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ERGODIC APPROXIMATION OF THE DISTRIBUTION OF
A STATIONARY DIFFUSION: RATE OF CONVERGENCE

BY GILLES PAGÈS AND FABIEN PANLOUP

UPMC and Institut de Mathématiques de Toulouse

We extend to Lipschitz continuous functionals either of the true paths or
of the Euler scheme with decreasing step of a wide class of Brownian ergodic
diffusions, the central limit theorems formally established for their marginal
empirical measure of these processes (which is classical for the diffusions
and more recent as concerns their discretization schemes). We illustrate our
results by simulations in connection with barrier option pricing.

1. Introduction. In a recent paper [19], we investigated weighted empiri-
cal measures based on some Euler schemes with decreasing step in order to ap-
proximate recursively the distribution Pν of a stationary Feller Markov process
X := (Xt)t≥0 with invariant distribution ν (see also [15–18, 20, 21] or [27] for the
marginal case where only ν is approximated, with decreasing or constant step). To
be precise, let (X̄t )t≥0 be such a Euler scheme, let (�k)k≥1 denote its sequence of
discretization times and let (ηk)k≥1 be a sequence of weights. On the one hand,
we showed under some Lyapunov-type mean-reverting assumptions on the coef-
ficients of the stochastic differential equation (SDE) and some conditions on the
steps and on the weights that

ν̄(n)(ω,F ) = 1

η1 + · · · + ηn

n∑
k=1

ηkF (X̄�k+·)

(1.1)
n→+∞−−−→ Pν(F ) =

∫
E[F(Xx)]ν(dx) a.s.

for a broad class of functionals F including bounded continuous functionals for the
Skorokhod topology. On the other hand, in the marginal case, that is, when F(α) =
f (α(0)), then the procedure converges to ν(f ). When the Poisson equation related
to the infinitesimal generator has a solution, this convergence is ruled by a central
limit theorem (CLT); this has been extensively investigated in the literature (for
continuous Markov processes, see [5]; for the Euler scheme with decreasing step
of Brownian diffusions, see [15, 17]). As concerns Lévy driven SDEs, see [22].

Our aim in this paper is to extend some of these rate results to functionals of the
path process and its associated Euler scheme with decreasing step, that is, to study

Received September 2010; revised March 2011.
MSC2010 subject classifications. 60G10, 60J60, 65C05, 65D15, 60F05.
Key words and phrases. Stochastic differential equation, stationary process, steady regime, er-

godic diffusion, central limit theorem, Euler scheme.

1059

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/11-AAP779
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1060 G. PAGÈS AND F. PANLOUP

the rate of convergence to Pν(F ) of (1
t

∫ t
0 F(Xs+·) ds)t≥1 and (ν̄(n)(ω,F ))n≥1,

respectively. Here, we choose to assume that (Xt)t≥0 is an R
d -valued process so-

lution to

dXt = b(Xt) dt + σ(Xt) dWt,(1.2)

where (Wt)t≥0 is a q-dimensional Brownian motion and b and σ are Lipschitz
continuous functions with values in R

d and Md,q , respectively, where Md,q de-
notes the set of d × q-matrices. Under these assumptions, strong existence and
uniqueness hold and (Xt)t≥0 is a Markov process whose semi-group is denoted by
(Pt )t≥0. We also assume that (Xt)t≥0 has a unique invariant distribution ν and we
denote by Pν , the distribution of (Xt)t≥0 when stationary.

Let us now focus on the discretization of (Xt)t≥0. We are going to introduce
some continuous-time Euler schemes with decreasing step; denoting by (�n)n≥0
the increasing sequence of discretization times starting from �0 = 0, we assume
that the step sequence defined by γn := �n − �n−1, n ≥ 1, is nonincreasing and
satisfies

lim
n→+∞γn = 0 and �n =

n∑
k=1

γk
n→+∞−−−→+∞.(1.3)

First, we introduce the discrete time constant Euler scheme (X̄�n)n≥0 recursively
defined at the discretization times �n by X̄0 = x0 and

X̄�n+1 = X̄�n + γn+1b(X̄�n) + σ(X̄�n+1)(W�n+1 − W�n).(1.4)

There are several ways to extend this definition into a continuous time process.
The simplest one is the stepwise constant Euler scheme (X̄t )t≥0 defined by

∀n ∈ N,∀t ∈ [�n,�n+1) X̄t = X̄�n.

The stepwise constant Euler scheme is a right continuous-left limited process (re-
ferred as càdlàg throughout the paper, following the French acronym). This scheme
is easy to simulate provided one is able to compute the functions b and σ at a rea-
sonable cost. One could also introduce the linearly interpolated process built on
(X̄�n)n≥0 but, except for the fact that it is a continuous process, it has no specific
virtue in terms of simulability or convergence rate.

The second possibility to extend the discrete time Euler scheme is what we
will call the genuine Euler scheme, denoted from now on by (ξt )t≥0. It is defined
by interpolating the two parts of the discrete time scheme in its own scale (time,
Brownian motion). It is defined by

∀n ∈ N,∀t ∈ [�n,�n+1)
(1.5)

ξt = X̄�n + (t − �n)b(X̄�n) + σ(X̄�n)(Wt − W�n+1).

Such an approximation looks more accurate than the former one, especially in
a functional setting, as it has been emphasized—in a constant step framework—in
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the literature on several problems related to the Monte Carlo estimation of (a.s.
continuous) functionals of a diffusion (with a finite horizon) (see, e.g., [7], Chap-
ter 5). This follows from the classical fact that the Lp-convergence rate of this
scheme for the sup norm is of order

√
γ instead of

√
γ logγ for its stepwise con-

stant counterpart (where γ stands for the step). On the other hand, the simulation of
a functional of (ξt )t∈[τ,τ+T ] is deeply connected with the simulation of the Brown-
ian bridge so that it is only possible for specific functionals (like running maxima,
etc.).

A convenient and synthetic form for the genuine Euler scheme is to write it as
an Itô process satisfying the following pseudo-diffusion equation:

ξt = x0 +
∫ t

0
b(ξs) ds +

∫ t

0
σ(ξs) dWs,(1.6)

where

t = �N(t) with N(t) = min{n ≥ 0,�n+1 > t}.(1.7)

Taking advantage of this notation for the stepwise constant Euler scheme, one can
also note that

∀t ∈ R+ X̄t = X̄t .

When necessary, we will adopt the more precise notation X̄x,(hn) for a stepwise
constant continuous-time Euler scheme to specify starting at x ∈ R

d at time 0 with
a nonincreasing step sequence (hn)n≥1 satisfying (1.3).

Since we will deal with possibly càdlàg approximations of continuous pro-
cesses, we will introduce the spaces Duc(I,R

d) of R
d -valued càdlàg functions

on I = R+ or [0, T ], T > 0, endowed with the topology of the uniform conver-
gence on compact sets, rather than the classical Skorokhod topology (see [6]). In
fact, one must keep in mind that if α : I → R

d is a continuous function and (αn)

is a sequence of càdlàg functions, αn
Sk→ α iff α

uc→ α (with obvious notation).
Furthermore, usual Skorokhod distance dSk (so-called J1 and J2 topologies) on
D([0, T ],R

d) all satisfy

dSk(α,β) ≤ ‖α − β‖T := sup
t∈[0,T ]

|α(t) − β(t)|

so that any functional F : D([0, T ],R
d) → R, which is Lipschitz with respect to

such a distance dSk, will be Lipschitz continuous with respect to ‖ · ‖T (hence,
measurable with respect to the Borel σ -field induced by the Skorokhod topology).

At this stage, we need to introduce further notation related to the long run be-
havior of processes (or simply functions). Let δα(dβ) denote the Dirac mass at
α ∈ D(R+,R

d) and α(u) := (αu+t )t≥0 denotes the u-shift of α.
We will see below that our aim is to elucidate the asymptotic P(dω)-a.s. weak

behavior of the empirical measures 1
t

∫ t
0 δY (s)(ω)(dβ)ds as t goes to infinity, where
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Y will be the diffusion X itself or one of its (simulatable) Euler time discretiza-
tions. This suggests we introduce a time dicretization at times �n of the above time
integral like we did to define the Euler scheme. This leads us to introduce, for any
α ∈ D(R+,R

d), the following abstract “Euler” empirical means:

ν̄(n)(α, dβ) = 1

�n

n∑
k=1

γkδα(�k−1) (dβ) = 1

�n

∫ �n

0
δα(s)(dβ)ds.

Then, for a functional F defined on D(R+,R
d) and α ∈ D(R+,R

d),

ν̄(n)(α,F ) =
∫

D(R+,Rd )
F (β)ν̄(n)(α, dβ) = 1

�n

n∑
k=1

γkF
(
α(�k−1)

)

= 1

�n

∫ �n

0
F

(
α(s))ds.

In the following, we will use this sequence of empirical measures for both stepwise
constant and genuine Euler schemes. Compared to [19], this means that we assume
that the sequence of weights (ηn) satisfies ηn = γn for every n ≥ 1.

ADDITIONAL NOTATION. � 〈x, y〉 = ∑
i xiyi will denote the canonical inner

product and |x| = √〈x, x〉 will denote Euclidean norm of a vector x ∈ R
d .

� Let A = [aij ] ∈ Md,q be an R-valued matrix with d rows and q columns.
A∗ will denote the transpose of A, Tr(A) = ∑

i aii its trace and ‖A‖ :=√
Tr(AA∗) = (

∑
ij a2

ij )
1/2. If d = q , one writes Ax⊗2 for x∗Ax.

2. Main results.

2.1. Assumptions and background. We denote by (Ft )t≥0 the usual augmen-
tation of σ(Ws,0 ≤ s ≤ t) by P-negligible sets. Since b and σ are Lipschitz
continuous functions, equation (1.2) admits a unique (Ft )t≥0-adapted solution
(Xx

t )t≥0 starting from x ∈ R
d . More generally, for every u ≥ 0 and every finite

Fu-measurable random variable 
, we can consider (X
(u),

t )t≥0, unique strong

solution to the SDE:

dYt = b(Yt ) dt + σ(Yt ) dW
(u)
t , Y0 = 
,(2.1)

where W
(u)
t = Wu+t − Wu, t ≥ 0, is the u-shifted Brownian motion (independent

of Fu). Note that Xx
t = X

(0),x
t and that X

(u),

t can be also defined through the flow

of (1.2) by setting

X
(u),

t = (

X
(u),x
t

)
|x=
.

Throughout this paper, we consider a measurable functional F : Duc([0, T ],R
d) →

R. We will denote by FT the stopped functional defined on Duc(R+,R
d) by

∀α ∈ Duc(R+,R
d), FT (α) = F(αT )

(2.2)
with αT (t) = α(t ∧ T ), t ≥ 0.
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Let us introduce the assumptions on F .
(C1

F ): F : Duc([0, T ],R
d) → R is a bounded and Lipschitz continuous func-

tional.
We set

fF (x) = E[FT (Xx)] = E[F(Xx
t ,0 ≤ t ≤ T )].

It is classical background (see, e.g., [12]) that, under the Lipschitz assumption on
b and σ , E[supt∈[0,T ] |Xx

t − X
y
t |] ≤ Cb,σ,T |x − y| so that fF is in turn clearly

Lipschitz continuous. Additional regularity properties (like differentiability) can
be transferred from fF provided F , b and σ are themselves differentiable enough
(see, e.g., [12]). Furthermore, it follows from its very definition and the Markov
property that

ν(fF ) = Pν(FT ) =
∫

E[FT (Xx)]ν(dx).

(C2
F ): There exists a bounded C 2-function gF : Rd → R with bounded Lipschitz

continuous derivatives such that

∀x ∈ R
d fF (x) − ν(fF ) = AgF ,

where A denotes the infinitesimal generator of the diffusion (1.2) defined for every
C 2-function f on R

d by

Af (x) = 〈∇f, b〉(x) + 1
2Tr(σ ∗D2f σ(x)).

