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A LARGE DEVIATION INEQUALITY FOR VECTOR FUNCTIONS
ON FINITE REVERSIBLE MARKOV CHAINS
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Let SN be the sum of vector-valued functions defined on a finite Markov
chain. An analogue of the Bernstein–Hoeffding inequality is derived for the
probability of large deviations of SN and relates the probability to the spectral
gap of the Markov chain. Examples suggest that this inequality is better than
alternative inequalities if the chain has a sufficiently large spectral gap and
the function is high-dimensional.

1. Introduction. Suppose that a system evolves according to a Markov chain
and that properties of the system are described by a vector-valued function f. Af-
ter a sufficiently long time, the average of the realized values of f converges to
its expected value. In many practical situations, it is of great interest to determine
how long it takes for the average to converge within specified bounds. In other
words, we are interested in estimating the probability of a large deviation of the
average from its expected value. Large deviation theory gives the asymptotic rate
of convergence but is silent about explicit bounds. In the case of a scalar func-
tion, the first explicit estimate of the probability of a large deviation was given by
Gillman [9] and was later improved by Dinwoodie [6] and Lezaud [14]. For vector-
valued functions, we could proceed by applying one-dimensional estimates to each
component of the function. If SN is a vector with m components and we want to
estimate Pr{|SN | ≥ εN}, then it is enough to estimate Pr{|Si

N | ≥ ε/
√

mN}, where
Si

N is the ith component of the vector sum SN . Since one-dimensional inequalities
have the form Pr{|Si

N | ≥ ηN} ≤ C exp(−αη2N), our estimate will be

Pr{|SN | ≥ εN} ≤ Cm exp(−(α/m)ε2N),

which has an exponential rate inversely related to m. It turns out that it is possible
to improve on this inequality by deriving a genuine multidimensional inequality in
which the rate function is dimension-free.

To fix notation, let S be the state space of a finite Markov chain with transition
matrix P and invariant distribution µ. We will assume that the chain is reversible,
that is, that µsPst = µtPts for any s and t from S. The transition matrix of a
reversible chain is similar to a symmetric matrix (i.e., there exists a D such that
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D−1PD is symmetric) and therefore enjoys many good properties of symmetric
matrices. In particular, its eigenvalues are real. Let us denote the eigenvalues of P

as λi , where

λ0 = 1 > λ1 ≥ λ2 ≥ · · · ≥ λ|S|−1 ≥ −1.

The difference 1 − λ1 is called the spectral gap of the chain. In our study, it will
be the main indicator of how well the chain mixes the states. Finally, let f be
a function on S that takes values in an m-dimensional real Euclidean space, that
is, in a vector space endowed with a scalar product 〈·, ·〉 and the corresponding
norm | · |. We study the behavior of partial sums SN = ∑N

t=1 f (st ), where the
sequence s1, . . . , sN is a realization of the Markov chain evolution.

The behavior of the sum depends on the interaction of properties of the function
and the Markov chain. We will use two parameters that characterize this interac-
tion. We call them the l∞-norm and the principal variance of f. The l∞-norm
is defined as ‖f ‖∞ =: sups |f (s)|. The principal variance is defined as follows.
With each vector u, we can associate the variance of the random scalar product
〈f (s), u〉. The randomness comes from s, which is drawn according to the invari-
ant distribution. The principal variance of f is defined as the supremum of these
variances over all unit vectors u:

σ 2(f ) =: sup
|u|=1

∑
s∈S

µs〈f (s), u〉2

= sup
|u|=1

E[〈f (s), u〉2].

(In what follows, we will always use symbols E and E(0) to denote the expectation
values relative to the invariant and initial distributions on S, resp.) The princi-
pal variance measures the variation of the function f in the long run, when the
distribution of f (s) is approximately invariant. The l∞-norm helps us to deter-
mine if the function has an outlier. Directly from the definitions, it is clear that
σ 2(f ) ≤ ‖f ‖2∞.

The behavior of the partial sums SN also depends on the initial distribution µ(0).
It is convenient to use the following measure of the distance between the initial and
the invariant distribution:

∥∥∣∣µ(0)/µ
∥∥∣∣2 =: E

[(
µ(0)(s)

µ(s)

)2]
.

Here is the main result.

THEOREM 1. Suppose (1) P is reversible with spectral gap g, (2) Ef = 0, (3)
‖f ‖∞ ≤ L and (4) σ 2(f ) ≤ σ 2. For arbitrary ε > 0,

Pr{|SN | ≥ εN} ≤ 3
∥∥∣∣µ(0)/µ

∥∥∣∣2m/2e−(1/(8k))ε2N,(1)
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where

k = σ 2
(

1

2
+ 1

g

)
+ L2 192

125

g

log2[1 + g/2] .

In view of the inequality σ 2(f ) ≤ L2, we can take σ 2 = L2 and obtain the
following estimate that involves only L.

COROLLARY 2. Under the assumptions of Theorem 1,

Pr{|SN | ≥ εN} ≤ 3
∥∥∣∣µ(0)/µ

∥∥∣∣2m/2 exp
[
−α

ε2

L2 N

]
,

where

α =
(

4 + 8

g
+ 1536

125

g

log2[1 + g/2]
)−1

.

