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LIMIT THEOREMS FOR BIFURCATING MARKOV CHAINS.
APPLICATION TO THE DETECTION

OF CELLULAR AGING

BY JULIEN GUYON

ENPC-CERMICS

We propose a general method to study dependent data in a binary tree,
where an individual in one generation gives rise to two different offspring,
one of type 0 and one of type 1, in the next generation. For any specific
characteristic of these individuals, we assume that the characteristic is sto-
chastic and depends on its ancestors’ only through the mother’s characteris-
tic. The dependency structure may be described by a transition probability
P(x, dy dz) which gives the probability that the pair of daughters’ character-
istics is around (y, z), given that the mother’s characteristic is x. Note that y,
the characteristic of the daughter of type 0, and z, that of the daughter of
type 1, may be conditionally dependent given x, and their respective condi-
tional distributions may differ. We then speak of bifurcating Markov chains.

We derive laws of large numbers and central limit theorems for such sto-
chastic processes. We then apply these results to detect cellular aging in Es-
cherichia Coli, using the data of Stewart et al. and a bifurcating autoregressive
model.

1. Introduction.

1.1. Motivation. This study has been motivated by a collaboration [13] with
biologists from the Laboratoire de Génétique Moléculaire, Évolutive et Médicale
(INSERM U571, Faculté de Médecine Necker, Paris). F. Taddéi, E. J. Stewart,
A. Lindner and G. Paul, together with R. Madden from the Institut des Hautes
Études Scientifiques, have been working on Escherichia Coli’s aging. E. Coli is a
single-celled, model organism. It has been widely studied by the biologists who
have gathered a large amount of information on its physiology. Whereas aging is
obvious in macroscopic organisms, it is not in single-celled ones, where, neverthe-
less, one has the best chances of describing and quantifying the molecular process
involved. It is especially hard to identify in E. Coli, which reproduces without a
juvenile phase and with an apparently symmetric division. Stewart et al. [22] have
designed an experimental protocol which brings evidence of aging in E. Coli and
we propose a statistical study of the data they collected.
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In this section we describe the biological experiment and present the data (Sec-
tion 1.2). Between-experiment averaging shows a clear segregation between the
new- and old-pole derived progeny (see Section 1.2.1), whereas single-experiment
data does not. In Section 1.3 we propose a linear Gaussian model that allows to
study the populations of old and new poles experiment-wise. The model consists of
a bifurcating Markovian dynamics. This motivates Section 2, where we give a de-
tailed study of such stochastic processes. We pay special attention to limit theorems
such as laws of large numbers (Theorems 8, 11 and 14) and central limit theorems
(Theorem 19 and its corollaries). Eventually, in Section 3, we apply these results to
the model, proving strong laws of large numbers and a central limit theorem (see
Propositions 27 and 28), and derive rigorous estimation and test procedures which
are performed on the data in order to detect cellular aging.

1.2. The biology. Here we briefly describe E. Coli’s life cycle, the experiment
designed by Stewart et al. and the data they get. Figure 1 is taken from [22] where
one can find further information.

1.2.1. The experiment. E. Coli is a rod-shaped bacterium. It reproduces by
dividing in the middle, producing a new end per progeny cell (see Figure 1). This
new end is called the new pole, whereas the other end is pre-existing and is called
the old pole.

This defines an age in divisions for each pole, and hence, for each cell. One
expects any cell component formed in the poles and with limited diffusion to ac-

FIG. 1. The life cycle of E. Coli, from [22].



1540 J. GUYON

FIG. 2. Two single-experiment data trees (two films).

cumulate at the old pole, so that there might be a physiological asymmetry between
the old and new poles. To determine if E. Coli experiences aging related to the in-
heritance of the old pole, Stewart et al. followed 95 individual exponentially grow-
ing cells through up to nine generations in an automated fluorescence microscopy
system which allowed them to determine the complete lineage, the identity of each
pole and, among other physical parameters, the growth rate of each cell. Let us now
present their results.

1.2.2. Original data. Each of the 95 films gives rise to a genealogical tree
such as the ones in Figure 2. The new poles are the solid lines and the old poles
the dashed lines. On the y-axis appears the growth rate, whereas the x-axis dis-
plays time in divisions. There is no striking evidence for reproductive asymmetry
between the progeny cells visible to the naked eye. Note that generally the data
is not regular: some generations are not completely observed, and in few cases a
cell’s growth rate might be measured whereas her sister’s is not.

1.2.3. Averaged data. In order to eliminate the random effects which appear in
Figure 2, Stewart et al. have averaged the 95 lineages by each unique cell position
within the lineage. Figure 3 is the average tree thus produced for generations 5, 6
and 7. It clearly shows a segregation between the new and old poles. The old poles
grow slower than the new poles, which is evidence for aging.

However, we would prefer to study each experiment separately, since we do not
know if the experiments are independent and/or identically distributed. Indeed,
two initial cells giving rise to two different films are actually taken from the same
macrocolony, so that there might be a correlation between the experiments. More-
over, as shown in Figure 2, the range of values of the growth rate changes from
film to film, probably due to a slight change in the experimental conditions. In the
next section we propose a statistical model that allows us to study the populations
of old and new poles experiment-wise. It also has the advantage of taking into ac-
count the structure of the dependencies within a lineage. To be precise, contrary to
Stewart et al., we take the effect of the mother into account, and we will prove that
this effect is important (see Remark 39).
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FIG. 3. The average data tree

1.3. The mathematical model. In order to describe the dynamics of the growth
rate, let Xi denote the growth rate of individual i and n denote the mother of 2n—
the new pole progeny cell—and 2n + 1—the old pole progeny cell; see Figure 4.
We propose the following Markovian model with memory one: X1, the ancestor’s
growth rate, has distribution ν and for all n ≥ 1,{

X2n = α0Xn + β0 + ε2n,

X2n+1 = α1Xn + β1 + ε2n+1,
(1)

where α0, α1 ∈ (−1,1), β0, β1 ∈ R and ((ε2n, ε2n+1), n ≥ 1) forms a sequence of
independent and identically distributed (i.i.d.) centered bivariate Gaussian random
variables (r.v.), say, (ε2n, ε2n+1) ∼ N2(0,�) with

� = σ 2
(

1 ρ

ρ 1

)
, σ 2 > 0, ρ ∈ (−1,1)(2)

(ε2n and ε2n+1 are thus supposed to have common variance σ 2). We speak of mem-
ory one because a cell’s growth rate is explained by its mother’s. For instance,
a Markovian model with memory two would also take into account the grand-
mother’s growth rate. Considering Markovian models with memory two would
allow us to test whether the grandmother effect is significant. In this article we con-
centrate on model (1) which we regard as “the simpler” reasonable model which
describes a dependency within the colony.

REMARK 1. Since a Gaussian r.v. may take arbitrarily big negative values,
here we allow the growth rate to take negative values. However, provided we cor-
rectly estimate the parameters, this should happen with extremely small probabil-
ity.

We aim at the following:
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FIG. 4. The binary tree T.

(1) estimating the 4-dimensional parameter θ = (α0, β0, α1, β1), ρ and σ 2,
(2) testing the null hypothesis H0 = {(α0, β0) = (α1, β1)} against its alternative

H1 = {(α0, β0) �= (α1, β1)}.
In view of the biological question addressed here, point (2) is crucial: rejecting
H0 comes down to accepting that the dynamics of the growth rate of the old pole
offspring is different from that of the new pole offspring. We shall actually see that
the old pole progeny cell experiences slowed growth rate and, hence, should be
considered an aging parent repeatedly producing rejuvenated offspring.

Bifurcating autoregressive (BAR) models, such as model (1), have already been
studied. Cowan and Staudte [9] were pioneers and studied model (1) in the special
case when (α0, β0) = (α1, β1), that is, under H0. Several extensions [2–4, 8, 14–
16, 21] followed, improving inference results or/and generalizing the model, but
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no distinction was ever made between new and old poles. In mathematical terms, in
all these articles, the distribution of X2n given Xn has always been assumed to be
the same as the distribution of X2n+1 given Xn. Now, detecting a discrepancy be-
tween these distributions is the central question addressed here. Hence, model (1)
generalizes existing BAR models and allows us to detect dissymetry between sis-
ters. Such a generalization is a source of mathematical difficulties. For instance,
there is no stationary distribution in the sense of [9], that is, to say a distribution
common to all cells in the clone. Besides, (Xn,n ≥ 1) does not converge in distri-
bution. For example, by computing characteristic functions, it is easy to see that
the sequence of always new poles’ growth rates (X2n, n ≥ 1) and that of always
old poles’ growth rates (X2n+1−1, n ≥ 1) both converge in distribution, but, unless
α2

0 = α2
1 and β0/(1 −α0) = β1/(1 −α1), the (Gaussian) limit distributions are dis-

tinct. This leads us to develop a new theory (see Section 2). Note that in a recent
work Evans and Steinsaltz [11] also address the question of dissymetry between
sisters’ growth rates, by proposing a superprocess model for damage segregation
and showing that optimal growth is achieved by unequal division of (deterministi-
cally accumulating) damage between the daughters.

We shall call X = (Xn,n ≥ 1) a bifurcating Markov chain. The next section
is devoted to the study of this family of stochastic processes. Establishing laws
of large numbers and central limit theorems will be crucial in achieving the two
above objectives. That is the reason why we will pay special attention to such limit
theorems.