REMARK 2.1. In fact, we need in the sequel that fF satisfies a CLT for the
marginal occupation measures which follows (see [15, 22]) from assumption (C2

F )

combined with a Lyapunov stability assumption [such as (Sa,p) introduced below].
Namely, we have for a class of regular functions f satisfying f = Ag + C

√
t

(
1

t

∫ t

0
f (Xx

s ) ds − ν(f )

)
L−−−→

t→+∞ N (0, σ 2
f )(2.3)

and as soon as
∑n

k=1
γ 2
k√
�k

n→+∞−−−→0,

√
�n

(
1

�n

n∑
k=1

γkf (X̄�k−1) − ν(f )

)
L−−−→

n→+∞ N (0, σ 2
f ),(2.4)

where

σ 2
f =

∫
Rd

|σ ∗∇g(x)|2ν(dx) = −2
∫

g(x)Ag(x)ν(dx)

and L denotes the weak convergence of (real valued) random variables. For details
on results in these directions, see [5] for the continuous case and [16, 17, 22] for
the decreasing step Euler scheme.
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Checking when assumption (C2
F ) is fulfilled is equivalent to solving the Poisson

equation Au = f on R
d . When f has compact support, well-known results about

the same equation in a bounded domain lead to assumption (C2
F ) when the dif-

fusion is uniformly elliptic (see, e.g., [13], Theorems III.1.1 and III.1.2). Such an
assumption on fF is clearly unrealistic. In the general case, in [23, 24] and [25],
the problem is solved under some ellipticity conditions in some Sobolev spaces
and controls of the growth are given for u and its first derivatives. Finally, when
the diffusion is an Ornstein–Uhlenbeck process, one can refer to [15] where the
problem is solved in C 2(Rd).

Let us now introduce the Lyapunov-type stability assumptions on SDE (1.2).
Let E Q(Rd) denote the set of essentially quadratic functions, that is, C 2-functions
V : Rd → (0,∞) such that

lim|x|→+∞V (x) = +∞, |∇V | ≤ C
√

V and D2V is bounded.

Note that since V is continuous, V attains its positive minimum v > 0 so that, for
any A, r > 0, there exists a real constant CA,r such that A + V r ≤ CA,rV

r .
Let us come to the mean-reverting assumption itself. First, for any symmetric

d × d matrix S, set λ+
S := max(0, λ1, . . . , λd) where λ1, . . . , λd denote the eigen-

values of S. Let a ∈ (0,1] and p ∈ [1,+∞). We introduce the following mean-
reverting assumption with intensity a:

(Sa,p): There exists a function V ∈ E Q(Rd) such that:

(i) ∃Ca > 0 such that |b|2 + Tr(σσ ∗) ≤ CaV
a ,

(ii) there exist β ∈ R and ρ > 0 such that 〈∇V,b〉 + λp Tr(σσ ∗) ≤
β − ρV a ,

where λp := 1
2 supx∈Rd λ+

D2V (x)+(p−1)(∇V ⊗∇V )/V
. The function V is then called a

Lyapunov function for the diffusion (Xt)t≥0.

In Theorem 3 of [16], it is shown that this assumption leads to an a.s. marginal
weak convergence result to the set of invariant distributions of the diffusion. When
p ≥ 2 and the invariant distribution is unique, this result reads as follows.

PROPOSITION 2.1. Let a ∈ (0,1] and p ≥ 2 such that (Sa,p) holds. Then,

sup
n≥1

1

�n

n∑
k=1

γkV
p/2+a−1(X̄�k−1) < +∞ a.s.(2.5)

Let ν denote the unique invariant distribution of (1.2). Then, a.s.,

1

�n

n∑
k=1

γkf (X̄�k−1)
n→+∞−−−→ν(f )

for every continuous function f satisfying f (x) = o(V p/2+a−1(x)) as |x| → +∞.
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REMARK 2.2. In the case V (x) = 1 + |x|2, one checks, for instance, that for
a given a ∈ (0,1], assumption (Sa,p) is fulfilled for every p ≥ 1 if Tr(σσ ∗)(x) =
o(1 + |x|2a) as |x| → +∞ and

b(x) = −ρ(x)
x

|x| + T (x) where C1|x|2a−1 ≤ ρ(x) ≤ C2|x|2a−1,

and T satisfies for every x ∈ R
d 〈T (x), x〉 = 0 and |T (x)| ≤ C(1 + |x|a).

With regard to the uniqueness of the invariant distribution ν, we need an addi-
tional assumption related to the transition PT . Namely, we assume that:

(Sν
T ): ν is an invariant distribution for (Pt )t≥0 and the unique one for PT .

Then, ν is, in particular, the unique invariant distribution for (Pt )t≥0. In fact,
checking uniqueness of the invariant distribution for PT at a given time T > 0 is
a standard way to establish uniqueness for the whole semi-group (Pt )t≥0. To this
end, one may use the following two typical criterions:

• Irreducibility based on ellipticity: for every x ∈ R
d , PT (x, dy) has a density

(pT (x, y))y∈Rd w.r.t. the Lebesgue measure λd and λd(dy)-a.s., pT (x, y) > 0 for
every x ∈ R

d .
• Asymptotic confluence: for every bounded Lipschitz continuous function f ,

for every compact subset K of R
d ,

sup
(x1,x2)∈K

|PkT f (x1) − PkT f (x2)| k→+∞−−−→0 (see, e.g., [3, 17]).

2.2. Main results. We are now in position to state our main results.

THEOREM 2.1. Let T > 0. Assume b and σ are Lipschitz continuous func-
tions satisfying (Sa,p) with an essentially quadratic Lyapunov function V : Rd →
(0,+∞) and parameters a ∈ (0,1] and p > 2. Assume furthermore that V satis-
fies the growth assumption

lim inf|x|→+∞
V p+a−1(x)

|x| > 0.(2.6)

Assume that the uniqueness assumption (Sν
T ) holds. Finally, assume that the step

sequence (γn)n≥1 satisfies (1.3) and

∑
k≥1

γ
3/2
k√
�k

< +∞.(2.7)

Let F : Duc([0, T ],R
d) → R be a functional satisfying (C1

F ) and (C2
F ).
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(a) GENUINE EULER SCHEME: Then√
�n

(
ν̄(n)(ξ(ω),FT ) − Pν(FT )

) L−−−→
n→+∞ N (0, σ 2

F ),(2.8)

where

σ 2
F = 1

T

(∫
E

[(
E(Ax

2T |F2T ) − E(Ax
T |FT )

(2.9)

−
∫ 2T

T
σ ∗∇gF (Xx

u) dWu

)2]
ν(dx)

)

and Ax
t := ∫ t

0 (FT (Xx
u+·) − fF (Xx

u)) du, t ≥ 0 (is Ft+T -adapted).

(b) STEPWISE CONSTANT EULER SCHEME: Furthermore, if there exists δ > 0
such that

∑
k≥1

γ
3/2−δ
k√

�k

< +∞,(2.10)

then, √
�n

(
ν̄(n)(X̄(ω),FT ) − Pν(FT )

) L−−−→
n→+∞ N (0, σ 2

F ).(2.11)

REMARK 2.3. By a series of computations, we can obtain other expressions
for σ 2

F . In particular, we check in Appendix A that σ 2
F reads

σ 2
F = 2

∫ T

0

(
1 − v

T

)
CF (v) dv − 2Eν

(
FT (X)

∫ T

0
σ ∗∇gF (Xu)dWu

)
(2.12)

+
∫

Rd
|σ ∗∇gF (x)|2ν(dx),

where Eν denotes the expectation under the stationary regime and CF is the co-
variance function defined by

CF (u) = Eν

((
FT (Xu+·) − fF (Xu)

)(
FT (X) − fF (X0)

))
.(2.13)

This expression is not clearly positive but has the advantage to separate the
“marginal part” that is represented by the last term from the “functional part”
which corresponds to the first two ones.

For instance, when F(α) = φ(α(0)), φ being bounded and such that φ −
ν(φ) = Ah where h is a bounded C 2-function with bounded derivatives, then
fF = φ and one observes that the first two terms of (2.12) are equal to 0 so that
σ 2

F = ∫
Rd |σ ∗∇gF (x)|2ν(dx). This means that we retrieve the marginal CLT given

by (2.4) (under a condition on the step sequence which is adapted to the more
general functionals we are dealing with, thus, more constraining than that of the
original paper; see below for more detailed comments on the steps conditions).
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If we now consider FT defined FT (α) = φ(α(T )), φ satisfying the same as-
sumptions as before, one can straightforwardly deduce from a simple change of
variable that the limiting variance is still

∫
Rd |σ ∗∇h(x)|2ν(dx). In Appendix B we

show that retrieving this limiting variance using (2.9) is possible but requires some
nontrivial computations. In particular, this calculus emphasizes the intricate nature
of the structure of the functional variance.

Given the form of ν̄(n), it seems natural to introduce the (nonsimulatable) se-
quence

1

�n

∫ �n

0
FT

(
ξ (u))du,

which in fact appears naturally as a tool in the proof of the above theorem.

THEOREM 2.2. Assume the assumptions of Theorem 2.1(a). Then,

√
t

(
1

t

∫ t

0
FT

(
ξ (s))ds − Pν(FT )

)
L−−−→

n→+∞ N (0, σ 2
F ).(2.14)

Finally, we also state the central limit theorem for the stochastic process (Xt)t≥0
itself. This result can be viewed as a (partial) extension to functionals of Bhat-
tacharya’s CLT established in [5] for a class of ergodic Markov processes.

THEOREM 2.3. Let T > 0. Assume b and σ are Lipschitz continuous functions
satisfying (Sa,p) with an essentially quadratic Lyapunov function V and param-
eters a ∈ (0,1] and p > 2. Assume (Sν

T ) holds. Let F : Duc([0, T ],R
d) → R be a

functional satisfying (C1
F ) and (C2

F ). Then, for every x ∈ R
d ,

√
t

(
1

t

∫ t

0
F

(
X(s),x

u ,0 ≤ u ≤ T
)
ds − Pν(FT )

)
L−−−→

n→+∞ N (0, σ 2
F ).(2.15)

This means that our approach (averaging decreasing step schemes) induces no
loss of weak rate of convergence with respect to that of the empirical mean of the
process itself toward its steady regime. If we look at the problem from an algorith-
mic point of view, the situation becomes quite different. First, we will no longer
discuss the recursive aspects as well as the possible storing problems induced by
the use of decreasing steps; it has already been done in [19] and we showed that
they can easily be encompassed in practice, especially for additive functionals or
functions of running extrema (see, e.g., simulations in Section 7).

Our aim here is to discuss the rate of convergence in terms of complexity. It
is clear from its design that the complexity of the algorithm grows linearly with
the number of iterations. Thus, if γn ∝ n−ρ , 0 < ρ < 1, then �n ∼ n1−ρ

1−ρ
so that

the effective rate of convergence as a function of the complexity is essentially
proportional to n(1−ρ)/2. However, the choice of ρ is constrained by conditions
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(2.7) or (2.10) that are required for the control of the discretization error. These
conditions imply that ρ must be taken greater than 1/2 and lead to an “optimal”
rate proportional to n1/4−ε for every ε > 0. This means that we are not able to
recover the optimal rate of the marginal case that is proportional to n−1/3 and
obtained for ρ = 1/3 (see [16] for details). Indeed, in this functional framework,
the weak discretization error is generally smaller and thus, is negligible compared
to the long time error under a more constraining step condition (2.7) instead of∑

γ 2
k /

√
�n < +∞ in the marginal case.

The paper is organized as follows. In Sections 3, 4 and 5 we will focus on the
proof of Theorem 2.1(a) and Theorem 2.3 about the rate of convergence of the two
considered occupation measures of the genuine Euler scheme. Then, in Section 6,
we will summarize the results of the previous sections and will give the main
arguments of the proof of Theorems 2.1(a) and 2.3. Finally, Section 7 is devoted to
numerical tests in a financial framework: the pricing of a barrier option when the
underlying asset price dynamics is a stationary stochastic volatility model.

3. Preliminaries. As for the marginal rate of convergence (see [15]), the first
idea is to find a good decomposition of the error (see Lemma 3.1). In particular,
we have to exhibit a main martingale component. Here, since F depends on the
trajectory of the process between 0 and T , the idea is that the “good” filtration
for the main martingale component is (FkT )k≥0. That is why, in the main part of
the proof of these theorems, we will introduce and study the sequence of random
probabilities (P (n,T )(ω, dβ))n≥1 defined by

P (n,T )(ω, dβ) = 1

nT

∫ nT

0
δ
ξ

(∼u)(dβ)du = 1

nT

n∑
k=1

∫ kT

(k−1)T
δ
ξ

(∼u)(dβ)du,

where ∼u is a deterministic real number lying in [u,u].
To alleviate the notation, we will denote from now on, Gk = FkT and Ek[·] =

E[·|Gk], k ≥ 0.
At this stage, the reader can observe on the one hand that for a bounded func-

tional F , P (n,T )(ω,FT ) is Gn+1 = F(n+1)T -adapted for every n ≥ 0 and on the
other hand that P (n,T )(ω,FT ) is very close to the random measures ν̄(n)(ξ(ω), dβ)

of Theorem 2.1(b) by taking ∼u = u ∨ [u] and exactly equal to its continuous time
counterpart in Theorem 2.2 if one sets ∼u = u. (This fact will be made more precise
in Section 6.)

