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A SCALING ANALYSIS OF A CAT AND MOUSE MARKOV CHAIN

BY NELLY LITVAK1 AND PHILIPPE ROBERT

University of Twente and INRIA Paris—Rocquencourt

If (Cn) is a Markov chain on a discrete state space S , a Markov chain
(Cn,Mn) on the product space S × S , the cat and mouse Markov chain,
is constructed. The first coordinate of this Markov chain behaves like the
original Markov chain and the second component changes only when both
coordinates are equal. The asymptotic properties of this Markov chain are
investigated. A representation of its invariant measure is, in particular, ob-
tained. When the state space is infinite it is shown that this Markov chain is
in fact null recurrent if the initial Markov chain (Cn) is positive recurrent and
reversible. In this context, the scaling properties of the location of the second
component, the mouse, are investigated in various situations: simple random
walks in Z and Z

2 reflected a simple random walk in N and also in a con-
tinuous time setting. For several of these processes, a time scaling with rapid
growth gives an interesting asymptotic behavior related to limiting results for
occupation times and rare events of Markov processes.

1. Introduction. The PageRank algorithm of Google, as designed by Brin
and Page [10] in 1998, describes the web as an oriented graph S whose nodes
are the web pages and the html links between these web pages, the links of the
graph. In this representation, the importance of a page is defined as its weight for
the stationary distribution of the associated random walk on the graph. Several
off-line algorithms can be used to estimate this equilibrium distribution on such
a huge state space, they basically use numerical procedures (matrix-vector multi-
plications). See Berkhin [4], for example. Several on-line algorithms that update
the ranking scores while exploring the graph have been recently proposed to avoid
some of the shortcomings of off-line algorithms, in particular, in terms of compu-
tational complexity.

The starting point of this paper is an algorithm designed by Abiteboul et al.
[1] to compute the stationary distribution of a finite recurrent Markov chain. In
this setting, to each node of the graph is associated a number, the “cash” of the
node. The algorithm works as follows: at a given time, the node x with the largest
value Vx of cash is visited, Vx is set to 0 and the value of the cash of each of its
dx neighbors is incremented by Vx/dx . Another possible strategy to update cash
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variables is as follows: a random walker updates the values of the cash at the nodes
of its random path in the graph. This policy is referred to as the Markovian variant.
Both strategies have the advantage of simplifying the data structures necessary
to manage the algorithm. It turns out that the asymptotic distribution, in terms of
the number of steps of the algorithm, of the vector of the cash variables gives
an accurate estimation of the equilibrium distribution; see Abiteboul et al. [1] for
the complete description of the procedure to get the invariant distribution. See
also Litvak and Robert [23]. The present paper does not address the problem of
estimating the accuracy of these algorithms, it analyzes the asymptotic properties
of a simple Markov chain which appears naturally in this context.

Cat and mouse Markov chain. It has been shown in Litvak and Robert [23]
that, for the Markovian variant of the algorithm, the distribution of the vector of
the cash variables can be represented with the conditional distributions of a Markov
chain (Cn,Mn) on the discrete state space S × S . The sequence (Cn), representing
the location of the cat, is a Markov chain with transition matrix P = (p(x, y))

associated to the random walk on the graph S . The second coordinate, the location
of the mouse, (Mn) has the following dynamic:

– If Mn �= Cn, then Mn+1 = Mn,
– If Mn = Cn, then, conditionally on Mn, the random variable Mn+1 has distribu-

tion (p(Mn,y), y ∈ S) and is independent of Cn+1.

This can be summarized as follows: the cat moves according to the transition ma-
trix P = (p(x, y)) and the mouse stays idle unless the cat is at the same site, in
which case the mouse also moves independently according to P = (p(x, y)).

The terminology “cat and mouse problem” is also used in a somewhat different
way in game theory, the cat playing the role of the “adversary.” See Coppersmith
et al. [11] and references therein.

The asymptotic properties of this interesting Markov chain (Cn,Mn) for a num-
ber of transition matrices P are the subject of this paper. In particular, the asymp-
totic behavior of the location mouse (Mn) is investigated. The distribution of (Mn)

plays an important role in the algorithm designed by Abiteboul et al. [1]; see Litvak
and Robert [23] for further details. It should be noted that (Mn) is not, in general,
a Markov chain.

Outline of the paper. Section 2 analyzes the recurrence properties of the
Markov chain (Cn,Mn) when the Markov chain (Cn) is recurrent. A represen-
tation of the invariant measure of (Cn,Mn) in terms of the reversed process of
(Cn) is given.

Since the mouse moves only when the cat arrives at its location, it may seem
quite likely that the mouse will spend most of the time at nodes which are unlikely
for the cat. It is shown that this is indeed the case when the state space is finite and
if the Markov chain (Cn) is reversible but not in general.
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When the state space is infinite and if the Markov chain (Cn) is reversible,
it turns out that the Markov chain (Cn,Mn) is in fact null recurrent. A precise
description of the asymptotic behavior of the sequence (Mn) is done via a scaling
in time and space for several classes of simple models. Interestingly, the scalings
used are quite diverse, as it will be seen. They are either related to asymptotics of
rare events of ergodic Markov chains or to limiting results for occupation times of
recurrent random walks:

(1) Symmetric simple random walks. The cases of symmetric simple random
walks in Z

d with d = 1 and 2 are analyzed in Section 3. Note that for d ≥ 3 the
Markov chain (Cn) is transient so that in this case the location of the mouse
does not change with probability 1 after some random time:
– In the one-dimensional case, d = 1, if M0 = C0 = 0, on the linear time

scale t → nt , as n gets large, it is shown that the location of the mouse is
of the order of 4

√
n. More precisely, the limit in distribution of the process

(M�nt�/ 4
√

n, t ≥ 0) is a Brownian motion (B1(t)) taken at the local time at
0 of another independent Brownian motion (B2(t)). See Theorem 2 below.

This result can be (roughly) described as follows. Under this linear time
scale the location of the cat, a simple symmetrical random walk, is of the
order of

√
n by Donsker’s theorem. It turns out that it will encounter ∼√

n

times the mouse. Since the mouse moves only when it encounters the cat
and that it also follows the sample path of a simple random walk, after

√
n

steps its order of magnitude will be therefore of the order of 4
√

n.
– When d = 2, on the linear time scale t → nt , the location of the mouse

is of the order of
√

logn. More precisely, the finite marginals of the
rescaled processes (M�exp(nt)�/

√
n, t ≥ 0) converge to the corresponding

finite marginals of a Brownian motion in R
2 on a time scale which is an

independent discontinuous stochastic process with independent and nonho-
mogeneous increments.

(2) Reflected simple random walk. Section 4 investigates the reflected simple ran-
dom walk on the integers. A jump of size +1 (resp., −1) occurs with probabil-
ity p [resp., (1 − p)] and the quantity ρ = p/(1 − p) is assumed to be strictly
less than 1 so that the Markov chain (Cn) is ergodic.

If the location of the mouse is far away from the origin, that is, M0 = n

with n large and the cat is at equilibrium, a standard result shows that it takes a
duration of time of the order of ρ−n for the cat to hit the mouse. This suggests
an exponential time scale t → ρ−nt to study the evolution of the successive
locations of the mouse. For this time scale it is shown that the location of the
mouse is still of the order of n as long as t < W where W is some nonin-
tegrable random variable. At time t = W on the exponential time scale, the
mouse has hit 0 and after that time the process (M�tρ−n�/n) oscillates between
0 and above 1/2 on every nonempty time interval.
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(3) Continuous time random walks. Section 5 introduces the cat and mouse pro-
cess for continuous time Markov processes. In particular, a discrete Ornstein–
Uhlenbeck process, the M/M/∞ queue, is analyzed. This is a birth and death
process whose birth rates are constant and the death rate at n ∈ N is propor-
tional to n. When M0 = n, contrary to the case of the reflected random walk,
there does not seem to exist a time scale for which a nontrivial functional the-
orem holds for the corresponding rescaled process. Instead, it is possible to
describe the asymptotic behavior of the location of the mouse after the pth
visit of the cat. It has a multiplicative representation of the form nF1F2 · · ·Fp

where (Fp) are i.i.d. random variables on [0,1].
The examples analyzed are quite specific. They are, however, sufficiently repre-
sentative of the different situations for the dynamic of the mouse:

(1) One considers the case when an integer valued Markov chain (Cn) is er-
godic and the initial location of the mouse is far away from 0. The correct time
scale to investigate the evolution of the location of the mouse is given by the dura-
tion of time for the occurrence of a rare event for the original Markov chain. When
the cat hits the mouse at this level, before returning to the neighborhood of 0, it
changes the location of the mouse by an additive (resp., multiplicative) step in the
case of the reflected random walk (resp., M/M/∞ queue).

(2) For null recurrent homogeneous random walks, the distribution of the du-
ration of times between two visits of the cat to the mouse do not depend on the
location of the mouse but it is nonintegrable. The main problem is therefore to get
a functional renewal theorem associated to an i.i.d. sequence (Tn) of nonnegative
random variables such that E(T1) = +∞. More precisely, if

N(t) = ∑
i≥1

1{T1+···+Ti≤t},

one has to find φ(n) such that the sequence of processes (N(nt)/φ(n), t ≥ 0)

converges as n goes to infinity. When the tail distribution of T1 has a polynomial
decay, several technical results are available. See Garsia and Lamperti [12], for
example. This assumption is nevertheless not valid for the two-dimensional case.
In any case, it turns out that the best way (especially for d = 2) to get such results
is to formulate the problem in terms of occupation times of Markov processes
for which several limit theorems are available. This is the key of the results in
Section 3.

