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DIFFERENTIABILITY OF QUADRATIC BSDES GENERATED BY
CONTINUOUS MARTINGALES

BY PETER IMKELLER, ANTHONY RÉVEILLAC1 AND ANJA RICHTER2

Humboldt-Universität zu Berlin

In this paper we consider a class of BSDEs with drivers of quadratic
growth, on a stochastic basis generated by continuous local martingales. We
first derive the Markov property of a forward–backward system (FBSDE) if
the generating martingale is a strong Markov process. Then we establish the
differentiability of a FBSDE with respect to the initial value of its forward
component. This enables us to obtain the main result of this article, namely a
representation formula for the control component of its solution. The latter is
relevant in the context of securitization of random liabilities arising from ex-
ogenous risk, which are optimally hedged by investment in a given financial
market with respect to exponential preferences. In a purely stochastic formu-
lation, the control process of the backward component of the FBSDE steers
the system into the random liability and describes its optimal derivative hedge
by investment in the capital market, the dynamics of which is given by the for-
ward component. The representation formula of the main result describes this
delta hedge in terms of the derivative of the BSDEs solution process on the
one hand and the correlation structure of the internal uncertainty captured by
the forward process and the external uncertainty responsible for the market in-
completeness on the other hand. The formula extends the scope of validity of
the results obtained by several authors in the Brownian setting. It is designed
to extend a genuinely stochastic representation of the optimal replication in
cross hedging insurance derivatives from the classical Black–Scholes model
to incomplete markets on general stochastic bases. In this setting, Malliavin’s
calculus which is required in the Brownian framework, is replaced by new
tools based on techniques related to a calculus of quadratic covariations of
basis martingales.

1. Introduction. In recent years backward stochastic differential equations
(BSDEs for short) with drivers of quadratic growth have shown to be relevant in
several fields of application, for example, the study of properties of PDEs (see,
e.g., [5, 19]). Closer to the subject of this work, they were employed to provide a
genuinely stochastic approach to describe optimal investment strategies in a finan-
cial market in problems of hedging derivatives or liabilities of a small trader whose
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business depends on market external risk. The latter scenario was addressed, for
instance, in [2, 3, 14, 18]. A small trader, such as an energy retailer, has a natural
source of income deriving from his usual business. For instance, he may have a
random position of revenues from heating oil sales at the end of a heating season.
To (cross) hedge his risk arising from the partly market external uncertainty present
in the temperature process during the heating season, for example, via derivatives
written on temperature, he decides to invest in the capital market, the inherent un-
certainty of which is only correlated with this index process. If the agent values his
total income at terminal time by exponential utility, or his risk by the entropic risk
measure, he may be interested in finding an optimal investment strategy that max-
imizes his terminal utility, respectively, minimizes his total risk. The description
of such strategies, even under convex constraints for the set of admissible ones, is
classical and may be achieved by convex duality methods and formulated in terms
of the analytic Hamilton–Jacobi–Bellman equation. In a genuinely stochastic ap-
proach, [14] interpreted the martingale optimality principle by means of BSDEs
with drivers of quadratic growth to come up with a solution of this optimal in-
vestment problem even under closed constraints that are not necessarily convex.
The optimal investment strategy is described by the control process in the solution
pair of such a BSDE with an explicitly known driver. Using this approach, the au-
thors of [3] investigate utility indifference prices and delta hedges for derivatives
or liabilities written on nontradable underlyings such as temperature in incomplete
financial market models. A sensitivity analysis of the dependence of the optimal
investment strategies on the initial state of the Markovian forward process mod-
eling the external risk process provides an explicit delta hedging formula from
the representation of indifference prices in terms of forward–backward systems of
stochastic differential equations (FBSDEs). In the framework of a Brownian basis,
this analysis requires both the parametric as well as variational differentiability in
the sense of Malliavin calculus of the solutions of the BSDE part (see [2, 3, 5]).
Related optimal investment problems have been investigated in situations in which
the Gaussian basis is replaced by the one of a continuous martingale ([17] and
[18], see also [10]).

In this paper we intend to extend this utility indifference based explicit descrip-
tion of a delta hedge to much more general stochastic bases. Our main result will
provide a probabilistic representation of the optimal delta hedge of [3], obtained
there in the Brownian setting, to more general scenarios in which pricing rules are
based on general continuous local martingales. We do this through a sensitivity
analysis of related systems of FBSDEs on a stochastic basis created by a contin-
uous local martingale. As the backward component of our system, we consider a
BSDE of the form (1.1) driven by a continuous local martingale M with dynamics

Yt = B −
∫ T

t
Zs dMs +

∫ T

t
f (s, Ys,Zs) dCs

(1.1)

−
∫ T

t
dLs + κ

2

∫ T

t
d〈L,L〉s, t ∈ [0, T ],
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where the generator f is assumed to be quadratic as a function of Z, the ter-
minal condition B is bounded, C is an increasing process defined as C :=
arctan(

∑
i〈M(i),M(i)〉), L is a martingale orthogonal to M with quadratic vari-

ation 〈L,L〉 and κ is a positive constant. A solution of (1.1) is given by a triplet
(Y,Z,L). The forward component of our system is of the form

Xs = x +
∫ s

0
σ(r,Xr,Mr) dMr +

∫ s

0
b(r,Xr,Mr) dCr, s ∈ [0, T ].(1.2)

We first prove in Theorem 3.4 that the solution processes Y and Z satisfy the
Markov property, provided the terminal condition B is a smooth function of the
terminal value of the forward process (1.2) and that the local martingale M is a
strong Markov process. There is a subtlety in this setting which goes beyond caus-
ing a purely technical complication, namely, that only the pair (X,M) is a Markov
process (as proved, e.g., in [7, 21, 22]). Only if M has independent increments
it is a stand-alone Markov process. We then show in Theorem 4.6 that the pro-
cess Y is differentiable with respect to the initial value of the forward component
(1.2) and that the derivatives of Y and Z again satisfy a BSDE. The two prop-
erties then combine to allow us to state and prove the main contribution of this
paper. Thereby our delta hedge representation (Theorem 5.1) generalizes the for-
mula obtained in the Gaussian setting (see [3], Theorem 6.7, for the quadratic case
and [11], Corollary 4.1, for the Lipschitz case). More precisely, we show that there
exists a deterministic function u such that

Zs = ∂2u(s,Xs,Ms)σ (s,Xs,Ms) + ∂3u(s,Xs,Ms),(1.3)

where Ys = u(s,Xs,Ms), s ∈ [0, T ], and ∂i denotes the partial derivative with re-
spect to the ith variable (see Theorem 5.1). In addition, we show that if M has
independent increments and the coefficients of the forward process do not depend
on M , then Ys = u(s,Xs) and equality (1.3) becomes Zs = ∂2u(s,Xs)σ (s,Xs)

which coincides with the formula known for the case in which M is a Brow-
nian motion. To the best of our knowledge, relation (1.3) is known only in the
Brownian setting and the proof used in the literature relies on the representa-
tion of the stochastic process Z as the trace of the Malliavin derivative D (i.e.,
Zs = DsYs, s ∈ [0, T ]) relative to the underlying Brownian motion. Since Malli-
avin’s calculus is not available for general continuous local martingales, we pro-
pose a new approach based on stochastic calculus techniques, in which directional
variational derivatives of Malliavin’s calculus are replaced by absolute continuity
properties of mixed variation processes of local basis martingales. Note also refer-
ence [4], where a Markovian representation of the solution (Y,Z) of the solution
of a BSDE driven by a symmetric Markov process is given and whose driver is
Lipschitz in z and satisfies a monotonicity condition in y (see [4], Condition (H2),
page 35). However, the representation of the component Z is not exactly similar to
our representation (compare [4], Theorems 5.4 and 5.1) due to a lack of regularity
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of the BSDEs driver in the setting of [4]. Note finally that the method employed
in [4] relies on the calculus of Fukushima (see [13]) for symmetric Markov pro-
cesses. We finally emphasize that the local martingale M considered in this paper
is not assumed to satisfy the martingale representation property.

The layout of this article is as follows. In Section 2 we state the main notation
and assumptions used in the paper. We discuss the Markov property of an FB-
SDE in Section 3. In Section 4 we give sufficient conditions on the FBSDEs to
be differentiable in the initial values of its forward component, while Section 5 is
devoted to the representation formula (1.3). Section 6 is devoted to the finance and
insurance application of our main result.

2. Preliminaries.

Notation. Let (Mt)t∈[0,T ] be a continuous d-dimensional local martingale with
M0 = 0 which is defined on a probability basis (�, F , (Ft )t∈[0,T ],P) where T is a
fixed positive real number. We assume that the filtration (Ft )t∈[0,T ] is continuous
and complete so that every P-martingale is of the form Z · M + L, where Z is a
predictable d-dimensional process and L a R-valued martingale strongly orthogo-
nal to M , that is, 〈L,M(i)〉 = 0 for i = 1, . . . , d . Here and in the following M(i),
i = 1, . . . , d , denotes the entries of the vector M . We assume that there exists a
positive constant Q such that〈

M(i),M(j)〉
T ≤ Q ∀1 ≤ i, j ≤ d, P-a.s.(2.1)

The Euclidean norm is denoted by | · | and with E we refer to the stochastic expo-
nential.

From the Kunita–Watanabe inequality it follows that there exists a continu-
ous, adapted, bounded and increasing real-valued process (Ct )t∈[0,T ] and a Rd×d -
valued predictable process (qt )t∈[0,T ] such that the quadratic variation process
〈M,M〉 can be written as

〈M,M〉t =
∫ t

0
qrq

∗
r dCr, t ∈ [0, T ],

where ∗ denotes the transposition. We choose as in [18], C := arctan(
∑d

i=1〈M(i),
M(i)〉). We write P for the predictable σ -field on � × [0, T ]. Next we specify
several spaces which we use in the sequel. Given the arbitrary nonnegative and
progressively measurable real-valued process (ψt )t∈[0,T ], we define � by �t :=∫ t

0 , ψ2
s dCs,0 ≤ t ≤ T . For any β > 0, n ∈ N and p ∈ [1,∞) we set:

• S ∞ := {X :� × [0, T ] → R|X adapted, bounded and continuous process},
• S p := {X :� × [0, T ] → R|X predictable process and E[supt∈[0,T ] |Xt |p] <

∞},
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• Lp(d〈M,M〉 ⊗ dP) := {Z :� × [0, T ] → R1×d |Z predictable process and
E[(∫ T

0 |qsZ
∗
s |2 dCs)

p/2] < ∞},
• M2 := {X :� × [0, T ] → R|X square-integrable martingale},
• L∞ := {ξ :� → R|ξ, FT -measurable bounded random variable},
• Lp := {ξ :� → R|ξ, FT -measurable random variable and E[|ξ |p] < ∞},
• L2

β(Rn×1) := {ξ :� → R|ξ, FT -measurable random variable and

E[eβ�T |ξ |2] < ∞},
• H2

β := {X :� × [0, T ] → Rd×1|X predictable process and ‖X‖2
β :=

E[∫ T
0 eβ�t |Xt |2 dCt ] < ∞},

• S2
β := {X :� × [0, T ] → Rd×1|X adapted continuous process and ‖X‖2

β :=
E[supt∈[0,T ] eβ�t |Xt |2] < ∞}.

Throughout this paper we will make use of the notation (Mt,m)s∈[t,T ] (t < T ,
m ∈ Rd×1) which refers to the martingale

Mt,m
s := m + Ms − Mt

defined with respect to the filtration (F t
s )s∈[t,T ] with F t

s := σ({Mu − Mt, t ≤ u ≤
s}). Obviously, all the preceding definitions can be introduced with Mt,m in place
of M and will inherit the superscript t,m. For convenience, we write Mm := M0,m.

Note that within this paper c > 0 denotes a constant which can change from line
to line.

FBSDEs driven by continuous martingales. In this subsection we present the
main hypotheses needed in this paper. Let us fix x ∈ Rn×1 and m ∈ Rd×1 and
consider the process Xx,m := (X

x,m
t )t∈[0,T ] which is defined as a solution of the

following stochastic differential equation (SDE):

X
x,m
t = x +

∫ t

0
σ(s,Xx,m

s ,Mm
s ) dMs

(2.2)

+
∫ t

0
b(s,Xx,m

s ,Mm
s ) dCs, t ∈ [0, T ],

where the coefficients σ : [0, T ] × Rn×1 × Rd×1 → Rn×d and b : [0, T ] × Rn×1 ×
Rd×1 → Rn×1 are Borel-measurable functions. By [9], Theorem 1, and [21], The-
orem 3.1, this SDE has a unique solution Xx,m ∈ S p for all p ≥ 1 if the following
hypothesis is satisfied.

(H0) The functions σ and b are continuous in (s, x,m) and there exists a K > 0
such that for all s ∈ [0, T ], x1, x2 ∈ Rn×1 and m1,m2 ∈ Rd×1

|σ(s, x1,m1) − σ(s, x2,m2)| + |b(s, x1,m1) − b(s, x2,m2)|
≤ K(|x1 − x2| + |m1 − m2|).
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Next we give some properties of BSDEs which depend on the forward process
Xx,m. More precisely we consider BSDEs of the form

Y
x,m
t = F(X

x,m
T ,Mm

T ) −
∫ T

t
Zx,m

r dMr

+
∫ T

t
f (r,Xx,m

r ,Mm
r ,Y x,m

r ,Zx,m
r q∗

r ) dCr(2.3)

−
∫ T

t
dLx,m

r + κ

2

∫ T

t
d〈Lx,m,Lx,m〉r , t ∈ [0, T ],

where F : Rn×1 × Rd×1 → R and f :� × [0, T ] × Rn×1 × Rd×1 × R × R1×d →
R are B(Rn×1), respectively, P ⊗ B(Rn×1) ⊗ B(Rd×1) ⊗ B(R) ⊗ B(R1×d)-
measurable functions. By B(Rd) we denote the Borel σ -algebra. A solution of
the BSDE with terminal condition F(X

x,m
T ,Mm

T ), a constant κ and generator f

is defined to be a triple of processes (Y x,m,Zx,m,Lx,m) ∈ S ∞ × L2(d〈M,M〉 ⊗
dP) × M2 satisfying (2.3) and such that 〈Lx,m,Mi〉 = 0, i = 1, . . . , d , and P-a.s.∫ T

0 |f (r,Xx,m
r ,Mm

r ,Y x,m
r ,Zx,m

r q∗
r )|dCr < ∞.

Let V := Rn×1 × Rd×1 × R × R1×d and assume that (H0) holds. Furthermore,
we define the measure ν(A) = E[∫ T

0 1A(s) dCs] for all A ∈ B([0, T ]) ⊗ F . Under
the following conditions, existence and uniqueness of a solution of the backward
equation (2.3) was recently discussed in [18], Theorem 2.5:

(H1) The function F is bounded.
(H2) The generator f is continuous in (y, z) and there exists a nonnegative

predictable process η such that
∫ T

0 ηs dCs ≤ a, where a is a positive constant as
well as positive numbers b and γ , such that ν-a.e.

|f (s, x,m,y, z)| ≤ ηs + bηs |y| + γ

2
|z|2 with γ ≥ |κ|, γ ≥ b, (x,m,y, z) ∈ V.

An additional assumption is needed to obtain uniqueness (see [18], Theorem 2.6).

(H3) For every β ≥ 1 we have
∫ T

0 |f (s,0,0,0,0)|dCs ∈ Lβ(P). In addition,
there exist two constants μ and ν, a nonnegative predictable process θ satisfying∫ T

0 |qsθs |2 dCs ≤ cθ (cθ ∈ R), such that ν-a.e.

(y1 − y2)
(
f (s, x,m,y1, z) − f (s, x,m,y2, z)

)
≤ μ|y1 − y2|2, (x,m,yi, z) ∈ V, i = 1,2,

and

|f (s, x,m,y, z1) − f (s, x,m,y, z2)|
≤ ν(|qsθs | + |z1| + |z2|)|z1 − z2|, (x,m,y, zi) ∈ V, i = 1,2.
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In this paper we will deal with martingales of bounded mean oscillation, briefly
called BMO martingales. We recall that Z · M is a BMO martingale if and only if

‖Z · M‖BMO2 = sup
τ≤T

E

[∫ T

τ
|qsZ

∗
s |2 dCs

∣∣∣Fτ

]1/2

< ∞,

where the supremum is taken over all stopping times τ ≤ T . We refer the reader to
[15] for a survey. Specifically we need the following hypothesis.