REMARKS. 1. Recall that one form of the Bernstein–Hoeffding inequality for
i.i.d. and one-dimensional variables is

Pr{|SN | ≥ εN} ≤ 2 exp
[
−1

2

ε2

L2 N

]
(2)

(see, e.g., [10], Theorem 2). This inequality has the same form as the inequality
we formulated in Corollary 2, but a better exponential rate. For Markov chains and
one-dimensional functions f , Gillman [9] showed that if ‖f ‖∞ ≤ 1, then

Pr{SN ≥ εN} ≤ 2
∥∥µ(0)/µ

∥∥ exp
[
− g

20ν
ε2N

]
,(3)

where ν is the spread of P, that is, ν = max(µ)/min(µ). The inequality in Theo-
rem 1 generalizes (3) to the case of multidimensional functions f.

2. For a fixed m, the probability of large deviations declines exponentially with
rate at least −(8k)−1ε2. Note that this bound on the rate does not depend on the di-
mension of the Euclidean space where f takes its values. However, the dimension
can significantly affect the term before the exponential, which grows exponentially
in m.

EXAMPLES. In the following examples, we study random walks on graphs.
We will assume that E(f ) = 0 and L = σ 2 = 1. We ask how large N should be to
ensure that the following inequality holds:

Pr{|SN/N | ≥ 0.01} ≤ 0.05.

We will consider three examples: a complete graph, a hypercube and a circle. We
will set the number of vertices equal to 32 in all examples to make them compa-
rable. (In the example with the circle, we use 33 vertices to ensure that the chain
is aperiodic.) We will also assume that the random walks start from the uniform
distribution. The results are collected in Table 1.
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TABLE 1
Sample size needed to ensure that Pr{|SN/N | > 0.01} < 5%

Complete graph Hypercube Circle

Method m = 1 m = 20 m = 1 m = 20 m = 1 m = 20

Theorem 1 4 mln 9 mln 9 mln 22 mln 560 mln 960 mln
Martingale inequality1 280 mln — 280 mln — 300 mln —
Gillman 0.7 mln 26 mln 2 mln 80 mln 160 mln 2,640 mln

1While [11] derive bounds for vector-valued martingales, they do not provide explicit constants for
their inequalities.

EXAMPLE 3. Random walk on a complete graph. The most connected of all
graphs is the complete graph, where each vertex is connected with each of the
other vertices. We consider a random walk on a complete graph with n = 32 ver-
tices. The spectral gap for this random walk is n/(n − 1) = 1 + 1/31 (see [1] for
derivation).

EXAMPLE 4. Random walk on a hypercube. Let the state space be the set of
vertices of a 5-dimensional hypercube. With probability 5/6, the next state will be
one of the 5 adjacent vertices and with probability 1/6, it remains the same. The
spectral gap is g = 2/(5 + 1) = 1/3 (see [5] or [19]).

EXAMPLE 5. Random walk on a circle. We also consider a random walk on a
circle that consists of n = 33 states. If the current state is x ∈ {1, . . . , n}, then the
next state is x ± 1 mod(n), with probability 1/2 on each possibility. The spectral
gap is g = 1 − cos(π/n) ≈ 0.0045 (see [5] or [19]).

We consider two dimensions, m = 1 and m = 20, and three methods. The first
is from our Theorem 1, the second is given by Gillman’s inequality, modified to
make it applicable to multidimensional situations, and the third is the method of
reduction to martingale inequalities. The following is a sketch of the third method
in its application to a random walk on an n-vertex graph. Assume that the walk has
been started from the invariant distribution. We can define Fk = E(SN |s1, . . . , sk),

that is, the expectation of the sum SN conditional on the first k realizations of the
chain. Then F1, . . . ,FN form a martingale and FN = SN. For the application of the
Bernstein inequality for martingale sequences, we need an estimate on |Fk −Fk−1|.
Using coupling arguments, it is possible to show that |Fk − Fk−1| is less than
2(n − 1)L, where n is the number of vertices in the graph. Therefore, for m = 1
we have the Bernstein inequality

Pr{|SN | ≥ εN} ≤ 2 exp
(
−1

2

ε2

[2(n − 1)L]2

)
(4)
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and for m > 1, similar inequalities are given by Kallenberg and Sztencel [11]
(without explicit constants). Note that this method ignores how well the chain
mixes and uses only the size of the graph to bound the probability of a large devi-
ation.

Table 1 shows that Gillman’s inequality provides the best bounds for m = 1, but
performs worse than the bound in Theorem 1 for m = 20. The martingale inequal-
ity underperforms other methods for both the complete graph and hypercube, but
is better than the bound in Theorem 1 for the case of the circle. This leads us to the
conclusion that the bound in Theorem 1 is most effective for large dimensions and
well-connected graphs for which the spectral gap is large.