The fact that for all the examples considered jumps occur on the nearest neighbors
does not change this qualitative behavior. Under more general conditions analo-
gous results should hold. Additionally, this simple setting has the advantage of
providing explicit expressions for most of the constants involved.
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2. The cat and mouse Markov chain. In this section we consider a general
transition matrix P = (p(x, y), x, y ∈ S) on a discrete state space S . Through-
out the paper, it is assumed that P is aperiodic, irreducible without loops, that
is, p(x, x) = 0 for all x ∈ S and with an invariant measure π . Note that it is not
assumed that π has a finite mass. The sequence (Cn) will denote a Markov chain
with transition matrix P = (p(x, y)). It will represent the sequence of nodes which
are sequentially updated by the random walker.

The transition matrix of the reversed Markov chain (C∗
n) is denoted by

p∗(x, y) = π(y)

π(x)
p(y, x)

and, for y ∈ S , one defines

H ∗
y = inf{n > 0 :C∗

n = y} and Hy = inf{n > 0 :Cn = y}.
The Markov chain (Cn,Mn) on S × S referred to as the “cat and mouse Markov
chain” is introduced. Its transition matrix Q = (q(·, ·)) is defined as follows: for x,
y, z ∈ S , {

q[(x, y), (z, y)] = p(x, z), if x �= y;
q[(y, y), (z,w)] = p(y, z)p(y,w).

(1)

The process (Cn) [resp., (Mn)] will be defined as the position of the cat (resp.,
the mouse). Note that the position (Cn) of the cat is indeed a Markov chain with
transition matrix P = (p(·, ·)). The position of the mouse (Mn) changes only when
the cat is at the same position. In this case, starting from x ∈ S they both move
independently according to the stochastic vector (p(x, ·)).

Since the transition matrix of (Cn) is assumed to be irreducible and aperiodic, it
is not difficult to check that the Markov chain (Cn,Mn) is aperiodic and visits with
probability 1 all the elements of the diagonal of S × S . In particular, there is only
one irreducible component. Note that (Cn,Mn) itself is not necessarily irreducible
on S × S , as the following example shows: take S = {0,1,2,3} and the transition
matrix p(0,1) = p(2,3) = p(3,1) = 1 and p(1,2) = 1/2 = p(1,0); in this case
the element (0,3) cannot be reached starting from (1,1).

THEOREM 1 (Recurrence). The Markov chain (Cn,Mn) on S × S with tran-
sition matrix Q defined by relation (1) is recurrent: the measure ν defined as

ν(x, y) = π(x)Ex

(H ∗
y∑

n=1

p(C∗
n, y)

)
, x, y ∈ S,(2)

is invariant. Its marginal on the second coordinate is given by, for y ∈ S ,

ν2(y)
def.= ∑

x∈S
ν(x, y) = Eπ(p(C0, y)Hy),

and it is equal to π on the diagonal, ν(x, x) = π(x) for x ∈ S .
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In particular, with probability 1, the elements of S × S for which ν is nonzero
are visited infinitely often and ν is, up to a multiplicative coefficient, the unique in-
variant measure. The recurrence property is not surprising: the positive recurrence
property of the Markov chain (Cn) shows that cat and mouse meet infinitely often
with probability one. The common location at these instants is a Markov chain
with transition matrix P and therefore recurrent. Note that the total mass of ν,

ν(S × S) = ∑
y∈S

Eπ(p(C0, y)Hy)

can be infinite when S is countable. See Kemeny et al. [20] for an introduction on
recurrence properties of discrete countable Markov chains.

The measure ν2 on S is related to the location of the mouse under the invariant
measure ν.

PROOF OF THEOREM 1. From the ergodicity of (Cn) it is clear that ν(x, y) is
finite for x, y ∈ S . One has first to check that ν satisfies the equations of invariant
measure for the Markov chain (Cn,Mn),

ν(x, y) = ∑
z �=y

ν(z, y)p(z, x) +∑
z

ν(z, z)p(z, x)p(z, y), x, y ∈ S.(3)

For x, y ∈ S ,

∑
z �=y

ν(z, y)p(z, x) = ∑
z �=y

π(x)p∗(x, z)Ez

(H ∗
y∑

n=1

p(C∗
n, y)

)
(4)

= π(x)Ex

(H ∗
y∑

n=2

p(C∗
n, y)

)

and ∑
z∈S

ν(z, z)p(z, x)p(z, y)

(5)

= ∑
z∈S

π(x)p∗(x, z)p(z, y)Ez

(H ∗
z −1∑

n=0

p(C∗
n, z)

)
.

The classical renewal argument for the invariant distribution π of the Markov chain
(C∗

n), and any bounded function f on S , gives that

Eπ(f ) = 1

Ez(H ∗
z )

Ez

(H ∗
z −1∑

n=0

f (C∗
n)

)
;
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see Theorem 3.2, page 12, of Asmussen [3], for example. In particular, we have
π(z) = 1/Ez(H

∗
z ), and

Ez

(H ∗
z −1∑

n=0

p(C∗
n, z)

)
= Ez(H

∗
z )Eπ(p(C∗

0 , z)) =
∑

x∈S π(x)p(x, z)

π(z)

(6)

= π(z)

π(z)
= 1.

Substituting the last identity into (5), we obtain∑
z∈S

ν(z, z)p(z, x)p(z, y) = ∑
z∈S

π(x)p∗(x, z)p(z, y)

(7)
= π(x)Ex(p(C∗

1 , y)).

Relations (3)–(5) and (7) show that ν is indeed an invariant distribution. At the
same time, from (6) one gets the identity ν(x, x) = π(x) for x ∈ S .

The second marginal is given by, for y ∈ S ,∑
x∈S

ν(x, y) = ∑
t≥1

∑
x∈S

π(x)Ex

(
p(C∗

t , y)1{H ∗
y ≥t}

)
= ∑

t≥1

Eπ

(
p(C∗

t , y)1{H ∗
y ≥t}

)
= ∑

x∈S

∑
z1,...,zt−1 �=y

∑
zt∈S

π(x)p∗(x, z1)p
∗(z1, z2) · · ·p∗(zt−1, zt )p(zt , y)

= ∑
x∈S

∑
z1,...,zt−1 �=y

∑
zt∈S

p(z1, x)p(z2, z1) · · ·p(zt , zt−1)π(zt )p(zt , y)

= ∑
t≥1

Eπ

(
p(C0, y)1{Hy≥t}

) = Eπ(p(C0, y)Hy),

and the theorem is proved. �

The representation (2) of the invariant measure can be obtained (formally)
through an iteration of the equilibrium equations (3). Since the first coordinate
of (Cn,Mn) is a Markov chain with transition matrix P and ν is the invariant mea-
sure for (Cn,Mn), the first marginal of ν is thus equal to απ for some α > 0, that
is, ∑

y

ν(x, y) = απ(x), x ∈ S.

The constant α is in fact the total mass of ν. In particular, from (2), one gets that
the quantity

h(x)
def.= ∑

y∈S
Ex

(H ∗
y∑

n=1

p(C∗
n, y)

)
, x ∈ S,



A SCALING ANALYSIS OF A CAT AND MOUSE MARKOV CHAIN 799

is independent of x ∈ S and equal to α. Note that the parameter α can be infinite.

PROPOSITION 1 (Location of the mouse in the reversible case). If (Cn) is a
reversible Markov chain, with the definitions of the above theorem, for y ∈ S , the
relation

ν2(y) = 1 − π(y)

holds. If the state space S is countable, the Markov chain (Cn,Mn) is then null
recurrent.

PROOF. For y ∈ S , by reversibility,

ν2(y) = Eπ(p(C0, y)Hy) = ∑
x

π(x)p(x, y)Ex(Hy)

= ∑
x

π(y)p(y, x)Ex(Hy) = π(y)Ey(Hy − 1)

= 1 − π(y).

The proposition is proved. �

COROLLARY 1 (Finite state space). If the state space S is finite with cardinal-
ity N , then (Cn,Mn) converges in distribution to (C∞,M∞) such that

P(C∞ = x,M∞ = y) = α−1π(x)Ex

(H ∗
y∑

n=1

p(C∗
n, y)

)
, x, y ∈ S,(8)

with

α = ∑
y∈S

Eπ(p(C0, y)Hy)

in particular, P(C∞ = M∞ = x) = α−1π(x). If the Markov chain (Cn) is re-
versible, then

P(M∞ = y) = 1 − π(y)

N − 1
.

Tetali [29] showed, via linear algebra, that if (Cn) is a general recurrent Markov
chain, then ∑

y∈S
Eπ(p(C0, y)Hy) ≤ N − 1.(9)

See also Aldous and Fill [2]. It follows that the value α = N − 1 obtained for
reversible chains is the maximal possible value of α. The constant α−1 is the prob-
ability that the cat and mouse are at the same location.
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In the reversible case, Corollary 1 implies the intuitive fact that the less likely
a site is for the cat, the more likely it is for the mouse. This is, however, false in
general. Consider a Markov chain whose state space S consists of r cycles with
respective sizes m1, . . . ,mr with one common node 0,

S = {0} ∪
r⋃

k=1

{(k, i) : 1 ≤ i ≤ mk},

and with the following transitions: for 1 ≤ k ≤ r and 2 ≤ i ≤ mk ,

p
(
(k, i), (k, i − 1)

) = 1, p((k,1),0) = 1 and p(0, (k,mk)) = 1

r
.

Define m = m1 + m2 + · · · + mr . It is easy to see that

π(0) = r

m + r
and π(y) = 1

m + r
, y ∈ S − {0}.

One gets that for the location of the mouse, for y ∈ S ,

ν2(y) = Eπ(p(C0, y)Hy) =
{

π(y)(m − mk + 1), if y = (k,mk),1 ≤ k ≤ r ,
π(y), otherwise.

Observe that for any y distinct from 0 and (k,mk), we have π(0) > π(y) and
ν2(0) > ν2(y); the probability to find a mouse in 0 is larger than in y. Note that in
this example one easily obtains c = 1/r .