(H4) There exist a R1×d -valued predictable process K and a constant α ∈ (0,1)

such that K · M is a BMO martingale satisfying ν-a.e.

(y1 − y2)
(
f (s, x,m,y1, z) − f (s, x,m,y2, z)

)≤ |qsK
∗
s |2α|y1 − y2|2

for all (x,m,yi, z) ∈ V , i = 1,2, and

|f (s, x,m,y, z1) − f (s, x,m,y, z2)| ≤ |qsK
∗
s ||z1 − z2|

for all (x,m,y, zi) ∈ V , i = 1,2.

Throughout this paper we also consider a second type of BSDEs associated with
the forward process Xx,m solving (2.2), that is,

U
x,m
t = F(X

x,m
T ,Mm

T ) −
∫ T

t
V x,m

s dMs

+
∫ T

t
f (s,Xx,m

s ,Mm
s ,Ux,m

s ,V x,m
s q∗

s ) dCs(2.4)

+
∫ T

t
dNx,m

s ,

t ∈ [0, T ], where N is a square-integrable martingale. This type of BSDE has
been studied by El Karoui and Huang in [10]. Under the following assumptions
on terminal condition F(X

x,m
T ,Mm

T ) and generator f , there exists a unique solu-
tion (Ut,x,m,V t,x,m,Nt,x,m) ∈ S2

β × H2
β × M2 to the BSDE (2.4):

(L1) The function F satisfies F(X
x,m
T ,Mm

T ) ∈ L2
β(Rn×1 × Rd×1) for some β

large enough.
(L2) The generator f satisfies ν-a.e.

|f (s, x,m,y1, z1) − f (s, x,m,y2, z2)|
≤ rs |y1 − y2| + θs |z1 − z2|, (x,m,yi, zi) ∈ V, i = 1,2,

where r and θ are two nonnegative predictable processes. Let α2
s = rs + θ2

s . We
assume ν-a.e. that α2

s > 0 and f (·,0,0)
α

∈ H2
β for some β > 0 large enough.

We conclude this section by presenting assumptions which will be useful in Sec-
tion 4, where we find sufficient conditions for FBSDEs to be differentiable in their
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initial values (x,m) ∈ Rn×1 ×Rd×1. Given a function g : [0, T ]×Rn×1 ×Rd×1 →
R we denote the partial derivatives with respect to the ith variable by ∂ig(s, x,m)

and, if no confusion can arise, we write ∂2g(s, x,m) := (∂1+j g(s, x,m))j=1,...,n

and ∂3g(s, x,m) := (∂1+n+j g(s, x,m))j=1,...,d .

(D1) The coefficients σ and b have locally Lipschitz partial derivatives in x and
m uniformly in time.

(D2) The functions F and ∇F are globally Lipschitz.
(D3) The generator f is differentiable in x,m,y and z and there exist a con-

stant C > 0 and a nonnegative predictable process θ satisfying
∫ T

0 |qsθs |2 dCs ≤ cθ

(cθ ∈ R), such that the partial derivatives satisfy ν-a.e.

|∂if (s, x,m,y, z)| ≤ C(|qsθs | + |z|), (x,m,y, z) ∈ V, i = 2, . . . ,5.

(D4) The generator f is differentiable in x,m,y and z and there exist a con-
stant C > 0 and a nonnegative predictable process θ satisfying

∫ T
0 |qsθs |2 dCs ≤ cθ

(cθ ∈ R), such that the partial derivative ∂5f is Lipschitz in (x,m,y, z) and for all
i = 2, . . . ,4 the following inequality holds ν-a.e.:

|∂if (s, x1,m1, y1, z1) − ∂if (s, x2,m2, y2, z2)|
≤ C(|qsθs | + |z1| + |z2|)(|x1 − x2| + |m1 − m2| + |y1 − y2| + |z1 − z2|)

for all (xj ,mj , yj , zj ) ∈ S, j = 1,2.

3. The Markov property of FBSDEs. For a fixed initial time t ∈ [0, T ) and
initial values x ∈ Rn×1 and m ∈ Rd×1 we consider a SDE of the form

Xt,x,m
s = x +

∫ s

t
σ (u,Xt,x,m

u ,Mt,m
u ) dMu

(3.1)
+
∫ s

t
b(u,Xt,x,m

u ,Mt,m
u ) dCu, s ∈ [t, T ],

where M is a local martingale as in Section 2 with values in Rd×1, σ : [0, T ] ×
Rn×1 × Rd×1 → Rn×d and b : [0, T ] × Rn×1 × Rd×1 → Rn×1. Throughout this
chapter the coefficients σ and b satisfy (H0) and hence, (3.1) has a unique solution
Xt,x,m. Before stating and proving the main results of this section we recall the
following proposition which is a combination of [7], Theorem (8.11) (see also [22],
Theorem V.35) and [20], Theorem 5.3.

PROPOSITION 3.1. (i) If M is a strong Markov process then (Mt,m
s ,

Xt,x,m
s )s∈[t,T ] is a strong Markov process.
(ii) If M is a strong Markov process with independent increments and if the

coefficients σ and b do not depend on M , that is to say

Xt,x
s = x +

∫ s

t
σ (u,Xt,x

u ) dMu +
∫ s

t
b(u,Xt,x

u ) dCu,

then the process (Xt,x
s )s∈[t,T ] itself is a strong Markov process.
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Note that in [2, 3, 11] the martingale considered is a standard Brownian motion
so that situation (ii) of Proposition 3.1 applies. In fact, this case presents at least
two major advantages; first, the process X is a Markov process itself and second,
the quadratic variation of M is deterministic.

This section is organized as follows. We first prove in Proposition 3.2 that the
solution of a Lipschitz BSDE associated to a forward SDE of the form (3.1) is
already determined by the solution Xt,x,m of (3.1) and the Markov process Mt,m.
In Theorem 3.4 we then extend this result to quadratic BSDEs.

Consider a BSDE of the form

Ut,x,m
s = F(X

t,x,m
T ,M

t,m
T ) −

∫ T

s
V t,x,m

r dMr

+
∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,Ut,x,m

r ,V t,x,m
r q∗

r ) dCr(3.2)

−
∫ T

s
dNt,x,m

r , s ∈ [t, T ].

We suppose that the driver does not depend on � and hence, is a deterministic
Borel measurable function f : [0, T ] × Rn×1 × Rd×1 × R × R1×d → R. If F

and f satisfy hypotheses (L1) and (L2) then the BSDE (3.2) admits a unique
solution (Ut,x,m,V t,x,m,Nt,x,m) ∈ S2

β × H2
β × M2 (see [10], Theorem 6.1). By

Be(R
n×1 × Rd×1) we denote the σ -algebra generated by the family of functions

(x,m) �→ E[∫ T
t φ(s,Xt,x,m

s ,Mt,m
s ) dCs], where φ :� × [0, T ] × Rn×1 × Rd×1 →

R is predictable, continuous and bounded.

PROPOSITION 3.2. Assume that M is a strong Markov process and that (L1)
and (L2) are in force. Then there exist deterministic functions u : [0, T ] × Rn×1 ×
Rd×1 → R, B([0, T ]) ⊗ Be(R

n×1 × Rd×1)-measurable and v : [0, T ] × Rn×1 ×
Rd×1 → R1×d , B([0, T ]) ⊗ Be(R

n×1 × Rd×1)-measurable such that

Ut,x,m
s = u(s,Xt,x,m

s ,Mt,m
s ),

(3.3)
V t,x,m

s = v(s,Xt,x,m
s ,Mt,m

s ), s ∈ [t, T ].

REMARK 3.3. Before turning to the proof of Proposition 3.2 we stress the
following point. Assume M and X are as in Proposition 3.1(ii) and that the driver f

in (3.2) does not depend on M , then Proposition 3.2 is equivalent to the existence of
deterministic functions u : [0, T ] × Rn×1 → R, B([0, T ]) ⊗ Be(R

n×1)-measurable
and v : [0, T ] × Rn×1 → R1×d , B([0, T ]) ⊗ Be(R

n×1)-measurable such that

Ut,x
s = u(s,Xt,x

s ), V t,x
s = v(s,Xt,x

s ), s ∈ [t, T ].
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PROOF OF PROPOSITION 3.2. Consider the following sequence (Uk,t,x,m,
V k,t,x,m,Nk,t,x,m)k≥0 of BSDEs:

U0,t,x = V 0,t,x = 0,

Uk+1,t,x
s = F(X

t,x,m
T ,M

t,m
T )

(3.4)

+
∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,Uk,t,x,m

r ,V k,t,x,m
r q∗

r ) dCr

−
∫ T

s
V k+1,t,x,m

r dMr −
∫ T

s
dNk+1,t,x,m

r .

We recall an estimate obtained in [10], page 35. Let α > 0 and β > 0 be as in
Section 2. Then

‖α(Uk+1,t,x,m − Uk,t,x,m)‖2
β

+ ‖q(V k+1,t,x,m − V k,t,x,m)∗‖2
β + ‖(Nk+1,t,x,m − Nk,t,x,m)‖2

β

≤ ε
(‖α(Uk,t,x,m − Uk−1,t,x,m)‖2

β + ‖q(V k,t,x,m − V k−1,t,x,m)∗‖2
β

+ ‖(Nk,t,x,m − Nk−1,t,x,m)‖2
β

)
,

where ε is a constant depending on β which can be chosen with ε < 1. Applying
the result recursively we obtain

‖α(Uk+1,t,x,m − Uk,t,x,m)‖2
β

+ ‖q(V k+1,t,x,m − V k,t,x,m)∗‖2
β + ‖(Nk+1,t,x,m − Nk,t,x,m)‖2

β

≤ εk(‖α(U1,t,x,m − U0,t,x,m)‖2
β + ‖q(V 1,t,x,m − V 0,t,x,m)∗‖2

β

+ ‖(N1,t,x,m − N0,t,x,m)‖2
β

)
.

Since
∞∑

k=0

‖α(Uk+1,t,x,m − Uk,t,x,m)‖2
β + ‖q(V k+1,t,x,m − V k,t,x,m)∗‖2

β

+ ‖(Nk+1,t,x,m − Nk,t,x,m)‖2
β < ∞,

the sequence (Uk,t,x,m,V k,t,x,m,Nk,t,x,m)k converges ν-a.e. to (Ut,x,m,V t,x,m,
Nt,x,m) as k tends to infinity.

We show by induction on k ≥ 1 the following property (Propk):

(Propk ). There exist deterministic functions �k : [0, T ] × Rn×1 × Rd×1 → R,
B([0, T ]) ⊗ Be(R

n×1 × Rd×1)-measurable and �k : [0, T ] × Rn×1 × Rd×1 →
R1×d , B([0, T ]) ⊗ Be(R

n×1 × Rd×1)-measurable such that Uk,t,x,m
s = �k(s,

Xt,x,m
s ,Mt,m

s ) and V k,t,x,m
s = �k(s,Xt,x,m

s ,Mt,m
s ), for t ≤ s ≤ T , k ∈ N.
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PROOF OF (Prop1). From the definition of U1,t,x,m and since N1,t,x,m is a
martingale, we have for s ∈ [t, T ]

U1,t,x,m
s = E[U1,t,x,m

s |F t
s ]

(3.5)

= E

[
F(X

t,x,m
T ,M

t,m
T ) −

∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,0,0) dCr

∣∣∣F t
s

]
.

The Markov property and Doob–Dynkin’s lemma give

U1,t,x,m
s = E

[
F(X

t,x,m
T ,M

t,m
T ) −

∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,0,0) dCr

∣∣∣F t
s

]

= E

[
F(X

t,x,m
T ,M

t,m
T )

−
∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,0,0) dCr

∣∣∣(Xt,x,m
s ,Mt,m

s )

]

= �1(s,Xt,x,m
s ,Mt,m

s ),

where �1 : [0, T ] × Rn×1 × Rd×1 → R. Now let

R1,t,x,m
s = U1,t,x,m

s +
∫ s

t
f (r,Xt,x,m

r ,Mt,m
r ,0,0) dCr, s ∈ [t, T ].

Then for s ∈ [t, T ]
R1,t,x,m

s =
∫ s

t
V 1,t,x,m

r dMr + Nt,x,m
s − N

t,x,m
t ,(3.6)

hence, using the localization technique, we can assume that R1,t,x,m is a strongly
additive (in the sense of [7], page 169) square integrable martingale. Now we ap-
ply [6], Theorem (2.16), to Y 1 := M and Y 2 := R. Thus, there exist two addi-
tive locally square integrable martingales M1 and M2, two deterministic func-
tions �1,�2 : [0, T ] × Rn×1 × Rd×1 → R1×d such that Y 1 = M1 and Y 2

s =∫ s
t �1(s,Xt,x,m

s ,Mt,m
s ) dM1

s + ∫ s
t �2(s,Xt,x,m

s ,Mt,m
s ) dM2

s . By definition of R

we deduce that M2 has to be equal to N1,t,x,m (showing that N1,t,x,m is additive)
and that �2 ≡ 1. This shows that

V 1,t,x,m
s = �1(s,Xt,x,m

s ,Mt,m
s ), ν-a.e.

Letting k ≥ 1, we prove (Propk) �⇒ (Propk+1). For s ∈ [t, T ] we have

Uk+1,t,x,m
s

= E[Uk+1,t,x,m
s |F t

s ]
= E

[
F(X

t,x,m
T ,M

t,m
T )

−
∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,Uk,t,x,m

r ,V k,t,x,m
r q∗

r ) dCr

∣∣∣F t
s

]
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= E

[
F(X

t,x,m
T ,M

t,m
T )

−
∫ T

s
f (r,Xt,x,m

r ,Mt,m
r ,�k(r,Xt,x,m

r ,Mt,m
r ),

�k(r,Xt,x,m
r ,Mt,m

r )q∗
r ) dCr

∣∣∣F t
s

]

= E

[
F(X

t,x,m
T ,M

t,m
T ) −

∫ T

s
f k(r,Xt,x,m

r ,Mt,m
r ) dCr

∣∣∣F t
s

]
,

where f k(r, y, z) := f (r, y,�k(r, y, z),�k(r, y, z)q∗
r ). Using the same argument

as in the case k = 1, we deduce that there exists a function �k+1 : [0, T ]×Rm×1 ×
Rd×1 → R such that

Uk+1,t,x,m
s = �k+1(s,Xt,x,m

s ,Mt,m
s ).

For s ∈ [t, T ] let

Rk+1,t,x,m
s = Uk+1,t,x,m

s +
∫ s

t
f k(r,Xt,x,m

r ,Mt,m
r ) dCr

− Nk+1,t,x,m
s + N

k+1,t,x,m
t .

Following the same procedure as before, we deduce that there exists a function
�k+1 : [0, T ] × Rn×1 × Rd×1 → R1×d such that

V k+1,t,x,m
s = �k+1(s,Xt,x,m

s ,Mt,m
s ).

Let

u(r, y, z) := lim sup
k→∞

�k(r, y, z), v(r, y, z) := lim sup
k→∞

�k(r, y, z).

Since the sequence (Uk,t,x,V k,t,x,Nt,x,m)k converges ν-a.e. to (Ut,x,m,V t,x,m,
Nt,x,m) as k tends to infinity, we have for s ∈ [t, T ]

u(s,Xt,x,m
s ,Mt,m

s ) =
(
lim sup
k→∞

�k
)
(s,Xt,x,m

s ,Mt,m
s )

= lim sup
k→∞

(�k(s,Xt,x,m
s ,Mt,m

s ))

= lim sup
k→∞

Uk,t,x,m
s = Ut,x,m

s .

Similarly we obtain

v(s,Xt,x,m
s ,Mt,m

s ) = V t,x,m
s . �
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We conclude this section by extending Proposition 3.2 to a quadratic FBSDE.
More precisely, we consider the following BSDE:

Y t,x,m
s = F(X

t,x,m
T ,M

t,m
T ) −

∫ T

s
Zt,x,m

u dMu

+
∫ T

s
f (u,Xt,x,m

u ,Mt,m
u ,Y t,x,m

u ,Zt,x,m
u q∗

u) dCu(3.7)

−
∫ T

s
dLt,x,m

u + κ

2

∫ T

s
d〈Lt,x,m,Lt,x,m〉u, s ∈ [t, T ],

where the forward process Xt,x,m is a solution of (3.1). Again we suppose that
the driver f does not depend on � and hence, is a deterministic Borel measur-
able function f : [0, T ] × Rn×1 × Rd×1 × R × R1×d → R. If F satisfies (H1)
and f hypotheses (H2) and (H3), then the BSDE (3.7) admits a unique solu-
tion (Y t,x,m,Zt,x,m,Lt,x,m) ∈ S∞ × L2(d〈M,M〉 ⊗ dP) × M2 (see [18], The-
orem 2.5).

