∑
1≤i �=j≤m

(〈fifj ,μ〉 − 〈fi,μ〉〈fj ,μ〉) ∏
k �=i,j

〈fk,μ〉.

The operator A is the generator of a Fleming–Viot process. The martingale
problem corresponding to it is well posed and each solution has paths in
CP(E×[0,1])[0,∞) by Theorem 3.2, Ethier and Kurtz [12]. We are now ready to
state the convergence result. Throughout this paper ⇒ will denote convergence in
distribution.

THEOREM 2.3. There exists a stopping time τN (with respect to filtration gen-
erated by μN ) satisfying τN → 0 a.s. as N → ∞, such that if we define processes
ĥN and μ̂N as

ĥN (t) = hN(t + τN), t ≥ 0,(2.5)

and

μ̂N(t) = μN(t + τN), t ≥ 0,(2.6)

then the following is true.

(A) For any T > 0,

sup
0≤t≤T

|ĥN (t) − heq| ⇒ 0 as N → ∞,

where heq = 1 − koff
kfb

.

(B) Suppose that the sequence of random variables {μ̂N(0)} converges in dis-
tribution to μ(0) and let π0 ∈ P(P(E × [0,1])) be the distribution of μ(0)/heq.
Then μ̂N ⇒ μ in DM1(E×[0,1])[0,∞) as N → ∞, where μ = heqν and ν is the
Fleming–Viot process with type space E × [0,1], generator A and initial distribu-
tion π0.
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REMARK 2.4. Note that the state space of the processes μ̂N is M1(E ×
[0,1]), which is compact and so P(M1(E×[0,1])) is also compact by Prohorov’s
theorem. Hence, the distributions of μ̂N(0) will certainly converge along a subse-
quence and the assertion of the theorem above will hold for this subsequence.
In fact, the distributions of μ̂N(0) converge along the entire sequence (see Re-
mark 4.4).

A heuristic explanation for the above result is as follows. As N gets larger, the
extremely fast nature of the birth and death mechanisms forces the fraction process
to immediately settle to an equilibrium value heq [given by part (A) of the above
theorem]. Note that kfbheq(1 − heq) = koffheq and so at this equilibrium value, the
net influx of population onto the membrane due to birth matches the net efflux of
population from the membrane due to death. Since the total mass on the membrane
is not allowed to deviate from this equilibrium, any addition of new mass due to
immigration must be concurrently offset by an equal reduction in existing mass
due to death. Hence, in the limit, the net demographic effect of immigration is the
same as that of mutation and, therefore, we see a mutation-like term in the limiting
generator A [see the second term in (2.4)]. Similarly, the addition of new mass on
the membrane due to birth must be accompanied by the reduction of equal mass
due to death. This gives rise to the second-order sampling term in A [see the third
term in (2.4)]. These ideas are made rigorous in the proof of Theorem 2.3 given in
Section 4.

From now on ν will denote the Fleming–Viot process given in the statement of
Theorem 2.3. We next claim that ν has a unique stationary distribution and it is also
strongly ergodic in the sense that its transition function converges asymptotically
to the stationary distribution. In fact, this convergence is exponentially fast. Let S

be any metric space and let B(S) be the Borel sigma field on S. Define the total
variation metric over the space of probability measures P(S) by

‖v1 − v2‖var = sup
�∈B(S)

‖v1(�) − v2(�)‖.

PROPOSITION 2.5. (A) The process ν is strongly ergodic and it has a unique
stationary distribution 	 ∈ P(P(E × [0,1])).

(B) The transition function of ν converges to the stationary distribution expo-
nentially fast. There exists a constant C > 0 such that

∥∥P (
ν(t) ∈ ·) − 	(·)∥∥var ≤ C exp

(
−

(
kon(1 − heq)

2heq

)
t

)
.

PROOF. Both parts follow from Theorem 5.1 and Corollary 8.4 in Ethier and
Kurtz [12]. �

Define a P([0,1])-valued process νc by

νc(t,A) = ν(t,E × A), A ∈ B([0,1]) and t ≥ 0.(2.7)



836 A. GUPTA

We will refer to νc as the clan process, as it will help us in the determination of clan
sizes. We shall discuss this further in Section 3. As a consequence of Theorem 2.3,
we get the following corollary.

COROLLARY 2.6. The process νc is the Fleming–Viot process with type space
[0,1] and generator Ac given by

AcF (μ) = kon
(1 − heq)

heq

m∑
i=1

∫
[0,1]

(
fi(z) dz − fi(x)μ(dx)

) ∏
j �=i

〈fj ,μ〉

+ kfb(1 − heq)

heq

∑
1≤i �=j≤m

(〈fifj ,μ〉 − 〈fi,μ〉〈fj ,μ〉) ∏
k �=i,j

〈fk,μ〉,

where F(μ) = ∏m
i=1〈fi,μ〉 and fi ∈ C([0,1]) for i = 1,2, . . . ,m.

PROOF. The proof is immediate from the definition of νc and the descriptions
of the generators A and Ac. �

Since the molecules are constantly diffusing on the membrane, we would expect
each clan to spread out more and more with time. However, we will show that this
does not happen in our model. We would like to measure the average spatial spread
of the molecules that belong to the same clan. One way to measure it would be to
randomly sample two molecules from the membrane population at any time t and
compute their expected distance squared, given that they are in the same clan.
We call this quantity Sp(t). For i = 1,2 let Xi(t) = (Yi(t),Ci(t)) ∈ E × [0,1] be
the sampled molecules. Then given ν(t), X1(t) and X2(t) are i.i.d. with common
distribution ν(t). Therefore,

Sp(t) = E
(‖Y1(t) − Y2(t)‖2|C1(t) = C2(t)

)
= E(‖Y1(t) − Y2(t)‖21{C1(t)=C2(t)})

P (C1(t) = C2(t))

= E(E(‖Y1(t) − Y2(t)‖21{C1(t)=C2(t)}|ν(t)))

E(E(C1(t) = C2(t)|ν(t)))

= E(
∫
E

∫
[0,1] ‖y1 − y2‖21{c1=c2}ν(t, dy1, dc1)ν(t, dy2, dc2))

E(
∫
E

∫
[0,1] 1{c1=c2}ν(t, dy1, dc1)ν(t, dy2, dc2))

.

From Proposition 2.5 we know that the process ν has a unique stationary distribu-
tion 	 ∈ P(P(E × [0,1])). At stationarity, Sp(t) does not depend on t and can be
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written as

Sp =
∫

P(E×[0,1])

(∫
E

∫
[0,1]

‖y1 − y2‖21{c1=c2}μ(dy1, dc1)μ(dy2, dc2)

)

× 	(dμ)(2.8)

×
(∫

P(E×[0,1])

(∫
E

∫
[0,1]

1{c1=c2}μ(dy1, dc1)μ(dy2, dc2)

)
	(dμ)

)−1

.

The theorem below gives a precise formula for Sp . It will be proved in Section 4.

THEOREM 2.7. Let α = 1−heq
heq

= koff
kfb−koff

. Then

Sp = 2D

((kon + kfb)α + D/R2)
.

