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STATIONARY DISTRIBUTIONS OF A MODEL OF
SYMPATRIC SPECIATION1

BY FENG YU

University of Oxford

This paper deals with a model of sympatric speciation, that is, speciation
in the absence of geographical separation, originally proposed by U. Dieck-
mann and M. Doebeli in 1999. We modify their original model to obtain a
Fleming–Viot type model and study its stationary distribution. We show that
speciation may occur, that is, the stationary distribution puts most of the mass
on a configuration that does not concentrate on the phenotype with maximum
carrying capacity, if competition between phenotypes is intense enough. Con-
versely, if competition between phenotypes is not intense, then speciation will
not occur and most of the population will have the phenotype with the highest
carrying capacity. The length of time it takes speciation to occur also has a
delicate dependence on the mutation parameter, and the exact shape of the
carrying capacity function and the competition kernel.

1. Introduction. Understanding speciation is one of the great problems in the
field of evolution. According to Mayr [9], speciation means the splitting of a sin-
gle species into several, that is, the multiplication of species. It is believed that
many species originated through geographically isolated populations of the same
ancestral species. This phenomenon is relatively easy to understand. In contrast,
sympatric speciation, in which new species arise without geographical isolation, is
theoretically much more difficult. In this work, we take the recent work in Dieck-
mann and Doebeli [4] on sympatric speciation as a basis, and try to develop a
model that captures the most important aspects of their model and yet is also
amenable to rigorous mathematical analysis. In Section 1.1, we briefly describe
the Dieckmann–Doebeli model of sympatric speciation. Their original model is
very difficult to study, so in Section 1.2, we present a simplified model that re-
tains almost exactly the fitness function found in the original Dieckmann–Doebeli
model, and perform some nonrigorous analysis that illustrates the delicate depen-
dence of transitory behavior on the exact form of the fitness function. In Section 2,
we present our main model, a Fleming–Viot model with strong selection and a
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fitness function that retains the key features of the original Dieckmann–Doebeli
model. The advantage of using a Fleming–Viot model is that one can write down
the stationary distribution quite explicitly, and stationary or long-term behavior is
usually easier to study than transitory ones. It turns out that the stationary distribu-
tion concentrates more and more mass near its global maximum as the population
size becomes larger, thus identifying the global maximum gives a strong indica-
tion of the kind of configuration eventually taken up by the population. The main
results are given toward the end of Section 2, along with some discussion of these
results. The rest of the paper, Section 3, is devoted to proofs of various results on
local and global maxima of the stationary distribution of the Fleming–Viot model
introduced in Section 2.

1.1. The Dieckmann–Doebeli model. Dieckmann and Doebeli [4] proposed a
general model for sympatric speciation, for both asexual and sexual populations.
We will briefly describe their model for the asexual population, since this is the
model we study in this work. Their sexual model is naturally more complicated
than the asexual model, but the two models have similar behavior. In their asexual
model, each individual in the population is assumed to have a quantitative char-
acter (phenotype) x ∈ R determining how effectively this individual can make use
of resources in the surrounding environment. A typical example is the beak size
of a certain bird species, which determines the size of seeds that can be consumed
by an individual bird. The function K : R → R

+ (carrying capacity) is associated
with the surrounding environment, where Kx denotes the number of individuals of
phenotype x that can be supported by the environment. For example, since birds
with small beak size (say x1) are more adapted to eating small seeds than birds with
large beak size (say x2, x2 > x1), Kx1 will be larger than Kx2 if the surrounding en-
vironment produces more small seeds than large seeds. In the Dieckmann–Doebeli
model, Kx is taken to be c exp(−(x − x̂)2/(2σ 2

K)). Moreover, every pair of indi-
viduals compete at an intensity determined by the phenotypical distance of these
two individuals. More specifically, an individual of phenotype x1 competes with
an individual of phenotype x2 at intensity Cx1−x2 , where Cx = exp(−x2/(2σ 2

C)).
Therefore each individual in the population interacts with the environment via the
carrying capacity K , and interacts with the population via the competition ker-
nel C.

Let Nx(t) denote the number of individuals with phenotype x at time t . At any
time, an individual of phenotype x gives birth at a constant rate, and dies at a rate
proportional to (C ∗ N·(t))x/Kx , that is, inversely proportional to the x-carrying
capacity, but proportional to the intensity of competition exerted by the population
on phenotype x, the numerator (C ∗ N·(t))x = ∫

Cx−yNy(t) dy being how much
competition (from every individual in the population) individuals with phenotype x

suffer. In addition, every time an individual gives birth, there is a small probability
that a mutation occurs and the phenotype of the offspring is different from that of
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the parent; in this case, the phenotypical distance between the offspring and the
parent is then random and assumed to have a Gaussian distribution.