THEOREM 3.4. We assume that M is a strong Markov process and that (H1)–
(H3) hold. Then there exist deterministic functions u : [0, T ]×Rn×1 ×Rd×1 → R,
B([0, T ])⊗ Be(R

n×1 ×Rd×1)-measurable and v : [0, T ]×Rn×1 ×Rd×1 → R1×d ,
B([0, T ]) ⊗ Be(R

n×1 × Rd×1)-measurable such that

Y t,x,m
s = u(s,Xt,x,m

s ,Mt,m
s ),

(3.8)
Zt,x,m

s = v(s,Xt,x,m
s ,Mt,m

s ), s ∈ [t, T ].

REMARK 3.5. As mentioned in Remark 3.3, in the framework of Proposi-
tion 3.1(ii), when the driver f in (3.7) does not depend on M , Theorem 3.4
simplifies to the existence of deterministic functions u : [0, T ] × Rn×1 → R,
B([0, T ]) ⊗ Be(R

n×1)-measurable and v : [0, T ] × Rn×1 → R1×d , B([0, T ]) ⊗
Be(R

n×1)-measurable such that

Y t,x
s = u(s,Xt,x

s ), Zt,x
s = v(s,Xt,x

s ), s ∈ [t, T ].

PROOF OF THEOREM 3.4. Existence and uniqueness of the solution of (3.7)
under the hypotheses (H1)–(H3) have been obtained in [18], Theorems 2.5 and 2.6.
More precisely, it is shown in the proof of [18], Theorem 2.5, that the solution of
a quadratic BSDE can be derived as the limit of solutions of a sequence of BS-
DEs with Lipschitz generators. We follow this proof and begin by relaxing condi-
tion (H2). Indeed, consider the following assumption (H2′) where the generator f

does not need to be bounded in y anymore.

(H2′) The generator f is continuous in (y, z) and there exists a predictable
process η such that η ≥ 0 and

∫ T
0 ηs dCs ≤ a, where a is a positive constant. Fur-
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thermore, there exists a constant γ > 0 such that ν-a.e.

|f (s, x,m,y, z)| ≤ ηs + γ

2
|z|2 with γ ≥ |κ|, (x,m,y, z) ∈ V.

Assume that one can prove existence of a solution of (3.7) if f satisfies (H2′)
instead of (H2). Let fK be the generator f truncated in Y at level K (as in [18],
Lemma 3.1). More precisely, set fK(s, x,m,y, z) := f (s, x,m,ρ(y)K, z) with

ρK(y) :=
⎧⎨
⎩

−K, if y < −K ,
y, if |y| ≤ K ,
K, if y > K .

It is shown in [18], proof of Theorem 2.5, Step 1, that fK satisfies (H2′). Hence,
by hypothesis, there exists a triple of stochastic processes (Y

t,x,m
K ,Z

t,x,m
K ,L

t,x,m
K )

which solves (3.7) with generator fK . With a comparison argument and since fK

and f coincide along the sample paths of the solution (Y
t,x,m
K ,Z

t,x,m
K ,L

t,x,m
K ), it

can be shown that the bound of Y
t,x,m
K does not depend on K , if K is large enough.

This is why fK can be replaced by f which satisfies (H2). As a consequence, our
proof is finished if we show that (3.8) holds for the truncated generator fK which
satisfies (H2′).

The next step is to consider a BSDE which is shown in [18] to be in one to one
correspondence with the BSDE (3.7) and is obtained via an exponential coordi-
nate change. We only give a brief survey and refer to [18], proof of Theorem 2.5,
Step 2, for a complete treatment. Setting Ut,x,m := eκY t,x,m

transforms (3.7) into
the following BSDE:

Ut,x,m
s = eκF(X

t,x,m
T ) −

∫ T

s
V t,x,m

r dMr

+
∫ T

s
g(r,Xt,x,m

r ,Mt,m
r ,Ut,x,m

r ,V t,x,m
r q∗

r ) dCr(3.9)

−
∫ T

s
dNt,x,m

r , s ∈ [t, T ].

We refer to a solution of this BSDE as (Ut,x,m,V t,x,m,Nt,x,m). Since fK satis-
fies (H2′), the new generator

g(s, x,m,u, v)

:=
(
κρc2(u)fK

(
s, x,m,

ln(u ∨ c1)

κ
,

v

κ(u ∨ c1)

)
− 1

2(u ∨ c1)
|v|2

)
,

(x,m,u, v) ∈ V , satisfies (H2′) (where c1 and c2 are two explicit constants given
in [18], pages 135–136, depending only on (a, κ,‖F‖∞, b) where we recall
that a and b are the constants appearing in the assumption (H2)) and the triple
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(Y t,x,m,Zt,x,m,Lt,x,m) with

Y t,x,m := log(Ut,x,m)

κ
,

Zt,x,m := V t,x,m

κUt,x,m
,(3.10)

Lt,x,m := 1

κUt,x,m
· Nt,x,m

is well defined and is solution to (3.7) with generator fK satisfying (H2′).
To derive the existence of a solution of (3.9), an approximating sequence of

BSDEs with Lipschitz generator gp and terminal condition e(κF (X
t,x,m
T )) is intro-

duced in such a way that gp converges dν-almost everywhere to g as p tends to
infinity. We do not specify the explicit expression for gp , since we only need that
the sequence is increasing in y, implying the same property for the solution com-
ponent (Up,t,x,m)p∈N. For more details we refer to [18], proof of Theorem 2.5,
Step 3.

Let p ≥ 1. We consider the BSDE (3.9) with generator gp and terminal con-
dition e(κF (X

t,x,m
T )). Since gp is Lipschitz continuous we know from [10], Theo-

rem 6.1, that a unique solution (Up,t,x,m,V p,t,x,m,Np,t,x,m) exists. Now we can
apply Proposition 3.2 which provides deterministic functions ap and bp such that

Up,t,x,m
s = ap(s,Xt,x,m

s ,Mt,m
s )

and

V p,t,x,m
s = bp(s,Xt,x,m

s ,Mt,m
s ), s ∈ [t, T ].

A subsequence, for convenience again denoted by (Up,t,x,m,V p,t,x,m,

Np,t,x,m)p∈N, converges almost surely (with respect to dν) to the solution
(Ut,x,m,V t,x,m,Nt,x,m) of (3.9). Letting

a(s, y,m) := lim inf
p→∞ ap(s, y,m),

b(s, y,m) := lim inf
p→∞ bp(s, y,m),

(s, y,m) ∈ [0, T ] × Rd×1 × Rn×1, we conclude that Ut,x,m
s = a(s,Xt,x,m

s ,Mt,m
s )

and V t,x,m
s = b(s,Xt,x,m

s ,Mt,m
s ), s ∈ [t, T ]. Since (Up,t,x,m)p∈N is increasing, we

may set

u := lna

κ
, v := b

κa
.

Hence, the result follows by (3.10) and the one to one correspondence. �
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4. Differentiability of FBSDEs. In this section we derive differentiability of
the FBSDE of (2.2) and (2.3) with respect to the initial data x and m. The presence
of the quantity 〈L,L〉 in the equation, where we recall that L is part of the solution
of (2.3), prevents us from extending directly the usual techniques presented, for ex-
ample, in [2, 3, 5]. Under an additional assumption (MRP) defined in Section 4.2,
we deduce the differentiability of (2.3) from that of the auxiliary BSDE (4.1).

4.1. Differentiability of an auxiliary FBSDE. As mentioned above, we first
prove the differentiability of an auxiliary BSDE which will allow us to deduce the
result for (2.3) in Section 4.2.

For every (x,m) ∈ R(n+d)×1, let us consider the following forward–backward
system of equations:

X
x,m
t = x +

∫ t

0
σ(r,Xx,m

r ,Mm
r ) dMr +

∫ t

0
b(r,Xx,m

r ,Mm
r ) dCr,

Y
x,m
t = F(X

x,m
T ,Mm

T ) −
∫ T

t
Zx,m

r dMr(4.1)

+
∫ T

t
f (r,Xx,m

r ,Mm
r ,Y x,m

r ,Zx,m
r q∗

r ) dCr,

where M is a continuous local martingale in Rd×1 satisfying the martingale repre-
sentation property and C,q,σ, b,F,f are as described in Section 2. A solution of
this system is given by the triple (Xx,m,Y x,m,Zx,m) ∈ S p × S ∞ ×L2(d〈M,M〉⊗
dP) of stochastic processes. Note that the system (4.1) has a unique solution if the
coefficients σ and b of the forward component satisfy (H0) and the terminal con-
dition F and the generator f of the backward part satisfy (H1)–(H3).

In this section we will give sufficient conditions for the system (4.1) to be differ-
entiable in (x,m) ∈ R(n+d)×1. Before turning to the backward SDE of the system,
we provide some material about the differentiability of the forward component
obtained in [22], Theorem V.7.39.

PROPOSITION 4.1. Assume that σ and b satisfy (D1). Then for almost all
ω ∈ � there exists a solution Xx,m(ω) of (4.1) which is continuously differentiable
in x and m. In addition, the derivatives Dx

ik := ∂
∂xk

X(i)x,m, i, k = 1, . . . , n, and

Dm
ik := ∂

∂mk
X(i)x,m, i = 1, . . . , n, k = 1, . . . , d , satisfy the following SDE for t ∈

[0, T ]:

Dx
ikt = δik +

d∑
α=1

n∑
j=1

∫ t

0
∂1+j σiα(s,Xx,m

s ,Mm
s )Dx

jks dM(α)
s

(4.2)

+
n∑

j=1

∫ t

0
∂1+j b

(i)(s,Xx,m
s ,Mm

s )Dx
jks dCs,
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Dm
ikt =

d∑
α=1

n∑
j=1

∫ t

0
∂1+j σiα(s,Xx,m

s ,Mm
s )Dm

jks dM(α)
s

+
n∑

j=1

∫ t

0
∂1+j b

(i)(s,Xx,m
s ,Mm

s )Dm
jks dCs

(4.3)

+
d∑

α=1

∫ t

0
∂1+n+kσiα(s,Xx,m

s ,Mm
s ) dM(α)

s

+
∫ t

0
∂1+n+kb

(i)(s,Xx,m
s ,Mm

s ) dCs

and ∂
∂mk

M(j)m = δkj , k, j = 1, . . . , d . Furthermore, for all p > 1 there exists a
positive constant κ such that the following estimate holds:

E
[

sup
t∈[0,T ]

|Xx,m
t − X

x′,m′
t |2p

]
≤ κ(|x − x′|2 + |m − m′|2)p.(4.4)

PROOF. Let (X̃
x,m
t )t∈[0,T ] be the stochastic process with values in R(1+n+d)×1

defined as

X̃
x,m
t =

⎛
⎝ t

X
x,m
t

Mm
t

⎞
⎠ .

This process is the solution of the SDE

dX̃
x,m
t = σ̃ (X̃

x,m
t ) dM̃t , X̃

x,m
0 = (0, x,m)

with

σ̃ (X̃
x,m
t ) =

⎛
⎝1 0 0

0 σ(X̃
x,m
t ) b(X̃

x,m
t )

0 Id 0

⎞
⎠ , M̃t =

⎛
⎝ t

Mt

Ct

⎞
⎠ .

According to [22], Theorem V.39, the derivatives Dx , Dm and ∂
∂mk

M(j)m, k, j =
1, . . . , d , exist and are continuous in x and m. In addition, formula [22], (D), page
312, leads to (4.2) and (4.3). The estimate (4.4) follows immediately from [22],
(∗ ∗ ∗), page 309. �

We now focus on the backward part of system (4.1). Let x̃ := (x,m) ∈ R(n+d)×1

and ei, i = 1, . . . , n + d , the unit vectors in R(n+d)×1. For all x̃, h �= 0 and
i ∈ {1, . . . , n + d}, let ξ x̃,h,i = 1

h
(F (X

x̃+hei

T ,M
x̃+hei

T ) − F(Xx̃
T ,Mx̃

T )). Here it is
implicit that Mx̃ only depends on the component m in x̃ = (x,m). The following
lemma will be needed later in order to prove the differentiability of the backward
component. To simplify the notation we suppress the superscript i.
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LEMMA 4.2. Suppose that (D1) and (D2) hold. Then for every p > 1 there
exists a constant κ > 0, such that for all x̃, x̃′ ∈ R(n+d)×1, h,h′ �= 0

E[|ξ x̃,h − ξ x̃′,h′ |2p] ≤ κ(|x̃ − x̃′|2 + |h − h′|2)p.(4.5)

PROOF. Let x̃, x̃′ ∈ R(n+d)×1 and h,h′ �= 0. Given a real number θ in [0,1],
we set

Gi(x̃) := ∂iF
(
Xx̃

T + θ(X
x̃+hei

T − Xx̃
T ),Mx̃

T + θ(M
x̃+hei

T − Mx̃
T )
)
, i = 1,2.

For notational convenience, we also define

H := X
x̃+hei

T − Xx̃
T

h
− X

x̃′+h′ei

T − Xx̃′
T

h′ ,

I := M
x̃+hei

T − Mx̃
T

h
− M

x̃′+h′ei

T − Mx̃′
T

h′ .

We have

E[|ξ x̃,h − ξ x̃′,h′ |2p]
= E

[∣∣∣∣1h(F(X
x̃+hei

T ,M
x̃+hei

T ) − F(Xx̃
T ,Mx̃

T )
)

− 1

h′
(
F(X

x̃′+h′ei

T ,M
x̃′+h′ei

T ) − F(Xx̃′
T ,Mx̃′

T )
)∣∣∣∣2p]

= E

[∣∣∣∣
∫ 1

0

(
G1(x̃)

X
x̃+hei

T − Xx̃
T

h
+ G2(x̃)

M
x̃+hei

T − Mx̃
T

h

− G1(x̃
′)X

x̃′+h′ei

T − Xx̃′
T

h′ − G2(x̃
′)M

x̃′+h′ei

T − Mx̃′
T

h′
)

dθ

∣∣∣∣2p]

= E

[∣∣∣∣
∫ 1

0
G1(x̃)H − (

G1(x̃
′) − G1(x̃)

)Xx̃′+h′ei

T − Xx̃′
T

h′

+ G2(x̃)I − (
G2(x̃

′) − G2(x̃)
)Mx̃′+h′ei

T − Mx̃′
T

h′ dθ

∣∣∣∣2p]

≤ cE

[
|H |2p +

∣∣∣∣X
x̃′+h′ei

T − Xx̃′
T

h′
∣∣∣∣2p(∫ 1

0
|G1(x̃

′) − G1(x̃)|dθ

)2p]

+ cE

[
|I |2p +

∣∣∣∣M
x̃′+h′ei

T − Mx̃′
T

h′
∣∣∣∣2p(∫ 1

0
|G2(x̃

′) − G2(x̃)|dθ

)2p]
=: T1 + T2,
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where we have used the fact that F is globally Lipschitz in the last inequality.
Similarly, the Lipschitz property of ∇F entails for i = 1,2∫ 1

0
Gi(x̃

′) − Gi(x̃) dθ

≤ C(|Xx̃
T − Xx̃′

T | + |Xx̃+hei

T − X
x̃′+h′ei

T |
+ |Mx̃

T − Mx̃′
T | + |Mx̃+hei

T − M
x̃′+h′ei

T |) =: J.

Hence, using the Hölder inequality with γ, q > 1 s.t. 1
γ

+ 1
q

= 1 we get

T1 ≤ cE[|H |2p] + cE

[∣∣∣∣X
x̃′+h′ei

T − Xx̃′
T

h′
∣∣∣∣2p

J 2p

]

≤ cE[|H |2p] + cE

[∣∣∣∣X
x̃′+h′ei

T − Xx̃′
T

h′
∣∣∣∣2pγ ]1/γ

E[J 2pq]1/q .