Hence, the main step of the proof of the above theorems will be to study the rate
of convergence of the sequence (P (n,T )(ω,FT ))n≥0 to Pν(FT ) for which the main
result is given in Section 6 (see Proposition 6.1). In this way, we state in this section
a series of preliminary lemmas. In Lemma 3.1, we decompose the error between
this new sequence (P (n,T )(ω,FT ))n≥1 and the target Pν(FT ). In Lemma 3.2, we
recall a series of results on the stability of diffusion processes and their genuine
Euler scheme in finite horizon. Finally, in Lemma 3.3, we recall and extend results
of [16] about the long-time behavior of the marginal Euler scheme.
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For every k ∈ N, we define the Gk-measurable random variable φF (k) by

φF (1) = 0, φF (k) =
∫
Ik−1

FT

(
ξ

(∼u))
du if k ≥ 2,(3.1)

where Ik = [(k − 1)T , kT ). Please note that φF (k) is FkT -measurable.

LEMMA 3.1. For every F satisfying (C1
F ) and (C2

F ), we have

P (n,T )(ω,FT ) − Pν(FT ) = Mn

nT
+ �n,1 + �n,2 + �n+1,3

nT
,

where (Mn)n≥1 is a (Gn)-martingale decomposed as follows: Mn = ∑4
i=1 Mn,i

with

�Mk,1 = φF (k) − Ek−1[φF (k)],
�Mk,2 = Ek[φF (k + 1)] − Ek−1[φF (k + 1)],
�Mk,3 =

∫
Ik

Ek−1
[
FT

(
X

(∼u),ξ∼u
)] − fF (ξ∼u) du,

�Mk,4 = −
∫
Ik

〈∇gF (ξ∼u), σ (ξ∼u) dWu〉
and (�n,1), (�n,2) and (�n,3) are (Gn)-adapted sequences defined for every n ≥ 1,
by

�n,1 =
n∑

k=1

∫
Ik

Ek−1
[
FT

(
ξ

(∼u)) − FT

(
X

(∼u),ξ∼u
)]

du,

�n,2 =
n∑

k=1

(∫
Ik

AgF (ξ∼u) du − �Mk,4

)
,

�n,3 = (
φF (n) − En(φF (n))

)
.

PROOF. With our newly defined notation, we have, for every n ≥ 1,

P (n,T )(ω,FT ) = 1

nT

n∑
k=1

φF (k + 1).

Now, for every k ≥ 1, going twice backward through martingale increments, one
checks that

φF (k + 1) = �M1,k+1 + �M2,k + Ek−1
(
φF (k + 1)

)
.

Then, noting that Ek−1(φF (k + 1)) = ∫
Ik

Ek−1(FT (ξ
(∼u)

)) du, we introduce the ap-
proximation term ��n,1 between the genuine Euler scheme ξ and the true diffu-
sion X so that

φF (k + 1) = �M1,k+1 + �M2,k + ��k,1 +
∫
Ik

Ek−1
(
FT

(
X

(∼u),ξ∼u
))

du.
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At this stage the Markov property applied to the original diffusion process yields

Ek

(
FT

(
X

(∼u,ξ∼u))) = Ek

(
E∼uFT

(
X

(∼u),ξ∼u
)) = EkfF (ξ∼u) = fF (ξ∼u)

since ∼u ≤ u ≤ kT . As a consequence, �M3
k is a true Gk-martingale increment and

φF (k + 1) = �M1,k+1 + �M2,k + ��k,1 + �M3,k +
∫
Ik

fF (ξ∼u) du.

On the other hand, fF = AgF + Pν(F ), so that∫
Ik

fF (ξ∼u) du − Pν(F ) =
∫
Ik

AgF (ξ∼u) du = ��k,2 + �Mk,4.

Finally, summing up all these terms yields

P (n,T )(ω,FT ) − Pν(F ) = 1

nT

(
M1,n+1 +

4∑
i=2

Mi,n +
2∑

i=1

�n,i

)

= 1

nT

( 4∑
i=1

Mi,n +
3∑

i=1

�n,i

)

since �n+1,3 = M1
n+1 − M1

n . �

REMARK 3.1. The term �n,1 sums up the error resulting from the approxi-

mation of X
(∼u),ξ∼u by its Euler scheme (with decreasing step) ξ∼u+·. The term �n,2

is a residual approximation term as well; indeed, if we replace mutatis mutandis
ξ∼u by Xu, Itô’s formula implies that

gF

(
X(k+1)T

) − gF (XkT ) =
∫
Ik

AgF (Xu)du +
∫
Ik

〈∇gF (Xu), σ (Xu)dWu〉,

so that the resulting term would be, instead of �n,2, gF (X(n+1)T )−gF (XnT )

nT
=

O(1/n).

LEMMA 3.2. Let p > 0 and T > 0. Assume that b and σ are Lipschitz con-
tinuous functions and that there exists φ ∈ E Q(Rd) such that |b|2 +‖σ‖2 ≤ Cb,σφ

for a positive real constant Cb,σ . Then:

(i) there exists a real constant Cp,T ,b,σ > 0, such that for every u ≥ 0 and
every finite Fu-measurable random vector 


E

[
sup

t∈[0,T ]
φp(

X
(u),

t

)|Fu

]
≤ Cp,T ,b,σ φp(
)

and

E

[
sup

t∈[0,T ]
φp(ξu+t )|Fu

]
≤ Cp,T ,b,σ φp(ξu);
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(ii) there exists a real constant Cp,T > 0 such that, for every u ≥ 0,

E

[
sup

t∈[0,T ]
∣∣ξu+t − X

(u),ξu
t

∣∣p∣∣Fu

]
≤ Cp,T (1 + |ξu|p)γ

p/2
N(u)+1;

(iii) there exists a real constant Cp > 0 such that, for every n ≥ 0,

E

[
sup

u∈[�n,�n+1)

|ξu − ξ�n |p|F�n

]
≤ Cpφp/2(ξ�n)γ

p/2
n+1;

(iv) let p > 2. Then, there exists Cp,T ,δ > 0 such that, for every u ≥ 0,

E

[
sup

t∈[0,T ]
|ξu+t − ξu+t |p|Fu

]
≤ Cp,T φp/2(ξu)γ

p/2−1
N(u)+1.

PROOF. The proofs follow the lines of their classical counterpart for the con-
stant step Euler scheme of a diffusion (see, e.g., [7], Theorem B.1.4, page 276,
and the remark that follows). In particular, as concerns (ii), the only thing to be
checked is that (ξu+t )t≥0 is the Euler scheme with decreasing step γ (u) of X(u),ξu

where the step sequence γ (u) is defined by

γ
(u)
1 = �N(u)+1 − u, γ

(u)
k = γN(u)+k, k ≥ 2.(3.2) �

LEMMA 3.3. Let p > 2 and a ∈ (0,1] such that (Sa,p) holds and assume that
b and σ are Lipschitz continuous functions.

(i) Let g : R+ → R+ be a nonincreasing function such that
∫ ∞

0 g(u)du <

+∞. Let (δk) be a nonincreasing sequence of positive numbers such that∑
k≥1 δk < +∞. Then,∫ +∞

0
E[V p+a−1(ξu)]g(u)du < +∞ and

(3.3) ∑
k≥1

δkE
[
V p+a−1(

ξ(k−1)T

)]
< +∞.

(ii) We have

sup
t≥�1

1

t

∫ t

0
V p/2+a−1(ξs) ds < +∞ a.s.(3.4)

and

sup
n≥1

1

n

n∑
k=1

V p/2+a−1(
ξ(k−1)T

)
< +∞ a.s.(3.5)

In particular, the families of empirical measures(
1

t

∫ t

0
δξs ds

)
t≥1

and

(
1

n

n∑
k=1

δξ(k−1)T

)
n≥1

are a.s. tight.
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(iii) Assume (Sν
T ). Then, a.s., for every continuous function f such that f (x) =

o(V p/2+a−1(x)) as |x| → +∞,

1

t

∫ t

0
f (ξs) ds

t→+∞−−−→ν(f ) and
1

n

n∑
k=1

f
(
ξ(k−1)T

) t→+∞−−−→ν(f ).

PROOF. (i) First, note that∫ ∞
0

V p+a−1(ξu)g(u)du = ∑
n≥1

θnγnV
p+a−1(ξ�n−1),

where θn = γ −1
n

∫ �n

�n−1
g(u)du. Consequently, the first statement is simply a rewrit-

ing with continuous time notation of Lemma 4 of [16]. As concerns the second one,
using Lemma 3.2(i) with φ = V and the exponent p+a−1 yields for every k ≥ 1 and
every u ∈ Ik ,

E[V p+a−1(ξkT )] ≤ Cp,a,T E[V p+a−1(ξu)].
As a consequence, considering the integrable, nonincreasing, nonnegative function
g = ∑

k≥1 1Ik−1δk leads to∑
k≥2

δkE
[
V p+a−1(

ξ(k−1)T

)] ≤ Cp,a,T

∑
k≥2

∫
Ik−1

E[V p+a−1(ξu)]g(u)du < +∞

owing to the previous statement.
(ii) Set r = p

2 + a − 1 > 0 since p > 2 and a > 0. First, for every n ≥ 1 and
every t ∈ [�n,�n+1),

1

t

∫ t

0
V r(ξs) ds ≤ �n+1

�n

1

�n+1

n+1∑
k=1

γkV
r(ξ�k−1) ≤ 2

�n+1

n+1∑
k=1

γkV
r(ξ�k−1),

since γn is nonincreasing. Now, owing to Proposition 2.1,

sup
n≥1

1

�n

n∑
k=1

γkV
r(ξ�k−1) < +∞ a.s.

and (3.4) follows.
Let us deal now with (3.5). Given (3.4), it is clear that (3.5) is equivalent to

showing that for an increasing sequence (tk) such that t0 = 0, supk≥1(tk − tk−1) <

+∞ and tk → +∞,

sup
n≥1

1

n

n∑
k=1

(
(tk − tk−1)V

r(ξkT ) −
∫ tk

tk−1

V r(ξu) du

)
< +∞ a.s.(3.6)

Setting tk = �N(kT )+1 for every k ≥ 1, this suggests we introduce the martingale
defined by N0 = 0 and for every n ≥ 1,

Nn =
n∑

k=1

1

k

(∫ tk

tk−1

V r(ξkT ) − V r(ξu) du −
∫ tk

tk−1

E[V r(ξkT ) − V r(ξu)|Ftk−1]du

)
.
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Set ε = p
2r

so that (1 + ε)r = p + a − 1. Using that supk≥1(tk − tk−1) < +∞ and
the elementary inequality (u + v)1+ε ≤ 2ε(u1+ε + v1+ε) for u, v ≥ 0,

∑
k≥1

1

k1+ε
E

∣∣∣∣
∫ tk

tk−1

V r(ξkT ) − V r(ξu) du

∣∣∣∣1+ε

≤ C
∑
k≥1

δkE
[
V r(1+ε)(ξkT )

] + C

∫ +∞
0

E
[
V r(1+ε)(ξu)

]
g(u)du,

where δk = k−(1+ε) and g is the nonincreasing function defined by g(u) = k−(1+ε)

on [tk−1, tk). Thus, we deduce from (3.3) that

∑
k≥1

1

k1+ε
E

∣∣∣∣
∫ tk

tk−1

V r(ξkT ) − V r(ξu) du

∣∣∣∣1+ε

< +∞.

It follows from the Chow theorem (see, e.g., [9]) that (Nn) a.s. converges toward a
finite random variable N∞ which in turn implies by the Kronecker lemma that

1

n

n∑
k=1

(∫ tk

tk−1

V r(ξkT ) − V r(ξu) du

−
∫ tk

tk−1

E[V r(ξkT ) − V r(ξu)|Ftk−1]du

)
n→+∞−−−→0 a.s.

Then, (3.6) will follow from

sup
n≥1

1

n

n∑
k=1

∫ tk

tk−1

E[V r(ξkT ) − V r(ξu)|Ftk−1]du < +∞ a.s.(3.7)

In order to prove (3.7), we need to inspect two cases for r :
Case r ≥ 1. We decompose the increment V r(ξkT ) − V r(ξu) into elementary

increments, namely,

V r(ξkT ) − V r(ξu) = V r(ξkT ) − V r(ξkT ) +
N(kT )∑

�=N(u)+1

V r(ξ��
) − V r(ξ��−1).