In the next section we connect all the results mentioned in this section and
present the complete picture in our biological setting.

3. The biological interpretation. In this paper our main objective is to show
that if we take the model for cell polarity given by Altschuler, Angenent, Wang
and Wu [1] (see Description 1.1) and scale the parameters kfb and koff by the pop-
ulation size N , then, unlike the original model, we get cell polarity in the infinite
population limit. In this section we describe how the results mentioned in the last
section help us in making this conclusion. These results will also give us an insight
into the influence of various biological parameters on polarity.

The main convergence result, Theorem 2.3, shows that as N → ∞ the fraction
of the molecules on the membrane at any time is equal to heq and the dynamics
of cell molecules is given by a measure-valued process μ where μ = heqν with ν

being a Fleming–Viot process. The process ν has a unique stationary distribution
and its transition function converges exponentially to this stationary distribution
(see Proposition 2.5).

At any time, the molecules on the membrane can be divided into clans based on
their ancestral relationships. We now determine the distribution of the clan sizes.
Let νc be the process given by (2.7). From Corollary 2.6 we know that it is a
Fleming–Viot process with type space [0,1] and generator Ac. Such a Fleming–
Viot process arises as a reformulation of the infinitely-many-neutral-alleles model
due to Kimura and Crow [27] (see [11] for more details). By Theorem 7.2 in
Ethier and Kurtz [12], at any time t , the random probability measure νc(t) is purely
atomic. This means that νc(t) is of the form

∑∞
i=0 piδxi

, where pi is the size of the
atom corresponding to the point mass at xi . At any t ≥ 0 and any clan indicator
z ∈ [0,1], the size of the clan at time t corresponding to z is just μ(t,E × {z}).
The sum of all the clan sizes is quite clearly heq. If we normalize each clan size
by dividing it by heq, then the normalized size of the clan at time t corresponding
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to z is just ν(t,E × {z}) = νc(t, {z}). In other words, the normalized clan sizes at
time t are nothing but the sizes of the atoms in νc(t). From now on by clan size we
always mean the normalized clan size.

The assertions of Proposition 2.5 are true for νc as well. Let �∞ be the infinite
simplex given by

�∞ =
{
(x1, x2, . . .) :

∞∑
i=1

xi = 1 and 0 < xi < 1, i = 1,2, . . .

}
.

GEM(θ) distribution is a distribution over the infinite simplex �∞ that depends on
a parameter θ ∈ [0,∞). This distribution is named after three population geneti-
cists McCloskey, Engen and Griffiths (see Johnson, Kotz and Balakrishnan [24]
and Pitman and Yor [33]). It is defined as below.

DEFINITION 3.1 [GEM(θ) distribution]. Let {Wn :n = 1,2, . . .} be a se-
quence of i.i.d. Beta(1, θ) random variables [i.e., each Wi has density θ(1 − x)θ−1

for 0 < x < 1]. Define P1 = W1 and Pn = (1−W1)(1−W2) · · · (1−Wn−1)Wn for
n ≥ 1. Then the sequence {Pn :n = 1,2, . . .} is said to have the GEM(θ) distribu-
tion.

If we define

θ = kon

kfb
,(3.1)

then at stationarity the sizes of the atoms in νc(t) are distributed according to the
GEM(θ) distribution. This is a direct consequence of Theorem 4.6 in Chapter 10,
Ethier and Kurtz [11]. This result shows that at stationarity there are infinitely
many clans on the membrane and their sizes follow the GEM(θ) distribution. If
we arrange these sizes in descending order, then the resulting random infinite vec-
tor has the Poisson–Dirichlet distribution with the same parameter θ (see Chap-
ter 2 in [16]). The Poisson–Dirichlet distribution was introduced by Kingman [28]
in 1975 and many of its properties are well known. This characterization of clan
sizes at stationarity makes it possible to compute the distribution and moments
of the largest clan size, second largest clan size, third largest clan size and so on
(see Griffiths [20]). The joint distribution of the first few largest clans can also
be obtained (see Watterson [42]). If we sample n molecules from the membrane at
stationarity from ν(t), then the distributional properties of the clans represented by
this sample can be studied via the Ewen’s Sampling Formula (see [14]). All these
results indicate that the clan sizes at stationarity are far from uniform and there
are a few large clans and many small clans. Most of the molecules are contained
in these few large clans. In fact, if we sample n membrane molecules at station-
arity, then they would belong to roughly θ logn distinct clans asymptotically (see
Theorem 2.11 in [16]).
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The quantity Sp [given by (2.8)] measures the average spatial spread of the
clans and its value at stationarity is given by Theorem 2.7. At stationarity there are
only a few large clans and if Sp is small relative to the cell size, then the spatial
spread of these large clans is also small. Therefore, the distribution of molecules
at stationarity is highly asymmetrical at all times.

We now discuss the emergence of cell polarity. First we need to define it math-
ematically.

DEFINITION 3.2 (ε-polarity). For any 0 < ε � 1, we say that the cell is ε-
polarized if at least (1 − ε) fraction of the membrane population belongs to a
single clan and also resides in a single hemisphere on the membrane.

The above definition is motivated by the biological literature (see [1, 4, 5]). Note
that the molecules in a clan will generally appear to cluster around the location of
their most recent common ancestor (see [7]). Therefore, as in [1], if diffusion is
small, having one predominant clan on the membrane is a good indication that a
single site of polarity has formed.

At stationarity, the probability that the cell is ε-polarized at any time t can be
expressed as

pε = 	
({

β ∈ P(E × [0,1]): there exists a z ∈ [0,1]
(3.2)

and a hemisphere H ⊂ E such that β(H × {z}) ≥ 1 − ε
})

,

where 	 ∈ P(P(E × [0,1])) is the stationary distribution of the process ν. We
mentioned before that at stationarity, the vector of clan sizes in descending order
follows the Poisson Dirichlet distribution with parameter θ . Let V1 be the size of
the largest clan. For any ε > 0, Theorem 2.5 in [16] implies that

qε := P
(
V1 >

√
1 − ε

)
> 0.(3.3)

Suppose that we are at stationarity. Let rε denote the probability that (
√

1 − ε)-
fraction of the molecules in the largest clan are situated in a single hemisphere on
the membrane given that the size of the largest clan is at least

√
1 − ε. Observe that

Sp is like a weighted average of the spatial spreads of the clans, where the weight
of each clan is proportional to its size. Therefore, if almost all the molecules are
in the largest clan, then Sp is approximately the spatial spread of the largest clan.
Hence, if Sp is small in comparison to the cell size, we can reasonably expect rε to
be positive. Observe that pε ≥ qεrε and so pε is also positive for a small positive ε.
Since the process ν is ergodic, Birkhoff’s ergodic theorem (see Theorem 10.6 and
Corollary 10.9 in [25]) implies that the cell will definitely reach the ε-polarized
state and, in fact, spend pε proportion of its time there. Thus, the cell gets ε-
polarized infinitely often and we have recurring cell polarity.
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Before we proceed we need to define some new quantities. Let

S̄p = Sp

R2 ,(3.4)