2. Bifurcating Markov chains. Limit theorems.

2.1. Definitions. Markov chains (MCs) are usually indexed by the integers.
Here we give a definition of a MC when the index set is the (regular) binary tree T.
We then speak of a bifurcating Markov chain or a T-Markov chain, which we often
write T-MC. T-MCs are well adapted to modeling data on the descent of an initial
individual, where each individual in one generation gives rise to two offspring
in the next one. Cell lineage data, such as the one presented in Section 1.2, are
typically of this kind.

Let us introduce some notation about the binary tree T; see Figure 4. Each vertex
n ∈ T is seen as a positive integer n ∈ N

∗. It should be thought of as an individual
or a cell. It has exactly two daughters, 2n and 2n + 1, and we label the root 1.
We denote by Gq = {2q,2q + 1, . . . ,2q+1 − 1} the qth generation and by Tr =⋃r

q=0 Gq the subtree consisting of the first r + 1 generations. With this notation,

G0 = {1} and, | · | standing for the cardinality, |Gq | = 2q and |Tr | = 2r+1 − 1. We
also denote by rn = �log2 n� the generation of individual n, that is, n ∈ Grn . In
terms of labeling the vertices, T is assimilated to N

∗, but the topology is different:
within T, n and 2n (resp. n and 2n + 1) should be seen as neighbors.

Let (S,S) be a metric space endowed with its Borel σ -field, and think of it as
the state space. For instance, in the BAR model (1), S = R. For any integer p ≥ 2,
we equip Sp with the product σ -field, say, Sp .
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DEFINITION 2. We call T-transition probability any mapping P :S × S2 →
[0,1] such that:

• P(·,A) is measurable for all A ∈ S2,
• P(x, ·) is a probability measure on (S2,S2) for all x ∈ S.

We also define, for x ∈ S and B ∈ S, P0(x,B) = P(x,B × S) and P1(x,B) =
P(x,S × B). P0 and P1 are transition probabilities on (S,S). In the BAR model
(1), they respectively correspond to the transition probabilities of the new poles
and of the old poles.

For p ≥ 1, we denote by B(Sp) [resp. Bb(S
p), C(Sp), Cb(S

p)] the set of all
Sp-measurable (resp. Sp-measurable and bounded, continuous, continuous and
bounded) mappings f :Sp → R. If p ∈ {2,3} and f ∈ B(Sp), when it is defined,
we denote by Pf ∈ B(S) the function

x 	→ Pf (x) =


∫
S2

f (y, z)P (x, dy dz), if p = 2,∫
S2

f (x, y, z)P (x, dy dz), if p = 3.

Let (	,F , (Fr , r ∈ N),P) be a filtered probability space and, defined on it,
(Xn,n ∈ T) be a family of S-valued random variables. Let ν be a probability on
(S,S) and P be a T-transition probability.

DEFINITION 3. We say that (Xn,n ∈ T) is a (Fr )-bifurcating Markov chain,
or (Fr )-T-MC (with initial distribution ν and T-transition probability P ), if:

• Xn is Frn -measurable for all n ∈ T,
• X1 has distribution ν,
• for all q ∈ N and for all family (fn, n ∈ Gq) in Bb(S

2),

E

[ ∏
n∈Gq

fn(X2n,X2n+1)

∣∣∣∣Fq

]
= ∏

n∈Gq

Pfn(Xn).

This means that, given generations 0 to q , Tq , one builds generation Gq+1 by
drawing 2q independent couples (X2n,X2n+1) according to P(Xn, ·) (n ∈ Gq ).
A (Fr )-T-MC is also a (F X

r )-T-MC, where F X
r = σ(Xi, i ∈ Tr ). When un-

stated, the filtration implicitely used is the latter. Note that for f ∈ Bb(S
2),

E[f (X2n,X2n+1)|Frn] factorizes through the random variable Xn, so that
E[f (X2n,X2n+1)|Frn] = E[f (X2n,X2n+1)|Xn]. This means that any Xn depends
on past generations only through her mother. This explains why we speak of a
Markov chain (with memory one).

Last but not least, note that, contrary to much of the (still sparse) literature on
the subject, we allow conditional dependency between sisters. Conditional inde-
pendence corresponds to the case when P factorizes as a product P0 ⊗ P1 of two
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transition probabilities on (S,S), that is, P(x, dy dz) = P0(x, dy) ⊗ P1(x, dz) for
all x ∈ S. [1, 5, 17, 24, 18, 19, 23] deal with more general than binary—and pos-
sibly random—trees, but all assume that, conditionally on their mother’s type, the
daughters have independent and identically distributed types. In our case, this cor-
responds to conditional independency with P0 = P1. As said in Section 1.3, to our
best knowledge, BAR models, although they allow for conditional dependence,
have always been studied until now under the assumption that P0 = P1. Now, de-
tecting that P0 �= P1 will be the central question when we study cellular aging (see
Section 3). Moreover, like in [1], we consider general state spaces whereas [5] deal
only with countable ones and [17, 24, 18, 19, 23] only with finite ones. Note that
in the latter case, one may regard a T-MC X as a multitype branching process and
apply Maâouia and Touati’s identification techniques [19].

2.2. Weak law of large numbers.

2.2.1. Introduction. A first natural question is to know whether a T-Markov
chain (Xn) obeys laws of large numbers (LLN), that is, convergence of empirical
means.

Given f ∈ B(S) and a finite subset I ⊂ T, let us write MI(f ) =∑
i∈I f (Xi)

and MI(f ) = |I |−1MI(f ). Several empirical averages can be considered:

• One may average over the qth generation, that is, compute MGq
(f ).

• One may prefer to average over the first r + 1 generations, that is, compute
MTr

(f ). This is meaningful because Gq naturally precedes Gq+1, since one
cannot draw the whole (q + 1)th generation without having completely drawn
the qth one.

• One may also average over the “first” n individuals, that is, compute
n−1∑n

i=1 f (Xi). However, there is no natural order within a generation Gq : all
the individuals (Xn,n ∈ Gq) of the qth level can be generated simultaneously.
That is why we introduce the set S of all permutations of N

∗ that leave each Gq

invariant and, for f ∈ B(S) and π ∈ S, consider the sums

Mπ
n (f ) =

n∑
i=1

f
(
Xπ(i)

)
.

As far as the asymptotic behavior of M
π

n (f ) ≡ n−1Mπ
n (f ) is concerned, the

choice of π matters. This is because each new generation is essentially the same
size as the total of all previous ancestors. To illustrate this, consider the follow-
ing example.

EXAMPLE 4. Assume that S = {0,1}, f = idS and, whatever the mother’s
type, X2n = 1 and X2n+1 = 0—in other words, P(x, dy dz) = δ1(dy)δ0(dz) for all
x ∈ S, where δx stands for the Dirac mass at point x. If π ∈ S sends the “first half”
of each Gq , that is, {2q,2q +1, . . . ,3 ·2q−1 −1}, onto the even elements in Gq , that
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is, Gq ∩ (2N), then lim infn→∞ M
π

n (f ) = 1/2 and lim supn→∞ M
π

n (f ) = 2/3: the
empirical average M

π

n (f ) oscillates between 1/2 and 2/3. Conversely, if π sends
the “first half” of each Gq onto the odd elements in Gq , that is, Gq ∩ (2N + 1),
then lim infn→∞ M

π

n (f ) = 1/3 and lim supn→∞ M
π

n (f ) = 1/2. But for π = idN∗ ,
M

π

n (f ) converges to 1/2.

• A natural answer to this issue is to explore each new generation “by chance,”
that is, to draw a permutation � “uniformly” on S, independently on X = (Xn,

n ∈ T). Drawing � “uniformly” on S means drawing the restriction of � on Gq

uniformly among the (2q)! permutations of Gq , independently for each q . Then

we consider the empirical average M
�

n (f ) ≡ n−1M�
n (f ), where

M�
n (f ) =

n∑
i=1

f
(
X�(i)

)
.

Thus, we introduce extra randomness, but this will allow us to get through Lia-
punov’s condition when we try to derive a central limit theorem for X.

REMARK 5. Note that for all π ∈ S and r ≥ 0, Mπ|Tr |(f ) = MTr
(f ). Besides,

for all r ≥ 0,

MTr
(f ) =

r∑
q=0

|Gq |
|Tr | MGq

(f )(3)

and, for all π ∈ S and n ≥ 1,

1

n
M�

n (f ) =
rn−1∑
q=0

|Gq |
n

MGq
(f ) + 1

n

n∑
i=2rn

f
(
X�(i)

)
(4)

(we systematically use the convention that a sum over an empty set is zero).

Because of the branching, empirical averages of T-MCs may not behave like
corresponding MCs ones. Precisely, given a transition probability R, a LLN may
hold for MCs with transition probability R and fail for T-MCs with T-transition
probability R ⊗ R. A very simple but crucial illustration of this is Example 6.
At least for the case of finite state spaces, let us keep in mind that periodicity is
problematic and that there is more to ask than irreducibility and recurrence for a
T-MC to obey a LLN.