3. Random walks in Z and Z
2. In this section the asymptotic behavior of the

mouse when the cat follows a recurrent random walk in Z and Z
2 is analyzed. The

jumps of the cat are uniformly distributed on the neighbors of the current location.

3.1. One-dimensional random walk. The transition matrix P of this random
walk is given by

p(x, x + 1) = 1
2 = p(x, x − 1), x ∈ Z.

Decomposition into cycles. If the cat and the mouse start at the same location,
they stay together a random duration of time G which is geometrically distributed
with parameter 1/2. Once they are at different locations for the first time, they are
at distance 2 so that the duration of time T2 until they meet again has the same
distribution as the hitting time of 0 by the random walk which starts at 2. The
process (

(Cn,Mn),0 ≤ n ≤ G + T2
)

is defined as a cycle. The sample path of the Markov chain (Cn,Mn) can thus be
decomposed into a sequence of cycles. It should be noted that, during a cycle, the
mouse moves only during the period with duration G.
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Since one investigates the asymptotic properties of the sample paths of (Mn)

on the linear time scale t → nt for n large, to get limit theorems one should thus
estimate the number of cycles that occur in a time interval [0, nt]. For this purpose,
we compare the cycles of the cat and mouse process to the cycles of a simple sym-
metric random walk, which are the time intervals between two successive visits to
zero by the process (Cn). Observe that a cycle of (Cn) is equal to 1 +T1, where T1
is the time needed to reach zero starting from 1. Further, T2 is the sum of two inde-
pendent random variables distributed as T1. Hence, one guesses that on the linear
time scale t → nt the number of cycles on [0, nt] for (Cn,Mn) is asymptotically
equivalent to 1/2 of the number of cycles on [0, nt] for (Cn), as n → ∞. It is well
known that the latter number is of the order

√
n. Then the mouse makes order of√

n steps of a simple symmetric random walk, and thus its location must be of the
order 4

√
n.

To make this argument precise, we first prove technical Lemma 1, which says
that only o(

√
n) of (Cn)-cycles can be fitted into the time interval of the order

√
n.

Next, Lemma 2 proves that the number of cycles of length T2 +2 on [0, nt], scaled
by

√
n, converges to 1/2 of the local time of a Brownian motion, analogously to

the corresponding result for the number of cycles of a simple symmetric random
walk [22]. Finally, the main limiting result for the location of the mouse is given
by Theorem 2.

LEMMA 1. For any x, ε > 0 and K > 0,

lim
n→+∞P

(
inf

0≤k≤�x√
n�

1√
n

k+�ε√n�∑
i=k

(1 + T1,i) ≤ K

)
= 0,

where (T1,i) are i.i.d. random variables with the same distribution as the first hit-
ting time of 0 of (Cn), T1 = inf{n > 0 :Cn = 0 with C0 = 1}.

PROOF. If E is an exponential random variable with parameter 1 indepen-
dent of the sequence (T1,i), by using the fact that, for u ∈ (0,1), E(uT1) =
(1 − √

1 − u2)/u, then for n ≥ 2,

log P

(
1√
n

�ε√n�∑
i=0

(1 + T1,i) ≤ E

)
= �ε√n� log

(
1 −

√
1 − e−2/

√
n
) ≤ −ε 4

√
n.

Denote by

mn = inf
0≤k≤�x√

n�
1√
n

k+�ε√n�∑
i=k

(1 + T1,i)

the above relation gives

P(mn ≤ E) ≤
�x√

n�∑
k=0

P

(
1√
n

k+�ε√n�∑
i=k

(1 + T1,i ) ≤ E

)
≤ (⌊

x
√

n
⌋+ 1

)
e−ε 4√n,
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hence,

+∞∑
n=2

P(mn ≤ E) < +∞

and, consequently, with probability 1, there exists N0 such that, for any n ≥ N0,
we have mn > E. Since P(E ≥ K) > 0, the lemma is proved. �

LEMMA 2. Let, for n ≥ 1, (T2,i) i.i.d. random variables with the same distri-
bution as T2 = inf{k > 0 :Ck = 0 with C0 = 2} and

un =
+∞∑
�=1

1{∑�
k=1(2+T2,k)<n},

then the process (u�tn�/
√

n) converges in distribution to (LB(t)/2), where LB(t)

is the local time process at time t ≥ 0 of a standard Brownian motion.

PROOF. The variable T2 can be written as a sum T1 + T ′
1 of independent ran-

dom variables T1 and T ′
1 having the same distribution as T1 defined in the above

lemma. For k ≥ 1, the variable T2,k can be written as T1,2k−1 + T1,2k . Clearly,

1

2

+∞∑
�=1

1{∑�
k=1(1+T1,k)<n} − 1

2
≤ un ≤ 1

2

+∞∑
�=1

1{∑�
k=1(1+T1,k)<n}.

Furthermore,(+∞∑
�=1

1{∑�
k=1(1+T1,k)<n}, n ≥ 1

)
dist.= (rn)

def.=
(

n−1∑
�=1

1{C�=0}, n ≥ 1

)
,

where (Cn) is the symmetric simple random walk.
A classical result by Knight [22] (see also Borodin [8] and Perkins [25]) gives

that the process (r�nt�/
√

n) converges in distribution to (LB(t)) as n gets large.
The lemma is proved. �

The main result of this section can now be stated.

THEOREM 2 (Scaling of the location of the mouse). If (C0,M0) ∈ N
2, the

convergence in distribution

lim
n→+∞

(
1

4
√

n
M�nt�, t ≥ 0

)
dist.= (

B1(LB2(t)), t ≥ 0
)

holds, where (B1(t)) and (B2(t)) are independent standard Brownian motions on
R and (LB2(t)) is the local time process of (B2(t)) at 0.
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The location of the mouse at time T is therefore of the order of 4
√

T as T gets
large. The limiting process can be expressed as a Brownian motion slowed down
by the process of the local time at 0 of an independent Brownian motion. The
quantity LB2(T ) can be interpreted as the scaled duration of time the cat and the
mouse spend together.

PROOF OF THEOREM 2. Without loss of generality, one can assume that
C0 = M0. A coupling argument is used. Take:

– i.i.d. geometric random variables (Gi) such that P(G1 ≥ p) = 1/2p−1 for
p ≥ 1;

– (Ca
k ) and (Cb

j,k), j ≥ 1, i.i.d. independent symmetric random walks starting
from 0;

and assume that all these random variables are independent. One denotes, for m =
1, 2 and j ≥ 1,

T b
m,j = inf{k ≥ 0 :Cb

j,k = m}.
Define

(Ck,Mk) =
{

(Ca
k ,Ca

k ), 0 ≤ k < G1,
(Ca

G1
− 2I1 + I1C

b
1,k−G1

,Ca
G1

), G1 ≤ k ≤ τ1,

with I1 = Ca
G1

− Ca
G1−1, τ1 = G1 + T b

2,1. It is not difficult to check that

[(Ck,Mk),0 ≤ k ≤ τ1]
has the same distribution as the cat and mouse Markov chain during a cycle as
defined above.

Define t0 = 0 and ti = ti−1 + τi , s0 = 0 and si = si−1 + Gi . The (i + 1)th cycle
is defined as

(Ck,Mk) =
⎧⎪⎨⎪⎩

(Ca
k−ti+si

,Ca
k−ti+si

), ti ≤ k < ti + Gi+1,

(Ca
si+1

− 2Ii+1 + Ii+1C
b
i+1,k−ti−Gi+1

,Ca
si+1

),

ti + Gi+1 ≤ k ≤ ti+1,

with Ii+1 = Ca
si+1

− Ca
si+1−1 and τi+1 = Gi+1 + T b

2,i+1. The sequence (Cn,Mn)

has the same distribution as the Markov chain with transition matrix Q defined by
relation (1).

With this representation, the location Mn of the mouse at time n is given by Ca
κn

,
where κn is the number of steps the mouse has made up to time n, formally defined
as

κn
def.=

+∞∑
i=1

[
i−1∑
�=1

G� + (n − ti−1)

]
1{ti−1≤n≤ti−1+Gi} +

+∞∑
i=1

[
i∑

�=1

G�

]
1{ti−1+Gi<n<ti},
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in particular,

νn∑
�=1

G� ≤ κn ≤
νn+1∑
�=1

G�(10)

with νn defined as the number of cycles of the cat and mouse process up to time n:

νn = inf{� : t�+1 > n} = inf

{
� :

�+1∑
k=1

(Gk + T b
2,k) > n

}
.

Define

νn = inf

{
� :

�+1∑
k=1

(2 + T b
2,k) > n

}
,

then, for δ > 0, on the event {νn > νn + δ
√

n},

n ≥
νn+δ

√
n∑

k=1

(2 + T b
2,k) ≥

νn+1∑
k=1

[Gk + T b
2,k] +

νn+δ
√

n∑
k=νn+2

(2 + T b
2,k) −

νn+1∑
k=1

(Gk − 2)

≥ n +
νn+δ

√
n∑

k=νn+2

(2 + T b
2,k) −

νn+1∑
k=1

(Gk − 2).