χ = D

R2(3.5)

and

γ = kfb

(
1 − heq

heq

)
=

(
kfbkoff

kfb − koff

)
.(3.6)

We can interpret S̄p as the average spatial spread of the clans relative to the cell
size, while χ can be seen as the speed of diffusion relative to the cell size. Note that
the ratio (1 − heq)/heq is the molecular mass available in the cytosol for recruit-
ment per membrane molecule. The parameter γ is just the feedback rate tempered
by this availability ratio. It can be interpreted as the effective feedback strength.
We can recast the result of Theorem 2.7 as

S̄p = 2χ

((1 + θ)γ + χ)
.(3.7)

Recall that the biological parameters in our model are D, R, kon, kfb and koff.
We now examine their impact on cell polarity. Instead of working with the orig-
inal parameters, we will work with θ , χ and γ . From the above discussion it is
clear that the formation of polarity will be facilitated if the probability qε [given
by (3.3)] is high while the quantity S̄p is low. As noted earlier, the parameter
θ controls the distribution of molecules into the infinitely many clans present at
stationarity. From the properties of Poisson Dirichlet distributions we know that
the probability qε decreases as θ increases and vice-versa (see [6] and Chapter 2
in [16]). In fact, it can be shown that this probability is nearly 1 if θ ≈ 0 (see [15]).
Hence, polarity will establish more easily if θ is small. Recall that the process νc

[given by (2.7)] is the Fleming–Viot process corresponding to the infinitely-many-
neutral-alleles model. The sample paths of this process take values over the space
of atomic measures over [0,1]. Using Dirichlet forms, Schmuland [36] has shown
that with probability 1 there will exist times at which this process will hit the state
of having a single atom if and only if θ < 1. Therefore, θ < 1 assures that there
will exist times when there is only one clan present. At these times the chances of
observing polarity will be nearly 1 if S̄p is sufficiently small. The formula (3.7)
makes it clear that the quantity S̄p gets smaller as the relative diffusion speed (χ )
goes down or the effective feedback strength (γ ) goes up.

Recall that the likelihood of finding a cell in the ε-polarized state at any time at
stationarity is given by pε [given by (3.2)]. The observations made in the preced-
ing paragraph show that pε increases with γ but decreases with θ and χ . Unfor-
tunately, we do not have a precise formula for pε at the moment. Such a formula
would be really useful in determining the chances of observing polarity in a cell
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with any given set of parameters. It will also give us a clear idea of the time spent
by the cell in the polarized state.

We would now like to compare our results to the results presented in [1] for the
original model. To avoid confusion, we will denote the association, dissociation
and recruitment rates in the original model as ko

on, ko
off and ko

fb, respectively. Note
that under our scaling ko

on = kon while ko
off = Nkoff and ko

fb = Nkfb, where N is
the total population size. The analysis in [1] assumes that ko

fb > ko
off and ko

on is
much smaller in comparison to ko

off or ko
fb. Observe that spontaneous membrane

association tends to spatially homogenize the molecules on the membrane and
so if ko

on is not small in comparison, we cannot hope to see cell polarity. Under
the above assumptions it is shown in [1] that the fraction of molecules on the
membrane approaches the equilibrium value

heq = 1 − ko
off

ko
fb

+ O

(
ko

on

ko
fb

)
,

at an exponential rate with half-time of (heqk
o
fb)

−1. In our scaling, ko
on = O(1),

while ko
fb and ko

off are O(N). Therefore, it is not surprising that as N → ∞ the
fraction of molecules on the membrane reaches the equilibrium value

heq = 1 − koff

kfb

almost instantly [see part (A) of Theorem 2.3]. Since kon is small, the bulk of the
population at equilibrium must come through membrane recruitment. It is men-
tioned in [1] that if ko

fb ≤ ko
off, the membrane will be nearly empty at equilibrium

and so clusters cannot form. For the same reason Assumption 1.2 is required in
this paper.

As we have discussed above, the emergence of cell polarity crucially depends on
the likelihood of having just one large clan on the membrane. It is shown in [1] that
for a finite population size N , the number of clans on the membrane will reduce
to just 1 at certain times, giving rise to polarity (if D is small), if the spontaneous
association events are rare (ko

on is small). However, the frequency at which these
times arrive is proportional to 1/N and, hence, there is no recurring polarity in the
infinite population limit unlike the rescaled model that we consider.

It is observed in [1] that the clustering behavior for the original model is en-
tirely determined by a simple relationship between the ratio ko

on
ko

fb
and the population

size N . Their analysis shows that if ko
on

ko
fb

� N−2, then certainly one cluster will

form and if ko
on

ko
fb

� (N−1 logN)1/2, then no clusters will form. Using numerical

simulations, they observe that the transition occurs when ko
on

ko
fb

≈ N−1. This moti-

vated us to scale ko
fb by a factor of N and analyze the resulting model. We also

had to scale ko
off by N because otherwise the entire population will soon be on

the membrane (as heq will then be 1), depleting the cytosol and preventing further
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membrane recruitment. In such a scenario, the feedback mechanism will be un-
able to counter the surface diffusion and, hence, there will not be any lasting cell
polarity. Note that having ko

fb = Nkfb is the same as changing the feedback rate
in Description 1.1 to kfb × (number of molecules in the cytosol). This is the same
as saying that each membrane molecule recruits each cytosol molecule at rate kfb.
Such a definition may be more natural for the feedback circuits found in certain
cells. Our results provide an explanation for the existence of cell polarity in such
cells if the population size is large.

There are many biologically appealing questions about the model that we have
been unable to answer in this paper. As we mentioned above, it would be useful
be have precise estimates for pε . It would also be interesting to compute the time
it takes to hit the ε-polarized state and the time the cell stays polarized after that.
These results would give us a better idea about the the onset and maintenance of
polarity. The role of various model parameters will emerge clearly as well.

The model we study does have the drawback of being simplistic, as all the
molecules in the cell are identical. Most cells that exhibit polarity have molecules
of many different types recruiting each other at various type-dependent rates (see
[3, 9, 40]). We would like to know if a multi-type generalization of our polarity
model would also lead to tractable measure-valued dynamics in the infinite popu-
lation limit. We hope to answer this question elsewhere in the very near future.

In this paper we have only looked at single-site polarity. Many cells exhibit
anterior–posterior polarity (see [13, 32, 37]). In such cells there are usually two
types of molecules and they segregate themselves in such a way that one type of
molecule forms the front and the other type of molecule forms the rear. Such an
arrangement is vital for cell division and locomotion. It has been suggested that this
phenomenon is caused when molecules not only recruit the molecules of their own
type but also locally inhibit the recruitment of the other type. It may be possible
to extend the model considered here to account for anterior–posterior polarity as
well.

The story of cell polarity is far from over and we hope that more work will be
done to mathematically understand this biologically vital phenomenon and answer
the challenging questions it poses.