EXAMPLE 6. Consider the two-state MC, say, S = {0,1}, with R(0, ·) = δ1
and R(1, ·) = δ0. For a MC Y , a LLN holds true: whatever the initial state, the
empirical average 1

n

∑n
i=1 Yi converges to 1/2 when n grows to infinity. But for the

corresponding T-MC X with T-transition probability P = R⊗R, that is, P(0, ·) =
δ1 ⊗ δ1 and P(1, ·) = δ0 ⊗ δ0, it endlessly fluctuates from 1/3 to 2/3.
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2.2.2. Results. Here we ask ourselves whether the various empirical averages
introduced in Section 2.2.1 converge, in quadratic mean, when the size of the
tree grows to infinity. We then speak of weak LLNs. A sufficient condition for
a weak LLN to hold appears to be the ergodicity (see Definition 7) of the induced
MC (Yr , r ∈ N), defined as follows. Start from the root and recursively choose
one of the two daughters tossing a balanced coin, independently on the T-MC X.
In mathematical terms, Y0 = X1 and if Yr = Xn, then Yr+1 = X2n+ζr+1 for a se-
quence of independent balanced Bernoulli r.v. (ζq, q ∈ N

∗) independent on (X,�).
Here, “balanced” means that P(ζq = 0) = P(ζq = 1) = 1/2. It is easy to check that
(Yr, r ∈ N) is a MC with initial distribution ν and transition probability

Q = P0 + P1

2
.

DEFINITION 7. We say that a MC Y is ergodic if there exists a probability µ

on (S,S) such that limr→∞ Ex[f (Yr)] = ∫
S f dµ for all x ∈ S and f ∈ Cb(S).

Then µ is the unique stationary distribution of Y , and the sequence (Yr , r ∈ N)

converges in distribution to µ. Sufficient conditions for ergodicity may be found
in [6, 20]. We are now in the position to state the main theorem of this section:

THEOREM 8. Assume that the induced MC (Yr , r ∈ N) is ergodic, with sta-
tionary distribution µ. Then, for any f ∈ Cb(S), the three empirical averages

MGq
(f ), MTr

(f ) and M
�

n (f ) converge to (µ,f ) in L2.

REMARK 9. It is noteworthy that the asymptotic behavior of the three above
empirical averages depends on the T-transition probability P only through Q =
(P0 + P1)/2.

REMARK 10. Athreya and Kang [1] use an analogous ergodicity hypothesis
to get laws of large numbers. Namely, their results hold for Galton–Watson trees in
which particles move according to a Markov chain R on (S,S), and they assume
limm→∞ Rm(x, ·) = µ. If this happens uniformly in x on the compact subsets of S,
they get a weak LLN; if this happens uniformy in x on S, they get a strong LLN.
Observe that we do not assume any uniformity in x (but our tree is deterministic).

In the application (Section 3) the function f will typically be unbounded so that
we shall actually prove an extended version of Theorem 8. To this end, let us first
introduce some notation. We denote by:

• i ∧ j the most recent common ancestor of i, j ∈ T,
• f ⊗ g the mapping (x, y) 	→ f (x)g(y),
• Qp the pth iterated of Q, recursively defined by the formulas Q0(x, ·) = δx and

Qp+1(x,B) = ∫
S Q(x, dy)Qp(y,B) for all B ∈ S; Qp is a transition probabil-

ity on (S,S),
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• νQ the distribution on (S,S) defined by νQ(B) = ∫
S ν(dx)Q(x,B); νQp is the

law of Yp ,
• (Qf )(x) = ∫

S f (y)Q(x, dy) when it is defined,
• ν(f ) or (ν, f ) the integral

∫
S f dν when it is defined.

With such a notation, for any distribution λ, transition probability Q and function
f ∈ B(S) such that λQ(|f |) < ∞, we have λQ(f ) = λ(Qf ) which is, hence,
simply written λQf .

Now, let F denote a subspace of B(S) such that:

(i) F contains the constants,
(ii) F 2 ⊂ F ,

(iii) F ⊗ F ⊂ L1(P (x, ·)) for all x ∈ S, and P(F ⊗ F) ⊂ F ,
(iv) there exists a probability measure µ on (S,S) such that F ⊂ L1(µ) and

limr→∞ Ex[f (Yr)] = (µ,f ) for all x ∈ S and f ∈ F ,
(v) for all f ∈ F , there exists g ∈ F such that for all r ∈ N, |Qrf | ≤ g,

(vi) F ⊂ L1(ν),

where we have used the notation F 2 = {f 2|f ∈ F }, F ⊗F = {f ⊗g|f,g ∈ F } and
PE = {Pf |f ∈ E} whenever an operator P acts on a set E. Note that (i) and (iii)
imply the condition

(iii′) for z = 0,1, F ⊂ L1(Pz(x, ·)) for all x ∈ S and PzF ⊂ F ,

since P0f = P(f ⊗ 1) and P1f = P(1 ⊗ f ). This in its turn implies

(iii′′) F ⊂ L1(Q(x, ·)) for all x ∈ S and QF ⊂ F ,

so that in (iv) and (v) Ex[f (Yr)] = Qrf (x) is well defined. Note also that if F

contains enough functions, that is, if it contains the set of all bounded Lipschitz
functions, then µ is the unique stationary distribution of Y , that is, µQ = µ. The
next theorem states that the result in Theorem 8 remains true for f ’s in such a F :

THEOREM 11. Let F satisfy conditions (i)–(vi) above. Then, for any f ∈ F ,
the three empirical averages MGq

(f ), MTr
(f ) and M

�

n (f ) converge to (µ,f )

in L2.

Obviously F = Cb(S) fulfills conditions (i)–(vi) as soon as Y is ergodic, so that
Theorem 11 implies Theorem 8. In Section 3 we shall take F to be the set of all
continuous and polynomially growing functions.

We shall also need an easy extension of Theorem 11 to the case when f

does not only depend on an individual Xi , but on the mother–daughters triangle
(Xi,X2i ,X2i+1). This will be useful in the application (Section 3). Let us denote
�n = (Xn,X2n,X2n+1) and, for f ∈ B(S3) and I a finite subset of T,

MI(f ) =∑
i∈I

f (�i) and M�
n (f ) =

n∑
i=1

f
(
��(i)

)
.



LIMIT THEOREMS FOR BIFURCATING MARKOV CHAINS 1549

Then we have the following:

THEOREM 12. Let F satisfy conditions (i)–(vi). Let f ∈ B(S3) such that
Pf and Pf 2 exist and belong to F . Then the three empirical averages MGq

(f ),

MTr
(f ) and M

�

n (f ) converge to (µ,Pf ) in L2.

2.2.3. Proofs. This section is devoted to the proofs of Theorems 11 and 12.

PROOF OF THEOREM 11. Considering the function f − (µ,f ) leaves us with
the case when (µ,f ) = 0. Then condition (iv) implies that

∀x ∈ S lim
r→∞Qrf (x) = 0.(5)

We shall study the three empirical averages MGq
(f ), MTr

(f ) and M
�

n (f ) suc-
cessively.

Step 1. Let us first deal with MGq
(f ). First note that f (Xi) ∈ L2 for all i ∈ Gq .

Indeed, there is a unique path (z1, . . . , zq) ∈ {0,1}q in the binary tree from the
root 1 to i; here (z1, . . . , zq) should be seen as the realization of the coin toss r.v.
(ζ1, . . . , ζq) that joins 1 to i. For instance, (1,0,0,1) is the path from 1 to 25. Thus,

E[f (Xi)
2] = νPz1 · · ·Pzq f

2,

which, from (ii), (iii′) and (vi), is finite.
Independently on X, let us now draw two independent indices Iq and Jq uni-

formly from Gq . Then f (XIq )f (XJq ) ∈ L1 and we have

E[MGq
(f )2] = 1

|Gq |2
∑

i,j∈Gq

E[f (Xi)f (Xj )]

= E[f (XIq )f (XJq )].
Let us fix p ∈ {0, . . . , q} and reason conditionally on the event {Iq ∧ Jq ∈ Gp}.

Then Iq ∧ Jq is uniformly distributed on Gp , so that XIq∧Jq has the same dis-
tribution as Yp , that is, has distribution νQp . Besides, for p < q , conditionally
on the states (X2(Iq∧Jq),X2(Iq∧Jq)+1) of the two daughters of Iq ∧ Jq , XIq and
XJq are independent and have the same distribution as Yq−p−1 with respective
initial conditions X2(Iq∧Jq) and X2(Iq∧Jq)+1. Provided we use the convention that
P(Q−1f ⊗ Q−1f ) = f 2, we then have

E[f (XIq )f (XJq )|Iq ∧ Jq ∈ Gp] = νQpP (Qq−p−1f ⊗ Qq−p−1f ).(6)

Now, P(Iq ∧ Jq ∈ Gq) = P(Iq = Jq) = 2−q and, for p ∈ {0, . . . , q − 1},
P(Iq ∧ Jq ∈ Gp) = 2−p−1. Indeed, since Iq and Jq are independent, the paths
(ζ I

1 , . . . , ζ I
q ) from 1 to Iq and (ζ J

1 , . . . , ζ J
q ) from 1 to Jq are independent so that
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for p ∈ {0, . . . , q − 1},
P(Iq ∧ Jq ∈ Gp) = P(ζ I

1 = ζ J
1 , . . . , ζ I

p = ζ J
p , ζ I

p+1 �= ζ J
p+1) = 2−p−1.

In short, we write P(Iq ∧ Jq ∈ Gp) = 2−p−1{p<q} . Combined with (6), this finally
gives

E[MGq
(f )2] = E[f (XIq )f (XJq )]

(7)

=
q∑

p=0

2−p−1{p<q}νQpP (Qq−p−1f ⊗ Qq−p−1f ).