Owing to the second order Taylor formula, we have for every � ∈ {N(u) +
1, . . . ,N(kT )},

V r(ξ��
) − V r(ξ��−1)

= γl〈∇V r, b〉(ξ��−1) + 〈∇V r(ξ��−1), σ (ξ��−1)(W��
− W��−1)〉

+ 1
2D2V r(θl)(ξ��

− ξ��−1)
⊗2 where θl ∈ (ξ��−1, ξ��

).

Note that a similar development holds for V r(ξkT )−V r(ξkT ). Now, one checks
that the fact that V ∈ E Q(Rd) implies that ‖D2V r‖ ≤ CV V r−1 and that

√
V is a
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Lipschitz continuous function with Lipschitz constant [√V ]1. Consequently

|D2V (θ�)(ξ��
− ξ��−1)

⊗2|
≤ CV

(√
V (ξ��−1) + [√

V
]
1|ξ��

− ξ��−1 |
)2(r−1)|ξ��

− ξ��−1 |2

≤ Cr,V V r−1(ξ��−1)|ξ��
− ξ��−1 |2 + C|ξ��

− ξ��−1 |2r ,

where we used in the second inequality the standard control |u+v|s ≤ 2s−1(|u|s +
|v|s). Then, summing over � and using that 〈∇V,b〉 ≤ β owing to (Sa,p)(ii), we
deduce that

V r(ξkT ) − V r(ξu)

≤ β(kT − u) +
∫ kT

u
〈∇V r(ξv), σ (ξv) dWv〉

+ CV

∫ kT

u
V r−1(ξv)|ξv̄∧kT − ξv|2 + |ξv̄∧kT − ξv|2r dv

γN(v)+1
,

where v̄ = �N(v)+1. By (Sa,p)(i), we can use Lemma 3.2(iii) with φ = V a and
p = s to obtain for every s > 0,

E[|ξv̄∧kT − ξv|s |Fv] ≤ CsV
as/2(ξv)γ

s/2
N(v)+1.(3.8)

Applying successively the above inequality with s = 2 and s = 2r ≥ 2 and using
the chain rule for conditional expectations show that

E[V r(ξkT ) − V r(ξu)|Ftk−1] ≤ β(T + ‖γ ‖∞) +
∫ kT

u
E[V r+a−1(ξv)|Ftk−1]dv

≤ CT,β,‖γ ‖∞

(
1 +

∫ tk

tk−1

E[V r+a−1(ξu)|Ftk−1]du

)
for some real constant CT,β‖γ ‖∞ . As a consequence,

sup
n≥1

1

n

n∑
k=1

∫ tk

tk−1

E[V r(ξkT ) − V r(ξu)|Ftk−1]du

≤ C

(
1 + sup

n≥1

1

n

n∑
k=1

∫ tk

tk−1

E[V r+a−1(ξu)|Ftk−1]du

)
.

Let ε ∈ (0,
p+a−1
r+a−1 ) [note that p+a−1

r+a−1 = p/2−(a−1)
p/2+2(a−1)

> 0 since p > 2 and 0 < a ≤ 1].
Hence, (1 + ε)(r + a − 1) ≤ p + a − 1 and by Lemma 3.2(i) and (3.3), one checks
that

+∞∑
k=1

1

k1+ε
E

[∣∣∣∣
∫ tk

tk−1

E[V r+a−1(ξu) du|Ftk−1] −
∫ tk

tk−1

V r+a−1(ξu) du

∣∣∣∣1+ε∣∣∣Ftk−1

]

≤ C

+∞∑
k=1

1

k1+ε

∫ tk

tk−1

E[V p+a−1(ξu)|Ftk−1]du < +∞ a.s.
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by the first part of the lemma. Then, one derives using a martingale argument based
on (3.4), the Chow theorem and the Kronecker lemma that

sup
n≥1

1

n

n∑
k=1

∫ tk

tk−1

E[V r+a−1(ξu)|Ftk−1]du < +∞.

Case 0 < r ≤ 1. In that case, we just use that D2V r is bounded so that we just
have to use (3.8) with s = 2 (since a < p +a −1). This completes the proof of (ii).

(iii) The fact that a.s., 1
t

∫ t
0 f (ξs) ds

t→+∞−−−→ν(f ) is but the statement of Proposi-
tion 2.1 with continuous time notation. Now, let us show that a.s., for every con-
tinuous function f such that f = o(V p/2+a−1),

1

n

n∑
k=1

f
(
ξ(k−1)T

) n→+∞−−−→ν(f ).(3.9)

First, taking advantage of (3.5), standard weak convergence arguments based on
uniform integrability show that it is enough to prove that, a.s., (3.9) holds for ev-
ery bounded continuous function f . Then, using that weak convergence on R

d

can be characterized along a countable subset S of Lipschitz bounded continuous
functions f , the problem amounts to showing that for every Lipschitz bounded
continuous function f : Rd → R

1

n

n∑
k=1

f
(
ξ(k−1)T

) n→+∞−−−→ν(f ) a.s.(3.10)

Owing to (Sν
T ), our strategy here will be to show that almost any limiting distri-

bution of the empirical measures is invariant since it leaves the transition operator
PT invariant. As a first step, we first derive from a standard martingale argument
that

1

n

n∑
k=2

f
(
ξ(k−1)T

) − Ek−2
[
f

(
ξ(k−1)T

)] n→+∞−−−→0 a.s.(3.11)

Now, we remark that

Ek−2
[
f

(
ξ(k−1)T

)] = PT f
(
ξ(k−2)T

) + Rk−2
(
ξ(k−2)T

)
(3.12)

with

Rk(x) = E
[
f

(
ξ

x,γ (kT )

T

) − f (Xx
T )

]
,(3.13)

where ξx,γ (kT )
denotes the genuine Euler scheme starting from x with step se-

quence γ (kT ) defined by (3.2). Since f is bounded Lipschitz,

Rk(x) ≤ CE
[∣∣ξx,γ (kT )

T − Xx
T

∣∣]1{|x|≤M} + 2‖f ‖∞1{|x|>M}
≤ CM

√
γN(kT ) + 2‖f ‖∞1{|x|>M},
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where in the second inequality we used Lemma 3.2(ii) with p = 1. Thus, since

γN(kT )
k→+∞−−−→0, it follows from (3.12) that, for every M > 0,

lim sup
n→+∞

1

n

n∑
k=2

(
Ek−2

[
f

(
ξ(k−1)T

)] − PT f
(
ξ(k−2)T

))

≤ C lim sup
n→+∞

1

n

n∑
k=2

1B(0,M)c
(
ξ(k−1)T

)
a.s.

Then, it follows from (3.11) and from the a.s. tightness of ( 1
n

∑n
k=1 δξ(k−1)T

)n≥1
that, a.s.,

1

n

n∑
k=1

(
f

(
ξ(k−1)T

) − PT f
(
ξ(k−1)T

))

= 1

n

n∑
k=2

(
f

(
ξ(k−1)T

) − PT f
(
ξ(k−2)T

)) + O

(
1

n

)
n→+∞−−−→0.

Now, since f and PT f are bounded continuous, it follows that, a.s., for every
weak limit ν∞(ω, dx) of the tight sequence (n−1 ∑n

k=1 δξ(k−1)T
)n≥1, ν∞(ω,f ) =

ν∞(ω,PT f ) for every f ∈ S . This implies that ν∞(ω, dx) is an invariant distri-
bution for PT and one concludes the proof by (Sν

T ). �

4. Rate of convergence for the martingale component. This section is de-
voted to the study of the rate of convergence of the martingale (Mn) defined in
Lemma 3.1. The main result of this section is Proposition 4.1 where we obtain a
CLT for this martingale. On the way to this result, the main difficulty is to study
the asymptotic behavior of the previsible bracket of this sum of four dependent
martingales. First, we decompose the martingale increment �Mn as follows:

�Mn = En[Ān+1 + B̄n] − En−1[Ān+1 + B̄n],
where (Ān) is a (Gn)-adapted sequence defined for every n ≥ 1 by

Ān = φF (n − 1) + φF (n) −
∫
In−1

fF (ξ∼u) du

=
∫ (n−1)T

(n−3)T
FT

(
ξ

(∼u))
du −

∫
In−1

fF (ξ∼u) du

and B̄n = �Mn,4. Keep in mind that En−1[B̄n] = 0. In the following lemma, we
set

Zk := X(kT ),ξkT ∀k ≥ 1,

where, following the notation introduced in (2.1), X(kT ),ξkT denotes the unique
solution to dYt = b(Yt ) dt + σ(Yt ) dW

(kT )
t starting from ξkT .
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LEMMA 4.1. Assume b and σ are Lipschitz continuous functions satisfying
(Sa,p) with an essentially quadratic Lyapunov function V and parameters a ∈
(0,1] and p > 2. Let F : Duc([0, T ],R

d) → R denote a functional satisfying (C1
F )

and (C2
F ). Then,

1

n

n∑
k=2

Ek−1[(�Mk)
2] − Ek−2[(�Mk)

2] n→+∞−−−→0 a.s.(4.1)

and

1

n

n∑
k=2

(
Ek−2[(�Mk)

2] − (
Ek−2[(EkCk+1)

2] − Ek−2[(Ek−1Ck+1)
2]))

(4.2)
n→+∞−−−→0 a.s.,

where Ck+1 = Ak+1 + Bk with

Ak+1 =
∫ 2T

0
FT (Zk−2

u+· ) du −
∫ 2T

T
fF (Zk−2

u ) du

and

Bk = −
∫ T

0

〈∇gF (Zk−2
u ), σ (Zk−2

u ) dW(k−2)T
u

〉
.

PROOF. We consider the (Gn−1)-martingale (Nn) defined by

Nn :=
n∑

k=2

1

k

(
Ek−1[(�Mk)

2] − Ek−2[(�Mk)
2]).

Let ε > 0. Using Jensen’s inequality, we have

∑
k≥2

Ek−2|�Nk|1+ε ≤ C
∑
k≥2

1

k1+ε
Ek−2|�Mk|2(1+ε)

≤ C
∑
k≥2

1

k1+ε
Ek−2|Āk+1 + B̄k|2(1+ε).

Using successively conditional Burkholder–Davis–Gundy, Jensen inequalities and
(C1

F ), we have

Ek−2|Āk+1 + B̄k|2(1+ε)

≤ 31+2ε

(
(2‖F‖∞T )2(1+ε) + (‖F‖∞T )2(1+ε)(4.3)

+ T ε
∫
Ik

Ek−2
[|∇gF (ξ∼u)|

2(1+ε)‖σ(ξ∼u)‖
2(1+ε)]du

)
.
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Now, since ∇gF is bounded and ‖σ‖2 ≤ CV a ,

Ek−2
[|∇gF (ξ∼u)|

2(1+ε)‖σ(ξ∼u)‖
2(1+ε)]

≤ CEk−2
[
V a(1+ε)(ξ∼u)

]
(4.4)

≤ C
(
1 + Ḡk−2,a(1+ε)

(
ξ(k−2)T

))
,

where Ḡk,p(x) = E[supt∈[0,T ] V p(ξ
x,γ (k)

t )]. By Lemma 3.2(i) applied with φ = V

and p = a(1 + ε) with ε ∈ (0,
p−1

a
), it follows that for every k ≥ 2,

Ek−2|�Mk|2(1+ε) ≤ CF,ε,T V a(1+ε)(ξ(k−2)T

)
.(4.5)

Then, we deduce from Lemma 3.3 applied with δk = k−(1+ε) that∑
k≥2

Ek−2|�Nk|1+ε ≤ ∑
k≥2

1

k1+ε
V a(1+ε)(ξ(k−2)T

)
< +∞ a.s.

since a(1 + ε) < p + a − 1. Finally, using the Chow theorem, it follows that (Nn)

is an a.s. convergent martingale and the result follows from the Kronecker lemma.
(ii) Set C̄k = Āk + B̄k−1. We have �Mk = Ek[C̄k+1] − Ek−1[C̄k+1] so that

Ek−2[(�Mk)
2] = Ek−2[(EkC̄k+1)

2] − Ek−2[(Ek−1C̄k+1)
2].