4. Proofs. In this section we prove the main results of our paper: Theorems
2.3 and 2.7.

4.1. Proof of part (A) of Theorem 2.3. Recall that nN(t) = N〈1,μN(t)〉 de-
notes the number of molecules on the membrane at time t . Since μN has gen-
erator A

N , we can write the generator KN for the N0-valued process nN as the
following. For f ∈ C(R) let

KNf (n) = kon(N − n)
(
f (n + 1) − f (n)

) + Nkoffn
(
f (n − 1) − f (n)

)
+ kfbn(N − n)

(
f (n + 1) − f (n)

)
.
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We start with nothing on the membrane and, hence, nN(0) = 0. The form of the
generator KN allows us to write the equation for nN as

nN(t) = Y1

(
kon

∫ t

0

(
N − nN(s)

)
ds

)
− Y2

(
Nkoff

∫ t

0
nN(s) ds

)
(4.1)

+ Y3

(
Nkfb

∫ t

0
nN(s)

(
1 − nN(s)

N

)
ds

)
.

We would like to estimate the first time nN reaches a positive fraction of the
population size N . Pick an ε > 0 such that kfb(1 − ε) > koff and define

ρN
ε = inf {t ≥ 0 :nN(t) ≥ Nε}.(4.2)

LEMMA 4.1. Let λ = kfb(1 − ε) − koff. Then

lim
N→∞P

(
ρN

ε ≤ 2 logN

λN

)
= 1.

Moreover, ρN
ε → 0 a.s. as N → ∞.

PROOF. We first slow the time by a factor of N . Let ñN (t) = nN(t/N). Since
nN satisfies equation (4.1), ñN satisfies

ñN (t) = Y1

(
kon

∫ t

0

(
1 − ñN (s)

N

)
ds

)
− Y2

(
koff

∫ t

0
ñN (s) ds

)
(4.3)

+ Y3

(
kfb

∫ t

0
ñN (s)

(
1 − ñN (s)

N

)
ds

)
.

Define

ρ̃N
ε = inf {t ≥ 0 : ñN (t) ≥ Nε} = NρN

ε .(4.4)

To prove the first claim of the lemma, we only need to show that

lim
N→∞P

(
ρ̃N

ε ≤ 2 logN

λ

)
= 1.(4.5)

For 0 ≤ t < ρ̃N
ε , ñN (t)

N
≤ ε. Define another process Z by the equation

Z(t) = Y1
(
kon(1 − ε)t

) − Y2

(
koff

∫ t

0
Z(s) ds

)
(4.6)

+ Y3

(
kfb(1 − ε)

∫ t

0
Z(s) ds

)
.

Note that Z is independent of N and ε is chosen so that kfb(1 − ε) > koff. The
form of the equation for Z shows that Z is a supercritical branching process with
immigration. For 0 ≤ t < ρ̃N

ε we clearly have Z(t) ≤ ñN (t) < εN . Define

ρ̄N
ε = inf {t ≥ 0 :Z(t) ≥ Nε}.(4.7)
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It is easy to see that ρ̃N
ε ≤ ρ̄N

ε . We will find a probabilistic upper bound on ρ̄N
ε

which will show (4.5) and hence prove the first claim of the lemma.
A supercritical branching process with immigration can be written as a super-

position of independent supercritical branching processes starting with an initial
population of 1 at various times. This fact along with Theorems 1 and 2 in Chap-
ter 3, Section 7, in Athreya and Ney [2] show that there exists a random variable
W such that W > 0 a.s. and

lim
t→∞ e−λtZ(t) = W a.s.

Therefore,

lim
N→∞ e−λρ̄N

ε Z(ρ̄N
ε ) = W a.s.,

which implies that

lim
N→∞ log(e−λρ̄N

ε Z(ρ̄N
ε )) = lim

N→∞
(−λρ̄N

ε + logZ(ρ̄N
ε )

) = logW a.s.

Observe that Nε ≤ Z(ρ̄N
ε ) ≤ Nε + 1. From above we get

lim
N→∞

ρ̄N
ε

logN
= 1

λ
a.s.

Since NρN
ε = ρ̃N

ε ≤ ρ̄N
ε a.s., the above limit implies (4.5) and also shows that

ρN
ε → 0 a.s. as N → ∞. This completes the proof of the lemma. �

Recall the definition of equilibrium fraction heq from the statement of Theo-

rem 2.3. Fix ε to be heq
2 = 1

2(1 − koff
kfb

) and let ρN be ρN
ε for this particular choice

of ε. By Lemma 4.1 we obtain

lim
N→∞P

(
ρN ≤ 4 logN

(kfb − koff)N

)
= 1.(4.8)

Recall that the process hN is given by (2.3). Using (4.1), we can write an equa-
tion for hN as

hN(t) = 1

N
Y1

(
Nkon

∫ t

0

(
1 − hN(s)

)
ds

)
− 1

N
Y2

(
N2koff

∫ t

0
hN(s) ds

)
(4.9)

+ 1

N
Y3

(
N2kfb

∫ t

0
hN(s)

(
1 − hN(s)

)
ds

)
.

Let h̄N be the process given by

h̄N (t) = hN(t + ρN).(4.10)

Note that

h̄N (0) = hN(ρN) = �Nheq/2�
N

.(4.11)



STOCHASTIC MODEL FOR CELL POLARITY 845

For i = 1,2,3 let

Ȳi(t) = Yi(t + δN
i ) − Yi(δ

N
i ),

where

δN
1 = Nkon

∫ ρN

0

(
1 − hN(s)

)
ds,

δN
2 = N2koff

∫ ρN

0
hN(s) ds

and

δN
3 = N2kfb

∫ ρN

0
hN(s)

(
1 − hN(s)

)
ds.

From the strong Markov property of the Poisson process we can conclude that Ȳ1,
Ȳ2 and Ȳ3 are independent unit Poisson processes. We can write the equation for
process h̄N as

h̄N (t) = h̄N (0) + hN(t + ρN) − hN(ρN)

= h̄N (0) + 1

N
Ȳ1

(
konN

∫ t

0

(
1 − h̄N (s)

)
ds

)
(4.12)

− 1

N
Ȳ2

(
N2koff

∫ t

0
h̄N (s) ds

)

+ 1

N
Ȳ3

(
N2kfb

∫ t

0
h̄N (s)

(
1 − h̄N (s)

)
ds

)
.

Let Ȳ c
i be the centered version of Ȳi [i.e., Ȳ c

i (u) = Ȳi(u) − u for u ≥ 0]. Define

MN(t) = 1

N
Ȳ c

1

(
konN

∫ t

0

(
1 − h̄N (s)

)
ds

)
− 1

N
Ȳ c

2

(
N2koff

∫ t

0
h̄N (s) ds

)
(4.13)

+ 1

N
Ȳ c

3

(
N2kfb

∫ t

0
h̄N (s)

(
1 − h̄N (s)

)
ds

)
,

which is a martingale with quadratic variation given by

[MN ]t = 1

N2 Ȳ1

(
konN

∫ t

0

(
1 − h̄N (s)

)
ds

)
+ 1

N2 Ȳ2

(
N2koff

∫ t

0
h̄N (s) ds

)
(4.14)

+ 1

N2 Ȳ3

(
N2kfb

∫ t

0
h̄N (s)

(
1 − h̄N (s)

)
ds

)
.