Recall that E[|Xx̃
T |r ] < ∞ for all r ≥ 1 and thus, from inequality (4.4), we have

E

[∣∣∣∣X
x̃′+h′ei

T − Xx̃′
T

h′
∣∣∣∣2pγ ]1/γ

= 1

(h′)2p
E[|Xx̃′+h′ei

T − Xx̃′
T |2pγ ]1/γ ≤ c,

where c is a constant which does not depend on x̃, x̃′, h or h′. Combining the
previous estimates we finally obtain

T1 ≤ cE[|H |2p] + cE[J 2pq]1/q ≤ c(|x̃ − x̃′|2 + |h − h′|2)p.

The same method gives that

T2 ≤ cE[|H |2p] + cE[J 2pq ]1/q ≤ c(|x̃ − x̃′|2 + |h − h′|2)p

and the proof is complete. �

The next lemma shows that we can choose the family (Y x̃) to be continuous in
x̃ ∈ R(n+d)×1.

LEMMA 4.3. Let (H1)–(H3) and (D1)–(D3) be satisfied. Then for all p > 1
there exists a constant c > 0, such that for all x̃, x̃′ ∈ R(n+d)×1

E
[

sup
t∈[0,T ]

|Y x̃
t − Y x̃′

t |2p
]
+ E

[(∫ T

0
|qt (Z

x̃
t − Zx̃′

t )∗|2 dCt

)p]
(4.6)

≤ c|x̃ − x̃′|2p.

Furthermore, for almost all ω ∈ � there exists a solution Y x̃(ω) of (4.1) which is
continuous in x̃ ∈ R(n+d)×1.
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PROOF. Let δY := Y x̃ − Y x̃′
, δZ := Zx̃ − Zx̃′

, δM := Mm − Mm′
and δX :=

Xx̃ − Xx̃′
. We also set for s ∈ [0, T ]

AZ
r :=

∫ 1

0
∂5f

(
r,Xx̃

r ,Mm
r ,Y x̃

r ,Zx̃′
r q∗

r + ζ(Zx̃
r − Zx̃′

r )q∗
r

)
dζ,

AY
r :=

∫ 1

0
∂4f

(
r,Xx̃

r ,Mm
r ,Y x̃′

r + ζ(Y x̃
r − Y x̃′

r ),Zx̃′
r q∗

r

)
dζ,

AM
r :=

∫ 1

0
∂3f

(
r,Xx̃

r ,Mm′
r + ζ(Mm

r − Mm′
r ), Y x̃′

r ,Zx̃′
r q∗

r

)
dζ,

AX
r :=

∫ 1

0
∂2f

(
r,Xx̃′

r + ζ(Xx̃
r − Xx̃′

r ),Mm′
r , Y x̃′

r ,Zx̃′
r q∗

r

)
dζ.

Considering the difference δY of the backward component in (4.1) we see that for
t ∈ [0, T ]

δYt = F(Xx̃
T ,Mm

T )

− F(Xx̃′
T ,Mm′

T ) −
∫ T

t
δZr dMr

+
∫ T

t
[f (r,Xx̃

r ,Mm
r ,Y x̃

r ,Zx̃
r q∗

r ) − f (r,Xx̃′
r ,Mm′

r , Y x̃′
r ,Zx̃′

r q∗
r )]dCr

= F(Xx̃
T ,Mm

T ) − F(Xx̃′
T ,Mm′

T ) −
∫ T

t
δZr dMr

+
∫ T

t
(δZrq

∗
r AZ

r + δYrA
Y
r + δM∗

r AM
r + δX∗

r A
X
r )︸ ︷︷ ︸

=:g(r,δYr ,δZrq∗
r )

dCr

holds. Note that (δY, δZ) can be seen as a BSDE whose generator g satisfies (H4)
and whose terminal condition F(Xx̃

T ,Mm
T ) − F(Xx̃′

T ,Mm′
T ) is bounded [see (H1)].

More precisely, we derive with (D3) and [18], Lemma 3.1, the existence of a con-
stant c such that for all y, y1, y2 ∈ R and z, z1, z2 ∈ R1×d ν-a.e.

|g(r, y, z1) − g(r, y, z2)|
≤ |AZ

r ||z1 − z2|
≤ c

(|qrθr | + |Zx̃′
r q∗

r | + |(Zx̃
r − Zx̃′

r )q∗
r |)|z1 − z2|

and

|g(r, y1, z) − g(r, y2, z)|
≤ |AM

r ||y1 − y2| ≤ c(|qrθr | + |Zx̃′
r q∗

r |)|y1 − y2|.
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Hence, we can apply the a priori estimates of Lemma A.1 and hence, we know that
for every p > 1 there exist constants q > 1 and c > 0 such that

E
[

sup
t∈[0,T ]

|δYt |2p
]
+ E

[(∫ T

0
|qtδZ

∗
t |2 dCt

)p]

≤ cE

[
|F(Xx̃

T ,Mm
T ) − F(Xx̃′

T ,Mm′
T )|2pq(4.7)

+
(∫ T

0
|δM∗

r AM
r + δX∗

r A
X
r |dCr

)2pq]1/q

.

By condition (D3) and Hölder’s inequality we get

E

[(∫ T

0
|δM∗

r AM
r + δX∗

r A
X
r |dCr

)2pq]

≤ cE

[(∫ T

0
|δMr |2 dCr

)2pq]1/2

E

[(∫ T

0
(|qrθr | + |Zx̃′

r q∗
r |)2 dCr

)2pq]1/2

+ cE

[(∫ T

0
|δXr |2 dCr

)2pq]1/2

E

[(∫ T

0
(|qrθr | + |Zx̃′

r q∗
r |)2 dCr

)2pq]1/2

.

Note that E[(∫ T
0 |qrθr |2 dCr)

2pq] is bounded by (D3). Furthermore,

E

[(∫ T

0
|Zx̃′

r q∗
r |2 dCr

)2pq]
is bounded, as is seen by applying Lemma A.1. Hence,

E

[(∫ T

0
|δM∗

r AM
r + δX∗

r A
X
r |dCr

)2pq]

≤ c|m − m′|2pq + CE
[(

sup
t∈[0,T ]

|δXt |2CT

)2pq]1/2

≤ c(|m − m′|2pq + |x̃ − x̃′|2pq),

where the last inequality is due to (4.4). Combining (4.7), condition (D2) and the
last inequality we obtain

E
[

sup
t∈[0,T ]

|δYt |2p
]
+ E

[(∫ T

0
|qsδZ

∗
s |2

)p]
≤ c|x̃ − x̃′|2p.

Now Kolmogorov’s lemma (see [22], Theorem 73, Chapter IV) implies that there
exists a version of (Y x̃) which is continuous in x̃ for almost all ω ∈ �. �

For all h �= 0, x̃ ∈ R(n+d)×1, t ∈ [0, T ] let U
x̃,h
t = 1

h
(Y

x̃+hei
t − Y x̃

t ), V
x̃,h
t =

1
h
(Z

x̃+hei
t − Zx̃

t ), �
x̃,h
t = 1

h
(X

x̃+hei
t − Xx̃

t ), �
x̃,h
t = 1

h
(M

x̃+hei
t − Mx̃

t ) [where it
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is implicit that Mx̃ depends only on the component m of x̃ = (x,m)] and ξ x̃,h =
1
h
(F (X

x̃+hei

T ,M
x̃+hei

T ) − F(Xx̃
T ,Mx̃

T )). We define δU by δU = Ux̃,h − Ux̃′,h′
and

the processes δV , δ�, δ� and δξ in an analogous way. We give estimates on the
differences of difference quotients of the family (Y x̃).

LEMMA 4.4. Let (H1)–(H3) and (D1)–(D4) be satisfied. Then for each p > 1
there exists a constant c > 0 such that for any x̃, x̃′ ∈ R(n+d)×1 and h,h′ �= 0

E
[

sup
t∈[0,T ]

|Ux̃,h
t − U

x̃′,h′
t |2p

]
≤ c(|x̃ − x̃′|2 + |h − h′|2)p.(4.8)

PROOF. This proof is similar to that of Lemma 4.3. By definition of Ux̃,h and
of Ux̃′,h′

we have

U
x̃,h
t = ξ x̃,h −

∫ T

t
V x̃,h

r dMr

+
∫ T

t

1

h
[f (r,Xx̃+hei

r ,Mx̃+hei
r , Y x̃+hei

r ,Zx̃+hei
r q∗

r )(4.9)

− f (r,Xx̃
r ,Mx̃

r , Y x̃
r ,Zx̃

r q∗
r )]dCr.

As in the proof of Lemma 4.3, we decompose the integrand in the last term of the
right-hand side of the equality above by writing

1

h

(
f (r,Xx̃+hei

r ,Mx̃+hei
r , Y x̃+hei

r ,Zx̃+hei
r q∗

r ) − f (r,Xx̃
r ,Mx̃

r , Y x̃
r ,Zx̃

r q∗
r )
)

= V
x̃,h
t q∗

r (AZ)x̃,h
r + U

x̃,h
t (AY )x̃,h

r + �x̃,h
r

∗
(AM)x̃,h

r + �x̃,h(AX)x̃,h
r ,

where AZ,AY ,AM,AX are defined as in the proof of Lemma 4.3, for instance,

(AZ)x̃,h
r :=

∫ 1

0
∂5f

(
r,Xx̃+hei

r ,Mx̃+hei
r , Y x̃+hei

r ,Zx̃
r q∗

r + θ(Zx̃+hei
r − Zx̃

r )q∗
r

)
dθ.

Taking the difference of two equations of the form (4.9) we obtain that (δU, δV )

satisfies the BSDE

δUt = δξ −
∫ T

0
δVr dMt

+
∫ T

t
δVrq

∗
r (AZ)x̃,h

r + δUr(A
Y )x̃,h

r

+ [
q∗
r

(
(AZ)x̃,h

r − (AZ)x̃
′,h′

r

)
V x̃′,h′

r + Ux̃′,h′
r

(
(AY )x̃,h

r − (AY )x̃
′,h′

r

)
(4.10)

+ �x̃,h
r

∗
(AM)x̃,h

r − �x̃′,h′
r

∗
(AM)x̃

′,h′
r

+ �x̃,h∗
(AX)x̃,h

r − �x̃′,h′ ∗
(AX)x̃

′,h′
r

]
dCr.
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The generator of this BSDE satisfies condition (H4) due to assumption (D3) (de-
tails are similar to those of the proof of Lemma 4.3 and are left to the reader). By
Lemma A.1, for every p > 1 there exist constants q > 1 and c > 0 such that

E

[
sup

t∈[0,T ]
|δUt |2p +

(∫ T

0
|qsδV

∗
s |2 dCs

)p]

≤ cE

[
|δξ |2pq +

(∫ T

0

∣∣q∗
r

(
(AZ)x̃,h

r − (AZ)x̃
′,h′

r

)∣∣|V x̃′,h′
r |

+ |Ux̃′,h′
r |∣∣((AY )x,h

r − (AY )x̃
′,h′

r

)∣∣
+ |�x̃,h

r

∗
(AM)x̃,h

r − �x̃′,h′
r

∗
(AM)x̃

′,h′
r |

+ |�x̃,h∗
(AX)x̃,h

r − �x̃′,h′ ∗
(AX)x̃

′,h′
r |dCr

)2pq]1/q

.

We estimate separately each part of the right-hand side of the inequality presented.
First, by Cauchy–Schwarz’s inequality we have

E

[(∫ T

0

∣∣q∗
r

(
(AZ)x̃,h

r − (AZ)x̃
′,h′

r

)∣∣|V x̃′,h′
r |dCr

)2pq]

≤ E

[(∫ T

0

∣∣q∗
r

(
(AZ)x̃,h

r − (AZ)x̃
′,h′

r

)∣∣2 dCr

)2pq]1/2

× E

[(∫ T

0
|V x̃′,h′

r |2 dCr

)2pq]1/2

≤ CE

[(∫ T

0

∣∣q∗
r

(
(AZ)x̃,h

r − (AZ)x̃
′,h′

r

)∣∣2 dCr

)2pq]1/2

since E[(∫ T
0 |V x̃′,h′

r |2 dCr)
2pq] is bounded by Lemma A.1. Then hypothesis (D4)

and a combination of Lemma 4.3 and (4.4) lead to the following estimate:

E

[(∫ T

0

∣∣q∗
r

(
(AZ)x̃,h

r − (AZ)x̃
′,h′

r

)∣∣|V x̃′,h′
r |dCr

)2pq]

≤ cE

[(∫ T

0
|q∗

r (Zx̃
r − Zx̃′

r )|2

+ |Xx̃+hei
r − Xx̃′+h′ei

r |2 + |Mx̃+hei
r − Mx̃′+h′ei

r︸ ︷︷ ︸
=x̃+hei−x̃′−h′ei

|2

+ |Y x̃+hei
r − Y x̃′+h′ei

r |2 + |q∗
r (Zx̃+hei

r − Zx̃′+h′ei
r )|2 dCr

)2pq]1/2

≤ c(|x̃ − x̃′|2 + |h − h′|2)pq.
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Similarly, we derive

E

[(∫ T

0
|Ux̃′,h′

r ||(AY )x,h
r − (AY )x̃

′,h′
r |dCr

)2pq]

≤ c(|x̃ − x̃′|2 + |h − h′|2)pq.

We next estimate

E

[(∫ T

0
|�x̃,h

r

∗
(AM)x̃,h

r − �x̃′,h′
r

∗
(AM)x̃

′,h′
r |dCr

)2pq]

≤ cE

[(∫ T

0
|�x̃,h

r − �x̃′,h′
r︸ ︷︷ ︸

=0

||(AM)x̃,h
r |dCr

)2pq]

+ cE

[(∫ T

0
|�x̃′,h′

r︸ ︷︷ ︸
=ei

||(AM)x̃,h
r − (AM)x̃

′,h′
r |dCr

)2pq]

≤ cE

[(∫ T

0
|(AM)x̃,h

r − (AM)x̃
′,h′

r |dCr

)2pq]

≤ cE

[(∫ T

0
(|qrθr | + |Zx̃

r q∗
s | + |Zx̃′

r q∗
s |)2 dCr

)2pq]1/2

× E

[(∫ T

0

(|Xx̃+hei
r − Xx̃′+h′ei

r |

+ |Y x̃
r − Y x̃′

r | + |(Zx̃
r − Zx̃′

r )q∗
r |

+ |Mx̃
r − Mx̃′

r | + |Mx̃+hei
r − Mx̃′+h′ei

r |)2 dCr

)2pq]1/2

,

where the last inequality is due to hypothesis (D4) and Hölder’s inequality. An
application of the a priori estimates from Lemma A.1 implies that E[(∫ T

0 (|qrθr | +
|Zx̃

r q∗
r | + |Zx̃′

r q∗
r |)2 dCr)

2pq] is bounded. Then, using (4.4) and (4.6), we obtain

E

[(∫ T

0
|�x̃,h

r

∗
(AM)x̃,h

r − �x̃′,h′
r

∗
(AM)x̃

′,h′
r |dCr

)2pq]

≤ cE

[(∫ T

0
|Xx̃+hei

r − Xx̃′+h′ei
r |2

+ |Y x̃
r − Y x̃′

r |2 + |(Zx̃
r − Zx̃′

r )q∗
r |2

+ |Mx̃
r − Mx̃′

r |2 + |Mx̃+hei
r − Mx̃′+h′ei

r |2 dCr

)2pq]1/2

≤ c(|x̃ − x̃′|2 + |h − h′|2)pq.
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We now consider the last term whose treatment is similar to that of the term just
discussed. Therefore, we give the main computations without providing detailed
arguments. We have

E

[(∫ T

0
|�x̃,h

r

∗
(AX)x̃,h

r − �x̃′,h′
r

∗
(AX)x̃

′,h′
r |dCr

)2pq]

≤ cE

[(∫ T

0
|�x̃,h

r − �x̃′,h′
r |2 dCr

)2pq]1/2

× E

[(∫ T

0
|(AX)x̃,h

r |2 dCr

)2pq]1/2

+ cE

[(∫ T

0
|�x̃′,h′

r ||(AX)x̃,h
r − (AX)x̃

′,h′
r |dCr

)2pq]
.