Hence,

νn+δ
√

n∑
k=νn+2

(2 + T b
2,k) ≤

νn+1∑
k=1

(Gk − 2);

since T b
1,k ≤ 2 + T b

2,k , the relation

{
νn − νn > δ

√
n
} ⊂

{
inf

1≤�≤νn

�+�δ√n�∑
k=�

T b
1,k ≤

νn+1∑
k=1

(Gk − 2), νn > νn

}
(11)

⊂
{

inf
1≤�≤νn

�+�δ√n�∑
k=�

T b
1,k ≤ sup

1≤�≤νn

�+1∑
k=1

(Gk − 2)

}
holds. Since E(G1) = 2, Donsker’s theorem gives the following convergence in
distribution:

lim
K→+∞

(
1√
K

�tK�+1∑
k=1

(Gk − 2),0 ≤ t ≤ 1

)
dist.= (

var(G1)W(t),0 ≤ t ≤ 1
)
,

where (W(t)) is a standard Brownian motion, and, therefore,

lim
K→+∞

1√
K

sup
1≤�≤K

�+1∑
k=1

(Gk − 2)
dist.= var(G1) sup

0≤t≤1
W(t).(12)



A SCALING ANALYSIS OF A CAT AND MOUSE MARKOV CHAIN 805

For t > 0, define(
�n(s),0 ≤ s ≤ t

) def.=
(

1√
n

(
ν�ns� − ν�ns�

)
,0 ≤ s ≤ t

)
.

By relation (11) one gets that, for 0 ≤ s ≤ t ,

{�n(s) > δ} ⊂
{

inf
1≤�≤ν�ns�

�+�δ√n�∑
k=�

T b
1,k ≤ sup

1≤�≤ν�ns�

�+1∑
k=1

(Gk − 2)

}
(13)

⊂
{

inf
1≤�≤ν�nt�

�+�δ√n�∑
k=�

T b
1,k ≤ sup

1≤�≤ν�nt�

�+1∑
k=1

(Gk − 2)

}
.

Letting ε > 0, by Lemma 2 and relation (12), there exist some x0 > 0 and n0 such
that if n ≥ n0, then, respectively,

P
(
ν�nt� ≥ x0

√
n
) ≤ ε and P

(
sup

1≤�≤x0
√

n

�+1∑
k=1

(Gk − 2) ≥ x0
√

n

)
≤ ε.(14)

By using relation (13),{
sup

0≤s≤t

�n(s) > δ
}

⊂ {
ν�nt� ≥ x0

√
n
}

∪
{

inf
1≤�≤ν�nt�

�+�δ√n�∑
k=�

T b
1,k ≤ sup

1≤�≤ν�nt�

�+1∑
k=1

(Gk − 2), ν�nt� < x0
√

n

}

⊂ {
ν�nt� ≥ x0

√
n
}∪

{
inf

1≤�≤x0
√

n

�+�δ√n�∑
k=�

T b
1,k ≤ sup

1≤�≤x0
√

n

�+1∑
k=1

(Gk − 2)

}
.

With a similar decomposition with the partial sums of (Gk −2), relations (14) give
the inequality, for n ≥ n0,

P

(
sup

0≤s≤t

�n(s) > δ
)

≤ 2ε + P

(
inf

1≤k≤x0
√

n

1√
n

k+�δ√n�∑
i=k

T b
1,i ≤ x0

)
.

By Lemma 1, the left-hand side is thus arbitrarily small if n is sufficiently large.
In a similar way the same results holds for the variable sup(−�n(s) : 0 ≤ s ≤ t).
The variable sup(|�n(s)| : 0 ≤ s ≤ t) converges therefore in distribution to 0. Con-
sequently, by using relation (10) and the law of large numbers, the same property
holds for

sup
0≤s≤t

1√
n

(
κ�ns� − 2ν�ns�

)
.
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Donsker’s theorem gives that the sequence of processes (Ca
�√ns�/

4
√

n,0 ≤ s ≤ t)

converges in distribution to (B1(s),0 ≤ s ≤ t). In particular, for ε and δ > 0, there
exists some n0 such that if n ≥ n0, then

P

(
sup

0≤u,v≤t,|u−v|≤δ

1
4
√

n

∣∣Ca
�√nu� − Ca

�√nv�
∣∣ ≥ δ

)
≤ ε;

see Billingsley [6], for example. Since Mn = Ca
κn

for any n ≥ 1, the processes(
1

4
√

n
M�ns�,0 ≤ s ≤ t

)
and

(
1

4
√

n
Ca

2ν�ns�,0 ≤ s ≤ t

)
have therefore the same asymptotic behavior for the convergence in distribution.
Since, by construction (Ca

k ) and (νn) are independent, with Skorohod’s represen-
tation theorem, one can assume that, on an appropriate probability space with two
independent Brownian motions (B1(s)) and (B2(s)), the convergences

lim
n→+∞

(
Ca

�√ns�/
4
√

n,0 ≤ s ≤ t
) = (

B1(s),0 ≤ s ≤ t
)
,

lim
n→+∞

(
ν�ns�/

√
n
) = (

LB2(s)/2,0 ≤ s ≤ t
)

hold almost surely for the norm of the supremum. This concludes the proof of the
theorem. �

3.2. Random walk in the plane. The transition matrix P of this random walk
is given by, for x ∈ Z

2,

p
(
x, x + (1,0)

) = p
(
x, x − (1,0)

) = p
(
x, x + (0,1)

) = p
(
x, x − (0,1)

) = 1
4 .

Decomposition into cycles. In the one-dimensional case, when the cat and the
mouse start at the same location, when they are separated for the first time, they are
at distance 2, so that the next meeting time has the same distribution as the hitting
time of 0 for the simple random walk when it starts at 2. For d = 2, because of
the geometry, the situation is more complicated. When the cat and the mouse are
separated for the first time, there are several possibilities for the patterns of their
respective locations and not only one as for d = 1. A finite Markov chain has to be
introduced that describes the relative position of the mouse with respect to the cat.

Let e1 = (1,0), e−1 = −e1, e2 = (0,1), e−2 = −e2 and the set of unit vectors of
Z

2 is denoted by E = {e1, e−1, e2, e−2}. Clearly, when the cat and the mouse are at
the same site, they stay together a geometric number of steps whose mean is 4/3.
When they are just separated, up to a translation, a symmetry or a rotation, if the
mouse is at e1, the cat will be at e2, e−2 or −e1 with probability 1/3. The next time
the cat will meet the mouse corresponds to one of the instants of visit to E by the
sequence (Cn). If one considers only these visits, then, up to a translation, it is not
difficult to see that the position of the cat and of the mouse is a Markov chain with
transition matrix QR defined below.
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DEFINITION 1. Let e1 = (1,0), e−1 = −e1, e2 = (0,1), e−2 = −e2 and the
set of unit vectors of Z

2 is denoted by E = {e1, e−1, e2, e−2}.
If (Cn) is a random walk in the plane, (Rn) denotes the sequence in E such that

(Rn) is the sequence of unit vectors visited by (Cn) and

ref
def.= P(R1 = f | R0 = e), e, f ∈ E .(15)

A transition matrix QR on E 2 is defined as follows: for e, f , g ∈ E ,⎧⎨⎩
QR((e, g), (f, g)) = ref , e �= g,

QR((e, e), (e,−e)) = 1/3,

QR((e, e), (e, e)) = QR

(
(e, e), (e,−e)

) = 1/3,

(16)

with the convention that e, −e are the unit vectors orthogonal to e, μR denotes the
invariant probability distribution associated to QR and DE is the diagonal of E 2.

A characterization of the matrix R is as follows. Let

τ+ = inf(n > 0 :Cn ∈ E ) and τ = inf(n ≥ 0 :Cn ∈ E ),

then clearly ref = P(Cτ+ = f | C0 = e). For x ∈ Z
2, define

φ(x) = P(Cτ = e1 | C0 = x).

By symmetry, it is easily seen that the coefficients of R can be determined by φ.
For x /∈ E , by looking at the state of the Markov chain at time 1, one gets the
relation

�φ(x)
def.= φ(x + e1) + φ(x + e−1) + φ(x + e2) + φ(x + e−2) − 4φ(x) = 0

and φ(ei) = 0 if i ∈ {−1,2,−2} and φ(e1) = 1. In other words, φ is the solution of
a discrete Dirichlet problem: it is a harmonic function (for the discrete Laplacian)
on Z

2 with fixed values on E . Classically, there is a unique solution to the Dirichlet
problem; see Norris [24], for example. An explicit expression of φ is, apparently,
not available.

THEOREM 3. If (C0,M0) ∈ N
2, the convergence in distribution of finite

marginals

lim
n→+∞

(
1√
n
M�ent�, t ≥ 0

)
dist.= (W(Z(t)))

holds, with

(Z(t)) =
(

16μR(DE )

3π
LB(Tt )

)
,

where μR is the probability distribution on E 2 introduced in Definition 1, the pro-
cess (W(t)) = (W1(t),W2(t)) is a two-dimensional Brownian motion and:
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– (LB(t)) the local time at 0 of a standard Brownian motion (B(t)) on R inde-
pendent of (W(t)).

– For t ≥ 0, Tt = inf{s ≥ 0 :B(s) = t}.
PROOF. The proof follows the same lines as before: a convenient construction

of the process to decouple the time scale of the visits of the cat and the motion of
the mouse. The arguments which are similar to the ones used in the proof of the
one-dimensional case are not repeated.

Let (Rn,Sn) be the Markov chain with transition matrix QR that describes the
relative positions of the cat and the mouse at the instances of visits of (Cn,Mn) to
E × E up to rotation, symmetry and translation. For N visits to the set E × E , the
proportion of time the cat and the mouse will have met is given by

1

N

N∑
�=1

1{R�=S�};

this quantity converges almost surely to μR(DE ).
Now one has to estimate the number of visits of the cat to the set E . Kasahara

[18] (see also Bingham [7] and Kasahara [17]) gives that, for the convergence in
distribution of the finite marginals, the following convergence holds:

lim
n→+∞

(
1

n

�ent�∑
i=0

1{Ci∈E}
)

dist.=
(

4

π
LB(Tt )

)
.