Thus, it is enough to show that

1

n

n∑
k=2

Ek−2[(EkC̄k+1)
2] − Ek−2[(EkCk+1)

2] n→+∞−−−→0 a.s.(4.6)

and

1

n

n∑
k=2

Ek−2[(Ek−1C̄k+1)
2] − Ek−2[(Ek−1Ck+1)

2] n→+∞−−−→0 a.s.(4.7)

Let us focus on (4.6). Set q = p
p−1 . Using conditional Hölder and Jensen inequal-

ities, we obtain

|Ek−2[(EkC̄k+1)
2] − Ek−2[(EkCk+1)

2]|
= |Ek−2[Ek(C̄k+1 − Ck+1)Ek(C̄k+1 + Ck+1)]|
≤ Ek−2[(Ek|Āk+1 − Ak+1|p)1/p(Ek|C̄k+1 + Ck+1|q)1/q ]

+ Ek−2
[(

Ek(B̄k+1 − Bk+1)
2)1/2(

Ek(C̄k+1 + Ck+1)
2)1/2]

≤ (Ek−2|Āk+1 − Ak+1|p)1/p(Ek−2|C̄k+1 + Ck+1|q)1/q(4.8)

+ (Ek−2|B̄k − Bk|2)1/2(
Ek−2(C̄k+1 + Ck+1)

2)1/2
.(4.9)

Let us inspect successively the terms involved in (4.8) and (4.9).



APPROXIMATION OF THE DISTRIBUTION OF A STATIONARY DIFFUSION 1079

Set Gp(x) = E[supt∈[0,T ] V p(Xx
t )]. Still using Lemma 3.2(i), we show [like

previously for (4.5)] that, for every k ≥ 2 and r ≥ 2,

Ek−2|C̄k+1 + Ck+1|r ≤ C
(
1 + Ḡk−2,r/2

(
ξ(k−2)T

) + Gr/2
(
ξ(k−2)T

))
(4.10)

≤ CV r/2(
ξ(k−2)T

)
.

On the other hand, since F and fF are bounded Lipschitz continuous functions,

Ek−2[|Āk+1 − Ak+1|p]
≤ C

(
1 ∧ Ek−2

[
sup

v∈[(k−2)T ,(k+1)T ]
∣∣ξ∼v − Zk−2

v−(k−2)T

∣∣p])

≤ C
(
Ek−2

[
sup

v∈[(k−2)T ,(k+1)T ]
|ξ∼v − ξv|p

]

+ Ek−2

[
sup

v∈[(k−2)T ,(k+1)T ]
∣∣ξv − Zk−2

v−(k−2)T

∣∣p])
∧ 1.

Then, owing to the Markov property,

Ek−2[|Āk+1 − Ak+1|p] ≤ C
[(

Hk−2,3T ,p

(
ξ(k−2)T

) + Kk−2,3T ,p

(
ξ(k−2)T

)) ∧ 1
]

with

Hk,T ,p(x) = E

[
sup

v∈[0,T ]
∣∣ξx,γ (kT )

∼v
− ξx,γ (kT )

v

∣∣p]
and

Kk,T ,p(x) = E

[
sup

v∈[0,T ]
∣∣ξx,γ (kT )

v − Xx
v

∣∣p]
,

where (ξ
x,γ (kT )

v )v≥0 denotes the Euler scheme of Xx with step sequence γ (kT ) as
defined by (3.2). Now, using that for every v ∈ [0, T ],∣∣ξx,γ (kT )

∼v
− ξx,γ (kT )

v

∣∣p ≤ 2p−1(∣∣ξx,γ (kT )

v − ξx,γ (kT )

v

∣∣p + ∣∣ξx,γ (kT )

∼v
− ξx,γ (kT )

v

∣∣p)
≤ 2p sup

v∈[0,T ]
∣∣ξx,γ (kT )

v − ξx,γ (kT )

v

∣∣p,

it follows from Lemma 3.2(iv) that

Hk,T ,p(x) ≤ Cγ
p/2−1
N(kT ) V ap/2(x),(4.11)

and by Lemma 3.2(ii),

Kk,T ,p(x) ≤ C(1 + |x|p)γ
p/2
N(kT ),(4.12)

so that, for every M > 0,

Ek−2[|Āk+1 − Ak+1|p]
≤ Cγ

p/2−1
N((k−2)T )

(
1 + V ap/2(

ξ(k−2)T

) + ∣∣ξ(k−2)T

∣∣p)
1{|ξ(k−2)T |≤M}(4.13)

+ C1{|ξ(k−2)T |>M}.
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Finally, we have

Ek−2[|B̄k − Bk|2] = Ek−2

[∫
Ik

|σ ∗∇gF (ξ∼u) − σ ∗∇gF (Zk−2
u )|2 du

]
.

On the one hand, ∇gF and σ being both Lipschitz continuous and ∇gF being
bounded, we have for every x, y ∈ R

d ,

|σ ∗∇gF (x) − σ ∗∇gF (y)|2 ≤ C
(
1 + ‖σ(y)‖2)|x − y|2.(4.14)

As a consequence, using the Schwarz inequality and assumption (Sa,p)(i), it fol-
lows that

Ek−2[|B̄k − Bk|2]
≤ C

(
Ek−2

[
1 + sup

u∈[T ,2T ]
V 2a(Zk−2

u )
])1/2

×
(
Ek−2 sup

u∈[(k−1)T ,kT ]
∣∣ξ∼u − Zk−2

u−(k−2)T

∣∣4)1/2
.

Owing to Lemma 3.2(i), it follows that

Ek−2[|B̄k − Bk|2] ≤ CV a(
ξ(k−2)T

)(
Hk−2,2T ,4

(
ξ(k−2)T

) + Kk−2,2T ,4
(
ξ(k−2)T

))1/2

and by (4.11) and (4.12) that

Ek−2[|B̄k − Bk|2]
≤ CV a(

ξ(k−2)T

)(√
γN((k−2)T )V

a(
ξ(k−2)T

)
(4.15)

+ γN((k−2)T )

(
1 + ∣∣ξ(k−2)T

∣∣2))
≤ C′√γN((k−2)T )

(
1 + V 2a(

ξ(k−2)T

) + ∣∣ξ(k−2)T

∣∣2(1+a))
,

where we used in the last inequality that V (x) ≤ C(1 + |x|2). On the other hand,
since

|σ ∗∇gF (x) − σ ∗∇gF (y)|2 ≤ C
(‖σ(x)‖2 + ‖σ(y)‖2)

,

we deduce likewise from (Sa,p)(i) and Lemma 3.2(i) that

Ek−2|B̄k − Bk|2 ≤ CV a(
ξ(k−2)T

)
.(4.16)

Thus, plugging the inequalities obtained in (4.10), (4.13), (4.15) and (4.16) into
(4.9) and (4.8) yields for every M > 0,

|Ek−2[(EkC̄k)
2] − Ek−2[(EkCk)

2]|
≤ CMγ

1/4∧(1/2−1/p)
N((k−2)T ) 1{|ξ(k−2)T |≤M} + CV a(

ξ(k−2)T

)
1{|ξ(k−2)T |>M}.
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Since γN(kT ) → 0 as k → ∞ and p > 2, it follows that a.s., for every M > 0,

lim sup
n→+∞

1

n

n∑
k=2

|Ek−2[(EkC̄k)
2] − Ek−2[(EkCk)

2]|

≤ C lim sup
n→+∞

1

n

n∑
k=2

V a(
ξ(k−2)T

)
1{|ξ(k−2)T |>M}.

Since p > 2, there exists ε > 0 such that a(1 + ε) <
p
2 + a − 1. Hence, it follows

from (3.5), that

sup
n≥1

1

n

n∑
k=2

V a(1+ε)(ξ(k−2)T

)
< +∞ a.s.

Then, we deduce by a standard uniform integrability argument that

lim sup
M→+∞

lim sup
n→+∞

1

n

n∑
k=2

V a(
ξ(k−2)T

)
1{|ξ(k−2)T |>M} = 0 a.s.

This completes the proof of (4.6). The proof of (4.7) is similar and the details are
left to the reader. �

LEMMA 4.2. Assume that b and σ are Lipschitz continuous functions.

(i) For every k ≥ 1,

Ek−2[(EkCk+1)
2] − Ek−2[(Ek−1Ck+1)

2] = �
(
ξ(k−2)T

)
,(4.17)

where

�(x) = E

[(
E(Ax

2T |F2T ) − E(Ax
T |FT ) −

∫ 2T

T
σ ∗∇gF (Xx

u) dWu

)2]

with Ax
t := ∫ t

0 (FT (Xx
u+·) − fF (Xx

u)) du, t ≥ 0.

(ii) If (C1
F ) holds, � is a continuous function on R

d . As a consequence, if
moreover (C2

F ), (Sν
T ) and (Sa,p) hold for a ∈ (0,1] and p > 2,

1

n

n∑
k=2

Ek−2[(�Mk)
2] n→+∞−−−→ σ 2

F =
∫

�(x)ν(dx) a.s.(4.18)

PROOF. (i) Let � be a bounded (or nonnegative) Borel functional defined
on C(R+,R

d). Since pathwise uniqueness holds for SDE (1.2) (b and σ being
Lipschitz continuous), there exists a measurable function h : Rd × C(R+,R

�) →
C(R+,R

d) such that a.s., for every k ≥ 2,

Zk−2 = X((k−2)T ),ξ(k−2)T = h
(
ξ(k−2)T ,W((k−2)T ))
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(see, e.g., [11], Corollary 3.23). Then, using that ξ(k−2)T is Gk−2 = F(k−2)T -
measurable, that the Brownian motion W((k−2)T ) is independent of F(k−2)T and

that FkT = F(k−2)T ∨ F W((k−2)T )

2T , one derives that

Ek

(
�

(
X((k−2)T ),ξ(k−2)T

))
= E

(
�

(
X((k−2)T ),ξ(k−2)T

)|F W((k−2)T )

2T

)
= E

(
�

(
X((k−2)T ),x)|F W((k−2)T )

2T

)
|x=ξ(k−2)T

.

Using again the representation with function h (or the fact that strong uniqueness
implies weak uniqueness), one observes that the spatial process (E(�(X((k−2)T ),x)|
F W((k−2)T )

2T ))x∈Rd has the same distribution as (E(�(Xx)|F W
2T ))x∈Rd where

(Xx
t )t≥0,x∈Rd is the flow of SDE (1.2) at time 0. Consequently,

Ek−2
(
Ek

(
�

(
X((k−2)T ),ξ(k−2)T

))2) = [Ex(E(�(Xx)|F W
2T ))2]x=ξ(k−2)T

.

Similar arguments show that

Ek−2
(
Ek−1

(
�

(
X((k−2)T ),ξ(k−2)T

))2) = [Ex(E(�(Xx)|F W
T ))2]x=ξ(k−2)T

.

Thus, it follows from the definition of Ak+1 and Bk+1 that

Ek−2[(EkCk+1)
2] − Ek−2[(Ek−1Ck+1)

2]
= [

Ex

(
E(�1(X

x)|F W
2T )2 − E(�1(X

x)|F W
T )2)]

x=ξ(k−2)T
,

where

�1(X
x) :=

∫ 2T

0
FT (Xx

u+·) du −
∫ 2T

T
fF (Xx

u) du −
∫ T

0
〈σ ∗∇gF (Xx

u), dWu〉

=
∫ 2T

0
FT (Xx

u+·) du −
∫ 2T

T
fF (Xx

u) du

−
(
gF (Xx

T ) − gF (Xx
0 ) −

∫ T

0
AgF (Xx

u) du

)
.

Note that the second expression clearly defines a functional on the canonical space.
Now,

Ex

(
E(�1(X

x)|F W
2T )2 − E(�1(X

x)|F W
T )2)

= Ex

[(
E(�1(X

x)|F W
2T ) − E(�1(X

x)|F W
T )

)2]
= Ex

[(
E(�̃1(X

x)|F W
2T ) − E(�̃1(X

x)|F W
T )

)2]
,

where �̃1(X
x) = �1(X

x) − ∫ T
0 fF (Xx

u) du. The result follows using that F W
s =

Fs , that (
∫ t

0 〈σ ∗∇gF (Xx
u), dWu)t≥0 is a (Ft )t≥0-martingale and that E[A2T −

AT |FT ] = 0.
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(ii) Let x ∈ R
d and set

ψ(x, ·) = E(Ax
2T |F2T ) − E(Ax

T |FT ) −
∫ 2T

T
σ ∗∇gF (Xx

u) dWu.

Let (xn) be a convergent sequence of R
d to x. Owing to the standard identity

a2 − b2 = (a − b)(a + b) and Schwarz’s inequality,

|�(x) − �(xn)| ≤ E[|ψ(x, ·) − ψ(xn, ·)|2]1/2
E[|ψ(x, ·) + ψ(xn, ·)|2]1/2.