Using (D3) and Lemma A.1, we deduce that E[(∫ T
0 |(AX)x̃,h

r |2 dCr)
2pq] is

bounded. Using hypothesis (D4) and (4.4), again we obtain

E

[(∫ T

0
|�x̃,h

r

∗
(AX)x̃,h

r − �x̃′,h′
r

∗
(AX)x̃

′,h′
r |dCr

)2pq]

≤ cE

[(∫ T

0
|�x̃,h

r − �x̃′,h′
r |2 dCr

)2pq]1/2

+ cE

[(∫ T

0
(|qrθr | + |Zx̃′

r q∗
r | + |Zx̃

r q∗
r |)

× (|Xx̃
r − Xx̃′

r | + |Xx̃+hei
r − Xx̃′+h′ei

r | + |Mx̃
r − Mx̃′

r |

+ |Y x̃
r − Y x̃′

r | + |(Zx̃
r − Zx̃′

r )q∗
r |)dCr

)2pq]

≤ c(|x̃ − x̃′|2 + |h − h′|2)pq.

We derive

E[|δξ |2pq ] ≤ c(|x̃ − x̃′|2 + |h − h′|2)pq

from (4.5). This completes the proof of (4.8). �

PROPOSITION 4.5. Let (H1)–(H3) and (D1)–(D4) be satisfied. Then there
exists a solution (Xx̃, Y x̃,Zx̃) of (4.1), such that Xx̃(ω) and Y x̃(ω) are contin-
uously differentiable in x̃ ∈ R(n+d)×1 for almost all ω ∈ �. Furthermore, there
exist processes ∂

∂x
Zx,m, ∂

∂m
Zx,m ∈ L2(d〈M,M〉 ⊗ dP) such that the derivatives

(Ux
k ,V x

ik) := ( ∂
∂xk

Y x,m, ∂
∂xk

Z(i),x,m), i = 1, . . . , d , k = 1, . . . , n, and (Um
k ,V m

ik ) :=
( ∂
∂mk

Y x,m, ∂
∂mk

Z(i),x,m), i, k = 1, . . . , d , belong to S 2 × L2(〈M,M〉,P) and in
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particular solve the following BSDEs for t ∈ [0, T ]:

Ux
kt =

n∑
j=1

∂jF (X
x,m
T ,Mm

T )Dx
jkT −

d∑
α=1

∫ T

t
V x

iαs dM(α)
s

+
n∑

j=1

∫ T

t
∂1+j f (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s q∗

s )Dx
jks dCs

+
∫ T

t
∂1+n+d+1f (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s q∗

s )Ux
ks dCs(4.11)

+
n∑

j=1

∫ T

t
∂1+n+d+1+j f (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s q∗

s )

× ∂

∂xk

qjksZ
(j),x,m dCs,

Um
kt =

d∑
j=1

∂n+jF (X
x,m
T ,Mm

T )Dm
jkT −

d∑
α=1

∫ T

t
V m

iαs dM(α)
s

+
n∑

j=1

∫ T

t
∂1+j f (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s )Dm

jks dCs

+
∫ T

t
∂1+n+kf (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s q∗

s ) dCs

+
∫ T

t
∂1+n+d+1f (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s q∗

s )Um
ks dCs

+
n∑

j=1

∫ T

t
∂1+n+d+1+j f (s,Xx,m

s ,Mm
s ,Y x,m

s ,Zx,m
s q∗

s )qjksV
m
jks dCs.

PROOF. From Lemma 4.4 and Kolmogorov’s lemma (see [22], Theorem 73,
Chapter IV), we deduce that there exists a family of solutions (Y x̃) of (4.1) which
is continuously differentiable in x̃ for almost all ω ∈ �. Finally, from (4.10), taking
h → 0 the BSDEs follow. �

4.2. Differentiability of the initial FBSDE. Now we come back to the system
(2.2) and (2.3). In order to obtain the differentiability of this system we require the
following additional assumption:

(MRP) There exists a continuous square-integrable martingale N := (Nt )t∈[0,T ]
on (�, F ,P) which is strongly orthogonal to M (i.e., 〈Mi,N〉 = 0 for i =
1, . . . , d) with 〈N,N〉T ≤ Q,P-a.s., such that every P-martingale is of the form



DIFFERENTIABILITY OF QUADRATIC BSDES 311

Z · M + U · N , where Z and U are predictable square integrable processes [recall
that Q is the same constant as in (2.1)].

The presence of the additional bracket 〈L,L〉 in the BSDE prevents us from ap-
plying the known techniques for differentiability in the Brownian case as shown in
[2, 3, 5]. Nevertheless, under (MRP) we can show that the BSDE in (2.3) can be
written as

Y
x,m
t = F(X

x,m
T ,Mm

T ) −
∫ T

t
Zx,m

r dMr −
∫ T

t
Ux,m

r dNr

(4.12)

+
∫ T

t
h(r,Xx,m

r ,Mm
r ,Y x,m

r ,Zx,m
r q∗

r ,Ux,m
r ) dC̃r ,

t ∈ [0, T ], where C̃ and h are defined as in Appendix A.1. Due to hypothesis
(MRP) and the orthogonality of the martingales L and M , the representation of
L as L = U · N where U is a predictable square integrable stochastic process is
obtained. So the solution (Y,Z,L) of the backward part (2.3) becomes (Y,Z,U)

in (4.12). The bracket 〈L,L〉 is then a component of the new generator h, which
is quadratic in U . We refer to Appendix A.1, where a discussion of the technical
aspects is given. Now we can write the system (2.2) and (2.3) as

X
x,m
t = x +

∫ t

0
σ̃ (s,Xt,x,m

s ,Mt,m
s ) dM̃s +

∫ t

0
b̃(s,Xx,m

s ,Mm
s ) dC̃s,

Y
x,m
t = F(X

x,m
T ,Mm

T ) −
∫ T

t
Z̃x,m

s dM̃s(4.13)

+
∫ T

t
h(s,Xx,m

s ,Mm
s ,Y x,m

s , Z̃x,m
s q̃∗

s ) dC̃s,

t ∈ [0, T ], where M̃ , q̃ , Z̃, are defined as in Appendix A.1 and σ̃ := (σ 0),
b̃ := b × ϕ1 where ϕ1 is a bounded predictable process defined in Appendix A.1.
A solution (Xx,m,Y x,m, Z̃x,m) ∈ S p × S ∞ × L2(d〈M̃, M̃〉 ⊗ dP) of this system
exists for σ , b satisfying (H0) and F , h satisfying (H1)–(H3). Therefore, we obtain
the following result, whose proof follows from Proposition 4.5.

THEOREM 4.6. Assume that M be a strong Markov process and that f and
F in (2.3) satisfy (H1)–(H3) and (D1)–(D4). Under the assumption (MRP) there
exists a solution (Xx̃, Y x̃, Z̃x̃) of (2.2) and (2.3), such that Xx̃(ω) and Y x̃(ω) are
continuously differentiable in x̃ ∈ R(n+d)×1 for almost all ω ∈ � [we recall that x̃

stands for (x,m)].
PROOF. Note that the processes Y x̃ of the transformed BSDE (4.12) and of

the original BSDE (2.3) coincide. In addition, the process (Zx̃,Lx̃) in (2.3) and the
processes Z̃x̃ in (4.12) are related as follows: Z̃x̃ = (Zx̃,U x̃) with Lx̃ = ∫ ·

0 Ux̃
r dNr

and N is the process coming from (MRP). The definition of the driver h of the



312 P. IMKELLER, A. RÉVEILLAC AND A. RICHTER

BSDE (4.12) (see Appendix A.1), the fact that f and F in (2.3) satisfy and (H1)–
(H3) and (D1)–(D4), imply that F and h also satisfy the assumptions (H1)–(H3)
and (D1)–(D4). Thus, Y x̃ and Zx̃ are continuously differentiable in x̃ by Proposi-
tion 4.5 which concludes the proof. �

PROPOSITION 4.7. Assume that M is a strong Markov process and that f

and F in (2.3) satisfy (H1)–(H3) and (D1)–(D4). From Theorem 3.4 there exists
a deterministic function u such that Y t,x,m

s = u(s,Xt,x,m
s ,Mt,m

s ), s ∈ [t, T ]. Under
the assumption (MRP) we have that:

(i) x �→ u(t, x,m) ∈ C 1(Rn×1), (t,m) ∈ [0, T ] × Rd×1,
(ii) m �→ u(t, x,m) ∈ C 1(Rd×1), (t, x) ∈ [0, T ] × Rn×1,

(iii) there exist two constants ζ1, ζ2 depending only on ‖F‖∞, a and b of as-
sumption (H2) such that

ζ1 ≤ u(t, x,m) ≤ ζ2

for all (t, x,m) ∈ [0, T ] × Rn×1 × Rd×1,
(iv) the maps

(t, x,m) �→ ∂iu(t, x,m)

are continuous for i = 2,3.

PROOF. (i) Fix (t,m) in [0, T ] × Rd×1. As already mentioned, Y
t,x,m
t is de-

terministic and u(t, x,m) = Y
t,x,m
t . By differentiability of Y t,x,m with respect to x

(Theorem 4.6), we obtain that x �→ u(t, x,m) belongs to C 1(Rn×1).
(ii) The proof is similar to (i).

(iii) Let (t, x,m) ∈ [0, T ] × Rn×1 × Rd×1. By [18], Lemma 3.1(i), there exists
ζ1, ζ2 depending only on |F |∞, a and b such that ζ1 ≤ Y t,x,m

s ≤ ζ2 for all s in
[t, T ], P-a.s. Thus, ζ1 ≤ u(t, x,m) = Y

t,x,m
t ≤ ζ2. Since the constants ζ1 and ζ2 do

not depend on (t, x,m), the claim is proved.
(iv) For better readability we prove this claim for d = n = 1. The multidimen-

sional case is a straightforward extension of the following computations where we
adapt [16], Theorem 3.1. From (3.8) we know that Y t,x,m

s = u(s,Xt,x,m
s ,Mt,m

s )

and hence, Y
t,x,m
t = u(t, x,m). In the following we use the representation (4.13)

of the forward–backward system, that is, we use the transformed FBSDE. Then by
definition of the driver h (see Appendix A.1) the properties of f carry over to h.
Thus, by Proposition 4.5, the processes (∇xY

t,x,m,∇xZ̃
t,x,m) satisfy the following

BSDE:

∇xY
t,x,m
s = ∇xF (X

t,x,m
T ,M

t,m
T )∇xX

t,x,m
T −

∫ T

s
∇xZ̃

t,x,m
r dM̃r

+
∫ T

s

(
∂2h(r,�r(t, x,m))∇xX

t,x,m
r

+ ∂4h(r,�r(t, x,m))∇xY
t,x,m
r

+ ∂5h(s,�r(t, x,m))q̃r∇xZ̃
t,x,m
r

)
dC̃s.
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Thus, putting s = t in the above expression and taking the expectation we get

∂xu(t, x,m)

= E

[
∇xF (X

t,x,m
T ,M

t,m
T )∇xX

t,x,m
T

+
∫ T

t

(
∂2h(s,�u(t, x,m))∇xX

t,x,m
s

+ ∂4h(s,�s(t, x,m))∇xY
t,x,m
s

+ ∂5h(s,�s(t, x,m))q̃s∇xZ̃
t,x,m
s

)
dC̃s

]
.

Here we have used �s(t, x, m̃) := (Xt,x,m
s , M̃t,m

s , Y t,x,m
s , Z̃t,x,m

s q̃s). Let us fix
(t1, x1,m1) and (t2, x2,m2) with t1 < t2 and denote �1

s := �1
s (t1, x1,m1) and

�2
s := �2

s (t2, x2,m2). We write X1 := Xt1,x1,m1 and analogously X2, Y 1, Y 2, etc.
Furthermore, we define �1,2ϕ(s) := ϕ(s,�1

s ) − ϕ(s,�2
s ) for any function ϕ with

values in R. We have that

|∂xu(t1, x1,m1) − ∂xu(t2, x2,m2)|
≤ E[∇xF (X1

T ,M1
T )∇xX

1
T − ∇xF (X2

T ,M2
T )∇xX

2
T ]

+ E

[∫ t2

t1

|∂2h(s,�1
s )||∇xX

1
s |

+ |∂4h(s,�1
s )||∇xY

1
s | + |∂5h(s,�1

s )||q̃s∇xZ̃
1
s |dC̃s

]

+ E

[∫ T

t2

|�1,2∂2h(s)||∇xX
1
s |

+ |�1,2∂4h(s)||∇xY
1
s | + |�1,2∂5h(s)||q̃s∇xZ̃

1
s |dC̃s

]

+ E

[∫ T

t2

|∂2h(s,�2
s )||∇xX

1
s − ∇xX

2
s |

+ |∂4h(s,�2
s )||∇xY

1
s − ∇xY

2
s |dC̃s

]

+ E

[∫ T

t2

|∂5h(s,�2
s )||q̃s(∇xZ̃

1
s − ∇xZ̃

2
s )|dC̃s

]

≤ E[|∇xF (X1
T ,M1

T ) − ∇xF (X2
T ,M2

T )||∇xX
1
T |

+ |∇xF (X2
T ,M2

T )||∇xX
1
T − ∇xX

2
T |]

+ cE

[∫ t2

t1

(|q̃sθs | + |q̃sZ̃
1
s |)(|∇xX

1
s | + |∇xY

1
s | + |q̃s∇xZ̃

1
s |) dC̃s

]
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+ cE

[∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)

× (|X1
s − X2

s | + |M1
s − M2

s | + |Y 1
s − Y 2

s |)
× (|∇xX

1
s | + |∇xY

1
s |) dC̃s

]

+ cE

[∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)

× |q̃s(Z̃
1
s − Z̃2

s )|(|∇xX
1
s | + |∇xY

1
s |) dC̃s

]

+ cE

[∫ T

t2

|q̃s∇xZ̃
1
s |(|X1

s − X2
s | + |M1

s − M2
s | + |Y 1

s − Y 2
s |) dC̃s

]

+ cE

[∫ T

t2

|q̃s∇xZ̃
1
s ||q̃s(Z̃

1
s − Z̃2

s )|dC̃s

]

+ cE

[∫ T

t2

(|q̃sθs | + |q̃sZ̃
2
s |)

× (|∇xX
1
s − ∇xX

2
s | + |∇xY

1
s − ∇xY

2
s |

+ |q̃s(∇xZ̃
1
s − ∇xZ̃

2
s )|

)
dC̃s

]

=:
7∑

i=1

Ti,

where we have used the assumptions (D3) and (D4) in the last inequality. Recall
that (t1, x1,m1) is fixed and t2 > t1. With (4.4) and (4.5) we see

lim
t2→t1;x2→x1;m2→m1

T1 = lim
x2→x1

T1 = 0.

By the monotone convergence theorem we deduce for the second term

lim
t2→t1;x2→x1;m2→m1

T2 = lim
t2→t1

T2 = 0.

We now deal with T3,

T3 ≤ cE

[
sup

s∈[0,T ]
(|∇xX

1
s | + |∇xY

1
s |)

×
∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)

× (|X1
s − X2

s | + |M1
s − M2

s | + |Y 1
s − Y 2

s |) dC̃s

]
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≤ cE
[

sup
s∈[0,T ]

(|∇xX
1
s | + |∇xY

1
s |)2

]1/2

× E

[(∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)

× (|X1
s − X2

s | + |M1
s − M2

s | + |Y 1
s − Y 2

s |) dC̃s

)2]1/2

≤ cE

[∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)2 dC̃s

×
∫ T

t2

(|X1
s − X2

s | + |M1
s − M2

s | + |Y 1
s − Y 2

s |)2 dC̃s

]1/2

≤ cE

[(∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)2 dC̃s

)2]1/4

× E

[(∫ T

t2

(|X1
s − X2

s | + |M1
s − M2

s | + |Y 1
s − Y 2

s |)2 dC̃s

)2]1/4

≤ c
(
c̃ + (|x2|2 + |m2|2)p1(|x2 − x1|2 + |m2 − m1|2)p2

)
,

where we have used the Cauchy–Schwarz inequality. Here p1,p2 are two positive
numbers given by the a priori estimates Lemma A.1 and c̃ is a positive constant.
Thus, we conclude

lim
t2→t1;x2→x1;m2→m1

T3 = lim
x2→x1;m2→m1

T3 = 0.

Similarly, one shows

lim
t2→t1;x2→x1;m2→m1

T5 = 0.