To put the problem in perspective, we shall sketch a history of the question. Ap-
parently, the first version of a large deviation inequality for sums of i.i.d. random
variables was proved by Bernstein in 1924 (see Paper 5 in [3]). Later, Bern-
stein’s result was significantly clarified and improved by Kolmogoroff [13], Cher-
noff [4], Prokhorov [17], Bennett [2] and Hoeffding [10]. In addition, Hoeffding
[10] showed how the inequality can be extended to some classes of dependent
variables and, in particular, to the case of martingale differences. Prokhorov [18]
proved the multidimensional analogue of the Bernstein inequality for i.i.d. random
variables. The multidimensional analogue was also derived by Yurinskii [20] by
a different method which is applicable to the case of random variables that take
values in an infinite-dimensional Banach space. Later, the multidimensional large-
deviation inequalities were generalized to the case of martingale sequences in [11].
They showed that a martingale process with values in a Hilbert space can be repre-
sented by a martingale process that takes values in the plane R

2. This device allows
reduction of the question of large deviations in many dimensions to the question
of large deviations for two-dimensional martingale processes.

For functions defined on the state-space of a finite Markov chain, large devia-
tions were first studied by Miller [15]. Very definitive and general results in this
direction were later obtained by Donsker and Varadhan [7]. They established the
existence of the exponential rate of the decline in the probability of large devia-
tions and showed how to compute this rate. Their results are valid for vector-valued
or even measure-valued functionals of Markov chains acting on very general state
spaces. While results of this type are very useful for understanding the asymptotic
behavior of large deviations, they do not provide explicit bounds on the probability
of a large deviation in a finite sample.

The first one-dimensional Bernstein-type inequality for finite Markov chains
was proved by Gillman [9] (see also [6] and [14] for significant improvements).
Gillman’s method is to write

Pr{SN ≥ εN} ≤ E(0) exp(−θεN + θSN)

= exp(−θεN)
∑

s0,s1,...,sN

µ(0)
s0

Ps0s1e
θf (s1) · · ·PsN−1sN eθf (sN )

= exp(−θεN)
(
µ(0), [P(θ)]N1S

)
,
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where Pst denotes the transition probability from state s to t, P (θ) is a matrix
with entries Pst = Pste

θf (t), µ(0) is the initial distribution, 1S is a function that
takes value 1 on every state of S and (·, ·) denotes a scalar product for functions
on S. It turns out that P(θ) is similar to a symmetric matrix and therefore its
norm can be bounded in terms of its eigenvalues. Therefore, the main task is to
estimate the eigenvalues of P(θ), which can be done using Kato’s theory of linear
operator perturbations. Dinwoodie [6] and Lezaud [14] use a similar method and
improve upon Gillman by employing more sophisticated and difficult versions of
perturbation theory. Prior to Gillman, the method of a perturbed transition kernel
was used by Nagaev [16] to study central limit theorems for Markov chains.

Obviously, Gillman’s method is not directly applicable to the case of vector
functions since we cannot develop E exp(−θεN + θ‖SN‖) in the sum of products
of exp‖f (s)‖. To circumvent this difficulty, we use an idea of Prokhorov [18],
which was used to prove the multidimensional analogue of the Bernstein inequality
for i.i.d. variables. The idea is to consider E exp(−θεN + θ〈SN,u〉), where u is
a random vector from an appropriate distribution, and later integrate it over the
distribution of u. The advantage is that E exp(−θεN +θ〈SN,u〉) can be developed
as the sum of products of exp〈f (s), u〉. Using this idea we are able to extend the
Bernstein–Gillman inequality to vector functions.

A large body of related literature studies the explicit rates of convergence
of a Markov chain to its invariant distribution. For a review, see the book by
Diaconis [5], the review paper by Saloff-Coste [19] and the dissertation by Gan-
golli [8]. Our problem is of a somewhat different flavor because, even for a chain
which starts in the invariant distribution, the problem of estimating the probability
of a large deviation of the function sum is not trivial.

The rest of the paper is devoted to the proof of the main result. It is organized
as follows. Section 2 gives an outline of the proof and explicates the relation of
our problem to the eigenvalue problem for a perturbed transition matrix. Section 3
applies a mixture of techniques from the Rellich and Kato perturbation theories to
estimate the largest eigenvalue of the perturbed transition matrix. Section 4 con-
cludes.

2. Outline of the proof. Let

Fr(x) =
∫

exp〈x,u〉d	(u),

where x and u are vectors from an m-dimensional real Euclidean space and d	(u)

is the Gaussian measure with density

φ(u) = 1

(2πr2)m/2 exp
(
−|u|2

2r2

)
.

We can easily calculate Fr(x) explicitly:

Fr(x) = e(r2/2)|x|2 .
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Consequently, we can write

Pr{|SN | ≥ εN} = Pr
{
e(r2/2)|SN |2 ≥ e(r2/2)|εN |2}

≤ e(−r2/2)|εN |2E(0){e(r2/2)|SN |2}
(5)

= e(−r2/2)|εN |2E(0)

[∫
exp〈SN,u〉d	(u)

]

= e(−r2/2)|εN |2
∫ [

E(0) exp〈SN,u〉]d	(u).