Let us now fix ε > 0 and choose pε ∈ N such that 2−pε ≤ ε. Then∑
p>pε

2−p ≤ ε. Besides, from (iii), (v) and (vi), there is a cf ≥ 0 such that

|νQpP (Qq−p−1f ⊗ Qq−p−1f )| ≤ cf(8)

for all 0 ≤ p ≤ q . Hence, for q > pε ,

E[MGq
(f )2] ≤ εcf +

pε∑
p=0

|νQpP (Qq−p−1f ⊗ Qq−p−1f )|.(9)

From (v), there exists g ∈ F such that, for all r ∈ N, |Qrf ⊗ Qrf | ≤ g ⊗ g.
From (iii), P(g ⊗ g) ∈ F so that, using (v) and (vi), P(g ⊗ g) ∈⋂p∈N L1(νQp).
This shows that the sequence of functions (Qrf ⊗ Qrf, r ∈ N) is dominated by
g ⊗ g ∈⋂p∈N L1(νQpP ). Then (5) and Lebesgue’s dominated convergence the-
orem imply that

∀p ∈ N lim
r→∞νQpP (Qrf ⊗ Qrf ) = 0.(10)

As a consequence, the r.h.s. of (9) converges to εcf as q grows to infinity. Since ε

is arbitrary, the proof is complete for MGq
(f ).

Convergence results for MTr
(f ) or M

�

n (f ) may be easily deduced from those
for MGq

(f ) by using (3) or (4) and the following lemma.

LEMMA 13. Let (ur , r ∈ N) be a sequence of nonnegative real numbers con-
verging to 0. Let

vr =
r∑

q=0

|Gq |
|Tr | uq and an =

rn−1∑
q=0

|Gq |
n

uq.

Then (vr , r ∈ N) and (an, n ∈ N
∗) converge to 0.

PROOF. Let us fix ε > 0. We can find qε ∈ N
∗ such that uq ≤ ε for all q ≥ qε .

Letting M = supq∈N uq , we then have, for all r ≥ qε , vr ≤ ε + M
∑qε−1

q=0
|Gq |
|Tr | . The

r.h.s. tends to ε as r grows to infinity, so that limr→∞ vr = 0.
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As for (an, n ∈ N
∗), it is enough to notice that, since |Trn−1| ≤ n, an =

vrn−1|Trn−1|/n ≤ vrn−1 and to apply the result for (vr , r ∈ N). �

Step 2. Let us now treat MTr
(f ). From (3), we have by the triangle inequality

‖MTr
(f )‖L2 ≤∑r

q=0
|Gq |
|Tr | ‖MGq

(f )‖L2 . From Step 1, MGq
(f ) converges to 0 in

quadratic mean. Lemma 13 implies that the r.h.s. tends to 0, which ends the proof
for MTr

(f ).

Step 3. Eventually, let us look at M
�

n (f ). From (4) and the triangle inequality,

‖M�

n (f )‖L2 ≤ an + bn, where

an =
rn−1∑
q=0

|Gq |
n

‖MGq
(f )‖

L2 and bn =
∥∥∥∥∥1

n

n∑
i=2rn

f
(
X�(i)

)∥∥∥∥∥
L2

.

Since MGq
(f ) converges to 0 in quadratic mean, Lemma 13 implies that

limn→∞ an = 0. As for bn, first note that since each f (Xi) belongs to L2,
f (X�(i))f (X�(j)) ∈ L1 for all i, j ∈ {2rn, . . . , n} so that

b2
n = 1

n2

n∑
i,j=2rn

E
[
f
(
x�(i)

)
f
(
X�(j)

)]
.

Let us compute the latter expectation, depending on i = j or i �= j . For all
i ∈ {2rn, . . . , n}, �(i) has the uniform distribution on Grn so that when i = j ,
E[f (X�(i))f (X�(j))] = E[f 2(X�(i))] = νQrnf 2. Let us now treat the case when
i �= j . Then rn ≥ 1. Independently on (X,�), draw two independent indices Irn

and Jrn uniformly from Grn . Then since i �= j , the law of (�(i),�(j)) is the
conditional law of (Irn, Jrn) given {Irn �= Jrn} so that

E
[
f
(
X�(i)

)
f
(
X�(j)

)]
= E

[
f (XIrn

)f (XJrn
)1{Irn �=Jrn }

]
/P(Irn �= Jrn)

= (1 − 2−rn)−1
E
[
f (XIrn

)f (XJrn
)1{Irn �=Jrn }

]
= (1 − 2−rn)−1(

E[f (XIrn
)f (XJrn

)] − E[f 2(XIrn
)1{Irn=Jrn }])

= (1 − 2−rn)−1(
E[f (XIrn

)f (XJrn
)] − E[f 2(XIrn

)]P(Irn = Jrn)
)

= (1 − 2−rn)−1(
E[f (XIrn

)f (XJrn
)] − 2−rnνQrnf 2)

= (1 − 2−rn)−1
rn−1∑
p=0

2−p−1νQpP (Qrn−p−1f ⊗ Qrn−p−1f ),

where we have used P(Irn = Jrn) = 2−rn in the second and fifth equalities, the
independence of (X, Irn) and 1{Irn=Jrn } in the fourth one, the fact that XIrn

has
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the same distribution as Yrn in the fifth one and (7) with q = rn in the last one.
Eventually, we have proved that b2

n = b′
n + b′′

n with

b′
n = n − 2rn + 1

n2 νQrnf 2,

b′′
n = (n − 2rn)(n − 2rn + 1)

n2(1 − 2−rn)

rn−1∑
p=0

2−p−1νQpP (Qrn−p−1f ⊗ Qrn−p−1f ).

Since (n − 2rn + 1)/n2 ≤ 1/n, and using (ii), (v) and (vi), limn→∞ b′
n = 0. As

for b′′
n, let us fix ε > 0 and choose pε ∈ N

∗ such that 2−pε ≤ ε. From (8), there is a
cf ≥ 0 such that |νQpP (Qrn−p−1f ⊗ Qrn−p−1f )| ≤ cf for all p and n such that
rn ≥ p. Since (n − 2rn)(n − 2rn + 1)/n2(1 − 2−rn) ≤ 1, we then have

b′′
n ≤ εcf +

pε−1∑
p=0

|νQpP (Qrn−p−1f ⊗ Qrn−p−1f )|.

Now, using (10), we get that each term of the latter finite sum tends to 0 as n tends
to infinity, so that finally limn→∞ b′′

n = 0, which completes the proof. �

PROOF OF THEOREM 12. Considering the function f − (µ,Pf ) leaves us
with the case when (µ,Pf ) = 0. Let us treat the case of MGq

(f ). Observe
that f (�i) ∈ L2 for all i ∈ Gq . Indeed, (z1, . . . , zq) denoting the path from the
root 1 to i in the tree, E[f (�i)

2] = νPz1 · · ·PzqPf 2, which is finite from (iii′)
and (vi), since Pf 2 ∈ F . Thus, by conditioning on Fq , E[f (�i)f (�j )] =
E[Pf (Xi)Pf (Xj )] for all i �= j ∈ Gq , and E[f 2(�i)] = E[Pf 2(Xi)] for all
i ∈ Gq . Hence,

E[MGq
(f )2] = ∑

i,j∈Gq

E[f (�i)f (�j )]

= ∑
i∈Gq

E[Pf 2(Xi)] + ∑
i �=j∈Gq

E[Pf (Xi)Pf (Xj )]

= E[MGq
(Pf )2] + E[MGq

(Pf 2 − (Pf )2)],
so that

E[MGq
(f )2] = E[MGq

(Pf )2] + E[MGq
(Pf 2 − (Pf )2)]

|Gq | .

We can apply Theorem 11 twice: limq→∞ E[MGq
(Pf 2 − (Pf )2)] = (µ,

Pf 2 −(Pf )2) and limq→∞ E[MGq
(Pf )2] = 0, so that limq→∞ E[MGq

(f )2] = 0,
that is, MGq

(f ) converges to 0 in L2. Using Lemma 13, we extend this result

to MTr
(f ). The proof for M

�

n (f ) is similar to Step 3 of the proof of Theorem 11,
with the same extra conditioning argument as above. �
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2.3. Strong law of large numbers. So far, we have proved the weak LLN, that
is, convergence in quadratic mean for empirical averages. We now seek for strong
LLN. Theorem 14 gives sufficient conditions under which the empirical averages
over the qth generation and over the first r + 1 generations converge to a constant
with probability one.

THEOREM 14. Let F satisfy conditions (i)–(vi). Let f ∈ F such that
(µ,f ) = 0. Assume that there exists h ∈ F such that

P

(∑
r∈N

|Qrf ⊗ Qrf |
)

≤ h.

Then MGq
(f ) and MTr

(f ) almost surely converge to 0 as q → ∞.

PROOF. Step 1. Let us first treat MGq
(f ). Let us write ηq = E[MGq

(f )2]. It
is enough to check that

∑
q∈N ηq < ∞. Now, using (7) and Fubini’s theorem, we

have

∑
q∈N

ηq = ∑
q∈N

q∑
p=0

2−p−1{p<q}νQpP (Qq−p−1f ⊗ Qq−p−1f )

≤ ∑
p∈N

+∞∑
q=p

2−p−1{p<q} |νQpP (Qq−p−1f ⊗ Qq−p−1f )|

≤ ∑
p∈N

2−pνQp

(
f 2 + P

(∑
r∈N

|Qrf ⊗ Qrf |
))

≤ ∑
p∈N

2−pνQp(f 2 + h),

which, from (v) and (vi), is finite, since f 2 + h ∈ F .
Step 2. Let us now deal with MTr

(f ). From (3), we have |MTr
(f )| ≤∑r

q=0
|Gq |
|Tr | |MGq

(f )|. From Step 1, a.s. limq→∞ |MGq
(f )| = 0. It is enough to

apply Lemma 13 to get that MTr
(f ) a.s. converges to 0. �

In particular, we have the following:

COROLLARY 15. Let F satisfy conditions (i)–(vi). Let f ∈ F such that
(µ,f ) = 0. Assume there exists c ∈ F and a nonnegative sequence (κr , r ∈ N)

such that
∑

r∈N κr < ∞ and

∀x ∈ S,∀r ∈ N |Qrf (x)| ≤ c(x)κr .