The rest of the proof follows the same lines as in the proof of Theorem 2. �

REMARK. Tanaka’s Formula (see Rogers and Williams [27]) gives the relation

L(Tt ) = t −
∫ Tt

0
sgn(B(s)) dB(s),

where sgn(x) = −1 if x < 0 and +1 otherwise. Since the process (Tt ) has inde-
pendent increments and that the Tt ’s are stopping times, one gets that (L(Tt )) has
also independent increments. With the function t → Tt being discontinuous, the
limiting process (W(Z(t))) is also discontinuous. This is related to the fact that
the convergence of processes in the theorem is minimal: it is only for the conver-
gence in distribution of finite marginals. For t ≥ 0, the distribution of L(Tt ) is an
exponential distribution with mean 2t ; see Borodin and Salminen [9], for example.
The characteristic function of

W1

(
16μR(DE )L(Tt )

3π

)
at ξ ∈ C such that Re(ξ) = 0 can be easily obtained as

E
(
eiξW1[Z(t)]) = α2

0

α2
0 + ξ2t

with α0 =
√

3π

4
√

μR(DE )
.
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With a simple inversion, one gets that the density of this random variable is a
bilateral exponential distribution given by

α0

2
√

t
exp

(
− α0√

t
|y|

)
, y ∈ R.

The characteristic function can be also represented as

E
(
eiξW1[Z(t)]) = α2

0

α2
0 + ξ t

= exp
(∫ +∞

−∞
(eiξu − 1)�(t, u) du

)
with

�(t,u) = e−α0|u|/√t

|u| , u ∈ R.

�(t, u) du is in fact the associated Lévy measure of the nonhomogeneous process
with independent increments (W1(Z(t))). See Chapter 5 of Gikhman and Skoro-
hod [13].

4. The reflected random walk. In this section the cat follows a simple er-
godic random walk on the integers with a reflection at 0; an asymptotic analysis of
the evolution of the sample paths of the mouse is carried out. Despite being a quite
simple example, it exhibits already an interesting scaling behavior.

Let P denote the transition matrix of the simple reflected random walk on N,⎧⎨⎩
p(x, x + 1) = p, x ≥ 0,
p(x, x − 1) = 1 − p, x �= 0,
p(0,0) = 1 − p.

(17)

It is assumed that p ∈ (0,1/2) so that the corresponding Markov chain is positive
recurrent and reversible and its invariant probability distribution is a geometric

random variable with parameter ρ
def.= p/(1 − p). In this case, one can check that

the measure ν on N
2 defined in Theorem 1 is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ν(x, y) = ρx(1 − ρ), 0 ≤ x < y − 1,
ν(y − 1, y) = ρy−1(1 − ρ)(1 − p),

ν(y, y) = ρy(1 − ρ),

ν(y + 1, y) = ρy+1(1 − ρ)p,

ν(x, y) = ρx(1 − ρ), x > y + 1.

The following proposition describes the scaling for the dynamics of the cat.

PROPOSITION 2. If, for n ≥ 1, Tn = inf{k > 0 :Ck = n}, then, as n goes to in-
finity, the random variable Tn/E0(Tn) converges in distribution to an exponentially
distributed random variable with parameter 1 and

lim
n→+∞E0(Tn)ρ

n = 1 + ρ

(1 − ρ)2
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with ρ = p/(1 − p).
If C0 = n, then T0/n converges almost surely to (1 + ρ)/(1 − ρ).

PROOF. The first convergence result is standard; see Keilson [19] for closely
related results. Note that the Markov chain (Cn) has the same distribution as the
embedded Markov chain of the M/M/1 queue with arrival rate p and service
rate q . The first part of the proposition is therefore a discrete analogue of the con-
vergence result of Proposition 5.11 of Robert [26].

If C0 = n and define by induction τn = 0 and, for 0 ≤ i ≤ n,

τi = inf{k ≥ 0 :Ck+τi+1 = i},
hence, τn +· · ·+τi is the first time when the cat crosses level i. The strong Markov
property gives that the (τi,0 ≤ i ≤ n − 1) are i.i.d. A standard calculation (see
Grimmett and Stirzaker [15], e.g.) gives that

E(uτ1) = 1 − √
1 − 4pqu

2pu
, 0 ≤ u ≤ 1,

hence, E(τ0) = (1 + ρ)/(1 − ρ). Since T0 = τn−1 + · · · + τ0, the last part of the
proposition is therefore a consequence of the law of large numbers. �

Additive jumps. An intuitive picture of the main phenomenon is as follows.
It is assumed that the mouse is at level n for some n large. If the cat starts at 0,
according to the above proposition, it will take of the order of ρ−n steps to reach
the mouse. The cat and the mouse will then interact for a short amount of time
until the cat returns in the neighborhood of 0, leaving the mouse at some new
location M . Note that, because n is large, the reflection condition does not play
a role for the dynamics of the mouse at this level and by spatial homogeneity
outside 0, one has that M = n + M ′ where M ′ is some random variable whose
distribution is independent of n. Hence, when the cat has returned to the mouse
k times after hitting 0 and then went back to 0 again, the location of the mouse
can be represented as n + M ′

1 + · · · + M ′
k , where (M ′

i ) are i.i.d. with the same
distribution as M ′. Roughly speaking, on the exponential time scale t → ρ−nt , it
will be seen that the successive locations of the mouse can be represented with the
random walk associated to M ′ with a negative drift, that is, E(M ′) < 0.

The section is organized as follows: one investigates the properties of the ran-
dom variable M ′ and the rest of the section is devoted to the proof of the functional
limit theorem. The main ingredient is also a decomposition of the sample path of
(Cn,Mn) into cycles. A cycle starts and ends with the cat at 0 and the mouse is
visited at least once by the cat during the cycle.
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Free process. Let (C′
n,M

′
n) be the cat and mouse Markov chain associated to

the simple random walk on Z without reflection (the free process):

p′(x, x + 1) = p = 1 − p′(x, x − 1) ∀x ∈ Z.

PROPOSITION 3. If (C′
0,M

′
0) = (0,0), then the asymptotic location of the

mouse for the free process M ′∞ = limn→∞ M ′
n is such that, for u ∈ C such that

|u| = 1,

E(uM ′∞) = ρ(1 − ρ)u2

−ρ2u2 + (1 + ρ)u − 1
,(18)

in particular,

E(M ′∞) = − 1

ρ
and E

(
1

ρM ′∞

)
= 1.

Furthermore, the relation

E

(
sup
n≥0

1
√

ρM ′
n

)
< +∞(19)

holds. If (Sk) is the random walk associated to a sequence of i.i.d. random vari-
ables with the same distribution as M ′∞ and (Ei) are i.i.d. exponential random
variables with parameter (1 + ρ)/(1 − ρ)2, then the random variable W defined
by

W =
+∞∑
k=0

ρ−SkEk(20)

is almost surely finite with infinite expectation.

PROOF. Let τ = inf{n ≥ 1 :C′
n < M ′

n}, then, by looking at the different cases,
one has

M ′
τ =

⎧⎨⎩
1, if M1 = 1,C1 = −1,
1 + M ′′

τ , if M1 = 1,C1 = 1,
−1 + M ′′

τ , if M1 = −1,

where M ′′
τ is an independent r.v. with the same distribution as M ′

τ . Hence, for
u ∈ C such that |u| = 1, one gets that

E(uM ′
τ ) =

(
(1 − p)

1

u
+ p2u

)
E(uM ′

τ ) + p(1 − p)u

holds. Since M ′
τ − C′

τ = 2, after time τ , the cat and the mouse meet again with
probability ρ2. Consequently,

M ′∞
dist.=

1+G∑
i=1

M ′
τ,i ,
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where (M ′
τ,i) are i.i.d. random variables with the same distribution as M ′

τ and G is
an independent geometrically distributed random variable with parameter ρ2. This
identity gives directly the expression (18) for the characteristic function of M ′∞
and also the relation E(M ′∞) = −1/ρ.

Recall that the mouse can move one step up only when it is at the same location
as the cat, hence, one gets the upper bound

sup
n≥0

M ′
n ≤ U

def.= 1 + sup
n≥0

C′
n

and the fact that U − 1 has the same distribution as the invariant distribution of
the reflected random walk (Cn), that is, a geometric distribution with parameter ρ

gives directly inequality (19).
Let N = (Nt ) be a Poisson process with rate (1 − ρ)2/(1 + ρ), then one can

check the following identity for the distributions:

W
dist.=

∫ +∞
0

ρ−SNt dt.(21)

By the law of large numbers, (SNt /t) converges almost surely to −(1 + ρ)/[(1 −
ρ)2ρ]. One gets therefore that W is almost surely finite. From (18), one gets u �→
E(uM ′∞) can be analytically extended to the interval

1 + ρ − √
(1 − ρ)(1 + 3ρ)

2ρ2 < u <
1 + ρ + √

(1 − ρ)(1 + 3ρ)

2ρ2

in particular, for u = 1/ρ and its value is E(ρ−M ′∞) = 1. This gives by (20) and
Fubini’s theorem that E(W) = +∞. �

Note that E(ρ−M ′∞) = 1 implies that the exponential moment E(uM ′∞) of the
random variable M ′∞ is finite for u in the interval [1,1/ρ].

Exponential functionals. The representation (21) shows that the variable W is
an exponential functional of a compound Poisson process. See Yor [30]. It can be
seen as the invariant distribution of the auto-regressive process (Xn) defined as

Xn+1
def.= ρ−AnXn + En, n ≥ 0.