Consider now E(0) exp〈SN,u〉. We will write this expression as a quadratic form
and show that what matters is the largest eigenvalue of this form. We will then show
that a sufficiently good estimate on the eigenvalue would imply the inequality in
Theorem 1. The derivation of the eigenvalue estimate is given in the next section.

Define the perturbed transition matrix as a matrix with the following entries:

Pst (u) = Pste
〈f (t),u〉.

We denote its largest eigenvalue by λ0(u). Let (·, ·) denote the scalar product
(a, b) = ∑

s asbs, where s are states of the chain and as and bs are scalar-valued
functions of s. Also, let 1S denote the scalar-valued function that takes the value 1
on all states.

LEMMA 6.

E(0) exp〈SN,u〉 = (
µ(0), [P(u)]n1S

)
.

PROOF. We can write

E(0) exp〈SN,u〉 = ∑
s0,s1,...,sN

µ(0)
s0

Ps0s1e
〈f (s1),u〉 · · ·PsN−1sN e〈f (sN ),u〉

= ∑
s0,s1,...,sN

µ(0)
s0

Ps0s1(u) · · ·PsN−1sN (u)

= (
µ(0), [P(u)]N1S

)
. �

A fortunate consequence of the reversibility of P is that matrices P and P(u)

become symmetric in a coordinate system with dilated axes. This implies that ma-
trices P and P(u) enjoy all of the good properties of symmetric matrices and, in
particular, that their eigenvalues are real and their norms can be expressed in terms
of the eigenvalue with the largest absolute value.

The second instance of good luck is that both P and P(u) are nonnegative in
the sense that all of their entries are nonnegative. This implies that the Perron–
Frobenius theorem is applicable and we can pinpoint which of the eigenvalues
has the largest absolute value. As we might expect, the largest eigenvalue has the
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largest absolute value. As a consequence, we are able to estimate the norm of
P(u) in terms of its largest eigenvalue and therefore obtain a bound on the value
of (µ(0), [P(u)]N1S).

LEMMA 7. Let D = diag{√µs } and Eu = diag{exp 1
2〈f (s), u〉}. Define S =:

DPD−1 and Su =: EuSEu. Then (1) S and Su are symmetric, (2) Su is similar to
P(u) and has the same eigenvalues as P(u), (3) the eigenvalues of P(u) are real
and (4) the largest eigenvalue of P(u) has the largest absolute value among all
eigenvalues of P(u).

REMARK. Here, S and Eu denote matrices and should not be confused with
the notation for the Markov chain, S, and for the expectation value, E, respectively.

PROOF OF LEMMA 7. First, the reversibility of P implies that S =: DPD−1

is symmetric. Indeed,

Sji ≡ µ
1/2
j Pjiµ

−1/2
i = µ

−1/2
j µjPjiµ

−1/2
i

= µ
−1/2
j Pijµiµ

−1/2
i = Sij.

Then Su = EuSEu is symmetric because Eu is symmetric. It is similar to P(u)

because

P(u) ≡ PE2
u = D−1SDE2

u

= D−1E−1
u (EuSEu)EuD

= (EuD)−1Su(EuD),

where we have used the commutativity of D and Eu. Consequently, Su and P(u)

have the same eigenvalues. The eigenvalues of Su are real because Su is symmetric.
Therefore, the eigenvalues of P(u) are also real. Finally, P(u) has nonnegative
entries and therefore, by the Perron–Frobenius theorem, its largest eigenvalue has
the largest absolute value. �

LEMMA 8. If the chain P is reversible, |u| ≤ 1 and |f (s)| ≤ 1 for any s, then(
µ(0), [P(u)]N1S

) ≤ 3
∥∥∣∣µ(0)/µ

∥∥∣∣λ0(u)N .

PROOF. Since Su is symmetric and its largest eigenvalue has the largest ab-
solute value, then ‖Su‖ ≤ λ0(u). Therefore:(

µ(0), [P(u)]N1
) = (

µ(0)(EuD)−1, SN
u (EuD)1S

)
≤ λ0(u)N

∥∥µ(0)(EuD)−1∥∥‖(EuD)1S‖,
where ‖ · ‖ denotes the norm corresponding to the scalar product (·, ·).
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Then

∥∥µ(0)(EuD)−1∥∥ =
(∑

s

[µ(0)
s ]2

µs

exp〈−f (s), u〉
)1/2

≤ √
3

∑
s

[µ(0)
s ]2

µs

= √
3
∥∥∣∣µ(0)/µ

∥∥∣∣,
where we have used the fact that |〈f (s), u〉| ≤ |f (s)||u| ≤ 1 and consequently
exp〈±f (s), u〉 ≤ 3. Similarly,

‖(EuD)1S‖ =
(∑

s

µs exp〈f (s), u〉
)1/2

≤ √
3.