Then MGq
(f ) and MTr

(f ) almost surely converge to 0.
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PROOF. From (iii), h = (
∑

r∈N κr)P (c ⊗ c) ∈ F and P(
∑

r∈N |Qrf ⊗
Qrf |) ≤ h, so that Theorem 14 gives the result. �

REMARK 16. In the case when κr = κr for some κ ∈ (0,1), we speak of
geometric ergodicity. Geometric ergodicity implies the almost sure convergence
of MGq

(f ) and MTr
(f ).

REMARK 17. Assume that the state space S is finite, and that the induced
MC Y is irreducible and aperiodic. Then Y is ergodic and, µ standing for its
stationary distribution, the sequence of functions (Qrg, r ∈ N) uniformly con-
verges to (µ,g) with exponential speed. Taking F = B(S) and f = g − (µ,g),
Corollary 15 applies: MGq

(f ) and MTr
(f ) almost surely converge to 0, that is,

MGq
(g) and MTr

(g) almost surely converge to (µ,g). This covers the main result
in [18, 23, 24] when applied to the binary tree.

In the case when f depends on the mother–daughters triangle
�n = (Xn,X2n,X2n+1), we can prove as well the following:

THEOREM 18. Let F satisfy conditions (i)–(vi). Let f ∈ B(S3) such that Pf

and Pf 2 exist and belong to F , with (µ,Pf ) = 0.

(i) Assume that there exists h ∈ F such that P(
∑

r∈N |QrPf ⊗ QrPf |) ≤ h.
Then MGq

(f ) and MTr
(f ) almost surely converge to 0.

(ii) In particular, if there exists c ∈ F and a nonnegative sequence (κr , r ∈ N)

such that
∑

r∈N κr < ∞ and

∀x ∈ S,∀r ∈ N |QrPf (x)| ≤ c(x)κr ,

then MGq
(f ) and MTr

(f ) almost surely converge to 0.

2.4. Central limit theorem. We are now interested in proving a central limit
theorem (CLT) for the T-MC (Xn). This will be done by using a CLT for martin-
gales.

THEOREM 19. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf 2 and Pf 4

exist and belong to F . Assume that Pf = 0. Then n−1/2M�
n (f ) converges in dis-

tribution to the Gaussian law N (0, s2), where s2 = (µ,Pf 2).

PROOF. Let M�
0 (f ) = 0, H0 = σ(X1) and Hn = σ(��(i),�(i + 1),

1 ≤ i ≤ n) for all n ≥ 1. Note that X�(i) is Hi−1-measurable and that, con-
ditionally on Hi−1, ��(i) has distribution δX�(i)

⊗ P(X�(i), ·). Since Pf = 0,
(M�

n (f ), n ≥ 0) is a (Hn)-martingale. It has bracket

〈M�(f )〉n =
n∑

i=1

E
[
f 2(��(i)

)∣∣Hi−1
]= n∑

i=1

Pf 2(X�(i)

)= M�
n (Pf 2).
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According to Theorem 11, since Pf 2 ∈ F , the sequence n−1〈M�(f )〉n converges
to (µ,Pf 2) = s2 in L2, and thus, in probability. It remains to check Liapunov’s
condition, say, for the fourth moment, that is, to prove that the sequence of positive
r.v. (Ln,n ≥ 1) defined by

Ln = 1

n2

n∑
i=1

E
[
f 4(��(i)

)∣∣Hi−1
]

tends in probability to 0 (see, e.g., [10]). But Ln = M
�

n (Pf 4)/n and M
�

n (Pf 4)

converges to (µ,Pf 4) in quadratic mean, so that Ln converges to 0 in probability.
�

In the general case when Pf �= 0, we have:

COROLLARY 20. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf , Pf 2

and Pf 4 exist and belong to F . Then n−1/2(M�
n (f ) − M�

n (Pf )) converges in
distribution to N (0, s2), where s2 = (µ,Pf 2) − (µ, (Pf )2).

PROOF. It is enough to apply Theorem 19 to the function g defined by
g(x, y, z) = f (x, y, z) − Pf (x). �

Considering the subsequence of indices n = |Tr |, r ∈ N, we can state the fol-
lowing:

COROLLARY 21. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf , Pf 2

and Pf 4 exist and belong to F . Then |Tr |1/2(MTr
(f ) − MTr

(Pf )) converges in
distribution to N (0, s2), where s2 = (µ,Pf 2) − (µ, (Pf )2).

If we take F to be Cb(S), we get the following:

COROLLARY 22. Assume that the induced MC (Yr , r ∈ N) is ergodic,
with stationary distribution µ (see Definition 7). Then, for any f ∈ Cb(S

3),
n−1/2(M�

n (f ) − M�
n (Pf )) converges in distribution to N (0, s2), where s2 =

(µ,Pf 2) − (µ, (Pf )2).

REMARK 23. Note that the normalizing factor is the square root of the number
of individuals, n or |Tr |, and not the square root of the number of generations, rn
or r , as one might have thought. Convergence is fast with r : with 20 generations
(r = 19), the normalizing factor |Tr |1/2 is approximately 103.

Using characteristic functions, it is easy to generalize Corollary 22 to the case
when f is vector-valued:
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COROLLARY 24. Let F satisfy (i)–(vi). Let f1, . . . , fd ∈ B(S3) such that
Pfi , P(fifj ) and P(fifjfkfl) exist and belong to F for all i, j, k, l. Let f =
(f1, . . . , fd). Then n−1/2(M�

n (f ) − M�
n (Pf )) converges in distribution to the d-

dimensional Gaussian law Nd(0,�), where �ij = (µ,P (fifj )) − (µ,PfiPfj ).

3. Detection of cellular aging.

3.1. Limit theorems in the BAR model (1). Here we seek to apply the results
in Section 2 to model (1).

3.1.1. Weak law of large numbers and central limit theorem. In this section we
take F to be the set Cpol(R) of continuous and polynomially growing functions,
that is, the set of all continuous functions f : R → R such that there exists c ≥ 0
and m ∈ N such that, for all x ∈ R,

|f (x)| ≤ c(1 + |x|m).

In order to apply Theorems 11 and 12 and Corollary 24, we need to check con-
ditions (i)–(vi). Conditions (i) and (ii) are obvious. The next lemma states that
condition (iii) is fulfilled too.

LEMMA 25. Let f,g ∈ Cpol(R). Then f ⊗ g ∈ L1(P (x, ·)) and P(f ⊗ g) ∈
Cpol(R).

PROOF. Let G0,G1 be two independent standard Gaussian variables. Let

G =
(

G0
G1

)
, M(x) =

(
α0x + β0
α1x + β1

)
and � = σ

(
1 0
ρ

√
1 − ρ2

)
.

Then G(x) ≡ M(x) + �G has distribution P(x, ·). Hence, P(|f ⊗ g|)(x) =
E[|f ⊗ g(G(x))|]. Now, ‖ ‖ denoting the Euclidian norm in R

2, we can find
c ≥ 0 and m ∈ N such that |f ⊗ g(G(x))| ≤ c(1 + ‖G(x)‖m). Since ‖G(x)‖ ≤
c(1 + |x| + ‖G‖) for a constant c and E[‖G‖m] < ∞, we may eventually find a
c ≥ 0 such that, for all x ∈ R,

P(|f ⊗ g|)(x) ≤ c(1 + |x|m),

which completes the proof. �

LEMMA 26. Cpol(R) fulfills conditions (iv)–(v); µ is the stationary distribu-
tion of Y .

PROOF. In the BAR model (1), the induced MC has the stochastic dynamics

Yr+1 = ar+1Yr + br+1,(11)
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where ((ar , br), r ∈ N
∗) is a sequence of i.i.d. r.v., independent of Y0. Precisely,

ar+1 = αζr+1 , br+1 = βζr+1 + ε′
r+1, where (ε′

q, q ∈ N
∗) and (ζq, q ∈ N

∗) are in-
dependent sequences of i.i.d. r.v., independent of Y0, each ε′

q has law N (0, σ 2)

and each ζq is a balanced Bernoulli r.v., that is, P(ζq = 0) = P(ζq = 1) = 1/2.
Bougerol and Picard [7] call the sequence (Yr , r ∈ N) a generalized autoregres-
sive process. It is often simply called AR(1), for AutoRegressive of order 1, in the
literature. We have

Yr = arar−1 · · ·a2a1Y0 +
r∑

k=1

arar−1 · · ·ak+1bk.

Since the r.v. ((ar , br), r ∈ N
∗) are i.i.d., Yr has the same distribution as

Zr = a1a2 · · ·ar−1arY0 +
r∑

k=1

a1a2 · · ·ak−1bk.(12)

Let us first prove (v). Let f ∈ Cpol(R) and x ∈ R, and let us denote S =∑∞
k=1 |a1a2 · · ·ak−1bk|. From (12), |Zr | ≤ |Y0| + S for all r ∈ N, so that we can

find c ≥ 0 and m ∈ N
∗ such that Ex[|f (Zr)|] ≤ c(|x|m + E[Sm]). Now, let us de-

note α = max{|α0|, |α1|} < 1. Using the triangle inequality in the first line and the
fact that the Lm-norm of bk , ‖bk‖Lm ≡ cm, does not depend on k in the last one,

‖S‖Lm ≤
∞∑

k=1

‖a1a2 · · ·ak−1bk‖Lm

(13)

≤
∞∑

k=1

αk−1‖bk‖Lm = cm

∞∑
k=1

αk−1 < ∞.