Since 0 ≤ h̄N ≤ 1, we have

E([MN ]t ) ≤ kon
t

N
+ kofft + kfbt.(4.15)
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By centering the Poissons in equation (4.12), we can write

h̄N (t) = h̄N (0) + kon

∫ t

0

(
1 − h̄N (s)

)
ds − Nkoff

∫ t

0
h̄N (s) ds

(4.16)

+ Nkfb

∫ t

0
h̄N (s)

(
1 − h̄N (s)

)
ds + MN(t).

Let F(h) = kfbh(1 − h) − koffh and

ZN(t) =
∫ t

0
kon

(
1 − h̄N (s)

)
ds + MN(t).

From (4.15) and Corollary 2.3.3 in [23] we can conclude that {ZN } is a sequence
of semimartingales that is relatively compact in DR[0,∞). The jumps in ZN are
of size 1/N and, hence, if Z is a limit point of this sequence, then Z must be a
continuous process a.s. equation (4.16) can be written as

h̄N (t) = h̄N (0) + ZN(t) + N

∫ t

0
F(h̄N(s)) ds.(4.17)

Define another process αN by

αN(t) = h̄N (t) − heq.

Observe that

F(h̄N(t)) = kfb
(
αN(t) + heq

)(
1 − heq − αN(t)

) − koff
(
αN(t) + heq

)
= αN(t)

(
kfb(1 − heq) − koff

) + kfbheq(1 − heq)

− koffheq − kfbα
N(t)

(
αN(t) + heq

)
= −kfbα

N(t)h̄N(t)

(
using heq = 1 − koff

kfb

)
.

From (4.17) we get

αN(t) = αN(0) − Nkfb

∫ t

0
h̄N (s)αN(s) ds + ZN(t),

which can be written in differential form as

dαN(t) + Nkfbh̄
N (t)αN(t) dt = dZN(t).

Let βN(t) = Nkfb
∫ t

0 h̄N (s) ds. Then

d
(
αN(t)eβN (t)) = eβN(t) dZN(t).

Integrating from 0 to t , we get

αN(t)eβN(t) − αN(0) =
∫ t

0
eβN(s) dZN(s).
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Therefore,

αN(t) − αN(0)e−βN(t) = e−βN(t)
∫ t

0
eβN(s) dZN(s).(4.18)

Let

σ̄ N = inf
{
t ≥ 0 : h̄N (t) ≤ heq

4

}
.

For 0 ≤ t ≤ σ̄ N

h̄N(t) ≥ heq

4
− 1

N

and, hence, for any small positive number ε,

inf
0≤t≤(T ∧σ̄ N−ε)

|βN(t + ε) − βN(t)| ⇒ ∞

as N → ∞. Fix any T > 0. By Lemma 5.2 in [26],

sup
0≤t≤T ∧σ̄ N

e−βN(t)

∣∣∣∣
∫ t

0
eβN(s) dZN(s)

∣∣∣∣ ⇒ 0.

Hence, (4.18) gives

sup
0≤t≤T ∧σ̄ N

∣∣αN(t) − αN(0)e−βN(t)
∣∣ ⇒ 0.(4.19)

If σ̄ N < T , then from the definitions of σ̄ N , αN and (4.11) we get

sup
0≤t≤T ∧σ̄ N

∣∣αN(t) − αN(0)e−βN(t)
∣∣ ≥ ∣∣αN(σ̄N) − αN(0)e−βN(σ̄N )

∣∣

≥
∣∣∣∣−3heq

4
+ heq

2
e−βN(σ̄N )

∣∣∣∣ − 2

N

≥ heq

4
− 2

N
.

This calculation shows that

P(σ̄N < T ) ≤ P

(
sup

0≤t≤T ∧σ̄ N

∣∣αN(t) − αN(0)e−βN(t)
∣∣ ≥ heq

4
− 2

N

)
.

Therefore, from (4.19), P(σ̄N < T ) → 0 for any T > 0 and, hence, σ̄ N → ∞ in
probability.

Let the stopping time τN be given by

τN = ρN + logN

N
.(4.20)
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From Lemma 4.1 ρN → 0 a.s. and, hence, τN → 0 a.s. Let the process ĥN be
defined by

ĥN (t) = hN(t + τN) = h̄N

(
t + logN

N

)
, t ≥ 0.(4.21)

Note that

sup
0≤t≤((T ∧σ̄ N )−(logN)/N)

|ĥN (t) − heq|

= sup
0≤t≤((T ∧σ̄ N )−(logN)/N)

∣∣∣∣αN

(
t + logN

N

)∣∣∣∣
≤ sup

0≤t≤((T ∧σ̄ N )−(logN)/N)

∣∣∣∣αN

(
t + logN

N

)
− αN(0)e−βN(t+(logN)/N)

∣∣∣∣
+ sup

0≤t≤((T ∧σ̄ N )−(logN)/N)

∣∣αN(0)e−βN(t+(logN)/N)
∣∣.

The first term converges to 0 in probability due to (4.19). Observe that for 0 ≤ t ≤
((T ∧ σ̄ N ) − logN

N
),

βN

(
t + logN

N

)
≥ Nkfb

∫ t+(logN)/N

0
h̄N (s) ds = kfb

(
heq

4
− 1

N

)
logN.

Thus, the second term above converges to 0 as N → ∞ a.s. Since logN/N → 0
and σ̄ N → ∞, we get

sup
0≤t≤T

|ĥN (t) − heq| ⇒ 0.

This proves part (A) of Theorem 2.3.

4.2. Proof of part (B) of Theorem 2.3. To prove part (B) of the theorem, we
will use the particle construction introduced by Donnelly and Kurtz in [8]. In this
construction the molecules are arranged in levels which are indexed by positive
integers. The arrangement is such that for any positive integer n, the process de-
termined by the first n levels is embedded in the process determined by the first
(n + 1) levels. This allows us to pass to the projective limit. Another advantage of
this construction is that it makes the ancestral relationships between molecules ex-
plicit. For any set of molecules we can trace back their genealogical tree to obtain
results about the measure-valued process.

We first motivate the particle construction. Suppose the total population size
is N and at any time t there are nN(t) molecules on the membrane. The pro-
cess nN follows equation (4.1) and suppose its evolution is known. Each molecule
has a type in E × [0,1] as before. We can represent the population on the mem-
brane at time t by a vector (YN

1 (t), YN
2 (t), . . . , YN

nN(t)
). Since the labeling of the
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molecules is arbitrary, it contains exactly the same information as the measure
Z̃(t) = ∑n

i=1 δYi(t). We can choose any labeling we find convenient. So we look
into the future and order the individuals according to the time of survival of their
lines of descent. In this new ordering we arrange the molecules into levels, which
are taken to be positive integers. At any time t , if there are nN(t) molecules, we
will represent the population as the vector (XN

1 (t),XN
2 (t), . . . ,XN

nN(t)
). We will re-

fer to XN
i as the ith level process, where XN

i (t) ∈ E ×[0,1] is the molecule type at
level i at time t . Molecules are allowed to change levels with time. If a death hap-
pens at time t , then nN(t) = nN(t−) − 1 and we just remove the molecule at the
highest index nN(t). If an immigration happens at time t , then nN(t) = nN(t−)+1
and we uniformly select a level from the first nN(t−) + 1 levels and insert the im-
migrant molecule there. If a birth event happens at time t , then nN(t) = nN(t−)+1
and we do the following. We first uniformly select two levels i and j from the first
nN(t−) + 1 levels. Suppose i is the smaller of the two levels. Then we shall re-
fer to the molecule XN

i (t−) as the parent and insert a copy of it at level j . The
molecules {XN

k (t−) :k = j, j + 1, . . .} are shifted up by one level. So at time t , the
offspring molecule XN

j (t) is a copy of XN
i (t−), while XN

k (t) = XN
k (t−) for k < j

and XN
k (t) = XN

k−1(t−) for k > j . In between all these events molecules are doing
speed D Brownian motion on E and changing their location.