Since the number of individuals of a certain phenotype increases via the birth
mechanism at a linear rate, but decreases via the death mechanism at a quadratic
rate, extinction of all phenotypes will occur in finite time with probability one, that
is, N ≡ 0 eventually. For large initial populations, however, extinction will happen
far enough into the future that interesting behavior does arise before the population
becomes extinct.

Monte–Carlo simulations, shown in Figure 1, give a fairly good idea of the
behavior of the Dieckmann–Doebeli model for asexual populations. If the initial
population is monomorphic (t = 1 in Figure 1), that is, concentrated near a cer-
tain phenotype x0 (N·(0)/

∑
x Nx(0) ≈ δx0 ), then the entire population first moves

(t = 30,100,200 in Figure 1) toward x̂, the phenotype with maximum carrying
capacity. If σC > σK (this includes the case σC = ∞, i.e., equal competition be-
tween all phenotypes), then the population stabilizes near phenotype x̂. But if
σC < σK , then the monomorphic population concentrated at phenotype x̂ splits
into two groups, one group concentrating on a phenotype < x̂, while the other

FIG. 1. Simulation of the Dieckmann–Doebeli model with E = [−50,50] ∩ Z, σK = √
1000,

σC = √
600 and mutation happening to 1.5% of the births.
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concentrating on a phenotype > x̂ (t = 330,370,400,500 in Figure 1). In the lat-
ter case, one can say that one species has evolved into two distinct species. The
variance of the Gaussian distribution used in the mutation kernel affects how dif-
ferent phenotypically the offspring can be from the parent, and seems to affect the
speed of evolution, but not the configuration eventually taken up by the population.

1.2. A conditioned Dieckmann–Doebeli model. As noted in the very first para-
graph, the Dieckmann–Doebeli model for asexual populations is very difficult to
study. One reason for this difficulty is because the number of individuals can fluc-
tuate with time. As mentioned before, since the birth rate is linear but the death
rate is quadratic, extinction will occur in finite time with probability one, which
makes it somewhat meaningless to analyze the stationary or long-term behav-
ior of the system. The modification we apply to the Dieckmann–Doebeli model
is to assume constant population size N , reflecting a constant carrying capac-
ity of the overall population, and define a Wright–Fisher type model (for a de-
finition of Wright–Fisher model and its relationship with Fleming–Viot models,
see [6]) with fitness functions chosen to retain key ingredients of the original
Dieckmann–Doebeli model. In contrast to the continuous-time nature of the orig-
inal Dieckmann–Doebeli model, the modified model is discrete time. Because the
number of individuals remains constant, analyzing the behavior of the population
is equivalent to analyzing the empirical distribution

πN = 1

N

N∑
n=1

δxn,

where xn, n = 1, . . . ,N , denotes the phenotype of the nth individual in a popula-
tion of size N and δx is the measure that puts unit mass at phenotype x.

Before we describe our choice of fitness functions, we briefly describe the con-
cepts of fitness and selection. Selection occurs when individuals of different geno-
types leave different numbers of offspring because their probabilities of surviving
to reproductive age are different (see [1]). If we define fitness to be a measure of
how likely a particular individual produces offspring that will survive to repro-
ductive age, then individuals with higher fitness should have higher probability of
being selected for reproduction. Along these lines, it is natural to define fitness of a
phenotype as the difference between the birth rate and the death rate of individuals
of this phenotype, therefore it is also natural to require the fitness function to be
bounded.

The key feature of the Dieckmann–Doebeli model is that each individual has
a fitness that depends on both the carrying capacity associated with its phenotype
and the configuration of the entire population. More specifically, the fitness of a
phenotype x is an increasing function of Kx , the carrying capacity, but a decreas-
ing function of (C ∗ N)x , the competition it suffers. Here Nx is the number of
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individuals of phenotype x. With this in mind, we propose the following two fit-
ness functions:

W(1)
x (π) = 0 ∨

(
1 −

∑
z Cx−zπz

Kx

)
,

W(2)
x (π) = Kx∑

z Cx−zπz

.