Eventually, |Qrf (x)| ≤ Ex[|f (Yr)|] = Ex[|f (Zr)|] ≤ c′
m(1 + |x|m) for some c′

m

which does not depend on r , which proves (v).
Let us now prove (iv). Since |a1a2 · · ·ar−1arY0| ≤ αr |Y0|, we have that a.s.

limr→∞ a1a2 · · ·ar−1arY0 = 0. Besides, the sum in (12) a.s. converges as r grows
to infinity as E[|S|m] < ∞. Eventually, the sequence (Zr, r ∈ N) almost surely
converges to

Z∞ =
∞∑

k=1

a1a2 · · ·ak−1bk.(14)

Let µ denote the distribution of Z∞. Then Cpol(R) ⊂ L1(µ). Indeed, ‖Z∞‖Lm

≤ ‖S‖Lm < ∞ for all m ∈ N. Let us eventually prove that limr→∞ Ex[f (Yr)] =
(µ,f ). Since |f (Zr)| ≤ c(|Y0|m +Sm) ∈ L1(Px) and (Zr, r ∈ N) almost surely
converges to Z∞, we can apply Lebesgue’s dominated convergence theorem and
get that

lim
r→∞Ex[f (Yr)] = lim

r→∞Ex[f (Zr)] = Ex[f (Z∞)] = (µ,f ).
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Condition (iv) is now fully checked, and µ is the unique stationary distribution
of Y . �

Let us denote by Cpol(R
3) the set of all continuous and polynomially growing

functions f : R3 → R. Since Cpol(R
3)2 ⊂ Cpol(R

3) and P(Cpol(R
3)) ⊂ Cpol(R),

Theorems 11 and 12 and Corollary 24 imply:

PROPOSITION 27. In the BAR model (1), assume that the distribution of the
ancestor X1, ν, has finite moments of all orders. Let µ be the unique stationary
distribution of the induced MC (Yr, r ∈ N). Then:

(i) for all f ∈ Cpol(R), MGq
(f ), MTr

(f ) and M
�

n (f ) converge to (µ,f )

in L2,
(ii) for all f ∈ Cpol(R

3), MGq
(f ), MTr

(f ) and M
�

n (f ) converge to (µ,Pf )

in L2,
(iii) for all f1, . . . , fd ∈ Cpol(R

3), n−1/2(M�
n (f ) − M�

n (Pf )) converges in
distribution to Nd(0,�), where f = (f1, . . . , fd) and �ij = (µ,P (fifj )) −
(µ,PfiPfj ).

3.1.2. Strong law of large numbers. We can also derive almost sure conver-
gence results:

PROPOSITION 28. With the assumptions of Proposition 27:

(i) almost surely, for any f ∈ Cpol(R), MGq
(f ) and MTr

(f ) converge to
(µ,f ),

(ii) almost surely, for any f ∈ Cpol(R
3), MGq

(f ) and MTr
(f ) converge to

(µ,Pf ).

PROOF. Let us take F to be the set C1
pol(R) of all C1 functions f : R → R

such that |f | + |f ′| is bounded above by a polynomial. One can easily check that
C1

pol(R) satisfies (i)–(v).
Step 1. Let us first prove that,

∀f ∈ C1
pol(R) P

(
lim

q→∞MGq
(f ) = lim

r→∞MTr
(f ) = (µ,f )

)
= 1.(15)

Let f ∈ C1
pol(R). We want to apply Corollary 15 with F = C1

pol(R) and to the

function g = f − (µ,f ) ∈ C1
pol(R). First note that Qrg(x) = Qrf (x) − (µ,f ) =

Ex[f (Zr) − f (Z∞)], so that using Cauchy–Schwarz’s inequality,

|Qrg(x)| ≤ Ex[Wr |Zr − Z∞|] ≤ (Ex[W 2
r ]Ex[(Zr − Z∞)2])1/2

,
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where Wr = supz∈[Zr,Z∞] |f ′(z)|. We can find c1 ≥ 0 and m ∈ N such that for all
z ∈ R, |f ′(z)|2 ≤ c1(1 + |z|m) so that, using (12) and (13), there is a c′

m ≥ 0 such
that, for all x ∈ R and r ∈ N,

Ex[W 2
r ] ≤ Ex

[
sup

z∈[Zr,Z∞]
c1(1 + |z|m)

]

≤ c1(1 + Ex[|Zr |m] + Ex[|Z∞|m]) ≤ c′
m(1 + |x|m).

Moreover, Zr − Z∞ = a1a2 · · ·ar−1arY0 − ∑+∞
k=r+1 a1a2 · · ·ak−1bk so that

‖Zr − Z∞‖L2(Px) ≤ αrx + ‖∑+∞
k=r+1 a1a2 · · ·ak−1bk‖L2 (α = max{|α0|, |α1|}).

Now we have ‖∑+∞
k=r+1 a1a2 · · ·ak−1bk‖L2 ≤ c2

∑+∞
k=r+1 αk−1 = c2α

r/(1 − α),
where c2 = ‖bk‖L2 does not depend on k. Thus, we can find c3 ≥ 0 such that for
all x ∈ R and r ∈ N,

Ex[(Zr − Z∞)2] ≤ c3α
2r (1 + x2).

Eventually,

|Qrg(x)| ≤ (c′
mc3α

2r (1 + |x|m)(1 + x2)
)1/2 ≤ c(x)κr ,(16)

with κr = αr and a function c ∈ C1
pol(R). Corollary 15 implies that MGq

(g) and

MTr
(g) almost surely converge to 0, that is, MGq

(f ) and MTr
(f ) almost surely

converge to (µ,f ), which proves (15).
Step 2. Let us now prove that, almost surely, the empirical distributions MGq

and MTr
weakly converge to µ. There exists a sequence (fp,p ∈ N) of C∞

functions with compact support which characterizes convergence in distribution.
Hence, it is enough to show that, almost surely, for all p ∈ N, limq→∞ MGq

(fp) =
limr→∞ MTr

(fp) = (µ,fp). But this immediately follows from Step 1, since
fp ∈ C1

pol(R).

Step 3. Let us now prove assertion (i). Let us deal with MGq
(the proof for MTr

is similar). For k, l ∈ N, let us write fk,l(x) = k(1 + x2l). Since fk,l ∈ C1
pol(R),

from Step 1, almost surely,

∀k, l ∈ N lim
q→∞MGq

(fk,l) = (µ,fk,l).(17)

From Step 2, the empirical distributions MGq
a.s. weakly converge to µ. Besides,

for all f ∈ Cpol(R), there exists k, l ∈ N such that f 2 ≤ fk,l . Thus, from (17), a.s.
for all f ∈ Cpol(R), the sequence (MGq

(f 2), q ∈ N) is bounded, which proves that
a.s. every f ∈ Cpol(R) is (MGq

, q ∈ N)-uniformly integrable. Hence, a.s., for all
f ∈ Cpol(R), MGq

(f ) converges to (µ,f ).
Step 4. The proof of (ii) is similar to the proof of (i). �
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REMARK 29. A natural choice for ν is the stationary distribution µ. Indeed,
the ancestor X1 is picked from a metacolony that has evolved for a long time, so
that in the BAR model (1) its distribution should be close to µ. With this particular
choice, we can apply Propositions 27 and 28. Indeed, µ has finite moments of all
orders, since Cpol(R) ⊂ L1(µ).

3.2. Estimation of the parameters. We seek to estimate the 4-dimensional pa-
rameter θ = (α0, β0, α1, β1), as well as σ 2 and ρ. Assume we observe a complete
subtree Tr+1. Then, since the couples (ε2i , ε2i+1) are i.i.d. bivariate Gaussian vec-
tors, the maximum likelihood estimator θ̂ r = (α̂r

0, β̂
r
0, α̂r

1, β̂
r
1) of θ is also the least

squares one: for ε ∈ {0,1},


α̂r
ε = |Tr |−1∑

i∈Tr
XiX2i+ε − (|Tr |−1∑

i∈Tr
Xi)(|Tr |−1∑

i∈Tr
X2i+ε)

|Tr |−1∑
i∈Tr

X2
i − (|Tr |−1∑

i∈Tr
Xi)2

,

β̂r
ε = |Tr |−1∑

i∈Tr
X2i+ε − α̂r

0|Tr |−1∑
i∈Tr

Xi.

Hence, α̂r
0 (resp. α̂r

1) is the empirical correlation between new (resp. old) pole
daughters and their mothers. We shall denote by xy (resp. x,y,x2) the element of
Cpol(R

3) defined by (x, y, z) 	→ xy (resp. x, y, x2).

REMARK 30. Note that (µ,x2)− (µ,x)2 > 0. Indeed, it is nonnegative, and if
it were 0, µ would be a Dirac mass. Now a Dirac mass cannot be stationary for Y

because σ 2 > 0.

PROPOSITION 31. In the BAR model (1), assume that the distribution of the
ancestor X1, ν, has finite moments of all orders. Then (θ̂ r , r ∈ N) is a strongly
consistent estimator of θ .

PROOF. Let us treat α̂r
0. Convergence of β̂r

0 , α̂r
1 and β̂r

1 may be treated in a
similar way. Note that α̂r

0 = Cr/Br with

Cr = MTr
(xy) − MTr

(x)MTr
(y) and Br = MTr

(x2) − MTr
(x)2.