What we have described above is a Markov process XN with state space

SN =
N⋃

n=0

(E × [0,1])n.

We adopt the convention that (E×[0,1])0 = {�}. For x ∈ SN , if x ∈ (E×[0,1])n,
then let |x| = n for any n = 0,1, . . . ,N . If at time t , XN(t) = x ∈ SN and |x| = n,
then it means that there are n molecules on the membrane with the type vector
x = (x1, x2, . . . , xn) ∈ (E × [0,1])n.

If |x| = n ≥ m and x = (x1, x2, . . . , xn), then let x|m = (x1, x2, . . . , xm). Any
f ∈ B((E × [0,1])m) can be regarded as a function over SN by defining it as
f (x) = 0 if |x| < m and f (x) = f (x|m) if |x| ≥ m. We now specify the generator
AN of the Markov process XN by its action on functions in its domain D(AN) = C
(see Definition 2.1) as

ANf (x) = D

2

n∑
i=1

�if (x) + nNkoff
(
f (dn(x)) − f (x)

)

+ kon

(
N − n

n + 1

) n+1∑
i=1

∫
E

∫ 1

0

(
f (θi(x, (y, r))) − f (x)

)
ϑ(dy)dr(4.22)

+ 2kfb

(
N − n

n + 1

) ∑
1≤i<j≤(n+1)

(
f (θij (x)) − f (x)

)
,
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where n = |x| and if x = (x1, x2, . . . , xn), then di(x) = (x1, x2, . . . , xi−1, xi+1,

. . . , xn) (remove the ith coordinate), θij (x) = (x1, . . . , xj−1, xi, xj , . . . , xn) (insert
a copy of xi at the j th place) and θi(x, (y, r)) = (x1, . . . , xi−1, (y, r), xi, . . . , xn)

[insert (y, r) at the ith place].
Viewing the operator AN as a bounded perturbation of the diffusion operator

[given by the first term on the right of (4.22)], we can argue that the martingale
problem for AN is well posed in the same way we argued for A

N in Section 2.
We now relate any solution of the martingale problem for AN to a solution of the
martingale problem for A

N [see (2.2)] by using the Markov mapping theorem (see
Theorem 2.7 in Kurtz [29]). Let

SN
0 = MN

a (E × [0,1]) =
{

1

N

n∑
i=1

δxi
: 0 ≤ n ≤ N and x1, . . . , xn ∈ E × [0,1]

}

and

SN =
N⋃

n=0

(E × [0,1])n

as before. Define γ :SN → SN
0 by

γ (x) = 1

N

n∑
i=1

δxi
if x = (x1, x2, . . . , xn).

Define the transition function α :SN
0 → P(SN) by

α

(
1

N

n∑
i=1

δxi
, dz

)
= 1

n!
∑

σ∈�n

δ(xσ(1),xσ(2),...,xσ(n)) dz,

where �n is the set of all permutations on {1,2, . . . , n}.

LEMMA 4.2. Let πN
0 ∈ P(SN

0 ) and define πN = ∫
SN

0
α(y, ·)πN

0 (dy). If νN is

the solution of the martingale problem for (AN,πN
0 ) and XN is the solution of the

martingale problem for (AN,πN), then γ (XN) and νN have the same distribution
in DMN

a (E×[0,1])[0,∞). Furthermore, for any t ≥ 0 the distribution of XN(t) =
(XN

1 (t),XN
2 (t), . . .) is exchangeable.

REMARK 4.3. The length of the vector XN(t) is nN(t), which is a random
variable. When we say that the distribution of XN(t) = (XN

1 (t),XN
2 (t), . . .) is

exchangeable we mean that given nN(t) = n, the distribution of (XN
1 (t),XN

2 (t),

. . . ,XN
n (t)) is exchangeable.
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PROOF OF LEMMA 4.2. The definition of α ensures that α(μ,γ −1(μ)) = 1
for all μ ∈ SN

0 . If f ∈ C ∩ C((E × [0,1])m) and μ = 1
N

∑n
i=1 δxi

, then let

F(μ) =
∫
SN

f (z)α(μ,dz) = 1

n!
∑

σ∈�n

f
(
xσ(1), . . . , xσ(n)

) = 〈
f,μ(m)〉.(4.23)

Hence, F ∈ C̄ = D(A). Now we show that for such a function F

A
NF(·) =

∫
SN

ANf (z)α(·, dz).(4.24)

On writing down the expressions for A
N and AN using (2.2) and (4.22), we ob-

serve that there are four terms on each side of (4.24). We will show that the equality
holds term by term. It is easy to see that the first term corresponding to the Brown-
ian diffusion of membrane molecules is equal on both sides. We check the equality
for the next three terms below.

For x = (x1, . . . , xn) let σ(x) = (xσ(1), xσ(2), . . . , xσ(n)) for any σ ∈ �n. Let
μ = 1

N

∑n
i=1 δxi

. Then

F

(
μ + 1

N
δ(y,r)

)
= 1

(n + 1)!
∑

σ∈�n+1

f (σ(θn+1(x, (y, r))))

(4.25)

= 1

n + 1

n+1∑
i=1

1

n!
∑

σ∈�n

f (θi(σ (x), (y, r))).

Similarly,

N

∫
E×[0,1]

F

(
μ + 1

N
δx

)
μ(dx) =

n∑
i=1

1

(n + 1)!
∑

σ∈�(n+1)

f (σ (θin+(x)))

= 1

(n + 1)!
n∑

i=1

∑
j �=i

∑
σ∈�n

f (θij (σ (x)))(4.26)

= 2

n + 1

∑
1≤i<j≤(n+1)

1

n!
∑

σ∈�n

f (θij (σ (x))),

where n+ = (n + 1) in the first equation above. Finally,

N

∫
E×[0,1]

F

(
μ − 1

N
δx

)
μ(dx) =

n∑
i=1

1

(n − 1)!
∑

σ∈�n−1

f (σ(di(x)))

= 1

(n − 1)!
∑

σ∈�n

f (σ (dn(x)))(4.27)