Each of the two fitness function defined above is an increasing function of Kx

and a decreasing function of (C ∗ π)x . W(1) resembles more closely the original
Dieckmann–Doebeli model, but it has the disadvantage of being in a more compli-
cated form than W(2) and it is also not differentiable. Our simplified discrete-time
and discrete-space Dieckmann–Doebeli model is as follows:

• At every time step t ∈ Z
+, the entire population is replaced by a new popula-

tion of N individuals, each chosen independently according to the distribution
p·(t, πN):

px(t,π
N) = ∑

y

A(y, x)
πN

y (t)Wy(π
N(t))∑

z πN
z (t)Wz(πN(t))

where the denominator
∑

z πN
z (t)Wz(π

N(t)) is simply the normalization factor
such that

∑
x px(t, π

N) = 1 and

1. E = [−L,L]∩Z is the phenotype space, and πN ∈ P (E) is a probability mea-
sure on E,

2. K :E → [0,1] is the carrying capacity, and C : Z → R
+ is the competition

kernel,
3. Wx(π) is the fitness of phenotype x in a population with empirical distri-

bution π (sometimes we notationally suppress the dependence on π ), and
W = W(1) or W = W(2),

4. A is a Markov transition matrix associated with mutation, with A(y, x) denot-
ing the probability of an individual of phenotype y mutating to an individual of
phenotype x.

By Theorem 1 in [3], {πN
t , t ∈ [0, T ]} ⇒ {πt , t ∈ [0, T ]} as N → ∞, where ⇒

denotes weak convergence and πt evolves according to the following deterministic
dynamical system:

πx(t + 1) = ∑
y

A(y, x)
πy(t)Wy(π(t))∑
z πz(t)Wz(π(t))

.(1)

Analyzing the dynamical system (1) is still not easy, partly because it is of a com-
plicated form that is nonlinear in π , and we cannot find any Lyapunov function [8]
that associates with (1). Simulations of (1), however, seem to display some in-
teresting behavior, which we will describe after carrying out some nonrigorous
analysis of (1).
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Without mutation, any phenotype x with πx = 0 at any time τ will stay 0 for all
t ≥ τ . Mutation enables individuals of phenotype x to be born in future generations
even if there are no individuals of phenotype x in the present generation. But if we
start with a polymorphic initial measure, that is, πx(0) �= 0 for all x, then adding
small mutation to the system should not cause significant changes in the behavior
of (1). Therefore we assume that A = I and π(0) is polymorphic. In this case,
(1) can be simplified to

πx(t + 1) = πx(t)Wx(π(t))∑
z πz(t)Wz(π(t))

.

Thus if A = I , then π̂ is a stationary distribution of (1) if and only if

π̂x = 1

c
π̂xWx(π̂)(2)

for some constant c. Condition (2) is equivalent to

Wx(π̂) = c for all x where π̂(x) �= 0.(3)

Let K and C be in the form considered by Dieckmann and Doebeli, that is, Kx =
exp(−x2/2σ 2

K) and Cx = exp(−x2/2σ 2
C). If W = W(2), then condition (3) means

that

Kx = c(C ∗ π̂)(x) for all x where π̂(x) �= 0,

which seems to indicate that if σC < σK , then π̂ should be close to N (0, σ 2
K −

σ 2
C). On the other hand, if W = W(1), then π̂ is a stationary distribution if

1 − (
∑

z Cx−zπ̂z)/Kx is a strictly positive constant. Notice that if K and C

are both Gaussian-shaped with K0 = C0 = 1 then π̂ = N (0, σ 2
K − σ 2

C) makes
1 − (

∑
z Cx−zπ̂z)/Kx constant; furthermore, this constant is strictly positive since

(C ∗ π̂)(0) < K0 = 1 if σC < σK .
Therefore for both W(1) and W(2), assuming Gaussian competition and car-

rying capacity kernels, the dynamical system (1) should have Gaussian-shaped
stationary distributions if σC < σK . In simulations carried out by Dieckmann and
Doebeli [4], however, σC < σK is the case that leads to speciation, that is, the
stationary distribution supposedly has two sharp well-separated peaks, which con-
tradicts the analysis carried out in the previous paragraph. Simulations of (1) with
W = W(1), shown in Figure 2, reveal that if π(0) ≈ δ0, initially the population
does split into two groups and begins to move apart, but as t → ∞, the empirical
measure converges to a Gaussian-shaped hump. This suggests the possibility that
in the original Dieckmann–Doebeli model, conditioning on the population surviv-
ing long enough for convergence to stationarity to occur (recall that in the original
Dieckmann–Doebeli model, extinction occurs in finite time), speciation is also a
transitory phenomenon, rather than a stationary phenomenon. Simulations of (1)
with W = W(2), shown in Figure 3, do not even display transitory speciation be-
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FIG. 2. Simulation of (1) with E = [−149,149] ∩ Z, σK = 60, σC = 55 and W = W(1).

havior. Instead, the initial spike at 0 simply widens to a Gaussian hump centered
at 0. Hence the particular form of the dependence on K and C ∗ π seems to affect
whether or not speciation occurs.