Since P(xy)(x) = x(α0x + β0) and P(y)(x) = α0x + β0, Proposition 28 implies
that Cr a.s. converges to (µ,x(α0x + β0)) − (µ,x)(µ,α0x + β0) = α0((µ,x2) −
(µ,x)2) and Br a.s. converges to (µ,x2) − (µ,x)2, which from Remark 30 is
positive, so that α̂r

0 a.s. converges to α0. �

REMARK 32. Let us denote ᾱ = (α0 + α1)/2, β̄ = (β0 + β1)/2 and so on.
Then

(µ,x) = β̄

1 − ᾱ
and (µ,x2) = 2αββ̄/(1 − ᾱ) + β2 + σ 2

1 − α2
.(18)
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Indeed, recalling (11) and (14), Z∞ has the same law as a1Z∞ +b1, where the pair
(a1, b1) is independent of Z∞ and takes values (α0, β0) and (α1, β1) with proba-
bility 1/2. Hence, (µ,x) = E[Z∞] = E[a1Z∞ +b1] = ᾱ(µ,x)+ β̄ , as announced.
Likewise,

(µ,x2) = E[Z2∞] = E[(a1Z∞ + b1)
2] = E[a2

1Z2∞] + 2E[a1b1Z∞] + E[b2
1]

= α2(µ,x2) + 2αβ(µ,x) + β2 + σ 2,

from which we deduce the second equality in (18).

From the preceding remark, we define two continuous functions µ1 : � → R

and µ2 :� × R
∗+ → R by writing

(µ,x) = µ1(θ) and (µ,x2) = µ2(θ, σ 2),(19)

where θ = (α0, β0, α1, β1) ∈ � = (−1,1) × R × (−1,1) × R. Let us now build a
confidence region for θ .

PROPOSITION 33. In the BAR model (1), assume that the distribution ν of
the ancestor X1 has finite moments of all orders. Let µ be the unique stationary
distribution of the induced MC (Yr , r ∈ N). Then |Tr |1/2(θ̂ r − θ) converges in law
to N4(0,�′), where

�′ = σ 2
(

K ρK

ρK K

)
(20)

with K = 1

µ2(θ, σ 2) − µ1(θ)2

(
1 −µ1(θ)

−µ1(θ) µ2(θ, σ 2)

)
.

PROOF. For f1, . . . , fd ∈ Cpol(R
3), we denote f = (f1, . . . , fd) and Ur(f ) =

|Tr |1/2(MTr
(f )−MTr

(Pf )). Let us denote ζr = |Tr |1/2(θ̂ r − θ). We first observe
that ζr = ϕ(Ur(f ),Ar,Br) with f = (xy,y,xz, z), ϕ(u, a, b) = M(a,b)u,

M(a,b) =




1/b −a/b 0 0
−a/b (b + a2)/b 0 0

0 0 1/b −a/b

0 0 −a/b (b + a2)/b


 ,

Ar = MTr
(x) and Br = MTr

(x2) − MTr
(x)2. From Proposition 27(iii), Ur(f )

converges in distribution to G ∼ N4(0,�) with

� = σ 2




µ2(θ, σ 2) µ1(θ) ρµ2(θ, σ 2) ρµ1(θ)

µ1(θ) 1 ρµ1(θ) ρ

ρµ2(θ, σ 2) ρµ1(θ) µ2(θ, σ 2) µ1(θ)

ρµ1(θ) ρ µ1(θ) 1


 .

Besides, Proposition 27(i) implies that (Ar,Br) converges in law to the con-
stant (a, b) = (µ1(θ),µ2(θ, σ 2) − µ1(θ)2). Thus, Slutsky’s theorem states that
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(Ur(f ),Ar,Br) converges in law to (G,a, b). Then, by continuity of ϕ on
R × R × R

∗+ and recalling from Remark 30 that b > 0, ζr = ϕ(Ur(f ),Ar,Br)

converges in law to ϕ(G,a, b) = M(a,b)G, which is a centered Gaussian vector
with covariance matrix �′ = M(a,b)�M(a, b)t . Now we have

� = σ 2
(

L ρL

ρL L

)
with L =

(
µ2(θ, σ 2) µ1(θ)

µ1(θ) 1

)
,

M(a, b) =
(

K 0
0 K

)
.

Since LK = I2, the 2 × 2 identity matrix, we get

�′ = σ 2
(

K 0
0 K

)(
L ρL

ρL L

)(
K 0
0 K

)
= σ 2

(
K ρK

ρK K

)

which completes the proof. �

We also need to estimate the conditional variance, σ 2, and the conditional
sister-sister correlation, ρ. Since σ 2 is the common expectation of the i.i.d. r.v.
(ε2

i , i ≥ 2), it is naturally estimated, given a complete observation (Xi, i ∈ Tr+1),
by

σ̂ 2
r = 1

2|Tr |
∑
i∈Tr

(ε̂2
2i + ε̂2

2i+1),

where {
ε̂2n = X2n − α̂r

0Xn − β̂r
0,

ε̂2n+1 = X2n+1 − α̂r
1Xn − β̂r

1,

are the residues. Likewise, since ρ = Cov(ε2i , ε2i+1)/σ
2, it is naturally estimated

by

ρ̂r = 1

σ̂ 2
r |Tr |

∑
i∈Tr

ε̂2i ε̂2i+1.

We have checked that (σ̂ 2
r , ρ̂r ) is the maximum likelihood estimator of (σ 2, ρ).

PROPOSITION 34. In the BAR model (1), assume that the distribution of the
ancestor X1, ν, has finite moments of all orders. Then ((σ̂ 2

r , ρ̂r ), r ∈ N) is a
strongly consistent estimator of (σ 2, ρ).

PROOF. Let us first deal with σ̂ 2
r . Observe that

σ̂ 2
r = 1

2 |Tr |
∑
i∈Tr

f (�i, θ̂
r ),
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where f (�, θ) = (y − α0x − β0)
2 + (z − α1x − β1)

2, with � = (x, y, z) and
θ = (α0, β0, α1, β1). Thus, we have σ̂ 2

r = MTr
(f (·, θ))/2 + Dr , with

Dr = 1

2 |Tr |
∑
i∈Tr

(
f (�i, θ̂

r ) − f (�i, θ)
)
.

Since f (·, θ) ∈ Cpol(R
3), we can apply Proposition 28(ii): MTr

(f (·, θ)) a.s. con-
verges to (µ,P (f (·, θ))). Now, P(f (·, θ))(x) = Ex[(X2 − α0X1 − β0)

2 + (X3 −
α1X1 − β1)

2] = E[ε2
2 + ε2

3] = 2σ 2. Hence, MTr
(f (·, θ)) a.s. converges to 2σ 2.

Thus, it is enough to prove that Dr a.s. tends to 0. Let us write θ = (θ1, θ2, θ3, θ4) ∈
� = (−1,1) × R × (−1,1) × R. From the Taylor–Lagrange formula, for any
� ∈ R

3 and θ, θ ′ ∈ �, we can find λ ∈ (0,1) such that

f (�, θ ′) − f (�, θ) =
4∑

j=1

(θ ′
j − θj )∂θj

f
(
�,θ + λ(θ ′ − θ)

)
.

Now, observing that f is a polynomial of global degree 4 and of degree 2 in each
θj , we can find g ∈ Cpol(R

3) such that for all j ∈ {1,2,3,4}, � ∈ R
3 and θ ∈ �,

|∂θj
f (�, θ)| ≤ g(�)(1 + ‖θ‖). Therefore, for all r ∈ N,

|Dr | ≤ 1

2
‖θ̂ r − θ‖ 1

|Tr |
∑
i∈Tr

g(�i)(1 + ‖θ‖+‖θ̂ r − θ‖)

= 1

2
‖θ̂ r − θ‖(1 + ‖θ‖+‖θ̂ r − θ‖)MTr

(g).

From Proposition 28(ii), MTr
(g) a.s. converges. Besides, Proposition 31 states that

‖θ̂ r − θ‖ a.s. tends to 0. As a consequence, so does Dr . This completes the proof
for σ 2. The proof for ρ is very similar. �

3.3. Detection of cellular aging. As explained in [13], detecting cellular ag-
ing boils down, in the BAR model (1), to rejecting hypothesis H0 = {(α0, β0) =
(α1, β1)}. Let us now build a statistical test that allows us to segregate between H0
and its alternative H1 = {(α0, β0) �= (α1, β1)}. Wald’s test is well adapted to the
situation. We write µ̂1,r = µ1(θ̂r ) and µ̂2,r = µ2(θ̂r , σ̂r ) [recall (19)].

PROPOSITION 35. In the BAR model (1), assume that the distribution of the
ancestor X1, ν, has finite moments of all orders. Then the test statistic

χ(1)
r = |Tr |

2σ̂ 2
r (1 − ρ̂r )

{
(α̂r

0 − α̂r
1)

2(µ̂2,r − µ̂2
1,r ) + ((α̂r

0 − α̂r
1)µ̂1,r + β̂r

0 − β̂r
1
)2}

converges in distribution to χ2(2), the χ2 distribution with two degrees of freedom,
under H0, and almost surely diverges to +∞ under H1.
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PROOF. Recall that θ = (α0, β0, α1, β1). Let us set g(θ) = (α0 −α1, β0 −β1)
t .