Combining, we get (
µ(0), [P(u)]N1S

) ≤ 3
∥∥∣∣µ(0)/µ

∥∥∣∣λ0(u)N . �

Suppose, for the moment, that we have managed to establish the inequality

λ0(u) ≤ exp(k|u|2).
Then, using Lemmas 6 and 8, we can write∫

[E exp〈SN,u〉]d	(u) ≤ 3
∥∥µ(0)/µ

∥∥∫
λ0(u)N d	(u)

≤ 3
∥∥µ(0)/µ

∥∥∫
exp(k|u|2N)d	(u)

= 3‖µ(0)/µ‖
(2πr2)m/2

∫
exp(k|u|2N)e−|u|2/(2r2) du.

In spherical coordinates, we can rewrite this expression as follows:

3‖µ(0)/µ‖
(2πr2)m/2

mπm/2

�(m/2 + 1)

∫ ∞
0

tm−1ekt2N−t2/(2r2) dt

= 3‖µ(0)/µ‖m
2m/2�(m/2 + 1)

∫ ∞
0

sm−1ekr2s2N−s2/2 ds,

where we use the fact that the surface area of the unit sphere in m-dimensional real
Euclidean space is mπm/2/�((m/2) + 1). Next, set

r = (
2
√

kN
)−1

.(6)

Then ∫ ∞
0

sm−1ekr2s2Ne−s2/2 ds =
∫ ∞

0
sm−1e−s2/4 ds.
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Making the substitution t = s2/4, we compute∫ ∞
0

sm−1e−s2/4 ds = 2m−1
∫ ∞

0
tm/2−1e−t dt

= 2m−1�

(
m

2

)
.

So, combining, we obtain∫
[E exp〈SN,u〉]d	(u) ≤ 3‖µ(0)/µ‖m2m−1�(m/2)

2m/2�(m/2 + 1)

= 3
∥∥µ(0)/µ

∥∥2m/2.

Substituting this and (6) into (5), we obtain

Pr{|SN | ≥ εN} ≤ 3
∥∥µ(0)/µ

∥∥2m/2e−1/(8k)ε2N,

which is the desired inequality.
In the above, we have assumed that ‖f ‖∞ ≤ 1. In the general case when

‖f ‖∞ ≤ L, we simply introduce the auxiliary function g = f/L. Then

Pr{|f1 + · · · + fN | ≥ εN} = Pr
{
|g1 + · · · + gN | ≥ ε

L
N

}

and the latter probability can be estimated if we observe that ‖g‖∞ ≤ 1 and
σ 2(g) = σ 2(f )/L2.

It remains to derive the required estimate on the eigenvalue λ0(u).

3. A bound on the largest eigenvalue of the perturbed transition matrix.
We need to estimate the largest eigenvalue of the perturbed transition matrix
P(u) = P diag(exp〈f (t), u〉). In the following, we use the notation P(z) = P(zu),

where u is a fixed vector of length 1. Our main concern will be real values of z

which lie in the interval [0,∞), but we will also need to consider the complex
values of z. It is known that if λi is an eigenvalue of P of multiplicity 1, then
there is a complex-analytic function λi(z) defined in a neighborhood of z = 0 such
that λi(z) is an eigenvalue of P(z). This function is called the perturbation of the
eigenvalue λ. We will consider this function for i = 0.

It will be clear from the following discussion that for all sufficiently small z, say,
for |z| ≤ r�, there exists a circle around λ0(z) such that P(z) has no eigenvalues
in this circle except λ0(z) itself. Since for real positive z, the largest eigenvalue
of P(z) must be real and positive (by the Perron–Frobenius theorem) and since
initially at z = 0, λ0 is the largest eigenvalue, we can conclude by continuity that
when z changes from zero to r� along the real line, the largest eigenvalue of P(z)

remains λ0(z). Therefore, for this range of z, the desired estimate for the largest
eigenvalue of P(z) follows from an appropriate estimate for λ0(z). This estimate
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will be obtained from Kato perturbation theory. For larger values of the perturba-
tion parameter z, we will use a different method which bounds all eigenvalues of
P(z) at once.

We know that λ0(0) = 1 and it is easy to show that λ′
0(0) = 0. It is also relatively

easy to bound the second derivative of λ0(z) at z = 0. It is somewhat more difficult
to estimate the remainder λ0(z) − 1 − λ′′

0(0)z2 in an open neighborhood of z = 0.
We will establish an estimate by studying the resolvent of the perturbed operator
in the complex z-plane (the Kato method, see [12]).

For convenience, we shall call the following set of conditions Assumption A:

1. P is a reversible chain with spectral gap g;
2. Ef (s) = 0;
3. The principal variance of f is σ 2;
4. |f (s)| ≤ 1 for each s.

In the following, we always suppose that Assumption A holds. The main result
of this section is the following estimate.

PROPOSITION 9.

λ0(v) ≤ ek|v|2,
where

k = σ 2
(

1

2
+ 1

g

)
+ 192

125

g

log2[1 + g/2] .(7)

First, we estimate λ′
0(0) and λ′′

0(0).

LEMMA 10. λ′
0(0) = 0.