We now estimate T4 and T7 but we give the details only for T4, since those for T7
follow the same lines. Applying the Cauchy–Schwarz inequality again we get

E

[∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)|q̃s(Z̃

1
s − Z̃2

s )|(|∇xX
1
s | + |∇xY

1
s |) dC̃s

]

≤ E

[
sup

s∈[0,T ]
(|∇xX

1
s | + |∇xY

1
s |)

×
∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)|q̃s(Z̃

1
s − Z̃2

s )|dC̃s

]

≤ E
[

sup
s∈[0,T ]

(|∇xX
1
s | + |∇xY

1
s |)2

]1/2

× E

[(∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)|q̃s(Z̃

1
s − Z̃2

s )|dC̃s

)2]1/2
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≤ cE

[∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)2 dC̃s

∫ T

t2

|q̃s(Z̃
1
s − Z̃2

s )|2 dC̃s

]1/2

≤ cE

[(∫ T

t2

(|q̃sθs | + |q̃sZ̃
1
s | + |q̃sZ̃

2
s |)2 dCs

)2]1/4

× E

[(∫ T

t2

|q̃s(Z̃
1
s − Z̃2

s )|2 dC̃s

)2]1/4

≤ c
(
c̃ + (|x2|2 + |m2|2)p1(|x2 − x1|2 + |m2 − m1|2)p2

)
.

Here, as before, p1,p2 are two positive numbers given by the a priori estimates
Lemma A.1 and c̃ is a positive constant. This leads to

lim
t2→t1;x2→x1;m2→m1

T4 = lim
x2→x1;m2→m1

T4 = 0.

Finally, we consider the term T6

E

[∫ T

t2

|q̃s∇xZ̃
1
s ||q̃s(Z̃

1
s − Z̃2

s )|dC̃s

]

≤ E

[(∫ T

t2

|q̃s∇xZ̃
1
s |2 dC̃s

)1/2(∫ T

t2

|q̃s(Z̃
1
s − Z̃2

s )|2 dC̃s

)1/2]

≤ cE

[∫ T

t2

|q̃s(Z̃
1
s − Z̃2

s )|2 dC̃s

]1/2

≤ c(|x2 − x1|2 + |m2 − m1|2)p,

where the positive constant p is given by the a priori estimates Lemma A.1. Thus,
we have

lim
t2→t1;x2→x1;m2→m1

T6 = 0.

The same methodology shows that for fixed (t2, x2,m2)

lim
t1→t2;x1→x2;m1→m2

|∂xu(t1, x1,m1) − ∂xu(t2, x2,m2)| = 0.

Similarly, we can show that ∂mu is continuous in (t, x,m). �

Example of stochastic basis where the condition (MRP) is satisfied. Let
(B1,B2) := (B1

s ,B2
s )s∈[0,T ] be a two-dimensional Brownian motion defined on a

probability space (�, F ,P) with a terminal time 0 < T < ∞ and with B1 and B2

being independent. We denote by (Ft )t∈[0,T ] the filtration generated by (B1,B2).
Then the process M := (B1

t )t∈[0,T ] is a continuous martingale with respect to
(Ft )t∈[0,T ] and it is a (Ft )t∈[0,T ]-strong Markov process. Let N = (B2

t )t∈[0,T ].
The martingale representation property for (B1,B2) and the strong orthogonal-
ity between B1 and B2 entail that the pair (M,N) satisfies the property (MRP)
introduced in Section 4.2.
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5. Representation formula. In this section we provide the representation for-
mula (1.3) which generalizes the one obtained in [2, 3], where M is a Brownian
motion. We recall that in the Gaussian setting the proof of this formula is based on
the representation of the stochastic process Z as the trace of the Malliavin deriva-
tive of Y . In the general martingale setting of this paper, Malliavin’s calculus is
not available, therefore, we propose a new proof based on stochastic calculus tech-
niques. We also stress that the last term in formula (1.3) vanishes if we assume that
M has independent increments, σ and b do not depend on M in (2.2) and that the
driver f in (2.3) is independent of M .

We present the main result of this paper. We stress that this result does not rely
on the assumption (MRP) made in Section 4.2 since only the regularity of the
deterministic function u where Y = u(·,X,M) is needed.

THEOREM 5.1. Assume that M is a Markov process. Assume that (H0), (H1)–
(H3) are in force for the FBSDE (2.2) and (2.3). Then by Theorem 3.4, there exists
a deterministic function u such that Y t,x,m

s = u(s,Xt,x,m
s ,Mt,m

s ), s ∈ [t, T ]. As-
sume, in addition, that u satisfies:

(i) x �→ u(t, x,m), (t,m) ∈ [0, T ] × Rd×1, is continuously differentiable,
(ii) m �→ u(t, x,m), (t, x) ∈ [0, T ] × Rn×1, is continuously differentiable,

(iii) there exist two constants ζ1, ζ2 depending only on ‖F‖∞, a and b of as-
sumption (H2) such that

ζ1 ≤ u(t, x,m) ≤ ζ2 ∀(t, x,m) ∈ [0, T ] × Rn×1 × Rd×1,

(iv) the maps

(t, x,m) �→ ∂iu(t, x,m) are continuous for i = 2,3.

Then for all s ∈ [t, T ] we have ν-a.e.

Zt,x,m
s = ∂2u(s,Xt,x,m

s ,Mt,m
s )σ (s,Xt,x,m

s ,Mt,m
s )

(5.1)
+ ∂3u(s,Xt,x,m

s ,Mt,m
s ).

REMARK 5.2. (i) An interesting particular case of Theorem 5.1 is given when
X and M are as in Proposition 3.1(ii) and when f in (3.7) does not depend on M .
In this situation, equation (5.1) becomes

Zt,x
s = ∂2u(s,Xt,x

s )σ (s,Xt,x
s ), ν-a.e.,

which coincides with the representation formula derived in [2, 3] when M is a
standard Brownian motion.

(ii) One may be interested in knowing when u in Theorem 5.1 does not depend
trivially on M , that is, when the third term in (5.1) does not vanish. This is related



318 P. IMKELLER, A. RÉVEILLAC AND A. RICHTER

to the Markov property given for Y and we provide in Appendix A.3 an explicit
example where u depends nontrivially on M .

PROOF OF THEOREM 5.1. Fix s in [t, T ]. For simplicity of notation we drop
the superscript (t, x,m). We briefly explain the idea of the proof. Assume that
the function u introduced above is in C 1,2,2 that is continuously differentiable in
time and twice continuously differentiable in (x,m). Then an application of Itô’s
formula gives that

〈Y,M·〉s = 〈u(·,X·,M·),M·〉s
(5.2)

=
∫ s

t
[∂2u(r,Xr,Mr)σ (r,Xr,Mr) + ∂3u(r,Xr,Mr)]d〈M,M〉r ,

where we denote by 〈u(·,Xs,Ms),M·〉s the covariation vector(〈
u(·,X·,M·),M(1)·

〉
s, . . . ,

〈
u(·,X·,M·),M(d)·

〉
s

)
.

Then, since (Y,Z) is solution of (2.3), we have that

〈Y,M〉s =
∫ s

t
Zr d〈M,M〉r , s ∈ [t, T ].(5.3)

The conclusion of the theorem then follows from the fact that Ys = u(s,Xs,Ms),
s ∈ [t, T ] and from relations (5.2) and (5.3). However, we have assumed the func-
tion u to be much more regular than what it is and so we have to prove the relation
(5.2) for u being only one time differentiable in (x,m). The rest of the proof is de-
voted to this fact. For this we compute “directly” the quadratic variation between
u(·,X·,M·) and M .

Fix i ∈ {1, . . . , d}. Let r ≥ 1 and π(r) := {t (r)j , j = 1, . . . , r} be a partition of

[t, T ] whose mesh size |π(r)| tends to zero as r goes to infinity with t
(r)
0 = t and

t
(r)
r = T such that

lim
r→∞ sup

t≤s≤T

∣∣∣∣∣〈u(·,X·,M·),M(i)·
〉
s

−
ϕs−1∑
j=0

(
u
(
t
(r)
j+1,Xt

(r)
j+1

,M
t
(r)
j+1

)− u
(
t
(r)
j ,X

t
(r)
j

,M
t
(r)
j

))
�jM

(i)

∣∣∣∣∣
= 0,

where the limit is understood in probability with respect to P, �jM denotes the

increments of the stochastic process M on [t (r)j , t
(r)
j+1] and ϕ

(r)
s is such that ϕ

(r)
s = j

with t
(r)
j ≤ s < t

(r)
j+1. For simplicity of notation, the superscript (r) will be omitted.

In addition, up to a subsequence we can assume that convergence above is almost
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sure with respect to P. We have that〈
u(·,X·,M·),M(i)·

〉
s

= lim
r→∞

ϕs−1∑
j=0

(
u(tj+1,Xtj+1,Mtj+1) − u(tj ,Xtj ,Mtj )

)
�jM

(i)

= lim
r→∞

[
ϕs−1∑
j=0

(
u(tj+1,Xtj ,Mtj ) − u(tj ,Xtj ,Mtj )

)
�jM

(i)(5.4)

+
ϕs−1∑
j=0

(
u(tj+1,Xtj+1,Mtj+1) − u(tj+1,Xtj ,Mtj )

)
�jM

(i)

]

=: lim
r→∞

[
S

(i)
s,r,1 + S

(i)
s,r,2

]
.

We treat the two parts separately. First, assume that the second term converges,
more precisely, that relation (5.5) below holds:

lim
r→∞ sup

t≤s≤T

∣∣∣∣S(i)
s,r,2 −

(∫ s

t
[∂2u(r,Xr,Mr)σ (r,Xr,Mr)

+ ∂3u(r,Xr,Mr)]d〈M,M〉r
)(i)∣∣∣∣(5.5)

= 0, P-a.s.

It then follows by relations (5.3) and (5.4) that

lim
r→∞ sup

t≤s≤T

∣∣S(i)
s,r,1 − Ps

∣∣= 0, P-a.s.

with

Ps :=
(∫ s

t
Za − ∂2u(a,Xa,Ma)σ (a,Xa,Ma) − ∂3u(a,Xa,Ma)d〈M,M〉a

)(i)

,

s ∈ [t, T ].
We will show that P is P-a.s. identically equal to zero. Since u is not differen-
tiable in time, one can a priori not say how the sum S

(i)
s,r,1 behaves asymptotically.

However, we know that it converges and that its limit is absolutely continuous
with respect to d〈M,M〉. Heuristically, this means that each term of the form
u(tj+1,Xtj ,Mtj ) − u(tj ,Xtj ,Mtj ) behaves like a process times an increment of
�jM

(i) which is not possible since u is a deterministic function. We will show
that P is a local martingale. Since by definition it is a finite variation process, we
will have P = 0. We first make the following assumption that we will relax later.
Assume that

E[|Ps |] < ∞ ∀s ∈ [t, T ].(5.6)
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Now fix t ≤ s1 ≤ s2 ≤ T . For a point tj in the subdivision considered above we
define δju := u(tj+1,Xtj ,Mtj ) − u(tj ,Xtj ,Mtj ). We have that

E[Ps2 |Fs1] = E

[
lim

r→∞

ϕs2−1∑
j=0

δju�jM
(i)
∣∣∣Fs1

]
(5.7)

= E

[
lim

r→∞

ϕs2−1∑
j=0

δju�jM
(i) + (Ms2 − Mϕs2

)
∣∣∣Fs1

]

since by continuity of the martingale M , limr→∞ Ms2 − Mϕs2
= 0, P-a.s. (recall

that ϕs2 tends to s2 when r goes to infinity). In addition, since the function u

is bounded [by Proposition 4.7(iii)], the sequence (
∑ϕs2−1

j=0 δju�jM
(i) + (Ms2 −

Mϕs2
))r is uniformly bounded. Indeed, we have that

E

[∣∣∣∣∣
ϕs2−1∑
j=0

δju�jM
(i) + (Ms2 − Mtϕs2

)

∣∣∣∣∣
2]

=
ϕs2−1∑
j=0

E
[|δju|2∣∣�jM

(i)
∣∣2]+ E[|Ms2 − Mtϕs2

|2]

≤ c

(ϕs2−1∑
j=0

E
[∣∣M(i)

tj+1

∣∣2]− E
[∣∣M(i)

tj

∣∣2]+ E[|Ms2 |2] − E[|Mtϕs2
|2]
)

= c(E[|Ms2 |2] − m),

thus, supr E[|∑ϕs2−1
j=0 δju�jM

(i) + (Ms2 − Mtϕs2
)|2] ≤ c(E[|Ms2 |2] − m) < ∞.

Using the Lebesgue dominated convergence theorem in (5.7) we get

E[Ps2 |Fs1] = lim
r→∞E

[ϕs2−1∑
j=0

δju�jM
(i) + (

M(i)
s2

− M
(i)
tϕs2

)∣∣∣Fs1

]

= lim
r→∞

(ϕs1−1∑
j=0

δju�jM
(i) + E

[
(δϕs1

u)�ϕs1
M(i)|Fs1

]

+ E

[ ϕs2−1∑
j=ϕs1+1

δju�jM
(i) + (

M(i)
s2

− M
(i)
tϕs2

)∣∣∣Fs1

])

= lim
r→∞

(ϕs1−1∑
j=0

δju�jM
(i) + (δϕs1

u)
(
M(i)

s1
− M

(i)
tϕs1

))

= Ps1 .
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Thus, P is a martingale which has (by definition) finite variation, so it has zero
quadratic variation and hence,

Ps = 0 ∀s ∈ [t, T ],
which proves

lim
r→∞ sup

t≤s≤T

∣∣S(i)
s,r,1

∣∣= 0, P-a.s.

Now we have to relax the assumption (5.6). Since P is a continuous semi-
martingale by definition there exists a sequence of stopping times (Tm)m with
limm→∞ Tm = T , P-a.s. such that (Ps∧Tm)s∈[t,T ] is integrable for all m ≥ 1. Using
this localization, the previous argument leads to Ps∧Tm = 0 for all s ∈ [t, T ], P-a.s.
By letting m go to infinity we get

lim
r→∞ sup

t≤s≤T

∣∣S(i)
s,r,1

∣∣= 0, P-a.s.

It remains to show that relation (5.5) holds. Let s ∈ [t, T ]. We have that

lim
r→∞S

(i)
s,r,2 = lim

r→∞
ϕs−1∑
j=0

(
u(tj+1,Xtj+1,Mtj+1) − u(tj+1,Xtj ,Mtj )

)
�jM

(i)

= lim
r→∞

[
ϕs−1∑
j=0

(
u(tj+1,Xtj+1,Mtj ) − u(tj+1,Xtj ,Mtj )

)
�jM

(i)(5.8)

+
ϕs−1∑
j=0

(
u(tj+1,Xtj+1,Mtj+1) − u(tj+1,Xtj+1,Mtj )

)
�jM

(i)

]
.

In addition, we can write

u(tj+1,Xtj+1,Mtj ) − u(tj+1,Xtj ,Mtj )

=
n∑

k=1

(
u
(
tj+1,X

(1)
tj

, . . . ,X
(k−1)
tj

,X
(k)
tj+1

, . . . ,X
(n)
tj+1

,Mtj

)

− u
(
tj+1,X

(1)
tj

, . . . ,X
(k−1)
tj

,X
(k)
tj

, . . . ,X
(n)
tj+1

,Mtj

))
.

Each term of this sum can be written as

u
(
tj+1,X

(1)
tj

, . . . ,X
(k−1)
tj

,X
(k)
tj+1

, . . . ,X
(n)
tj+1

,Mtj

)
− u

(
tj+1,X

(1)
tj

, . . . ,X
(k−1)
tj

,X
(k)
tj

, . . . ,X
(n)
tj+1

,Mtj

)
(5.9)

= (∂2u)
(
�jX

(1), . . . ,�jX
(n))∗,
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where ∂2u := (∂1+ku(tj+1,X
(1)
tj

, . . . ,X
(k−1)
tj

, X̄
(k)
tj

,X
(k+1)
tj+1

, . . . ,X
(n)
tj+1

,Mtj ))1≤k≤n

and X̄
(k)
tj

is a suitable random point in the interval [X(k)
tj

∧ X
(k)
tj+1

,X
(k)
tj

∨ X
(k)
tj+1

].
Similarly, we obtain

u(tj+1,Xtj+1,Mtj+1) − u(tj+1,Xtj+1,Mtj )
(5.10)

= (∂3u)
(
�jM

(1), . . . ,�jM
(d))∗

with

∂3u := (
∂1+n+ku(tj+1,Xtj+1,M

(1)
tj

, . . . ,M
(k−1)
tj

, M̄
(k)
tj

,M
(k+1)
tj+1

, . . . ,M
(d)
tj+1

)
)
1≤k≤d .