Let S = {x} ∪ {xn,n ≥ 1}. Since F and fF are bounded,

E[|ψ(x, ·) + ψ(xn, ·)|2]

≤ C

(
1 + sup

v∈S
E

[(∫ 2T

T
σ ∗∇gF (Xv

u) dWu

)2])

= C

(
1 + sup

v∈S

∫ 2T

T
E[|σ ∗∇gF (Xv

u)|2]du

)

≤ C
(
1 + sup

v∈S
sup

u∈[T ,2T ]
E[V a(Xv

u)]
)

≤ C
(
1 + sup

n≥1
V a(xn)

)
,

owing to Lemma 3.2(i). Thus,

|�(x) − �(xn)| ≤ CE[|ψ(x, ·) − ψ(xn, ·)|2]1/2

≤ C

2∑
i=1

E
[
E[Ax

iT − A
xn

iT |FiT ]2]1/2

(4.19)

+ CE

[∣∣∣∣
∫ 2T

T
〈∇gF (Xx

u), σ (Xx
u) dWu〉

−
∫ 2T

T
〈∇gF (Xxn

u ), σ (Xxn
u ) dWu〉

∣∣∣∣2
]1/2

.

On the one hand, F and fF being Lipschitz continuous, elementary computations
show that for i = 1,2,

E
∣∣E[Ax

iT − A
xn

iT |FiT ]∣∣2 ≤
∥∥∥ sup
t∈[0,3T ]

|Xx
t − X

xn
t |

∥∥∥2

2
.

On the other hand, one checks that

E

∣∣∣∣
∫ 2T

T
〈∇gF (Xx

u), σ (Xx
u) dWu〉 −

∫ 2T

T
〈∇gF (Xxn

u ), σ (Xxn
u ) dWu〉

∣∣∣∣2

=
∫ 2T

T
E|σ ∗∇gF σ(Xx

u) − σ ∗∇gF (Xxn
u )|22 du.
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Then, using (4.14), it follows that

E

∣∣∣∣
∫ 2T

T
〈∇gF (Xx

u), σ (Xx
u) dWu〉 −

∫ 2T

T
〈∇gF (Xxn

u ), σ (Xxn
u ) dWu〉

∣∣∣∣2

≤ C
(
E

[
1 + sup

u∈[T ,2T ]
|Xx

u|4
]1/2

E

[
sup

u∈[T ,2T ]
|Xx

u − Xxn
u |4

]1/2)

≤ C
(
(1 + |x|4)1/2

E

[
sup

u∈[T ,2T ]
|Xx

u − Xxn
u |4

]1/2)
owing to Lemma 3.2(i). Now, since b and σ are Lipschitz continuous functions,
for every p > 0, there exists a real constant Cb,σ,p,T > 0 such that (see, e.g., [12]
or [26]), ∥∥∥ sup

t∈[0,3T ]
|Xx

t − X
xn
t |

∥∥∥p

p
≤ Cb,σ,p,T |x − xn|p.

The continuity of x �→ �(x) then follows from the preceding inequalities and from
(4.19).

Lemma 3.2, (Sa,p) and the boundedness of functions F , fF and ∇gF imply
that ψ(x) ≤ CV a(x). Thus, (4.18) follows from Lemma 3.3(iii) and the fact a <

p/2 + a − 1 when p > 2. The proof is complete. �

PROPOSITION 4.1. Suppose that assumptions of Theorem 2.1(a) hold. Then,

Mn√
n

L−−−→ N (0, σ 2
F ) as n → +∞.(4.20)

PROOF. By Lemma 4.2,

1

n

n∑
k=2

Ek−2[(�Mk)
2] n→+∞−−−→σ 2

F a.s.

Then, we only need to prove a Lindeberg type condition (see [9], Corollary 3.1).
To be precise, we will show that for every ε > 0

1

n

n∑
k=1

Ek−1
[|�Mk|21{|�Mk |≥ε

√
n}

] P−−−→
n→+∞ 0.

First, a martingale argument similar to that of the beginning of the proof of Lem-
ma 3.1 yields that

1

n

n∑
k=2

(
Ek−1

[|�Mk|21{|�Mk |≥ε
√

n}
] − Ek−2

[|�Mk|21{|�Mk |≥ε
√

n}
]) P−−−→

n→+∞ 0.

Second, using conditional Hölder and Chebyshev inequalities, we have for every
ε, δ > 0

Ek−2
[|�Mk|21{|�Mk |≥ε

√
n}

] ≤ 1

(εn)2δ
Ek−2

[|�Mk|2(1+δ)],
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and thanks to (4.3) and (4.4), we deduce that

Ek−2|�Mk|2(1+δ)1{|�Mk |≥ε
√

n} ≤ CḠk−2,a(1+δ)

(
ξ(k−2)T

) ≤ Cε

n2δ
V a(1+δ)(ξ(k−2)T

)
.

Thus, taking δ ∈ (0,
p/2−1

a
) so that a(1 + δ) ≤ p/2 + a − 1, we have for every

δ > 0, a.s.,

lim sup
n→+∞

1

n

n∑
k=1

Ek−1
[|�Mk|21{|�Mk |≥ε

√
n}

]

≤ Cε lim sup
n→+∞

1

n1+2δ

n∑
k=1

V a(1+δ)(ξ(k−2)T

) = 0

by applying Lemma 3.3(ii). �

5. Study of (�n,1), (�n,2) and (�n,3). In this section, we focus on the re-
mainder terms of the decomposition of the error (see Lemma 3.1). Owing to Propo-
sition 4.1, it is now enough to prove that

�n,i√
n

P→0 as n → +∞ for i = 1,2,3,

where
P→ denotes the convergence in probability. For i = 1,2, these properties are

stated in Lemmas 5.1 and 5.2. For i = 3, the result is obvious.

LEMMA 5.1. Assume b and σ are Lipschitz continuous functions such that
(Sa,p) holds with parameters a ∈ (0,1], p > 2, and an essentially quadratic Lya-
punov function V satisfying lim inf|x|→+∞ V p+a−1(x)/|x| > 0. Let F : Duc(R+,
R

d) → R be Lipschitz continuous. If the step condition (2.7) holds, then

�n,1√
n

P→0 as n → +∞.

PROOF. Since F is Lipschitz continuous, it follows from Lemma 3.2(ii) (ap-
plied with p = 1) that, for every u ∈ Ik ,

Ek−1
∣∣FT

(
ξ

(∼u)) − FT

(
X

(∼u),ξ∼u
)∣∣ ≤ [F ]LipEk−1

[
sup

t∈[0,T ]
∣∣ξ (∼u)

t − X
(∼u),ξ∼u
t

∣∣]

≤ Cb,σ,T ,F

√
γN(∼u)(1 + Ek−1|ξ∼u|).

Consequently,

|�n,1| ≤ Cb,σ,T ,F

n∑
k=1

∫
Ik

√
γN(∼u)+1 du

(
1 + Ek−1 sup

v∈Ik

|ξv|
)

≤ Cb,σ,T ,F

n∑
k=1

∫
Ik

√
γN(∼u)+1 du

(
1 + ∣∣ξ(k−1)T

∣∣),
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where in the second inequality, we used Lemma 3.2(i). Since

lim inf|x|→+∞V p+a−1(x)/|x| > 0

and N(∼u) = N(u), we deduce that

|�n,1|√
n

≤ C√
n

n∑
k=1

∫
Ik

√
γN(u)+1 du

(
1 + V p+a−1(

ξ(k−1)T

))
.(5.1)

Thus, owing to the Kronecker lemma,

�n,1√
n

n→+∞−−−→0 a.s.

as soon as
+∞∑
k=1

δk

(
1 + V p+a−1(

ξ(k−1)T

))
< +∞ a.s.

with

δk = 1√
k

(∫
Ik

√
γN(u)+1 du

)
.

Now, as (δk) is nonincreasing, it follows from Lemma 3.3(i) that it is now enough
to show that

∑
k≥1 δk < +∞. We have

∑
k≥1

δk ≤ C

(
1 +

∫ +∞
γ1

√
γN(u)+1

u
du

)

and ∫ +∞
γ1

√
γN(u)+1

u
du ≤ ∑

�≥1

√
γ�+1

∫ ��+1

��

1√
u

du ≤ ∑
�≥1

√
γ�+1

γ�+1√
��

.

Using that the step sequence (γn) is nonincreasing, we deduce from condition (2.7)
that ∫ +∞

γ1

√
γN(u)+1

u
du ≤ ∑

�≥1

γ
3/2
�√
��

< +∞.(5.2)
�

LEMMA 5.2. Assume b and σ are Lipschitz continuous functions satisfying
(Sa,p) with an essentially quadratic Lyapunov function V and parameters a ∈
(0,1] and p > 2. Let F : Duc([0, T ],R

d) → R be a functional satisfying (C1
F ) and

(C2
F ). If the step condition (2.7) holds, then

�n,2√
n

P→0 as n → +∞.
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PROOF. Owing to the Itô formula, we have

gF (ξkT ) − gF

(
ξ(k−1)T

) =
∫
Ik

ĀgF (ξu, ξu) du +
∫
Ik

〈∇gF (ξu), σ (ξu) dWu〉,
where

ĀgF (x, y) = 〈∇gF (x), b(y)〉 + 1
2 Tr(σ ∗(y)D2gF (x)σ (y)).

Then, it follows from the definition of �n,2 that

�n,2 =
n∑

k=1

gF (ξkT ) − gF

(
ξ(k−1)T

) +
∫ nT

0

(
AgF (ξ∼u) − ĀgF (ξu, ξu)

)
du

+
∫ nT

0
〈σ ∗(ξu)∇gF (ξu) − σ ∗(ξ∼u)∇gF (ξ∼u), dWu〉.

Since gF is bounded,

1√
n

n∑
k=1

gF (ξkT ) − gF

(
ξ(k−1)T

) = gF (ξnT ) − gF (ξ0)√
n

a.s.−→0 as n → +∞.

Then, it is now enough to show that

1√
n

∫ nT

0

(
AgF (ξ∼u) − ĀgF (ξu, ξu)

)
du

L1→0 as n → +∞(5.3)

and that

1√
n

∫ nT

0
〈σ ∗(ξu)∇gF (ξu) − σ ∗(ξ∼u)∇gF (ξ∼u), dWu〉 a.s.−→0

(5.4)
as n → +∞.

First, using that gF is a bounded C 2-function with bounded Lipschitz continuous
derivatives, that b and σ are Lipschitz continuous functions, one checks that

|AgF (∼x)− ĀgF (x, x)| ≤ C
(|∼x−x| · |b(x)|+|∼x−x|+|∼x−x|2 +‖σ(x)‖2 · |∼x−x|).

Then, using that

max(|ξ∼u − ξu|, |ξu − ξ∼u|) ≤ 2 sup
v∈[�N(u),�N(u)+1)

|ξv − ξu|,

it follows from Lemma 3.2(iii) applied with φ = V a , p = 1 and p = 2, that

E[|AgF (ξ∼u) − ĀgF (ξu, ξu)||Fu]
≤ C

(√
γN(u)+1V

a/2(ξu)
(
1 + |b(ξu)| + ‖σ(ξu)‖2) + γN(u)+1V

a(ξu)
)
.

By asssumption (Sa,p), we deduce that

1√
n

E

[∫ nT

0
|AgF (ξ∼u) − ĀgF (ξu, ξu)|du

]
≤ C√

n

∫ nT

0
E[V 3a/2(ξu)]√γN(u)+1 du.
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Now, since p ≥ 2, 3
2a ≤ p + a − 1, and by (5.2), we have

∫ ∞
1

√
γN(u)+1

u
du ≤ C

∑
k≥1

γ
3/2
k√
�k

< +∞.

Then (5.3) follows from Lemma 3.3(i) and the Kronecker lemma like in the proof
of Lemma 5.1.

Second, we focus on (5.4). Set Z0 = 0 and

Zn =
n∑

k=1

1√
k

∫
Ik

〈σ ∗(ξu)∇gF (ξu) − σ ∗(ξ∼u)∇gF (ξ∼u), dWu〉, n ≥ 1.

The sequence (Zn) being a (Gn)-adapted martingale, it follows from Doob’s con-
vergence theorem for L2-bounded martingales that (5.4) holds if

sup
n≥1

E[(Zn)
2] < +∞.(5.5)

Let us show (5.5). First,

E[(Zn)
2] = ∑

k≥1

1

k

∫
Ik

E[|σ ∗(ξu)∇gF (ξu) − σ ∗∇gF (ξ∼u)|
2]du.