PROOF. Matrix P(z) can be developed as a power series in z:

P(z) = P

( ∞∑
n=0

1

n!V
nzn

)
,(8)

where

V = diag{〈f (t), u〉}.
Let the expansions for λ0(z) and the corresponding eigenvector, X(z), be

λ0(z) = 1 + λ′(0)z + 1
2λ′′(0)z2 + · · · ,

X(z) = µ + X′(0)z + 1
2X′′(0)z2 + · · · .

Writing the equality X(z)P (z) = λ0(z)X(z) in powers of z, we obtain

µP = µ,
(9)

X′(0)P + µPV = λ′(0)µ + X′(0).
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Multiply the last line by 1S on the right and use the facts that P 1S = 1S and
µ1S = 1. (Recall that 1S is a scalar-valued function that takes the value 1 on all
states.) We then obtain

λ′(0) = µV 1S.

However,

µV 1S = ∑
s

µs〈f (s), u〉(10)

= (Ef,u) = 0,(11)

by assumption. Therefore, λ′(0) = 0. �

We also require some information about the perturbation of the eigenvector, in
particular, about X′(0). From (9), X′(0) must satisfy the following equation:

X′(0)(I − P) = µV.(12)

It is tempting to write X′(0) = (I − P)−1µV. However, I − P is not invertible,
which is reflected, for example, in the fact that if a vector X′ satisfies equation (12),
then X′ + aµ also satisfies it. We need to impose one additional constraint to
determine the solution. We choose a normalization in which X′(0) is the unique
solution of (12) that satisfies the additional constraint that (X′(0),1S) = 0.

To solve (12), we need a pseudo-inverse of I − P. The traditional pseudo-
inverse is not appropriate because, first, P is not symmetric and second, we use a
nonstandard normalization of the solution. An appropriate concept of the pseudo-
inverse is as follows.

Let 1⊥
S

be the subspace of vectors orthogonal to 1S. This subspace is invariant
under the right action of P . Indeed, if x1S = 0, then xP 1S = x1S = 0. We define
the pseudo-inverse operator (I −P)† as the inverse of I −P on 1⊥

S
and as 0 on 1S.

If P is reversible, then P = D−1SD, where S is symmetric. Since the subspace
1⊥

S
is invariant under the right action of P, the subspace 1⊥

S
D−1 is invariant under

the right action of S and we can define (I − S)†, which is the inverse of I − S

on 1⊥
S
D−1 and is zero on 1SD

−1. Note that (I − S)† and S commute and that
D−1(I − S)†D = (I − P)†.

LEMMA 11. X′(0) = µV (I − P)† = µV D−1(I − S)†D.

PROOF. By (10), µV ∈ 1⊥
S
. Therefore, the product µV (I −P)† satisfies equa-

tion (12) and belongs to 1⊥
S
. Consequently, it coincides with X′(0). �

Now, consider the second derivative of the eigenvalue function.

LEMMA 12. λ′′
0(0) ≤ (1 + 2/g)σ 2.
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PROOF. Let us equate z2 terms in the expansion of the equality X(z)P (z) =
λ(z)X(z), taking into account that λ′(0) = 0 and µP = µ:

1
2X′′(0)P + X′(0)PV + 1

2µV 2 = 1
2λ′′

0(0)µ + 1
2X′′(0).

Multiplying this equality by 1S on the right and using the fact that P 1S = 1S, we
obtain the following formula for λ′′(0):

λ′′
0(0) = µV 21S+2X′(0)PV 1S.(13)

Consider the absolute value of the second term in (13):

|X′(0)PV 1S| = |µV D−1(I − S)†SDV 1S|
≤ ‖(I − S)†S‖‖µV D−1‖‖DV 1S‖,

where we used Lemma 11 and the equality P = D−1SD. [Here, we use ‖ · ‖ to
denote both the norm of a function on S and the norm of an operator that acts on
these functions: by definition, ‖f ‖ = (f, f )1/2 and ‖A‖ = sup‖f ‖=1 ‖Af ‖.]

The operator (I −S)†S is symmetric with eigenvalues which are either zeros or
λi/(1 − λi), where i ≥ 1. Consequently,

‖(I − S)†S‖ ≤ 1

g
.

Next,

‖DV 1S‖ =
(∑

s

µs〈f (s), u〉2

)1/2

≤ σ

and

‖µV D−1‖ =
(∑

s

µs〈f (s), u〉2

)1/2

≤ σ,

where we used the fact that D = diag{√µs }. Combining, we have

|X′(0)PV 1S| ≤ σ 2

g
.

Finally, for the first term on the right-hand side of (13), we have

|µV 21S| =
∣∣∣∣∣
∑
s

µs〈f (s), u〉2

∣∣∣∣∣ ≤ σ 2

and therefore

λ′′
0(0) ≤ σ 2

(
1 + 2

g

)
. �
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We now turn to the estimation of the residual λ0(z) − 1 − λ′′
0(0)z2. The fol-

lowing is a quick excursion in Kato’s theory of perturbations. The resolvent of the
perturbed operator P(z) is defined as R(ζ, z) ≡ [P(z)−ζ ]−1. We want to estimate
the change in eigenvalues of P(z) when z changes. For this purpose, we study how
the resolvent of P(z) depends on z.