The distributions of these random variables are investigated in Guillemin et al. [16]
when (An) are nonnegative. See also Bertoin and Yor [5]. The above proposition
shows that W has a heavy-tailed distribution. As it will be seen in the scaling result
below, this has a qualitative impact on the asymptotic behavior of the location
of the mouse. See Goldie [14] for an analysis of the asymptotic behavior of tail
distributions of these random variables.
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A scaling for the location of the mouse. The rest of the section is devoted to the
analysis of the location of the mouse when it is initially far away from the location
of the cat. Define

s1 = inf{� ≥ 0 :C� = M�} and t1 = inf{� ≥ s1 :C� = 0}
and, for k ≥ 1,

sk+1 = inf{� ≥ tk :C� = M�} and tk+1 = inf{� ≥ sk+1 :C� = 0}.(22)

Proposition 2 suggests an exponential time scale for a convenient scaling of the
location of the mouse. When the mouse is initially at n and the cat at the ori-
gin, it takes the duration s1 of the order of ρ−n so that the cat reaches this level.
Just after that time, the two processes behave like the free process on Z analyzed
above, hence, when the cat returns to the origin (at time t1), the mouse is at posi-
tion n+M ′∞. Note that on the extremely fast exponential time scale t → ρ−nt , the
(finite) time that the cat and mouse spend together is vanishing, and so is the time
needed for the cat to reach zero from n + M ′∞ (linear in n by the second statement
of Proposition 2). Hence, on the exponential time scale, s1 is a finite exponential
random variable, and s2 is distributed as a sum of two i.i.d. copies of s1. The fol-
lowing proposition presents a precise formulation of this description, in particular,
a proof of the corresponding scaling results. For the sake of simplicity, and be-
cause of the topological intricacies of convergence in distribution, in a first step
the convergence result is restricted on the time interval [0, s2], that is, on the two
first “cycles.” Theorem 4 below gives the full statement of the scaling result.

PROPOSITION 4. If M0 = n ≥ 1 and C0 = 0, then, as n goes to infinity, the
random variable (Mt1 − n,ρnt1) converges in distribution to (M ′∞,E1) and the
process (

M�tρ−n�
n

1{0≤t<ρns2}
)

converges in distribution for the Skorohod topology to the process(
1{t<E1+ρ−M′∞E2}

)
,

where the distribution of M ′∞ is as defined in Proposition 3, and it is independent
of E1 and E2, two independent exponential random variables with parameter (1+
ρ)/(1 − ρ)2.

PROOF. For T > 0, D([0, T ],R) denotes the space of cadlag functions, that
is, of right continuous functions with left limits, and d0 is the metric on this space
defined by, for x, y ∈ D([0, T ],R),

d0(x, y) = inf
ϕ∈H

[
sup

0≤s<t<T

∣∣∣∣log
ϕ(t) − ϕ(s)

t − s

∣∣∣∣+ sup
0≤s<T

|x(ϕ(s)) − y(s)|
]
,
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where H is the set of nondecreasing functions ϕ such that ϕ(0) = 0 and ϕ(T ) = T .
See Billingsley [6].

An upper index n is added on the variables s1, s2, t1 to stress the dependence
on n. Take three independent Markov chains (Ca

k ), (Cb
k ) and (Cc

k) with transition
matrix P such that Ca

0 = Cc
0 = 0, Cb

0 = n and, for i = a, b, c, T i
p denotes the hitting

time of p ≥ 0 for (Ci
k). Since ((Ck,Mk), s

n
1 ≤ k ≤ tn1 ) has the same distribution as

((n + C′
k, n + M ′

k),0 ≤ k < T b
0 ), by the strong Markov property, the sequence

(Mk, k ≤ sn
2 ) has the same distribution as (Nk,0 ≤ k ≤ T a

n + T b
0 + T c

n ), where

Nk =

⎧⎪⎪⎨⎪⎪⎩
n, k ≤ T a

n ,
n + M ′

k−T a
n
, T a

n ≤ k ≤ T a
n + T b

0 ,

n + M ′
T b

0
, T a

n + T b
0 ≤ k ≤ T a

n + T b
0 + T c

n+M ′
T b

0

.
(23)

Here ((Cb
k − n,M ′

k),0 ≤ k ≤ T b
0 ) is a sequence with the same distribution as the

free process with initial starting point (0,0) and killed at the hitting time of −n

by the first coordinate. Additionally, it is independent of the Markov chains (Ca
k )

and (Cc
k). In particular, the random variable Mt1 − n, the jump of the mouse from

its initial position when the cat hits 0, has the same distribution as M ′
T b

0
. Since T b

0

converges almost surely to infinity, M ′
T b

0
is converging in distribution to M ′∞.

Proposition 2 and the independence of (Ca
k ) and (Cc

k) show that the sequences
(ρnT a

n ) and (ρnT c
n ) converge in distribution to two independent exponential ran-

dom variables E1 and E2 with parameter (1 + ρ)/(1 − ρ)2. By using Skorohod’s
Representation theorem, (see Billingsley [6]) up to a change of probability space,
it can be assumed that these convergences hold for the almost sure convergence.

By representation (23), the rescaled process ((M�tρ−n�/n)1{0≤t<ρns2}, t ≤ T )

has the same distribution as

xn(t)
def.=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, t < ρnT a
n ,

1 + 1

n
M ′

�ρ−nt−T a
n �, ρnT a

n ≤ t < ρn(T a
n + T b

0 ),

1 + 1

n
M ′

T b
0
, ρn(T a

n + T b
0 ) ≤ t < ρn(T a

n + T b
0 + T c

n+M ′
T b

0

),

0, t ≥ ρn(T a
n + T b

0 + T c
n+M ′

T b
0

),

for t ≤ T . Proposition 2 shows that T b
0 /n converges almost surely to (1 −ρ)/(1 +

ρ) so that (ρn(T a
n + T b

0 )) converges to E1 and, for n ≥ 1,

ρnT c
n+M ′

T b
0

= ρ
−M ′

T b
0 ρ

n+M ′
T b

0 T c
n+M ′

T b
0

−→ ρ−M ′∞E2,

almost surely as n goes to infinity. Additionally, one has also

lim
n→+∞

1

n
sup
k≥0

|M ′
k| = 0,
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almost surely. Define

x∞ = (
1{t<T ∧(E1+ρ−M′∞E2)}

)
,

where a ∧ b = min(a, b) for a, b ∈ R.
Time change. For n ≥ 1 and t > 0, define un (resp., vn) as the minimum (resp.,

maximum) of t ∧ ρn�T a
n + T b

0 + T c
n+M ′

T b
0

� and t ∧ (E1 + ρ−M ′∞E2), and

ϕn(s) =

⎧⎪⎪⎨⎪⎪⎩
vn

un

s, 0 ≤ s ≤ un,

vn + (s − un)
T − vn

T − un

, un < s ≤ T .

Noting that ϕn ∈ H, by using this function in the definition of the distance d0 on
D([0, T ],R) to have an upper bound of (d(xn, x∞)) and with the above conver-
gence results, one gets that, almost surely, the sequence (d(xn, x∞)) converges
to 0. The proposition is proved. �

THEOREM 4 (Scaling for the location of the mouse). If M0 = n, C0 = 0, then
the process (

M�tρ−n�
n

1{t<ρntn}
)

converges in distribution for the Skorohod topology to the process (1{t<W }), where
W is the random variable defined by (20).

If H0 is the hitting time of 0 by (Mn),

H0 = inf{s ≥ 0 :Ms = 0},
then, as n goes to infinity, ρnH0 converges in distribution to W .

PROOF. In the same way as in the proof of Proposition 4, it can be proved that
for p ≥ 1, the random vector [(Mtk −n,ρntk),1 ≤ k ≤ p] converges in distribution
to the vector (

Sk,

k−1∑
i=0

ρ−SiEi

)

and, for k ≥ 0, the convergence in distribution

lim
n→+∞

(
M�tρ−n�

n
1{0≤t<ρntk}

)
= (

1{t<E1+ρ−S1E2+···+ρ−Sk−1Ek}
)

(24)

holds for the Skorohod topology.
Let φ : [0,1] → R+ be defined by φ(s) = E(ρ−sM ′∞), then φ(0) = φ(1) = 1 and

φ′(0) < 0, since φ is strictly convex then for all s < 1, φ(s) < 1.
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If C0 = M0 = n, and the sample path of (Mk −n, k ≥ 0) follows the sample path
of a reflected random walk starting at 0, we have, in particular, that the supremum
of its successive values is integrable. By Proposition 3, as n goes to infinity, Mt1 −n

is converging in distribution to M ′∞. Lebesgue’s theorem gives therefore that the
averages are also converging, hence, since E(M ′∞) is negative, there exists N0 such
that if n ≥ N0,

E(n,n)(Mt1)
def.= E(Mt1 | M0 = C0 = n) ≤ n + 1

2
E(M ′∞) = n − 1

2ρ
.(25)

Note that t1 has the same distribution as T0 in Proposition 2 when C0 = n. Propo-
sition 2 now implies that there exists K0 ≥ 0 so that, for n ≥ N0,

ρn/2
E(0,n)

(√
t1
) ≤ K0.(26)

The identity E(1/ρM ′∞) = 1 implies that E(ρ−M ′∞/2) < 1, and inequality (19) and
Lebesgue’s theorem imply that one can choose 0 < δ < 1 and N0, so that

E
(
ρ(n−Mt1 )/2) ≤ δ(27)

holds for n ≥ N0. Let ν = inf{k ≥ 1 :Mtk ≤ N0} and, for k ≥ 1, Gk the σ -field
generated by the random variables (Cj ,Mj) for j ≤ tk . Because of inequality (25),
one can check that the sequence(

Mtk∧ν
+ 1

2ρ
(k ∧ ν), k ≥ 0

)
is a super-martingale with respect to the filtration (Gk), hence,

E(Mtk∧ν
) + 1

2ρ
E(k ∧ ν) ≤ E(M0) = n.

Since the location of the mouse is nonnegative, by letting k go to infinity, one gets
that E(ν) ≤ 2ρn. In particular, ν is almost surely a finite random variable.