Then H0 = {g(θ) = 0}. From Proposition 33, |Tr |1/2(θ̂ r − θ) converges in law to
N4(0,�′) so that |Tr |1/2(g(θ̂ r ) − g(θ)) converges in law to N2(0,�′′), with

�′′ = dg(θ)�′dg(θ)t

= σ 2(I2 − I2)

(
K ρK

ρK K

)(
I2

−I2

)
= 2σ 2(1 − ρ)K.

Under H0, g(θ) = 0 so that |Tr |1/2g(θ̂ r ) converges in law to G ∼ N2(0,�′′).
Now, from (18), K = K(θ,σ ) is a continuous function of (θ, σ ) ∈ �×R

∗+ so that,
letting K̂r = K(θ̂r , σ̂r ), Propositions 31 and 34 imply that �̂′′

r ≡ 2σ̂ 2
r (1 − ρ̂r )K̂r

converges in probability to �′′. By continuity of G 	→ �′′−1/2G, Slutsky’s theorem
shows that |Tr |1/2�̂

′′−1/2
r g(θ̂ r ) converges in law to N2(0, I2). In particular,

∥∥|Tr |1/2�̂′′−1/2
r g(θ̂ r )

∥∥2 = |Tr |g(θ̂ r )t �̂′′−1
r g(θ̂ r ) = |Tr |

2σ̂ 2
r (1 − ρ̂r )

g(θ̂ r )t K̂−1
r g(θ̂ r )

equals χ
(1)
r and converges to the χ2 distribution with two degrees of freedom.

Under H1, χr/|Tr | = g(θ̂ r )t �̂′′−1
r g(θ̂ r ) a.s. converges to g(θ)t�′′−1g(θ) > 0

so that χ
(1)
r a.s. diverges to +∞. �

The same technique may be used to test {α0 = α1}:

PROPOSITION 36. In the BAR model (1), assume that the distribution of the
ancestor X1, ν, has finite moments of all orders. Then the test statistic

χ(2)
r = |Tr |(α̂r

0 − α̂r
1)

2 µ̂2,r − µ̂2
1,r

2σ̂ 2
r (1 − ρ̂r )

converges in distribution to χ2(1) under {α0 = α1} and a.s. diverges to +∞ under
{α0 �= α1}.

The same can be done for testing {β0 = β1}. Proposition 31 provides natural
statistics to test {α0 = 0}, {α1 = 0}, {β0 = 0}, {β1 = 0} and {β0 = β1}. We do not
give details for the sake of brevity.

We now present a statistical test that allows us to differentiate between H ′
0 =

{β0/(1 − α0) = β1/(1 − α1)} and its alternative H ′
1. This allows to test if the two

fixed points corresponding to the two affine regressions of the BAR model (1) are
equal. This may happen even if (α0, β0) �= (α1, β1). Rejecting H ′

0 means accepting
that the new pole and the old pole populations are even distinct in mean. Again, we
use Wald’s test, since H ′

0 = {g(θ) = 0} with g(θ) = β0/(1 − α0) − β1/(1 − α1).
The proof is obvious and not detailed here.
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PROPOSITION 37. In the BAR model (1), assume that the distribution of the
ancestor X1, ν, has finite moments of all orders. Let

dg(θ) =
(

β0

(1 − α0)2 ,
1

1 − α0
,

−β1

(1 − α1)2 ,
1

1 − α1

)

be the gradient of g and ŝ2
r = dg(θ̂r )�̂

′
rdg(θ̂r )

t , where �̂′
r is �′ evaluated in

(θ̂r , σ̂r , ρ̂r ), and �′ is defined in (20). Then the test statistic

χ(3)
r = |Tr |

ŝ2
r

(
β̂r

0

1 − α̂r
0

− β̂r
1

1 − α̂r
1

)2

converges in distribution to χ2(1) under H ′
0 and a.s. diverges to +∞ under H ′

1.

In the case when α0 = α1 = 0, testing H0 or H ′
0 boils down to testing {β0 = β1}:

PROPOSITION 38. In the BAR model (1), assume that α0 = α1 = 0 and that
the distribution of the ancestor X1, ν, has finite moments of all orders. Then the
test statistic

ξr = 1

σ̂r

√
2 |Tr |(1 − ρ̂r )

∑
i∈Tr

(X2i − X2i+1)

converges in distribution to N (0,1) under {β0 = β1} and almost surely tends to
+∞ (resp. −∞) under {β0 > β1} (resp. {β0 < β1}).

PROOF. Let f (x, y, z) = y − z. Observe that f ∈ Cpol(R
3) and that Pf (x) =

β0 − β1, since α0 = α1 = 0.
Let us assume that β0 = β1. Then Pf = 0 and Proposition 27(iii) implies that

σ̂r

√
2(1 − ρ̂r )ξr converges in distribution to N (0, s2), where s2 = (µ,Pf 2) =

2σ 2(1 − ρ). Now, (σ̂ 2
r , ρ̂r ) a.s. converges to the constant (σ 2, ρ) so that, with

Slutsky’s theorem, ξr converges in distribution to N (0,1).
Let us now assume that β0 �= β1. Proposition 28 states that the sequence

|Tr |−1/2 σ̂r

√
2(1 − ρ̂r )ξr = |Tr |−1∑

i∈Tr
f (�i) a.s. converges to (µ,Pf ) = β0 −

β1 �= 0. Since σ̂r

√
2(1 − ρ̂r ) converges in probability to σ

√
2(1 − ρ) > 0, we con-

clude that ξr a.s. diverges as |Tr |1/2, to +∞ if β0 > β1, and to −∞ if β0 < β1.
�

REMARK 39. Note that in the model where α0 = α1 = 0, χ
(1)
r would read

χ(1)
r = |Tr |

2σ̂ 2
r (1 − ρ̂r )

(β̂r
0 − β̂r

1)2

and is thus equal to ξ2
r . The latter test looks like the ones Stewart et al. performed

in [22]: it focuses on the differences X2i −X2i+1 between sisters. But it is relevant
only in the case when the correlation parameters α0 and α1 are zero, that is, in a
dynamics with no memory. Now, the data analysis strongly rejects this assumption,
as we shall see in the next section.
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REMARK 40. Note that all the propositions and lemmas of Section 3 remain
true if ((ε2i , ε2i+1), i ≥ 1) is only assumed to be a sequence of (nonnecessarily
Gaussian) i.i.d. bivariate random vectors with finite moments of all orders, that is,
E[ε2m

2i + ε2m
2i+1] < ∞ for all m ∈ N, with covariance matrix given by (2). In such

a general case, (θ̂r , σ̂
2
r , ρ̂r ) has no reason to be the maximum likelihood estimator

of (θ, σ,ρ).

3.4. Data numerical analysis. We now perform the estimation and test proce-
dures on Stewart et al.’s data (see Guyon [12] for more detailed results). The data
consists of 95 films, and each film should be seen as an incomplete binary tree of
growth rates. How do we compute the estimators and test statistics? According to
the above presentation, we should restrict the observation to the bigger complete
subtree Tr+1. We actually take into account all the observations, noting that:

• very few cells are observed in a generation, say, r , when generation r − 1 is not
completely observed,

• cells observed in the last generation are assumed to be the result of a random
permutation �, independent of X; this should be correct as a first approxima-
tion.

Figure 5 gives the global empirical distribution of the residues ε̂ over the 95
films. We have separated new poles’ residues (left) from old poles’ ones (right),
and fitted to normal distributions. Both histograms are close to Gaussian laws.

Figure 6 shows that H0 can be strongly rejected. This indicates that the dynam-
ics of the growth rate of the old pole offspring is different from that of the new pole
offspring. The nullity of any parameter (α0, β0, α1 or β1) can be strongly rejected
as well. This enlightens the relevance of a Markovian modelization with memory
one: the mother cell is a significant predictor of offspring growth rate in general.

Besides, we cannot reject the hypothesis that both α’s are equal on the one
hand, and that both β’s are equal on the other hand. But we strongly reject that

FIG. 5. Histograms of the residues ε̂2n (new poles, left) and ε̂2n+1 (old poles, right), and their fit
to Gaussian distributions.
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FIG. 6. H0 = {(α0, β0) = (α1, β1)}. Histogram of the p-values P(χ2(2) ≥ χ
(1)
obs).

both fixed points, namely, γ0 = β0/(1 − α0) and γ1 = β1/(1 − α1), are equal; see
Figure 7. Hence, the parametrization (α, γ ), which makes more physical sense
than the parametrization (α,β), has the following advantage: with no assumption
on the α’s, we can detect aging by looking only at the γ ’s, which we cannot do with
the β’s. It also means that the new poles and the old poles are not only different in
distribution, but also in mean.

The scatter plot in Figure 7 indicates that γ0 > γ1. More precisely, the line γ0 =
γ1 + δ fits well the data with δ significantly positive. Numerically, δ ≈ 0.0012 ±
0.0011, or 0.0011 ± 0.0008 if we delete the two aberrant points in Figure 7 (right).
This may be seen as statistical evidence of aging in E. Coli, since, on average,
old pole cells grow slower than the new pole cells, which is characteristic of aged
individuals. Quantitatively, they seem to grow 3% slower (we may speak in terms
of percentage since the range of values of γ ’s is narrow). This result is close to
Stewart et al.’s original calculations, since in [22] they estimated this ratio to be
around 2%.

FIG. 7. H ′
0 = {β0/(1−α0) = β1/(1−α1)}; left: histogram of the p-values P(χ2(1) ≥ χ

(3)
obs); right:

β̂0/(1 − α̂0) on the x-axis, β̂1/(1 − α̂1) on the y-axis; the dashed line is the diagonal.
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