Combining relations (5.8), (5.9) and (5.10) we deduce that

lim
r→∞S

(i)
r,2 = lim

r→∞
ϕs−1∑
j=0

[(
∂2u

)(
�jX

(1), . . . ,�jX
(n))∗�jM

(i)(5.11)

+ (∂3u)
(
�jM

(1), . . . ,�jM
(d))∗�jM

(i)]
= lim

r→∞
ϕs−1∑
j=0

[
∂2u(tj ,Xtj ,Mtj )

(
�jX

(1), . . . ,�jX
(n))∗�jM

(i)

+ ∂3u(tj ,Xtj ,Mtj )
(
�jM

(1), . . . ,�jM
(d))∗

(5.12)
× �jM

(i) + R(i, j, r)
]
,

where R(i, j, r) is defined as

R(i, j, r) = (
(∂2u) − ∂2u(tj ,Xtj ,Mtj )

)(
�jX

(1), . . . ,�jX
(n))∗�jM

(i)

+ (
(∂3u) − ∂3u(tj ,Xtj ,Mtj )

)(
�jM

(1), . . . ,�jM
(d))∗�jM

(i).

Since

lim
r→∞

ϕs−1∑
j=0

[
∂2u(tj ,Xtj ,Mtj )

(
�jX

(1), . . . ,�jX
(n))∗�jM

(i)(5.13)

+ (∂3u)
(
�jM

(1), . . . ,�jM
(d))∗�jM

(i)]
=
(∫ s

t
[∂2u(r,Xr,Mr)σ (r,Xr,Mr)

(5.14)

+ ∂3u(r,Xr,Mr)]d〈M,M〉r
)(i)

,

relation (5.2) follows from equations (5.11) and (5.13) provided the following
equation holds:

lim
r→∞

∣∣∣∣∣ sup
t≤s≤T

ϕs−1∑
j=0

R(i, j, r)

∣∣∣∣∣= 0.(5.15)
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We conclude the proof by showing relation (5.15). Let

A(r) := sup
|s1−s2|≤|π(r)|,a,b∈[s1,s2],k=1,...,n

{|∂1+ku(s2,Xa,Ms1) − ∂1+ku(s1,Xb,Ms1)|}

and

B(r) := sup
|s1−s2|≤|π(r)|,a,b∈[s1,s2],k=1,...,d

{|∂1+n+ku(s2,Xs2,Ma)

− ∂1+n+ku(s1,Xs2,Mb)|}.
For 1 ≤ i ≤ d , r ∈ N we have for any s in [t, T ] that

ϕs−1∑
j=0

|R(i, j, r)| ≤ cA(r)
ϕs−1∑
j=0

n∑
k=1

∣∣�jX
(k)�jM

(i)
∣∣

+ cB(r)
ϕs−1∑
j=0

d∑
k=1

∣∣�jM
(k)�jM

(i)
∣∣

≤ c

2
A(r)

ϕs−1∑
j=0

n∑
k=1

[∣∣�jX
(k)
∣∣2 + ∣∣�jM

(i)
∣∣2]

+ c

2
B(r)

ϕs−1∑
j=0

d∑
k=1

[∣∣�jM
(k)
∣∣2 + ∣∣�jM

(i)
∣∣2]

≤ c

2
A(r)

n∑
k=1

[
r−1∑
j1=1

∣∣�j1X
(k)
∣∣2 +

r−1∑
j2=1

∣∣�j2M
(i)
∣∣2]

+ c

2
B(r)

d∑
k=1

[
r−1∑
j1=1

∣∣�j1M
(k)
∣∣2 +

r−1∑
j2=1

∣∣�j2M
(i)
∣∣2].

Thus,

sup
t≤s≤T

ϕs−1∑
j=0

|R(i, j, r)|

≤ c

2
A(r)

n∑
k=1

[
r−1∑
j1=1

∣∣�j1X
(k)
∣∣2 +

r−1∑
j2=1

∣∣�j2M
(i)
∣∣2]

+ c

2
B(r)

d∑
k=1

[
r−1∑
j1=1

∣∣�j1M
(k)
∣∣2 +

r−1∑
j2=1

∣∣�j2M
(i)
∣∣2].

According to Proposition 4.7(iv), we have that

lim
r→∞A(r) = lim

r→∞B(r) = 0, P-a.s.
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On the other hand, ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lim
r→∞

r−1∑
j=1

∣∣�jX
(k)
∣∣2 = 〈

X(k),X(k)〉
z,

lim
r→∞

r−1∑
j=1

∣∣�jM
(k)
∣∣2 = 〈

M(k),X(k)〉
z,

which concludes the proof. �

As an immediate consequence of Proposition 4.7 and of Theorem 5.1, we get
the following corollary.

COROLLARY 5.3. Assume that M is a Markov process. Assume that (H0),
(H1)–(H3) are in force for the FBSDE (2.2) and (2.3). Then by Theorem 3.4, there
exists a deterministic function u such that Y t,x,m

s = u(s,Xt,x,m
s ,Mt,m

s ), s ∈ [t, T ].
Assume in addition that the assumption (MRP) (see Section 4.2) is in force, then
for all s ∈ [t, T ] we have ν-a.e.

Zt,x,m
s = ∂2u(s,Xt,x,m

s ,Mt,m
s )σ (s,Xt,x,m

s ,Mt,m
s ) + ∂3u(s,Xt,x,m

s ,Mt,m
s ).

6. Application to utility based pricing and hedging in incomplete mar-
kets. In this section we study the exponential utility based indifference price
approach for pricing and hedging insurance related derivatives in incomplete mar-
kets. Thereby we will interpret relation (5.1) as a delta hedging formula. Since in
the Brownian setting it is shown in [3] that this relation can be expressed as a func-
tion of the gradient of the indifference price and correlation coefficients, we only
sketch the arguments here. Let us explain how these quantities translate into our
local martingale framework with the more complex Markovian structure. Consider
an n-dimensional process describing nontradable risk

Rt,r,m
s = r +

∫ s

t
σ (u,Rt,r,m

u ,Mt,m
u ) dMu

+
∫ s

t
b(u,Rt,r,m

u ,Mt,m
u ) dCu, s ∈ [t, T ],

where σ ∈ Rn×d and b ∈ Rn×1 are measurable functions. An agent aims to price
and hedge a derivative of the form F(R

t,r,m
T ), with F being a bounded measurable

function. The hedging instrument is a financial market consisting of k risky assets
in units of the numeraire that evolve according to the following SDE:

dSs = Ss

(
β(s,Rt,r,m

s ,Mt,m
s ) dMs + α(s,Rt,r,m

s ,Mt,m
s ) dCs

)
, s ∈ [t, T ],

where the measurable processes α and β take their values in Rk×1, respectively, in
Rk×d . Observe that the price processes of tradable assets S are linked to the risk
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process via the martingale M , its quadratic variation and the functions β and σ . In
addition, we assume k ≤ d in order to exclude arbitrage opportunities. The small
agent’s preferences are represented through the exponential utility function with
risk aversion coefficient κ > 0, that is,

U(x) = −e−κx, x ∈ R.

The agent wants to maximize his expected utility by trading in the market. His
value function is given by

V F (x, t, r,m) = sup
λ

E

[
U

(
x +

k∑
i=1

∫ T

t
λ(i)

s

dS
(i)
s

S
(i)
s

+ F(R
t,r,m
T )

)]
,

where x is his initial capital and λ(i) denotes the momentary value of his port-
folio fraction invested in the ith asset. This optimization problem can be re-
duced to solving a quadratic BSDE whose generator has been given in [14] for
the Brownian case and then extended to our setting in [18]. A way to price and
hedge the derivative F(R

r,t,m
T ) is to consider the indifference price p(t, r,m)

defined via V F (x − p(t, r,m), t, r,m) = V 0(x, t, r,m). According to [3], the
indifference price can be expressed as p(t, r,m) = YF,t,r,m − Y 0,t,r,m, where
(YF,t,r,m,ZF,t,r,m,LF,t,r,m) is the solution of the BSDE

YF,t,r,m
s = F(Rt,r,m) −

∫ T

s
ZF,t,r,m

u dMu

+
∫ T

s
f (u,Rt,r,m

u ,Mt,m
u ,ZF,t,r,m

u q∗
u) dCu(6.1)

−
∫ T

s
dLF,t,r,m

u + κ

2

∫ T

s
d〈LF,t,r,m,LF,t,r,m〉u, t ∈ [0, T ].

Here the generator f is obtained explicitly through the martingale optimality
principle; cf. [14, 18] and possesses properties covered by the hypotheses of
Theorem 5.1. To implement utility indifference, we have to describe the opti-
mal strategies λ̂F and λ̂0. In [14] it is shown that λ̂F β(·,Rt,r,m,Mt,m) [and
λ̂0β(·,Rt,r,m,Mt,m)] are given by the projection of a linear function of ZF,t,rq∗
(resp., Z0,t,rq∗) on the constraint set. Since Rt,r,m is not tradable directly, β plays
the role of a filter for trading in the market. Due to [3], the optimal strategy to
hedge F(R

t,r,m
T ) can be decomposed into a pure trading part λ̂0 and the optimal

hedge �, which is the part of the strategy that replicates the derivative F(R
t,r,m
T ).

Using the Markov property given in Theorem 3.4, we see that there exists a de-
terministic function uF such that YF,t,r,m = uF (·,Rt,r,m,Mt,m). Moreover, the
projection mentioned above can be explicitly expressed. Indeed from [3], proof of
Theorems 4.2 and 4.4, we have

λ̂F
s − λ̂0

s = (ZF,t,r,m
s − Z0,t,r,m

s )q∗
s β∗(ββ∗)−1β(s,Rt,r,m

s ,Mt,m
s ), s ∈ [t, T ].
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This leads to

�(t, r,m) = (λ̂F − λ̂0)β∗(ββ∗)−1(t, r,m)

= (Z
F,t,r,m
t − Z

0,t,r,m
t )q∗

t β∗(ββ∗)−1(t, r,m).

Using formula (1.3), we derive

�(t, r,m) = [∂2p(t, r,m)σ(t, r,m) + ∂3p(t, r,m)]q∗
t β∗(ββ∗)−1(t, r,m).(6.2)

We emphasize that, as a consequence of the particular form of the driver f in (6.1),
if M has independent increments and the coefficients σ , b, β and α do not depend
on M [see Remarks 5.2(ii) and (iii)], then relation (6.2) is replaced by

�(t, r) = [∂2p(t, r)σ (t, r)]q∗
t β∗(ββ∗)−1(t, r).(6.3)

Finally, note that we obtain formulae (1.3) and (6.2) under condition (MRP) (see
Section 4.2). However, we believe that this condition is not necessary for deriv-
ing (6.2). Finally, we mention that in [12] the authors also represent the indif-
ference price as the difference of two Y processes solution to a BSDE when the
price process is generated by a general semimartingale. However, the authors do
not prove a representation formula for the Z process of their BSDE but rather ob-
tain some regularity property of (Z,L), that is, under some condition on the claim
F(R

t,x,m
T ) they prove that Z · d and L are BMO martingales for the minimal en-

tropy martingale measure. Thus, the authors do not obtain a representation of the
form (6.3) for the delta hedge.

Concluding remarks. In this paper we prove the representation formula (1.3)
for the control process of a quadratic growth BSDE driven by a continuous lo-
cal martingale. This can be used for giving an explicit representation of the delta
hedge in utility indifference based hedging of insurance derivatives with exponen-
tial preferences. We also provide the Markov property and differentiability of the
FBSDE (2.2) and (2.3) in the initial state parameter of its forward part. This last
property is obtained under an additional assumption (MRP). However, we think
that differentiability should hold without this assumption and that different tech-
niques have to be developed for achieving this goal.

Additionally, as already mentioned in this paper, Malliavin’s calculus has been
used by several authors to recover formula (5.1) in the Brownian framework. Our
alternative method is valid in this setting and seems to present advantages in some
practical situations. Actually, Malliavin’s calculus is known for its efficiency in
several topics, however, it also usually requires more regularity than the problem
needs intrinsically. In [1], the authors study the quadratic hedging problem of con-
tingent claims with basis risk when the hedging instrument and the underlying of
the contingent are related via a random correlation process. As given in [1], the
hedging strategy is described via a representation formula of the form (5.1) for the
control process of the backward part of a FBSDE driven by a Brownian motion. In
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this case, the coefficient of the forward process depends on a correlation process
ρ which is itself solution of a Brownian SDE. As explained in [1], a Section 3.4
comment, the use of Malliavin’s calculus enforces that the derivatives of the coef-
ficients of the SDE defining ρ have bounded derivatives. This additional regularity
is not necessary in our approach and would allow one to consider more examples
of correlation processes with only locally Lipschitz bounded derivatives.

APPENDIX

In the first section of this Appendix we provide the transformation of a BSDE
of the form (2.3) which is needed in Section 4 and give a priori estimates on the
solution of the transformed BSDE with respect to its terminal condition and its
generator. Then in Appendix A.3, we present an explicit example of the situation
described in Proposition 3.1(ii).

A.1. Transformation of the BSDE (2.3) under (MRP). We start giving a
justification that under (MRP) the BSDE of the form

Yt = B −
∫ T

t
Zs dMs +

∫ T

t
f (s, Ys,Zsq

∗
s ) dCs

(A.1)

−
∫ T

t
dLs + κ

2

∫ T

t
d〈L,L〉s

can be transformed into a BSDE of the form

Yt = B −
∫ T

t
Z̃s dM̃s +

∫ T

t
h(s, Ys, Z̃s q̃

∗
s ) dC̃s,(A.2)

where for all s ∈ [0, T ]

M̃s :=
(

Ms

Ns

)
, q̃s :=

(
qs

√
ϕ1(s) 0
0

√
ϕ2(s)

)
,

C̃s := arctan

(
d∑

i=1

〈
M(i),M(i)〉

s + 〈N,N〉s
)
,

Z̃s := (Zs,Us), with ϕ1 and ϕ2 denoting two nonnegative positive predictable pro-
cesses defined below. Let

dμ1
s :=

∑d
i=1 d〈M(i),M(i)〉s

1 + (
∑d

i=1〈M(i),M(i)〉s + 〈N,N〉s)2

and

dμ2
s := d〈N,N〉s

1 + (
∑d

i=1〈M(i),M(i)〉s + 〈N,N〉s)2
.



328 P. IMKELLER, A. RÉVEILLAC AND A. RICHTER

For every ω in �, the measure dμ1
t (ω) [resp., dμ2

t (ω)] is absolutely continu-
ous with respect to d(μ1

t + μ2
t )(ω). Hence, since μ1 and μ2 are predictable pro-

cesses [8], Theorem VI.68 and its remark imply that there exist two predictable
processes ϕ1 and ϕ2 such that

μ1
t =

∫ t

0
ϕ1(s) d(μ1 + μ2)(s),

μ2
t =

∫ t

0
ϕ2(s) d(μ1 + μ2)(s) ∀t ∈ [0, T ].

In addition, we have that 0 ≤ ϕi(s) ≤ 1 for all s in [0, T ] P-a.s. for i = 1,2. Indeed,
because ϕi , i = 1,2 is a density, it is nonnegative and from d(μ1 +μ2)(s) = (ϕ1 +
ϕ2)(s)d(μ1 + μ2)(s) it follows (ϕ1 + ϕ2)(s) = 1, d(μ1 + μ2)(s)-a.e.

Recall that

dCs =
∑d

i=1 d〈M(i),M(i)〉s
1 + (

∑d
i=1〈M(i),M(i)〉s)2

.