Intuitively, tν is the time when the mouse reaches the area below a finite bound-
ary N0. Our goal now is to prove that the sequence (ρntν) converges in distribution
to W . For p ≥ 1 and on the event {ν ≥ p},

(
ρn(tν − tp)

)1/2 =
(

ν−1∑
k=p

ρn(tk+1 − tk)

)1/2

≤
ν−1∑
k=p

√
ρn(tk+1 − tk).(28)

For k ≥ p, inequality (26) and the strong Markov property give that the relation

ρMtk
/2

E
[√

tk+1 − tk | Gk

] = ρMtk
/2

E(0,Mtk
)

[√
t1
] ≤ K0

holds on the event {ν > k} ⊂ {Mtk > N0}. One gets therefore that

E
(√

ρn(tk+1 − tk)1{k<ν}
) = E

(
ρ(n−Mtk

)/21{k<ν}ρMtk
/2

E
[√

tk+1 − tk | Gk

])
≤ K0E

(
ρ(n−Mtk

)/21{k<ν}
)
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holds, and, with inequality (27) and again the strong Markov property,

E
(
ρ(n−Mtk

)/21{k<ν}
) = E

(
ρ

−∑k−1
j=0(Mtj+1−Mtj

)/21{k<ν}
)

≤ δE
(
ρ

−∑k−2
j=0(Mtj+1−Mtj

)/21{k−1<ν}
) ≤ δk.

Relation (28) gives therefore that

E
(√

ρn(tν − tp)
) ≤ K0δ

p

1 − δ
.

For ξ ≥ 0,

|E(e−ξρntν ) − E(e−ξρntp )| ≤ ∣∣E(1 − e−ξρn(tν−tp)+)∣∣+ P(ν < p)

=
∫ +∞

0
ξe−ξu

P
(
ρn(tν − tp) ≥ u

)
du + P(ν < p)(29)

≤ K0δ
p

1 − δ

∫ +∞
0

ξ√
u
e−ξu du + P(ν < p)

by using Markov’s inequality for the random variable
√

ρn(tν − tp). Since ρntp

converges in distribution to E0 + ρ−S1E1 + · · · + ρ−SpEp , one can prove that,
for ε > 0, by choosing a fixed p sufficiently large and that if n is large enough,
then the Laplace transforms at ξ ≥ 0 of the random variables ρntν and W are at a
distance less than ε.

At time tν the location Mtν of the mouse is x ≤ N0 and the cat is at 0. Since
the sites visited by Mn are a Markov chain with transition matrix (p(x, y)), with
probability 1, the number R of jumps for the mouse to reach 0 is finite. By recur-
rence of (Cn), almost surely, the cat will meet the mouse R times in a finite time.
Consequently, if H0 is the time when the mouse hits 0 for the first time, then by
the strong Markov property, the difference H0 − tν is almost surely a finite random
variable. The convergence in distribution of (ρnH0) to W is therefore proved. �

Nonconvergence of scaled process after W . Theorem 4 could suggest that the
convergence holds for a whole time axis, that is,

lim
n→+∞

(
M�tρ−n�

n
, t ≥ 0

)
= (

1{t<W }, t ≥ 0
)

for the Skorohod topology. That is, after time W the rescaled process stays at 0
like for fluid limits of stable stochastic systems. However, it turns out that this
convergence does not hold at all for the following intuitive (and nonrigorous) rea-
son. Each time the cat meets the mouse at x large, the location of the mouse is at
x + M ′∞ when the cat returns to 0, where M ′∞ is the random variable defined in
Proposition 3. In this way, after the kth visit of the cat, the mouse is at the kth posi-
tion of a random walk associated to M ′∞ starting at x. Since E(1/ρM ′∞) = 1, King-
man’s result (see Kingman [21]) implies that the hitting time of δn, with 0 < δ < 1,
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by this random walk started at 0 is of the order of ρ−δn. For each of the steps of
the random walk, the cat needs also of the order of ρ−δn units of time. Hence, the
mouse reaches the level δn in order of ρ−2δn steps, and this happens on any finite
interval [s, t] on the time scale t → ρ−nt only if δ ≤ 1/2. Thus, it is very likely
that the next relation holds:

lim
n→+∞P

(
sup

s≤u≤t

M�uρ−n�
n

= 1

2

)
= 1.

Note that this implies that for δ ≤ 1/2 on the time scale t → ρ−nt the mouse will
cross the level δn infinitely often on any finite interval! The difficulty in proving
this statement is that the mouse is not at x + M ′∞ when the cat returns at 0 at time
τx but at x + M ′

τx
, so that the associated random walk is not space-homogeneous

but only asymptotically close to the one described above. Since an exponentially
large number of steps of the random walks are considered, controlling the accuracy
of the approximation turns out to be a problem. Nevertheless, a partial result is
established in the next proposition.

PROPOSITION 5. If M0 = C0 = 0, then for any s, t > 0 with s < t , the relation

lim
n→+∞P

(
sup

s≤u≤t

M�uρ−n�
n

≥ 1

2

)
= 1(30)

holds.

It should be kept in mind that, since (Cn,Mn) is recurrent, the process (Mn)

returns infinitely often to 0 so that relation (30) implies that the scaled process
exhibits oscillations for the norm of the supremum on compact intervals.

PROOF OF PROPOSITION 5. First it is assumed that s = 0. If C0 = 0 and
T0 = inf{k > 0 :Ck = 0}, then, in particular, E(T0) = 1/(1 − ρ). The set C =
{C0, . . . ,CT0−1} is a cycle of the Markov chain, and denote by B its maximal
value. The Markov chain can be decomposed into independent cycles (Cn, n ≥ 1)

with the corresponding values (T n
0 ) and (Bn) for T0 and B . Kingman’s result (see

Theorem 3.7 of Robert [26], e.g.) shows that there exists some constant K0 such
that P(B ≥ n) ∼ K0ρ

n. Taking 0 < δ < 1/2, for α > 0,

Un
def.= ρ(1−δ)n

�αρ−n�∑
k=1

[
1{Bk≥δn} − P(B ≥ δn)

]
,

then, by Chebyshev’s inequality, for ε > 0,

P(|Un| ≥ ε) ≤ ρ(2−2δ)nαρ−n Var(1{B≥δn})
ε2 ≤ α

ε2 ρ(1−2δ)n
P(B ≥ δn)

≤ αK0

ε2 ρ(1−δ)n.



A SCALING ANALYSIS OF A CAT AND MOUSE MARKOV CHAIN 819

By using Borel–Cantelli’s lemma, one gets that the sequence (Un) converges al-
most surely to 0, hence, almost surely,

lim
n→+∞ρ(1−δ)n

�αρ−n�∑
k=1

1{Bk≥δn} = αK0.(31)

For x ∈ N, let νx be the number of cycles up to time x, and the strong law of large
numbers gives that, almost surely,

lim
x→+∞

νx

x
= lim

x→+∞
1

x

x∑
k=1

1{Ck=0} = 1 − ρ.(32)

Denote by xn
def.= �ρ−nt�. For α0 > 0, the probability that the location of the mouse

is never above level δn on the time interval (0, xn] is

P

(
sup

1≤k≤�ρ−nt�
Mk ≤ δn

)

≤ P

(
sup

1≤k≤�ρ−nt�
Mk ≤ δn,ρ(1−δ)n

νxn−1∑
i=0

1{Bi≥δn} ≥ α0K0

2

)
(33)

+ P

(
ρ(1−δ)n

νxn−1∑
i=0

1{Bi≥δn} <
α0K0

2

)
.

By the definition of xn and (32), νxn − 1 is asymptotically equivalent to (1 −
ρ)�ρ−nt�, hence, if α0 is taken to be (1 − ρ)t , by (31), one gets that the last ex-
pression converges to 0 as n gets large. In the second term, the mouse stays below
level δn, so a visit of the cat to δn on a cycle is necessarily at least one meeting of
the cat and the mouse on this cycle. Further, it is clear that νxn −1 is not larger than
xn = �ρ−nt�. Finally, recall that the mouse moves only when met by the cat and
the sequence of successive sites visited by the mouse is a also a simple reflected
random walk. Hence, if α1 = α0K0/2,

P

(
sup

1≤k≤�ρ−nt�
Mk ≤ δn,ρ(1−δ)n

νxn−1∑
i=0

1{Bi≥δn} ≥ α1

)

≤ P

(
sup

1≤k≤�ρ−nt�
Mk ≤ δn,ρ(1−δ)n

�ρ−nt�∑
i=0

1{Ci=Mi} ≥ α1

)

≤ P

(
sup

1≤k≤�α1ρ
−(1−δ)n�

Ck ≤ δn
)

= P
(
T�δn�+1 ≥ ⌊

α1ρ
−(1−δ)n⌋)

with the notation of Proposition 2, but this proposition shows that the random
variable ρ�δn�T�δn�+1 converges in distribution as n gets large. Consequently, since
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δ < 1/2, the expression

P
(
T�δn�+1 ≥ ⌊

α1ρ
−(1−δ)n⌋) = P

(
ρ�δn�T�δn�+1 ≥ α1ρ

−(1−2δ)n)
converges to 0. The relation

lim
n→+∞P

(
sup

0≤u≤t

M�uρ−n�
n

≥ 1

2

)
= 1

has been proved.
The proof of the same result on the interval [s, t] uses a coupling argument.

Define the cat and mouse Markov chain (C̃k, M̃k) as follows:

(C̃k, k ≥ 0) = (
C�sρ−n�+k, k ≥ 0

)
and the respective jumps of the sequences (M�sρ−n�+k) and (M̃k) are independent
except when M�sρ−n�+k = M̃k , in which case they are the same. In this way, one
checks that (C̃k, M̃k) is a cat and mouse Markov chain with the initial condition

(C̃0, M̃0) = (
C�sρ−n�,0

)
.