Let us, for economy of space, write

A(z) =: P(z) − P = P
(
V z + 1

2V 2z2 + · · ·).
We can write

P(z) − ζ = P − ζ + A(z)

= (P − ζ )[1 + R(ζ )A(z)]
and consequently,

R(ζ, z) = [1 + R(ζ )A(z)]−1R(ζ ).

The power series for [1 + R(ζ )A(z)]−1 is

[1 + R(ζ )A(z)]−1 =
∞∑

n=0

[R(ζ )A(z)]n.(14)

R(ζ, z) is nonsingular if this power series is convergent, which holds if

‖R(ζ )A(z)‖sp < 1,(15)

where ‖ · ‖sp denotes the spectral norm,

‖X‖sp =: lim sup
n→∞

‖Xn‖1/n.

Recall that the reversibility of P implies that it can be represented as P =
D−1SD, where D = diag{√µs} and S is symmetric. Let us denote (S − ζ )−1

by RS(ζ ).

LEMMA 13. The power series (14) for [1 + R(ζ )A(z)]−1 converges if |z| <

log(1 + ‖RS(ζ )S‖−1).

PROOF. In our case, the perturbation is

A(z) = P(ezV − 1),

where V = diag(〈f (s), u〉). By criterion (15), we should determine when
‖R(ζ )P (ezV − 1)‖sp < 1. For reversible P , we can write

R(ζ )P ≡ (P − ζ )−1P

= D−1(S − ζ )−1SD

= D−1RS(ζ )SD.
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Using the fact that both D and (ezV − 1) are diagonal and therefore commute, we
can further write

R(ζ )P (ezV − 1) = D−1RS(ζ )S(ezV − 1)D.

Next, we use the property of the spectral norm that it is not changed by similarity
transformations and write

‖R(ζ )P (ezV − 1)‖sp = ‖RS(ζ )S(ezV − 1)‖sp

≤ ‖RS(ζ )S(ezV − 1)‖,
where we also used the fact that the spectral norm is bounded from above by the
usual operator norm. We can continue as follows:

‖RS(ζ )S(ezV − 1)‖ ≤ ‖RS(ζ )S‖
∞∑

k=1

1

k! |z|
k‖V k‖.

From assumptions on u and f (s), it follows that ‖V ‖ ≤ 1 and consequently,

‖RS(ζ )S(ezV − 1)‖ ≤ ‖RS(ζ )S‖(
e|z| − 1

)
.

This expression is less than 1, provided that |z| < log(1 + ‖RS(ζ )S‖−1). �

In the following, it is useful to keep in mind the distinction between the ζ -plane,
where the spectral parameter ζ lives, and the z-plane, where the perturbation para-
meter z lives.

LEMMA 14. Let � be a circle of radius rζ in the ζ -plane whose interior con-
tains exactly one eigenvalue of P, λ0 = 1. Define

rz = min
ζ∈�

log
(
1 + ‖RS(ζ )S‖−1)

.

Then for every z in the z-plane such that |z| ≤ rz, there is exactly one eigenvalue
of P(z) inside � [i.e., the eigenvalue λ0(z) of the perturbed matrix remains in-
side �].

Moreover, for α ∈ (0,1), the eigenvalue function λ0(z) is holomorphic in the
disc |z| ≤ (1 − α)rz and its third derivative inside the disc can be estimated as
follows:

|λ′′′
0 (z)| ≤ 12

α3

rζ

r3
z

.

Intuitively, if the resolvent RS(ζ ) is small in magnitude, then we can be sure that
for perturbations less then rz, the eigenvalue λ0(z) does not move far from λ0(0)

and there are no other eigenvalues near λ0(z). The size of rz is inversely related to
the size of RS(ζ ).
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PROOF OF LEMMA 14. Let D be a circle in the z-plane with center at 0 and
radius rz = log(1 + ‖RS(ζ )S‖−1). Consider an arbitrary z0 inside D. We can con-
nect z = 0 and z0 by a curve  that lies completely inside the circle D. When we
change z along this curve, the eigenvalues of the operator P(z) follow paths that
never intersect the circle �—we know this because by Lemma 13, the power series
for the resolvent R(ζ, z) always converge for all ζ ∈ �. Consequently, the number
of eigenvalues of the operator P(z) that are located inside � is conserved along
the path . It follows that P(z0) has exactly one eigenvalue inside �.

For the second part of the lemma, take an arbitrary z0 such that |z0| ≤ (1 −
α)rz. Then exactly one eigenvalue of P(z0) lies inside �. Consider the circle D0
with center at z0 and radius αrz. This circle lies entirely inside the circle D and
consequently, for any z ∈ D0, there is only one eigenvalue of P(z) inside �. Hence,

|λ0(z) − λ0(z0)| ≤ 2rζ .

Recalling that λ(κ) is holomorphic (see [12]), we can estimate its third deriva-
tive at z0 by using Cauchy’s inequality:

|λ′′′
0 (z0)| ≤ 6

maxz∈D0 |λ(z) − λ(z0)|
|z − z0|3 = 6

2rζ

(αrz)3 = 12

α3

rζ

r3
z

. �

LEMMA 15. Let � be a circle of radius r� = g/2 around λ0 = 1. Then

max
ζ∈�

‖RS(ζ )S‖ = 2

g
.