By similar arguments as for (4.14),

|σ ∗(x)∇gF (x) − σ ∗∇gF (∼x)|2 ≤ C
(
1 + ‖σ ∗(x)‖2)

(|x − ∼x|2 + |x − ∼x|2).
Then, owing to the fact that ∼u ∈ [u,u], it follows from (Sa,p) and Lemma 3.2(iii)
that

E[|σ ∗(ξu)∇gF (ξu) − σ ∗∇gF (ξ∼u)|
2] ≤ CγN(u)+1E[V 2a(ξu)].

Thus, since u ≤ kT for every u ∈ Ik ,∑
k≥1

E[|�Zk|2] ≤ E[|Z1|2] + C
∑
k≥2

∫
Ik

E[V 2a(ξu)]γN(u)+1

u
du

≤ C

(
1 +

∫ +∞
1

E[V 2a(ξu)]γN(u)+1

u
du

)
.

Finally, by a similar argument to (5.2), we have∫ +∞
1

γN(u)+1

u
du ≤ C

∑
k≥1

γ 2
k

�k

< +∞

and (5.5) follows from Lemma 3.3(i) and from the fact that 2a ≤ p + a − 1 when
p ≥ 2. �
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6. Proof of the main theorems. The first step for the proof of these theorems
is now to state our main result about the sequence (P (n,T )(ω,FT ))n≥1 studied in
the two previous sections.

PROPOSITION 6.1. Let T > 0, a ∈ (0,1] and p > 2. Assume b and σ are
Lipschitz continuous functions satisfying (Sa,p) with an essentially quadratic Lya-
punov function V such that lim inf|x|→+∞ V p+a−1(x)/|x| > 0. Assume (Sν

T ). Let
F : Duc([0, T ],R

d) be a functional satisfying (C1
F ) and (C2

F ). Finally, assume that
the step sequence (γn)n≥1 satisfies (1.3) and (2.7). Then,

√
nT

(
P (n,T )(ω,FT ) − Pν(FT )

) L−−−→
n→+∞ N (0, σ 2

F ).(6.1)

PROOF. Owing, respectively, to Lemmas 5.1, 5.2 and the fact that F is
bounded, �n,1, �n,2 and �n+1,3 defined in Lemma 3.1 satisfy

�n,1 + �n,2 + �n+1,3√
nT

P→0 as n → +∞.

Then, the proposition follows from Proposition 4.1 and from the decomposition of
P (n,T ) − Pν(FT ) stated in Lemma 3.1. �

We are now able to prove Theorems 2.1 and 2.2.

PROOFS OF THEOREMS 2.1(a) AND 2.2. First, let (tk)k≥1 denote a sequence
of positive real numbers such that tk → +∞. Set nk = � tk

T
�. Since FT is a bounded

functional, we have∣∣∣∣√tk

(
1

tk

∫ tk

0
FT

(
ξ

(∼u))
du − Pν(FT )

)
− √

nkT
(

P (n,T )(ω,FT ) − Pν(FT )
)∣∣∣∣

≤ 2‖FT ‖∞
(√

tk − √
nkT

) + ‖FT ‖∞
tk − nkT√

nkT

k→+∞−−−→0 a.s.

Thus, Theorem 2.2 follows taking ∼u = u. For Theorem 2.1(a), setting ∼u = u ∨
(�u/T �T ) and tn = �n, we obtain that√

�n

(
1

�n

∫ �n

0
FT

(
ξ (u∨(�u/T �T )))du − Pν(FT )

)
L→ N (0, σ 2

F ) as n → +∞.

Now,

√
�n

∣∣∣∣ν̄(n)(ξ(ω),FT ) − 1

�n

∫ �n

0
FT

(
ξ (u∨(�u/T �T )))du

∣∣∣∣ ≤ ‖FT ‖∞√
�n

��n/T �∑
k=1

γN(kT )+1.

By the definition of N(kT ) and the fact that (γn) is nonincreasing, we have

N(kT )∑
i=N((k−1)T )+1

γi ≥ T − γN(kT )+1 �⇒ γN(kT )+1 ≤ 2

T

N(kT )∑
i=N((k−1)T )+1

γ 2
i
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for every k ≥ k0 where k0 = inf{k ≥ 1, T − γN(kT )+1 ≥ T/2}. Thus,

1√
�n

��n/T �∑
k=1

γN(kT )+1 ≤ C√
�n

(
k0∑

k=1

γN(kT )+1 +
n∑

i=N(k0T )+1

γ 2
i

)
.

By (2.7) and the Kronecker lemma, we obtain for every s ≥ 3/2

1√
�n

n∑
i=1

γ s
i

n→+∞−−−→0.

Applying this identity with s = 2 yields the result. �

PROOF OF THEOREM 2.1(b). Owing to Theorem 2.1(a), it is now enough to
show that √

�n

(
ν̄(n)(X̄(ω),FT ) − ν̄(n)(ξ(ω),FT )

) n→+∞−−−→
P

0.

Since FT is a Lipschitz bounded functional, it follows from the definition of the
previous occupation measures that√

�nE
[∣∣ν̄(n)(X̄(ω),FT ) − ν̄(n)(ξ(ω),FT )

∣∣]
≤ [FT ]Lip√

�n

∫ �n

0
E

[
sup

s∈[0,T ]
|ξu+s − ξu+s |

]
du.

By Lemma 3.2(iv) and Jensen’s inequality, for every q > 1,

E

[
sup

s∈[0,T ]
|ξu+s − ξu+s ||Fu

]
≤ E

[
sup

s∈[0,T ]
|ξu+s − ξu+s |q |Fu

]1/q

≤ C
(
V aq/2(ξu)γ

q/2−1
N(u)+1

)1/q

≤ CV a/2(ξu)γ
1/2−1/q
N(u)+1 .

Thus, we deduce that

∫ �n

0
E

[
sup

s∈[0,T ]
|ξu+s − ξu+s |

]
du ≤ C

n−1∑
k=1

γ
3/2−1/q
k E[V a/2(ξ�k−1)].

Let δ be a positive number such that (2.10) holds. Taking q such that 1/q ≤ δ, we
deduce from (2.10) and Lemma 3.3(i) that

∑
k≥1

γ
3/2−1/q
k√

�k

E[V a/2(ξ�k−1)] =
∫ +∞

0
E[V a/2(ξu)]

γ
3/2−1/q
N(u)+1√
�N(u)+1

du < +∞.

We again deduce the result from Kronecker’s lemma. �
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PROOF OF THEOREM 2.3. We only give the main ideas of the proof of this
result about the “perfect Euler scheme” (Xt)t≥0, that is naturally simpler than that
of the discretized processes. First, the reader can check that setting

P̃ (n,T )(ω,FT ) = 1

nT

∫ nT

0
FT

(
X(u))du,

one obtains a similar decomposition as that of Lemma 3.1 replacing ∼u by u and

φF by φ̃F defined by

φ̃F (1) = 0 and
∫
Ik−1

FT

(
X(u))du if k ≥ 2.

The main difference in this decomposition is that the term corresponding to �n,1 is
null. Then, since the assumption lim inf|x|→+∞ V p+a−1(x)/|x| > 0 is only needed
in the proof of the result about �n,1 (see Lemma 5.1), we deduce that it is not
necessary here. Then, the sequel of the proof works since the statements of Lem-
ma 3.3 still hold if one replaces ξ by X. To be precise, the first statements of (i)
and (ii) can be directly derived from [20], Chapter 1, and the second ones from an
adaptation of the proof of this lemma. �

7. Numerical test on barrier options in the Heston model. As shown
in [19], our algorithm can be successfully implemented for pricing path-dependent
options in stochastic volatility models when the volatility process evolves in its
stationary regime. Furthermore, such stationary versions of stochastic volatility
models are more performing to take into account the behavior of implicit volatil-
ity for short maturities. Then, even if the assumptions of our main theorems are
usually not satisfied for the functionals involved in this context, we choose in this
section to illustrate them by such an example. To be precise, we test numerically
the asymptotic normality obtained in the main results on the computation of several
barrier options in a Heston stationary stochastic volatility model. The dynamics of
the traded asset price process (St )t≥0 is given by

dSt = St

(
r dt +

√
(1 − ρ2)vt dW 1

t + ρ
√

vt dW 2
t

)
, S0 = s0 > 0,

dvt = k(θ − vt ) dt + ς
√

vt dW 2
t , v0 > 0,

where r denotes the interest rate, (W 1,W 2) is a standard two-dimensional Brown-
ian motion, ρ ∈ [−1,1] and k, θ and ς are some nonnegative numbers. This model
was introduced by Heston [10]. The equation for (vt )t≥0 has a unique (strong)
pathwise continuous solution living in R+. If, moreover, 2kθ > ς2 then, (vt )t≥0
is a positive process (see [14]). In this case, the volatility process (vt )t≥0 has a
unique invariant probability ν0 with gamma distribution, namely, ν0 = γ (a, b)

with a = (2k)/ς2 and b = (2kθ)/ς2. Thus, we assume that (vt )t≥0 evolves in
its stationary regime, that is, that

L(v0) = ν0.
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Under this assumption, we showed in [19] that any option premium can be ex-
pressed as the expectation of a functional of a two-dimensional stationary stochas-
tic process. Let us recall the idea; we will write (St )t≥0 as a functional of a station-
ary process. Elementary Itô calculus yields

St = s0 exp
(
rt − 1

2

∫ t

0
vs ds + ρ

∫ t

0

√
vs dW 2

s +
√

1 − ρ2
∫ t

0

√
vs dW 1

s

)
.(7.1)

Introducing the two-dimensional SDE,{
dyt = −yt dt + √

vt dW 1
t ,

dvt = k(θ − vt ) dt + ς
√

vt dW 2
t ,

(7.2)

and using the fact that ∫ t

0

√
vs dW 1

s = yt − y0 +
∫ t

0
ys ds

and ∫ t

0

√
vs dW 2

s = vt − v0 − kθt + k
∫ t

0 vs ds

ς
,

we deduce that we can construct a (continuous) map � from C(R+,R
2) to

C(R+,R) such that (St )t≥0 = �((yt , vt )t≥0). Now, we have built (yt )t≥0 so that
(yt , vt )t≥0 has a stationary regime. Denoting by μ the invariant distribution of
(yt , vt )t≥0, we obtain that

E[F(St ,0 ≤ t ≤ T )] = Eμ

[
F ◦ �

(
(yt , vt ),0 ≤ t ≤ T

)]
.

For further details we refer to [19]. Here, we are interested with an up-and-out
barrier option whose discounted payoff is given by

F(St ,0 ≤ t ≤ T ) = e−rT (ST − K)+1{sup0≤t≤T St≤L},

where L > K > 0. We now specify the discretization. First, the genuine Eu-
ler scheme of the so-called Heston volatility process (also known as the Cox–
Ingersoll–Ross process) (vt )t≥0 cannot be implemented since it does note preserve
the positivity. Thus, we must replace it by a specific discretization scheme; we de-
note by (v̄t )t≥0 the stepwise constant Euler scheme built as follows:

v̄�n+1 = ∣∣v̄�n + kγn+1(θ − v̄�n) + ς
√

v̄�n(W
2
�n+1

− W 2
�n

)
∣∣ and v̄0 = x > 0.

Note that convergence properties of this scheme have been studied in a constant
step framework in [4] (see also [1, 8] and [2] for other specific discretization
schemes).

Second, we denote by (ξt )t≥0 the continuous discretization scheme of(
log

(
St

s0

))
t≥0
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defined by ξ0 = 0 and

ξt = ξ�n + (
r − 1

2 v̄�n

)
t + ρ

√
v̄�n(W

2
t − W 2

�n
)

(7.3)
+

√
(1 − ρ2)v̄�n(W

1
t − W 1

�n
), t ∈ [�n,�n+1], n ≥ 0.

Note that we do not need to introduce the Euler of (yt )t≥0 since its use is nothing
but a theoretical way to justify why an algorithm for the approximation of the
stationary regime can be adapted to this context. Finally, in order to compute the
supremum of (ξt )t≥0, let us recall the principle of the so-called Brownian bridge
method (transposed to this framework). Set

W
(�n)
t = ρ(W 1

�n+t − W 1
�n

) +
√

1 − ρ2(W 2
�n+t − W 2

�n
)

and let (Y
W,γ
t ) denote the Brownian bridge on [0, γ ] defined by Y

W,γ
t = Wt −

t
γ
Wγ , t ∈ [0, γ ]. For every t ∈ [�n,�n+1], we have

ξt = ξ�n + ξ�n+1 − ξ�n

�n+1 − �n

(t − �n) +
√

v̄�nY
W(�n),γn+1
t .