We have for t ∈ [0, T ]∫ T

t
f (s, Ys,Zsq

∗
s ) dCs + κ

2

∫ T

t
d〈L,L〉s

=
∫ T

t
f (s, Ys,Zsq

∗
s ) dCs + κ

2

∫ T

t
U2

s d〈N,N〉s

=
∫ T

t
f̃ (s, Ys,Zs(q̃

∗
s )1,1)

∑d
i=1 d〈M(i),M(i)〉s

1 + (
∑d

i=1〈M(i),M(i)〉s + 〈N,N〉s)2

+
∫ T

t
g(s,Us)

d〈N,N〉s
1 + (

∑d
i=1〈M(i),M(i)〉s + 〈N,N〉s)2

,

where for s ∈ [t, T ]

f̃ (s, y, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (s, y, zϕ1(s)
−1/2) × 1 + (

∑d
i=1〈M(i),M(i)〉s + 〈N,N〉s)2

1 + (
∑d

i=1〈M(i),M(i)〉s)2
,

if ϕ1(s) �= 0,

f (s, y,0) × 1 + (
∑d

i=1〈M(i),M(i)〉s + 〈N,N〉s)2

1 + (
∑d

i=1〈M(i),M(i)〉s)2
,

if ϕ1(s) = 0,

and

g(s, u) := κ

2
u2

(
1 +

(
d∑

i=1

〈
M(i),M(i)〉

s + 〈N,N〉s
)2)

.
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With this definition we have that f (s, Ys,Zsq
∗
s ) = f̃ (s, Ys, (Z̃s q̃

∗
s )1). Hence,∫ T

t
f (s, Ys,Zsq

∗
s ) dCs + κ

2

∫ T

t
d〈L,L〉s

=
∫ T

t

(
f̃ (s, Ys,Zs(q̃

∗
s )1,1)ϕ1(s) + g(s,Us)ϕ2(s)

)

×
∑d

i=1 d〈M(i),M(i)〉s + d〈N,N〉s
1 + (

∑d
i=1〈M(i),M(i)〉s + 〈N,N〉s)2

=
∫ T

t

(
f̃ (s, Ys,Zs(q̃

∗
s )1,1)ϕ1(s) + g(s,Us)ϕ2(s)

)
dC̃s.

As a consequence, letting

h(s, Ys, Z̃s q̃
∗
s ) := f̃ (s, Ys, (Z̃s q̃

∗
s )1)ϕ1(s) + g(s, (Z̃s q̃

∗
s )2)

= f̃ (s, Ys, Z̃s(q̃
∗
s )1,1)ϕ1(s) + g(s, (Z̃s q̃

∗
s )2),

we obtain that (A.1) can be written as

Yt = B −
∫ T

t
Zs dMs −

∫ T

t
Us dNs +

∫ T

t
h(s, Ys, Z̃s q̃

∗
s ) dC̃s

and if the initial generator f satisfies the hypothesis (H3), so does the generator
h since ϕ1, ϕ2, 〈M(i),M(j)〉T and 〈N,N〉T are bounded processes for all i, j in
{1, . . . , d}. In particular, h preserves the growth in the variables y, z,u. Hence, we
derive at BSDE (A.2).

A.2. A priori estimates. Now we assume that M itself satisfies the martin-
gale representation theorem and we consider the following BSDE:

Yt = B −
∫ T

t
Zs dMs +

∫ T

t
f (s, Ys,Zsq

∗
s ) dCs,(A.3)

where M,q,C are defined as in Section 2. Suppose that the terminal condition B is
a bounded real-valued random variable, the generator f satisfies assumption (H4)
and that (Y,Z) is a solution to (A.3). The following a priori inequality is crucial
for our differentiability and representation results.

LEMMA A.1. We assume that for every β ≥ 1 we have
∫ T

0 |f (s,0,0)|dCs ∈
Lβ(P). Let p > 1, then there exist constants q ∈ (1,∞), c > 0 depending only on
T , p and on the BMO-norm of K · M such that

E
[

sup
t∈[0,T ]

|Yt |2p
]
+ E

[(∫ T

0
|qsZ

∗
s |2 dCs

)p]

≤ cE

[
|B|2pq +

(∫ T

0
|f (s,0,0)|dCs

)2pq]1/q

.
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PROOF. We follow [5], Lemmas 7, 8 and Corollary 9 (see also [3], Lem-
ma 6.1) which have been designed for the Brownian setting. However, as we will
show below, their arguments can be extended to the case of continuous local mar-
tingales. We proceed in several steps.

In a first step we exploit properties of BMO martingales. Let

Js =
⎧⎨
⎩

f (s, Ys,Zsq
∗
s ) − f (s,0,Zsq

∗
s )

Ys

, if Ys �= 0,

0, otherwise,

and

Hs =
⎧⎨
⎩

f (s,0,Zsq
∗
s ) − f (s,0,0)

|qsZ∗
s |2 Zs, if |qsZ

∗
s |2 �= 0,

0, otherwise.

Then BSDE (A.3) has the form

Yt = B −
∫ T

t
Zs dMs

(A.4)

+
∫ T

t

(
JsYs + (qsH

∗
s )(qsZ

∗
s )∗ + f (s,0,0)

)
dCs, t ∈ [0, T ].

Due to (H4) we have |qH ∗| ≤ |qK∗| and it follows that H · M is a BMO(P) mar-
tingale. Furthermore, we know from [15], Theorem 3.1, that there exists a q̂ > 1
such that the reverse Hölder inequality holds, that is, there exists a constant c > 0
such that

E (H · M)
−q̂
t E[E (H · M)

q̂
T |Ft ] ≤ c.(A.5)

By [15], Theorem 2.3, the measure Q defined by dQ = E (H · M)T dP is a proba-
bility measure. Girsanov’s theorem implies that

� = Z · M −
∫ ·

0
(qsH

∗
s )(qsZ

∗
s )∗ dCs

is a local Q-martingale. This means that there exists an increasing sequence of
stopping times (τn)n∈N converging to T such that �·∧τn is a Q-martingale for any
n ∈ N. Letting et = exp(2

∫ t
0 |qsK

∗
s |2α dCs), t ∈ [0, T ], with Itô’s formula applied

to etY
2
t we have

d(etY
2
t ) = 2|qtK

∗
t |2αetY

2
t dCt + 2etYt dYt + et |qtZ

∗
t |2 dCt

= 2|qtK
∗
t |2αetY

2
t dCt + 2etYt d�t − 2etY

2
t Jt dCt

− 2etYtf (t,0,0) dCt + et |qtZ
∗
t |2 dCt ,
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where we used (A.4). With the inequality Jt ≤ |qtK
∗
t |2α , t ∈ [0, T ], which follows

from assumption (H4), we know for t ∈ [0, τ n]
etY

2
t ≤ eτnY 2

τn −
∫ τn

t
2etYt d�t +

∫ τn

t
2etYtf (t,0,0) dCt

−
∫ τn

t
et |qtZ

∗
t |2 dCt .

Note that et ≥ 1 for all t ∈ [0, T ] and hence,

etY
2
t +

∫ τn

t
|qsZ

∗
s |2 dCs ≤ eτnY 2

τn −
∫ τn

t
2esYs d�s

(A.6)

+
∫ τn

t
2esYsf (s,0,0) dCs.

In a second step we provide an estimate for Y . We want to take the conditional
expectation under the new measure Q in the previous inequality. Therefore, we
need to check the integrability of the involved terms. Observe that

et ≤ exp
(

2
∫ T

0
|qsK

∗
s |2α dCs

)
, t ∈ [0, T ].(A.7)

Using successively the monotone convergence theorem and Jensen’s inequality,
we derive for p > 1

E

[
exp

(
p

∫ T

0
|qsK

∗
s |2α dCs

)]
≤ CT

∑
n≥0

pn

n! E

[(∫ T

0
|qsK

∗
s |2 dCs

)nα]
.

The Hölder inequality again along with inequality [15], page 26, gives

E

[
exp

(
p

∫ T

0
|qsK

∗
s |2α dCs

)]
≤ c

∑
n≥0

pn

n! E

[(∫ T

0
|qsK

∗
s |2 dCs

)n]α

(A.8)

≤ c
∑
n≥0

(p‖K · M‖2α
BMO2

)n

n!1−α
< ∞.

Thus, the process e belongs to S p(P) for all p ≥ 1 and using the Hölder inequality
and formula (A.5) we see that eτnY 2

τn , eT |B|2 and
∫ T

0 2et |Yt ||f (t,0,0)|dCt is in
Lp(Q) for all p ≥ 1. In the same way we get the integrability of

∫ τn

0 2es |Ys |d�s .
Hence, we are allowed to take the conditional expectation in (A.6) on both sides:

etY
2
t ≤ EQ

[
eτnY

2
τn

+
∫ T

0
2es |Ys ||f (s,0,0)|dCs

∣∣∣Ft

]
, t ≤ τn.

Now we let n tend to infinity

etY
2
t ≤ lim

n→∞EQ

[
eτnY

2
τn

+
∫ T

0
2es |Ys ||f (s,0,0)|dCs

∣∣∣Ft

]

≤ EQ

[
eT |B|2 +

∫ T

0
2es |Ys ||f (s,0,0)|dCs

∣∣∣Ft

]
,
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where we may apply the dominated convergence theorem because of (A.7). The
Young inequality with a constant c1 > 0 gives

Y 2
t ≤ EQ

[
eT

et

|B|2 + 2
∫ T

0

es

et

|Ys ||f (s,0,0)|dCs

∣∣∣Ft

]

≤ EQ

[
eT |B|2 + 1

c1
sup

t∈[0,T ]
|Yt |2 + c1e

2
T

(∫ T

0
|f (s,0,0)|dCs

)2∣∣∣Ft

]

≤ EQ

[
1

c1
sup

t∈[0,T ]
|Yt |2 + e2

T �T

∣∣∣Ft

]
,

where we set �T = |B|2 + 2c1(
∫ T

0 |f (s,0,0)|dCs)
2 and we take into account that

es/et ≤ eT for all s, t ∈ [0, T ] and eT ≤ e2
T . Let p > 1, then we have

sup
t∈[0,T ]

|Yt |2p ≤ sup
t∈[0,T ]

EQ

[
1

c1
sup

t∈[0,T ]
|Yt |2 + e2

T �T

∣∣∣Ft

]p

.

We apply Doob’s inequality to obtain

EQ
[

sup
t∈[0,T ]

|Yt |2p
]
≤ cEQ

[(
E

[
1

c1
sup

t∈[0,T ]
|Yt |2 + e2

T �T

∣∣∣FT

])p]

≤ cEQ

[
1

c
p
1

sup
t∈[0,T ]

|Yt |2p + e
2p
T �

p
T

]
,

and choosing c1 such that c/c
p
1 < 1, we have

EQ
[

sup
t∈[0,T ]

|Yt |2p
]
≤ cEQ[e2p

T �
p
T ].(A.9)

In Step 3 we give an estimate on Z under the measure Q. For p > 1 we deduce
from (A.6)(∫ τn

0
|qsZ

∗
s |2 dCs

)p

≤ c

(
|eτnY 2

τn |p +
∣∣∣∣
∫ τn

0
esYs d�s

∣∣∣∣p +
(∫ T

0
2es |Ys ||f (s,0,0)|dCs

)p)
.

Then the Burkholder–Davis–Gundy and two times Young inequality (with con-
stants c̃1, c̃2 > 0) imply

EQ

[(∫ τn

0
|qsZ

∗
s |2 dCs

)p]

≤ c

(
EQ

[
e
p
T sup

t∈[0,T ]
|Yt |2p

]
+ EQ

[(∫ τn

0
e2
s Y

2
s |qsZ

∗
s |2 dCs

)p/2]

+ EQ

[(∫ T

0
2es |Ys ||f (s,0,0)|dCs

)p])
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≤ c

(
EQ

[
e
p
T sup

t∈[0,T ]
|Yt |2p

]

+ EQ
[
(c̃1 + c̃2)e

2p
T sup

t∈[0,T ]
|Yt |2p

]
+ EQ

[
1

c̃1

(∫ τn

0
|qsZ

∗
s |2 dCs

)p]

+ EQ

[
1

c̃2

(∫ T

0
|f (s,0,0)|dCs

)2p])
,

and because e
p
T ≤ e

2p
T and Fatou’s lemma we have

EQ

[(∫ T

0
|qsZ

∗
s |2 dCs

)p]

≤ c

(
EQ

[
e

2p
T sup

t∈[0,T ]
|Yt |2p

]
+ EQ

[(∫ T

0
|f (s,0,0)|dCs

)2p])
.

We use the Hölder inequality with r ≥ 1, the estimate (A.9) and the Hölder in-
equality with k ≥ 1 again to deduce

EQ

[(∫ T

0
|qsZ

∗
s |2 dCs

)p]

≤ c

(
EQ[e2pr/(r−1)

T

](r−1)/r
EQ

[
sup

t∈[0,T ]
|Yt |2pr

]1/r

+ EQ

[(∫ T

0
|f (s,0,0)|dCs

)2p])
(A.10)

≤ c

(
EQ

[
e

2prk/(k−1)
T

](k−1)/(rk)
EQ[�prk]1/(rk)

+ EQ

[(∫ T

0
|f (s,0,0)|dCs

)2p])

≤ cEQ

[
|B|2prk +

(∫ T

0
|f (s,0,0)|dCs

)2prk]1/(rk)

.

Here we applied (A.8) and in the last inequality we employ the Hölder inequality
with exponent rk to the second summand in order to obtain the last estimate. We
utilize the Hölder inequality with rk to (A.9) and hence, have

EQ
[

sup
t∈[0,T ]

|Yt |2p
]
≤ cEQ

[
|B|2prk +

(∫ T

0
|f (s,0,0)|dCs

)2prk]1/(rk)

.(A.11)

In Step 4, we finally want to take the expectation under the measure P. Let us
define M̂t = Mt − ∫ t

0 Hs d〈M,M〉s and note that since H · M is a BMO(P) mar-
tingale, the process H · M̂ and hence, −H · M̂ are BMO(Q) martingales (see [15],
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Theorem 3.3). Furthermore, by [15], Theorem 3.1, there exists a w,w′ > 1 such
that E (H · M)T ∈ Lw(P) and E (−H · M̂)T ∈ Lw′

(Q). As E (H · M)−1 = E (−H ·
M̂) we have dP = E (−H · M̂)T dQ. Now, using the Hölder inequality with the
conjugate exponent v of w (and v′ of w′) and estimate (A.11), we deduce

E
[

sup
t∈[0,T ]

|Yt |2p
]

= EQ
[

E (−H · M̂)T sup
t∈[0,T ]

|Yt |2p
]

≤ EQ[E (−H · M̂)w
′

T ]1/w′
EQ

[
sup

t∈[0,T ]
|Yt |2pv′]1/v′

≤ c

(
EQ

[
|B|2pv′rk +

(∫ T

0
|f (s,0,0)|dCs

)2pv′rk]1/(rk))1/v′

≤ cE[E (H · M)w]1/w

× E

[
|B|2pvv′rk +

(∫ T

0
|f (s,0,0)|dCs

)2pvv′rk]1/(rkvv′)
.

Setting q = vv′rk and treating estimate (A.10) similarly gives the desired result.
�

A.3. Additional material on Markov processes. We now provide an exam-
ple where the function u in Theorem 3.4 does not depend trivially on M .

Let M := (Mt)t∈[0,T ] be a continuous martingale with nonindependent incre-
ments that is also a Markov process with respect to a filtration (Ft )t∈[0,T ]. Let
X := (Xt)t∈[0,T ] be the solution of the SDE

dXt =
∫ t

0
σ(a,Xa) dMa, t ∈ [0, T ] and X0 = 0,

with

σ(a, x) =

⎧⎪⎪⎨
⎪⎪⎩

1 + x, if a ≥ T

2
,

0, if a <
T

2
.

Note that the coefficient σ is Lipschitz in x for every a and that it is right continu-
ous with left limits in a for every x; as a consequence X admits an unique solution
by [22], Theorem V.35. Consider a simple BSDE of the form (3.7) with f ≡ 0,
κ = 0 and F(x) := log(1 + x). Note that F is not bounded but in this special case
the existence of a solution to the BSDE may be constructed directly. Our aim is
to show that E[F(XT )|Ft ] is not a trivial function of M for t ∈ [0, T ]. By Itô’s
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formula we have

F(XT ) = log(1 + Xt) +
∫ T

t
(1 + Xs)

−1 dXs − 1

2

(〈M,M〉T − 〈M,M〉t∨(T /2)

)
,

and hence,

E[F(XT )|Ft ] = log(1 + Xt) − 1

2
E
[〈M,M〉T − 〈M,M〉t∨(T /2)|Ft

]
= log(1 + Xt) − 1

2
E
[
M2

T − M2
t∨(T /2)|Ft

]
= log(1 + Xt) − 1

2
E
[
M2

T − M2
t∨(T /2)|Mt

]
since M is a Markov process. Choose 0 < t < T

2 and then by definition of X, the
last term on the right-hand side above cannot be expressed as a trivial deterministic
function of (t,Xt) since Ms cannot be deduced from Xs for s < T

2 . However, this
term is deterministic and only depends on t if M has independent increments. This
gives an example of a situation where the function u in Theorem 3.4 does not
depend trivially on M .
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