PROOF. Since S is similar to P, it has the same eigenvalues. Since S is sym-
metric, RS(ζ )S is also symmetric and its norm coincides with the largest absolute
value of its eigenvalues. Further, RS(ζ )S has eigenvalues (λi − ζ )−1λi . It is easy
to see that if ζ ∈ �, then the maximum is reached for i = 0 and ζ0 = 1 − g/2.

A calculation gives

‖RS(ζ0)S‖ = 2

g
. �

LEMMA 16. Take α ∈ (0,1). Then for any z in the disc |z| ≤ (1 − α) log(1 +
g/2), the following inequality holds:

|λ′′′
0 (z)| ≤ 6g

α3 log−3
[
1 + g

2

]
.

PROOF. From Lemma 14,

|λ′′′
0 (z)| ≤ 12

α3

rζ

r3
z

.
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Take rζ = g/2 and apply Lemma 15 to obtain

rz = min
ζ∈�

log
(
1 + ‖RS(ζ )S‖−1)

= log
(

1 + g

2

)
.

Therefore,

|λ′′′
0 (z)| ≤ 6g

α3 log−3
(

1 + g

2

)
. �

Combining the previous lemmas, we obtain the following result.

LEMMA 17. Take α ∈ (0,1). Then for any z in the disc |z| ≤ (1 − α) log(1 +
g/2), the following inequality holds:

|λ0(z)| ≤ ek|z|2,

where

k = σ 2
(

1

2
+ 1

g

)
+ 1 − α

α3

g

log2[1 + g/2] .

PROOF. First, using Lemmas 12 and 16, we write

|λ′′
0(z)| ≤ σ 2

(
1 + 2

g

)
+

∣∣∣∣
∫ z

0
λ′′′

0 (t) dt

∣∣∣∣
= σ 2

(
1 + 2

g

)
+ 6

α3 g log−3
[
1 + g

2

]
|z|.

Then, using Lemma 10, we get

|λ′
0(z)| ≤

∫ |z|
0

|λ′′
0(t)|dt

≤ σ 2
(

1 + 2

g

)
|z| + 3

α3 g log−3
[
1 + g

2

]
|z|2

and

|λ0(z)| ≤ 1 +
∫ |z|

0
|λ′

0(t)|dt

≤ 1 + σ 2
(

1

2
+ 1

g

)
|z|2 + 1

α3 g log−3
[
1 + g

2

]
|z|3.

Using the condition |z| ≤ (1 − α) log[1 + g/2], we further reduce this to

|λ0(z)| ≤ 1 +
[
σ 2

(
1

2
+ 1

g

)
+ 1 − α

α3 g log−2
[
1 + g

2

]]
|z|2.
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This inequality and the inequality 1 + x2 ≤ ex2
together imply the claim of the

lemma. �

We should now treat the case when z is real and greater than (1 − α) log(1 +
g/2).

LEMMA 18. For every real z > 0,

|λ0(z)| ≤ ez.

PROOF. Recall (from Lemma 7) that P(z) has the same eigenvalues as S(z),
where S(z) = Ez/2SEz/2, Ez/2 = diag exp( z

2〈f (t), u〉) and u is a vector of unit
length. It follows that the absolute value of the largest eigenvalue does not ex-
ceed ‖S(z)‖ ≤ ‖Ez/2‖2‖S‖ ≤ ez, where we used the assumption that |f (t)| ≤ 1 to
bound ‖Ez/2‖. �

LEMMA 19. For every real z > 0,

|λ0(z)| ≤ ek|z|2,(16)

where

k = σ 2
(

1

2
+ 1

g

)
+ 192

125

g

log2[1 + g/2] .(17)

PROOF. Take α = 5/8. Then by Lemma 17, inequality (16) with rate (17)
holds for |z| ≤ (3/8) log(1 + g/2). However, for |z| ≥ (3/8) log(1 + g/2), we
have

k|z|2 ≥
(
σ 2

(
1

2
+ 1

g

)
+ 192

125

g

log2[1 + g/2]
)

3

8
log(1 + g/2)|z|

≥ 72

125

g

log[1 + g/2] |z| ≥ |z|
and using Lemma 18, we conclude that inequality (16) with rate (17) is valid for
all real z > 0. �

The claim of Proposition 9 follows if we take z = |v| and u = v/|v| in
Lemma 17. As was shown in the previous section, the validity of the inequality
in Proposition 9 implies the validity of Theorem 1.

4. Concluding remarks. We have derived an inequality for the probability of
large deviations of vector-valued functions on a finite Markov chain. The results
can be extended in two directions. First, it is desirable to eliminate dependence on
the dimension in the term before the exponential. Corresponding results for i.i.d.
and martingale variables suggest that this is possible. Second, it would be desirable
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to extend the results to denumerable Markov chains and, in particular, to random
walks on denumerable groups
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