= n
1

n!
∑

σ∈�n

f (σ (dn(x))).
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Equations (4.25), (4.26) and (4.27) show that the relation (4.24) holds and so the
Markov mapping theorem is applicable. Therefore, we can conclude that γ (XN)

and νN have the same distribution in DMN
a (E×[0,1])[0,∞). From Corollary 3.5 in

Kurtz [29] we obtain that if nN(t) = n, then

E(f (XN
1 (t),XN

2 (t), . . . ,XN
n (t))|Ft ) =

∫
SN

f (z)α(γ (XN(t)), dz),

where {Ft } is the filtration generated by the process γ (XN(·)). Since α is symmet-
ric, the distribution of (XN

1 (t),XN
2 (t), . . .) is exchangeable. �

Recall from Section 2 that π̄0 ∈ P(MN
a (E ×[0,1])) is the distribution that puts

all the mass at the 0 measure and μN [given by (2.1)] is the unique solution to the
martingale problem corresponding to (AN, π̄0). For τN given by (4.20), define the
process μ̂N by

μ̂N(t) = μN(t + τN), t ≥ 0.(4.28)

Also let

n̂N (t) = NĥN(t) = nN(t + τN), t ≥ 0.(4.29)

Let π̂N
0 ∈ P(MN

a (E × [0,1])) be the distribution of μN(τN) = μ̂N(0) and de-
fine πN ∈ P(SN) by πN = ∫

SN
0

α(y, ·)π̂N
0 (dy). Let XN be the unique solu-

tion to the martingale problem for (AN,πN). Note that XN lives in the space
SN = ⋃N

n=0(E × [0,1])n and for any t ≥ 0, |XN(t)| = n̂N (t). The process ĥN

converges to heq uniformly over compact time intervals [from part (A) of Theo-
rem 2.3]. Hence, n̂N converges to ∞ uniformly over compact time intervals as
well.

For part (B) of Theorem 2.3 we assume that the sequence of random vari-
ables {μ̂N(0)} converges in distribution to μ(0) as N → ∞. Let π̂0 ∈ P(M1(E ×
[0,1])) be the distribution of μ(0) and π0 ∈ P(P(E × [0,1])) be the distribu-
tion of μ(0)/heq. Our assumption implies that π̂N

0 converges weakly to π̂0. Due
to part (A) of Theorem 2.3, this is equivalent to saying that the distributions of
μN(τN)/hN(τN) converge weakly to π0.

Now sample a probability measure μ from π0 and let (Y1, Y2, . . .) be an infi-
nite sequence of exchangeable random variables with de Finetti measure μ. Let
π ∈ P((E × [0,1])∞) be the corresponding distribution of (Y1, Y2, . . .). Since
π̂N

0 ⇒ π̂0, we also have πN ⇒ π .
From now on consider XN as a process over (E × [0,1])∞ in which the com-

ponents greater than N do not vary. The space (E × [0,1])∞ is given the usual
product topology.
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We can regard any function f ∈ C ∩ B((E × [0,1])m) as a function over
(E × [0,1])∞ by defining it as f (x) = f (x|m) = f (x1, . . . , xm) for any x ∈
(E × [0,1])∞. By the definition of XN , for any f ∈ C ∩ B((E × [0,1])m),

MN
X,f (t) = f (XN(t)) −

∫ t

0
ANf (XN(s)) ds(4.30)

is a martingale. Define another process

ẐN(t) = γ (XN(t)) = 1

N

n̂N(t)∑
i=1

δXN
i (t), t ≥ 0.(4.31)

From Lemma 4.2, the process ẐN has the same distribution as the process μ̂N .
Hence, if F ∈ C̄ is given by F(μ) = 〈f,μ(m)〉, then

MN

Ẑ,F
= F(ẐN(t)) −

∫ t

0
A

NF(ẐN(s)) ds(4.32)

is also a martingale. If |XN(t)| = n̂N (t) > m, then

ANf (XN(t))

= D

2

m∑
i=1

�if (x)

+ 2kfb

(
N − n̂N (t)

n̂N(t) + 1

) ∑
1≤i<j≤m

(
f (θij (X

N(t))) − f (x)
)

+ kon

(
N − n̂N (t)

n̂N(t) + 1

) m∑
i=1

∫
E

∫ 1

0

(
f (θi(X

N(t), (y, r))) − f (x)
)
ϑ(dy)dr.

The death term drops out because only the molecule at the highest level is al-
lowed to die and f depends on only the first m levels. From above it can
be easily seen that for any positive integer m and f ∈ C ∩ B((E × [0,1])m),
the supremum of the process ANf (XN(·)) over compact time intervals stays
bounded as N → ∞. Using this fact along with (4.30), (4.32) and (4.24), it is
easy to argue that the sequence of processes {(XN, ẐN)} is relatively compact
in D(E×[0,1])∞×M1(E×[0,1])[0,∞) (see Corollary 9.3 and Theorem 9.4 in Ethier
and Kurtz [11]). Suppose (X, Ẑ) is any limit point and (XN, ẐN) ⇒ (X, Ẑ) along
the subsequence kN . By the continuous mapping theorem and the boundedness of
f ∈ C ∩B((E ×[0,1])m), the sequence of martingales {MN

X,f (t)} converges along
the subsequence kN to

MX,f (t) = f (X(t)) −
∫ t

0
Amf (X(s)) ds,(4.33)
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which is a martingale with respect to the filtration generated by X. The operator
Am is given by

Amf (x) = D

2

m∑
i=1

�if (x) + 2kfb

(
1 − heq

heq

) ∑
1≤i<j≤m

(
f (θij (x)) − f (x)

)
(4.34)

+ kon

(
1 − heq

heq

) m∑
i=1

∫
E

∫ 1

0

(
f (θi(x, (y, r))) − f (x)

)
ϑ(dy)dr

for any f ∈ D(Am) = C ∩ B((E × [0,1])m). The operator Am is the generator for
the process determined by the first m levels of the limiting process X. We can eas-
ily check that the martingale problem for Am is well posed due to the same reasons
that were given for AN . Taking D(A) = ⋃∞

m=1 D(Am) and defining Af = Amf if
f ∈ D(Am), we see that the martingale problem for A is well posed. The distri-
bution of XN(0) (denoted by πN ) converges to π . From (4.33) we know that for
any positive integer m, the process followed by the first m levels of X has genera-
tor Am. Hence, X is the unique solution to the martingale problem corresponding
to (A,π).

Let

γN = inf{t ≥ 0 : n̂N (t) = 0}
and for any 0 ≤ t < γN define

ZN(t) = 1

n̂N (t)

n̂N (t)∑
k=1

δXN
k (t).(4.35)

Observe that

ẐN(t) = 1

N

n̂N(t)∑
k=1

δXN
k (t) =

(
n̂N (t)

N

)(
1

n̂N (t)

n̂N (t)∑
k=1

δXN
k (t)

)
= ĥN (t)ZN(t).

The process ĥN converges to the constant process heq. Therefore, γN → ∞ in
probability and for any t ≥ 0, n̂N (t) → ∞ in probability. Define Z to be the pro-
cess

Z(t) = Ẑ(t)

heq
, t ≥ 0.