Using the independence and the Gaussian properties of the Brownian motion, one
deduces that, for every n ≥ 1, the processes (ξt )t∈[�l,�l+1], l ∈ {0, . . . , n − 1}, are
conditionally independent given the σ -field σ((ξγl

, v̄�l
,0 ≤ l ≤ n) and that

L
(
(ξt )t∈[�l,�l+1]|(ξ�l

, ξ�l+1, v̄�l
) = (xl, xl+1, vl)

)
= L

(
xl + xl+1 − xl

�l+1 − �l

t + √
vlY

W,γl+1
t , t ∈ [0, γl+1]

)
,

where W denotes a standard Brownian motion. Then, using the symmetry princi-
ple, one can show that, for every x, y ∈ R, for every z ≥ max(x, y) and positive λ

and γ ,

P

(
sup

t∈[0,γ ]
x + (y − x)

t

γ
+ λY

W,γ
t ≤ z

)
= 1 − exp

(
− 2

γ λ2 (z − x)(z − y)

)
.

It follows that given (ξ�l
, ξ�l+1, v̄�l

), supt∈[�l,�l+1] ξt can be simulated by the
method of inversion of the distribution function.

Let us now detail the algorithm.

STEP 1. From n = 0 to n = N(T ). At each step between n = 0 and n =
N(T ) − 1, simulate recursively, v̄�n+1 and ξ�n+1 . Then, use the Brownian bridge
method to simulate Vn = supt∈[�n,�n+1] ξt given (ξ�n, ξ�n+1, v̄�n). Compute recur-
sively Mn := max(V1, . . . , Vn) = max(Mn−1,Vn). At time N(T ), compute

ν̄(1)(ξ(ω),F ) = e−rT (
s0 exp(ξT ) − K

)
+1{s0 supt∈[0,T ] exp(ξt )≤L}.

...
...
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STEP i. From n = N(T + �i−1) + 1 to n = N(T + �i). If MN(T +�i−1+1) =
Vi−1, replace MN(T +�i−1+1) by max(Vi, . . . , VN(T +�i−1+1)). Store (ξ�i−1, . . . ,

ξ�N(T +�i−1)+1) and (Vi, . . . , VN(T +�i−1+1)). As in Step 1, from n = N(T +�i−1)+
1 to n = N(T + �i), compute recursively v̄�n+1 , ξ�n+1 , Vn and the maximum of
Vi,Vi+1, . . . , Vn. Then, at time N(T + �i),

ν̄(i)(ξ(ω),F )

= ν̄(i−1)(ξ(ω),F )

+ γi+1

�i

(
e−rT (

s0 exp(ξT − ξ�i−1) − K
)
+1{Hξ

i ≤L} − ν̄(i−1)(ξ(ω),F )
)
,

where H
ξ
i = sup{s0 exp(ξt − ξ�i−1), t ∈ [�i−1,�N(T +�i−1)+1]}.

For the following choices of parameters,

s0 = 50, r = 0.05, T = 1, ρ = 0.5, θ = 0.01,
(7.4)

ς = 0.1, k = 2, K = 50, L = 55,

we now want to obtain an approximation of the distribution of the (asymptotically
normal) normalized error

EN := √
�N

(
ν̄N (ξ(ω),F ) − e−rT

E
[
(ST − K)+1{sup0≤t≤T St≤L}

])
.

First, we need to have an accurate approximation of the (risk-neutral) price. In
this way, we choose to combine a very long simulation with a variance reduc-
tion method taking the corresponding barrier option in the Black–Scholes model
as a control variable. Indeed, on the one hand, it is well known that the price of
such barrier option has a closed form in the Black–Scholes model (based on the
Black–Scholes formula for European options) and, on the other hand, this price
can be approximated using the algorithm described above by simply replacing the
stochastic volatility (v̄t ) by a constant volatility denoted by σ . Note that the natural
choice for σ is the long term volatility θ which is the mean of the stationary volatil-
ity process (v̄t ) as well. Then, denoting by (ξBS

t ) the genuine Euler discretization
scheme of the Black–Scholes model (especially with the same trajectory for W 1)
with constant volatility θ , we approximate the price of the option by

ν̄(N)(ξ(ω),F ) − ν̄(N)(ξBS(ω),F ) + CBS
bar

(
r,

√
θ, T ,K,L

)
,

where CBS
bar denotes the (explicit) price of the up-and-out barrier option in the

Black–Scholes model. Doing so with a simulation size N = 2.108, we get the
following accurate approximation of the premium:

e−rT
E

[
(ST − K)+1{sup0≤t≤T St≤L}

] ≈ 1,689.

Then, setting N = 5.105, we proceed M = 104 independent Monte Carlo simula-
tions of EN . We denote by σ̄ 2

F the empirical variance of the sample (E 1
N, . . . , E M

N )
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FIG. 1. Comparaison of the approximate density f̂h of EN (dotted line) with the density of
N (0, σ̄ 2

F ), N = 5 · 105, M = 5 · 103, h = M−1/5.

(which corresponds to an estimation of σ 2
F ). In Figure 1 are depicted the density of

a centered Gaussian random variable with variance σ̄ 2
F and the empirical density

f̂h (smoothed by a convolution with a Gaussian kernel) defined by

f̂h(x) = 1

Mh

M∑
�=1

1√
2π

exp
(
−(x − E (�)

N )2

2h2

)
.

As a conclusion, this numerical experiment first illustrates that the CLT occurs
at a reasonable range (for numerical purpose) and also suggests that a local ver-
sion holds true as well (“convergence of the density”). Another extension of our
result could be, in the spirit of Bhattacharia’s result in [5] to establish an invariance
principle of Donsker type.

APPENDIX A: PROOF OF IDENTITY (2.12)

We have to deduce (2.12) from (2.9). First, we have (dropping x in Ax
t )

Eν

[(
E[A2T |F2T ] −

∫ 2T

T
σ ∗∇gF (Xx

u) dWu

)
E[AT |FT ]

]
= Eν[E[A2T |F2T ]E[AT |FT ]]
= Eν[(E[AT |FT ])2],

since one easily checks that E[A2T − AT |FT ] = 0. It follows that

T σ 2
F = Eν

[(
E[A2T |F2T ] −

∫ 2T

T
σ ∗∇gF (Xu)dWu

)2]
− Eν[(E[AT |FT ])2].
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Second, using the Markov property [or the fact that X(u),x = ϕ(Xx
u,W(u))] and the

stationarity of the process, one observes that E[A2T − AT |F2T ] and E[AT |FT ]
have the same distribution under Pν . In particular,

Eν[(E[A2T − AT |F2T ])2] = Eν[(E[AT |FT ])2].
Since E[A2T |F2T ] = AT +E[A2T −AT |F2T ] and Eν[AT E[A2T −AT |F2T ]] = 0,
we obtain that

T σ 2
F = Eν[A2

T ] − 2Eν

[
E[A2T |F2T ]

∫ 2T

T
σ ∗∇gF (Xu)dWu

]

+ Eν

[(∫ 2T

T
σ ∗∇gF (Xu)dWu

)2]
.

All we have to do now is to check that the three above terms correspond, respec-
tively, to the three parts of (2.12). First, by Fubini’s theorem,

Eν[A2
T ] =

∫ T

u=0

∫ T

v=0
Eν

[(
F

(
X(u)) − fF (Xu)

)(
F

(
X(v)) − fF (Xv)

)]
dv.

Owing to the stationarity of the process under Pν , we have

Eν

[(
F

(
X(u)) − fF (Xu)

)(
F

(
X(v)) − fF (Xv)

)] = CF (|u − v|),
where CF is defined by (2.13). This yields

Eν[A2
T ] = 2

∫ T

0

∫ u

0
CF (u − v) dv du = 2

∫ T

0
(T − u)CF (u)du.

Second, setting

M
f
T =

∫ t

0
σ ∗∇f (Xu)dWu,(A.1)

we have

Eν

[
E[A2T |F2T ]

∫ 2T

T
σ ∗∇gF (Xu)dWu

]

=
∫ 2T

0
Eν

[(
FT

(
X(u)) − fF (Xu)

)
(M

g
F

2T − M
g
F

T )
]
du

=
∫ T

0
Eν

[(
FT

(
X(u)) − fF (Xu)

)
(M

g
F

T +u − M
g
F

T )
]
du

+
∫ 2T

T
Eν

[(
FT

(
X(u)) − fF (Xu)

)
(M

g
F

2T − M
g
F

u )
]
du.

Now, the fact that M
g
F

T +u − M
g
F

T = gF (XT +u) − gF (XT ) − ∫ T +u
T AgF (Xv) dv

implies that we can make use of the stationarity property to obtain for every u ∈
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[0, T ],
Eν

[(
FT

(
X(u)) − fF (Xu)

)
(M

g
F

T +u − M
g
F

T )
]

= Eν

[(
FT (X) − fF (X0)

)(
gF (XT ) − gF (X0) −

∫ T

0
AgF (Xv) dv

)]

= Eν

[(
FT (X) − fF (X0)

)
(M

g
F

T − M
g
F

T −u)
]
.

With similar arguments, one checks that for every u ∈ [T ,2T ],
Eν

[(
FT

(
X(u)) − fF (Xu)

)
(M

g
F

2T − M
g
F

u )
] = Eν

[(
FT (X) − fF (X0)

)
M

g
F

2T −u

]
.

It follows that

Eν

[
E[A2T |F2T ]

∫ 2T

T
σ ∗∇gF (Xu)dWu

]

= Eν

[(
FT (X) − fF (X0)

)(
T M

g
F

T −
∫ T

0
M

g
F

T −u du +
∫ 2T

T
M

g
F

2T −u du

)]

= T Eν[FT (X)M
g
F

T ].
Finally,

Eν

[(∫ 2T

T
σ ∗∇gF (Xu)dWu

)2]
=

∫ 2T

T
Eν[|σ ∗∇gF (Xu)|2]du

= T

∫
|σ ∗∇gF (x)|2ν(dx)

owing to the stationarity of the process. The proof is complete.

APPENDIX B: COMPUTATION OF σ 2
F WHEN F(α) = φ(αT )

As mentioned in (2.3), when φ = Ah+C, the CLT for marginal functions com-
bined with a change of variable yields σ 2

F = ∫
Rd |σ ∗∇h(x)|2ν(dx). Let us check

this formula starting from (2.9). Following the notation introduced in (A.1), we
have

E[A2T |F2T ] − E[AT |FT ] −
∫ 2T

T
σ ∗∇gF (Xx

u) dWu = ϕ1(x, ·) − ϕ2(x, ·),
where

ϕ1(x, ·) =
∫ T

0
φ(Xx

u+T ) du +
∫ 2T

T
E[φ(Xx

u+T )F2T ]du

−
∫ 2T

T
fF (Xx

u) du − (M
g
F

2T − M
g
F

T )

and

ϕ2(x, ·) =
∫ T

0
E[φ(Xx

u+T )|FT ]du.
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In this case, fF = PT φ and using that A and PT commute, one checks that fF −
ν(fF ) = APT h. This implies that gF = PT φ. For the sake of simplicity we may
assume w.l.g. ν(fF ) = ν(φ) = 0. Then, on the one hand,

ϕ1(x, ·) =
∫ 2T

T
Ah(Xu)du +

∫ 2T

T
Pu−T φ(X2T ) du

− [gF (X2T ) − gF (XT )]
= h(X2T ) − h(XT ) − (Mh

2T − Mh
T )

+
∫ T

0
APuh(X2T ) du − [gF (X2T ) − gF (XT )]

= h(X2T ) − h(XT ) − (Mh
2T − Mh

T ) + PT h(X2T )︸ ︷︷ ︸
=gF (X2T )

− h(X2T )

− [gF (X2T ) − gF (XT )]
= gF (XT ) − h(XT ) − (Mh

2T − Mh
T ).

On the other hand,

ϕ2(x, ·) =
∫ T

0
Puφ(XT )du

=
∫ T

0
APuh(XT )du = PT h(XT ) − h(XT )

= gF (XT ) − h(XT )

so that

σ 2
F = 1

T
Eν[(Mh

2T − Mh
T )2] = 1

T

∫ 2T

T
Eν[|σ ∗∇h(Xu)|2]du

=
∫

|σ ∗∇h(x)|2ν(dx).
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