By induction on k, one gets that M�sρ−n�+k ≥ M̃k for all k ≥ 0. Because of the
ergodicity of (Ck), the variable C�sρ−n� converges in distribution as n get large.
Thus, C̃0 is on a finite distance from 0 with probability one, and in the same way
as before, one gets that

lim
n→+∞P

(
sup

0≤u≤t−s

M̃�uρ−n�
n

≥ 1

2

)
= 1,

therefore,

lim inf
n→+∞ P

(
sup

s≤u≤t

M�uρ−n�
n

≥ 1

2

)
≥ lim inf

n→+∞ P

(
sup

0≤u≤t−s

M̃�uρ−n�
n

≥ 1

2

)
= 1.

This completes the proof of relation (30). �

5. Continuous time Markov chains. Let Q = (q(x, y), x, y ∈ S) be the Q-
matrix of a continuous time Markov chain on S such that, for any x ∈ S ,

qx
def.= ∑

y : y �=x

q(x, y)

is finite and that the Markov chain is positive recurrent and π is its invariant prob-
ability distribution. The transition matrix of the underlying discrete time Markov
chain is denoted as p(x, y) = q(x, y)/qx ; for x �= y, note that p(·, ·) vanishes on
the diagonal. See Norris [24] for an introduction on Markov chains and Rogers
and Williams [28] for a more advanced presentation.
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The analogue of the Markov chain (Cn,Mn) in this setting is the Markov chain
(C(t),M(t)) on S 2 whose infinitesimal generator � is defined by, for x, y ∈ S ,

�(f )(x, y) = ∑
z∈S

q(x, z)[f (z, y) − f (x, y)]1{x �=y}
(34)

+ ∑
z,z′∈S

qxp(x, z)p(x, z′)[f (z, z′) − f (x, x)]1{x=y}

for any function f on S 2 vanishing outside a finite set. The first coordinate is in-
deed a Markov chain with Q-matrix Q and when the cat and the mouse are at
the same site x, after an exponential random time with parameter qx , they jump
independently according to the transition matrix P . Note that if one looks at the se-
quence of sites visited by (C(t),M(t)), then it has the same distribution as the cat
and mouse Markov chain associated to the matrix P . For this reason, the results ob-
tained in Section 2 can be proved easily in this setting. In particular, (C(t),M(t))

is null recurrent when (C(t)) is reversible.

PROPOSITION 6. If, for t ≥ 0,

U(t) =
∫ t

0
1{M(s)=C(s)} ds

and S(t) = inf{s > 0 :U(s) ≥ t}, then the process (M(S(t))) has the same distri-
bution as (C(t)), that is, it is a Markov process with Q-matrix Q.

This proposition simply states that, up to a time change, the mouse moves like
the cat. In discrete time this is fairly obvious; the proof is in this case a little more
technical.

PROOF OF PROPOSITION 6. If f is a function on S , then by characterization
of Markov processes, one has that the process

(H(t))
def.=

(
f (M(t)) − f (M(0)) −

∫ t

0
�(f̄ )(C(s),M(s)) ds

)
is a local martingale with respect to the natural filtration (Ft ) of (C(t),M(t)),
where f̄ : S 2 → R such that f̄ (x, y) = f (y) for x, y ∈ S . The fact that, for t ≥ 0,
S(t) is a stopping time and that s → S(s) is nondecreasing, and Doob’s optional
stopping theorem imply that (H(S(t))) is a local martingale with respect to the
filtration (FS(t)). Since∫ S(t)

0
�(f̄ )(C(s),M(s)) ds

= ∑
y∈S

∫ S(t)

0
q(M(s), y)1{C(s)=M(s)}

(
f (y) − f (M(s))

)
ds
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=
∫ S(t)

0
1{C(s)=M(s)}Q(f )(M(s)) ds

=
∫ t

0
Q(f )(M(S(s))) ds,

the infinitesimal generator Q is defined for x ∈ S in a standard way as

Q(f )(x) = ∑
y∈S

q(x, y)[f (y) − f (x)].

One therefore gets that(
f (M(S(t))) − f (M(0)) −

∫ t

0
Q(f )(M(S(s))) ds

)
is a local martingale for any function f on S . This implies that (M(S(t))) is a
Markov process with Q-matrix Q, that is, that (M(S(t))) has the same distribution
as (C(t)). See Rogers and Williams [27]. �

The example of the M/M/∞ process. The example of the M/M/∞ queue
is investigated in the rest of this section. The associated Markov process can be
seen as an example of a discrete Ornstein–Uhlenbeck process. As it will be shown,
there is a significant qualitative difference with the example of Section 4 which is
a discrete time version of the M/M/1 queue. The Q-matrix is given by{

q(x, x + 1) = ρ,

q(x, x − 1) = x.
(35)

The corresponding Markov chain is positive recurrent and reversible and its invari-
ant probability distribution is Poisson with parameter ρ.

PROPOSITION 7. If C(0) = x ≤ n − 1 and

Tn = inf{s > 0 :C(s) = n},
then, as n tends to infinity, the variable Tn/Ex(Tn) converges in distribution to an
exponentially distributed random variable with parameter 1 and

lim
n→+∞ Ex(Tn)ρ

n/(n − 1)! = e−ρ.

If C(0) = n, then T0/ logn converges in distribution to 1.

See Chapter 6 of Robert [26]. It should be remarked that the duration of time it
takes to reach n starting from 0 is essentially the time it takes to go to n starting
from n − 1.
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Multiplicative jumps. The above proposition gives the order of magnitude for
the duration of time for the cat to hit the mouse. As before, the cat returns “quickly”
to the neighborhood of 0, but, contrary to the reflected random walk, it turns out
that the cat will take the mouse down for some time before leaving the mouse. The
next proposition shows that if the mouse is at n, its next location after the visit of
the cat is of the order of nF for a certain random variable F .

PROPOSITION 8. If C(0) = M(0) = n and

T0 = inf{s > 0 :C(s) = 0},
then, as n goes to infinity, the random variable M(T0)/n converges in distribution
to a random variable F on [0,1] such that P(F ≤ x) = xρ .

PROOF. Let τ = inf{s > 0 :M(s) = M(s−) + 1} be the instant of the first up-
ward jump of (M(s)). Since (M(S(s))) has the same distribution as (C(s)), one
gets that U(τ), with U(t) defined as in Proposition 6, has the same distribution as
the time till a first upward jump of (C(s)), which is an exponential random vari-
able with parameter ρ by definition (35). Now, think of (M(S(s))) as the process
describing the number of customers in an M/M/∞ queue, which contains n cus-
tomers at time 0. Let (Ei) be i.i.d. exponential random variables with parameter 1.
For 1 ≤ i ≤ n, Ei is the service time of the ith initial customer. At time τ , the
process of the mouse will have run only for U(τ), so the ith customer is still there
if Ei > U(τ). Note that there is no arrival up to time τ , and, hence,

M(τ)
dist.= 1 +

n∑
i=1

1{Ei>U(τ)}.

Consequently, by conditioning on the value of U(τ), by the law of large numbers
one obtains that the sequence (M(τ)/n) converges in distribution to the random

variable F
def.= exp(−U(τ)), which implies directly that P(F ≤ x) = xρ .

It remains to show that (M(T0)/n) converges in distribution to the same limit
as (M(τ)/n). The fact that the mouse moves only when it meets the cat gives the
following:

– On the event τ ≥ T0, necessarily M(τ−) = C(τ−) = 0 because if the mouse
did not move upward before time T0, then it has reached 0 together with the cat.
In this case, at time τ , the mouse makes its first jump upward from 0 to 1. Thus,
the quantity

P(τ ≥ T0) ≤ P
(
M(τ) = 1

) = P
(
U(τ) > max{E1, . . . ,En})

converges to 0 as n → ∞.
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– Just before time τ , the mouse and the cat are at the same location and

P
(
C(τ) = M(τ−) − 1

) = E

[
M(τ−)

ρ + M(τ−)

]
converges to 1 as n gets large.

The above statements imply that with probability converging to one, the cat will
find itself below the mouse for the first time strictly above level zero and before
time T0. We now show that after this event the cat will hit zero before returning
back to the mouse. If ε > 0, then

E
(
PC(τ)

(
T0 ≥ TM(τ)

)) ≤ E
(
PM(τ)−1

(
T0 ≥ TM(τ)

))
≤ P

(
M(τ)

n
≤ ε

)
+ sup

k≥�εn�
Pk(T0 ≥ Tk+1),

hence, by Proposition 7, for ε (resp., n) sufficiently small (resp., large), the above
quantity is arbitrarily small. This result implies that the probability of the event
{M(τ) = M(T0)} converges to 1. The proposition is proved. �

An underlying random walk. If C(0) = 0 and M(0) = n, the next time the cat
returns to 0, Proposition 8 shows that the mouse will be at a location of the order
of nF1, where F1 = exp(−E1/ρ) and E1 is an exponential random variable with
parameter 1. After the pth round, the location of the mouse is of the order of

n

p∏
k=1

Fk = n exp

(
− 1

ρ

p∑
k=1

Ek

)
,(36)

where (Ek) are i.i.d. with the same distribution as E1. A precise statement of this
nonrigorous statement can be formulated easily. From (36), one gets that after the
order of ρ logn rounds, the location of the mouse is within a finite interval.

The corresponding result for the reflected random walk exhibits an additive be-
havior. Theorem 4 gives that the location of the mouse is of the order of

n +
p∑

i=1

Ai(37)

after p rounds, where (Ak) are i.i.d. copies of M ′∞, distribution of which is given
by the generating function of relation (18). In this case the number of rounds after
which the location of the mouse is located within a finite interval is of the order
of n.

As Theorem 4 shows, for the reflected random walk, t → ρ−nt is a convenient
time scaling to describe the location of the mouse until it reaches a finite interval.
This is not the case for the M/M/∞ queue, since the duration of the first round of
the cat, of the order of (n − 1)!/ρn by Proposition 7, dominates by far the duration
of the subsequent rounds, that is, when the location of the mouse is at xn with
x < 1.
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