Then Z(0) has distribution π0 and since (XN, ẐN) ⇒ (X, Ẑ) along the subse-
quence kN , we must have that (XN,ZN) ⇒ (X,Z) along the same subsequence.
Notice that for any t , ZN(t) ⇒ Z(t) implies that Z

(m)
N (t) ⇒ Zm(t). From the ex-

changeability of XN(t) we get that for any f ∈ C ∩ B((E × [0,1])m),

E(f (XN
1 (t), . . . ,XN

m(t))) = E
(〈
f, Ẑ

(m)
N (t)

〉) = E
(〈
f,Z

(m)
N (t)

〉)



STOCHASTIC MODEL FOR CELL POLARITY 855

for any 0 ≤ t < γN . Passing to the limit along the subsequence kN , we obtain

E(f (X1(t), . . . ,Xm(t))) = E(〈f,Zm(t)〉)
for any t ≥ 0. It shows that conditional on Z(t), X1(t),X2(t), . . . are i.i.d. random
variables with distribution Z(t). Hence, for any t ≥ 0, X(t) is exchangeable with
de Finetti measure Z(t). Therefore,

Z(t) = lim
n→∞

1

n

n∑
i=1

δXi(t) a.s.(4.36)

and if {F Z
t } is the filtration generated by the process Z, then

E(f (X1(t), . . . ,Xm(t))|F Z
t ) = 〈f,Zm(t)〉.

Conditioning (4.33) with respect to {F Z
t }, we obtain that

〈f,Zm(t)〉 −
∫ t

0
〈Amf,Zm(s)〉ds

is a martingale. If we define an operator A by

AF(μ) = 〈Amf,μm〉
for F(μ) = 〈f,μm〉, then this definition agrees with the definition of the Fleming–
Viot generator A given in Section 2 by (2.4). The martingale problem for A is well
posed and, hence, Z is the unique solution to the martingale problem for (A, π0).

From the discussion above it is clear that (XN, ẐN) ⇒ (X, Ẑ), where Ẑ =
heqZ and Z is a Fleming–Viot process with generator A. Since the process
μ̂N has the same distribution as the process ẐN , we also have μ̂N ⇒ heqZ in
DM1(E×[0,1])[0,∞). This proves part (B) of Theorem 2.3 with the process ν be-
ing the same as the process Z.

REMARK 4.4. The approach of particle construction that we used to prove
part (B) of Theorem 2.3 can also be used to show that the distributions of μ̂N(0) =
μN(τN) converge along the entire sequence. Since τN → 0 a.s., we first do a ran-
dom time change γ N (which is a bijection from [0,∞) to [0,∞) depending on
the population size nN ) such that γ N(τN) → ρ a.s., where ρ is a positive ran-
dom variable. We then use the particle construction X̂N(t) = (X̂N

1 (t), X̂N
2 (t), . . .)

similar to the one used here, except that the birth, death and immigration rates
are altered according to the random time change. Next we show that the process
X̂N converges on the random time interval [0, γ N(τN)] as N → ∞. With a bit
more work it is possible to conclude from this convergence that the distributions
of μN(τN) converge as well.
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4.3. Proof of Theorem 2.7. The membrane molecules are doing speed D

Brownian motion on the sphere of radius R, which we call E. Suppose the sphere
E is embedded in R

3 with its center at the origin. Let B = (B1,B2,B3)
T be a

Brownian motion on E with speed D and let W = (W1,W2,W3)
T be a standard

Brownian motion in R
3. Henceforth, let 〈·, ·〉 denote the standard inner product in

R
3 and let ‖ · ‖ denote the corresponding Euclidean norm. From Stroock [39] it

follows that we can express B as the solution of Itô’s equation

dB = √
D

(
I − BBT

R2

)
dW − D

B

R2 dt.(4.37)

From above, it is immediate that for any t ≥ 0,

E(Bi(t)) = Bi(0)e−2Dt/R2
for i = 1,2,3.(4.38)

LEMMA 4.5. Let B and B̄ be two independent speed D Brownian motions on
the sphere E. Then for any t > 0,

E
(‖B(t) − B̄(t)‖2) = 2R2

(
1 − 〈B(0), B̄(0)〉

R2 e−2Dt/R2
)
.

PROOF. This result is a consequence of the simple calculation below:

E
(‖B(t) − B̄(t)‖2)

= E
((

B1(t) − B̄1(t)
)2 + (

B2(t) − B̄2(t)
)2 + (

B3(t) − B̄3(t)
)2)

= E
(
B2

1 (t) + B2
2 (t) + B3(t)

2 + B̄2
1 (t) + B̄2

2 (t) + B̄3(t)
2

− 2B1(t)B̄1(t) − 2B2(t)B̄2(t) − 2B3(t)B̄3(t)
)

= 2R2 − 2E(B1(t))E(B̄1(t)) − 2E(B2(t))E(B̄2(t)) − 2E(B3(t))E(B̄3(t))

= 2R2
(

1 − 〈B(0), B̄(0)〉
R2 e−2Dt/R2

)
[using (4.38)]. �

Recall the definition of Sp given by (2.8) and the definition of the process X. We
assume that we are at stationarity and, hence, we can also assume that X is defined
for all t ∈ (−∞,∞). At any fixed time t the sequence X(t) = (X1(t),X2(t), . . .)

is exchangeable and its de Finetti measure Z(t) has the same distribution as ν(t).
Thus, the distribution of two molecules sampled from ν(t) is the same as the distri-
bution of the first 2 levels X1(t) and X2(t). For i = 1,2 let Xi(t) = (Yi(t),Ci(t)),
where Yi(t) ∈ E and Ci(t) ∈ [0,1]. From the calculation in Section 2 we can write

Sp = E
(‖Y1(t) − Y2(t)‖2|C1(t) = C2(t)

)
.(4.39)

The process determined by the first two levels of X evolves according to the gen-
erator A2 given by (4.34) with m = 2. From the definition of A2 it is clear that
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level 2 looks down to level 1 at rate 2kfbα, where α = (1 − heq)/heq. Moreover,
at both the levels there is an immigration event at rate konα, in which a molecule
with a uniformly chosen type in E × [0,1] is inserted at that level. In between
these lookdowns and immigrations, the molecules at levels 1 and 2 are diffusing
on the membrane according to independent speed D Brownian motions.

The quantity Sp can be calculated by tracing back the history from time t . Let
τ12 be the last lookdown time between the first two levels and τi be the last immi-
gration time at level i for i = 1,2. The random variables τ12, τ1 and τ2 are indepen-
dent and exponentially distributed with rates 2kfbα, konα and konα, respectively.
Let τ be the minimum of τ1, τ2 and τ12 and so it is an exponential random variable
with rate 2(kon + kfb)α.

The molecules at levels 1 and 2 will be in the same clan provided τ = τ12.
Molecules at levels 1 and 2 were at the same place at time t − τ and have been
doing independent speed D Brownian motions on the sphere E since then. Using
Lemma 4.5, we get

E
(‖Y1(t) − Y2(t)‖2|C1(t) = C2(t)

)
= 4R2(kon + kfb)α

∫ ∞
0

(1 − e−2Ds/R2
)e−2(kon+kfb)αs ds

= 2D

((kon + kfb)α + D/R2)
.

This proves Theorem 2.7.
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