From the simulations and nonrigorous analysis above, it seems that the dynam-
ical system in (1) does not have a bimodal stationary distribution if both K and
C are taken to be Gaussian-shaped. But we would also like to point out that if the
shape of K or C were changed just a bit, for example, making K a bit more “flat”
by taking Kx = exp(−x2−ε/2σ 2

K), simulations then display stationary distribu-
tions that have two (or even more) modes. Thus the shape of the stationary distrib-
utions of the Dieckmann–Doebeli model seems to have a very delicate dependence
on the choice of K and C. We also speculate that since the original Dieckmann–
Doebeli model has a fluctuating population size whereas our nonrigorous analysis
only applies to a model with fixed population size, this small difference may also
disturb the long-time behavior of the model enough that a Gaussian hump does not
appear with high probability before the population becomes extinct.

In case of this transitory behavior, we may still say speciation has occurred.
A constant carrying capacity function is only an approximation of what actually
happens in nature, where the environment a species lives in can change quite dras-
tically over a long period of time. By assuming a carrying capacity function that
does not change over time, we are essentially studying what can happen to a single
species over time lengths during which this approximation is reasonable.
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FIG. 3. Simulation of (1) with E = [−149,149] ∩ Z, σK = 60, σC = 55 and W = W(2).

We also have a rigorous result for this discrete-time model, for the simplest
case of K and C both rectangular, that is, Kx = 1{|x|≤L} and Cx = 1{|x|≤M} for
some integers L and M . Theorem A.0.14 from [10] says that if νn is a convergent
sequence of symmetric stationary distributions for the conditioned Dieckmann–
Doebeli model where the mutation matrix A corresponds with a convolution ker-
nel µnδ−1 + (1 − 2µn)δ0 + µnδ1 then νn([−(M − L + 1),M − L + 1]) → 0 as
µn → 0; in words, the mass in the middle gets very small as the mutation para-
meter approaches zero, hence there exist bimodal stationary distributions if µn is
sufficiently small.

In the next section, we introduce the Fleming–Viot model that we study for the
rest of the work. It is a continuous-time model that approximates a Moran particle
system. The main advantage of a Fleming–Viot type model is that if the fitness
function is chosen to be a quadratic form in π , then the exact form of the stationary
distribution is known in the literature [7].
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2. The Fleming–Viot model and main results. We work on the phenotype
space E = [−L,L] ∩ Z. Sometimes we refer to a phenotype as a site in E. Let

� =
{
(π−L, . . . , π0, . . . , πL) :πi ≥ 0 ∀i and

L∑
i=−L

πi = 1

}

be the space of probability measures on E, that is, � = P (E). Members of � are
usually denoted by π , π̂ , πN , and so on. We endow � with the following metric:

d(π̂, π̃) = max
x

|π̂(x) − π̃(x)|.
We assume a monomorphic initial condition, that is, π0 = δx for some x ∈ E (in
fact, we take x = 0 mostly).

Recalling that the essential ingredient of the original Dieckmann–Doebeli
model is that the fitness function is an increasing function of Kx and a decreas-
ing function of (C ∗ π)x , we define fitness mx(π) and mean fitness mπ for
our Fleming–Viot model (for a precise definition the Fleming–Viot process, see
[5] or [2]) to have the following form:

mx(π) = Kx

∑
z

Bx−zKzπz,

(4)
mπ = ∑

x

πxmx,

where the “cooperation” kernel B can be taken to be 1 − C. We assume B is
symmetric. In the original Dieckmann–Doebeli model, pairs of individuals with
small phenotypical distance compete at a higher intensity than pairs of individuals
with large phenotypical distance; in our model, pairs of individuals with small
phenotypical distance cooperate at a lower intensity than pairs of individuals with
large phenotypical distance.

The term Bx−z in the definition of mx(π) above can be thought of as a mea-
sure of how inefficiently an individual of phenotype z makes use of resources of
type x, that is, the type that best suit individuals of phenotype x. For example,
if individuals of phenotype z cannot makes use of resources of type x at all, that
is, Bx−z = 1, then they contribute to an increase to the fitness of individuals of
phenotype x, since this type z individual will not compete with type x individuals.
On the other hand, if individuals of phenotype z makes perfect use of resources
of type x, that is, Bx−z = 0, then these individuals contribute no increase to the
fitness of individuals of phenotype x. From the point of view of a particular in-
dividual of phenotype x, he “prefers” (if he is selfish) all other individuals in the
population to be of phenotypes z with Bx−z = 1, so that no other individual can
make use of resources for which he is best adapted. Thus the term “cooperation”
is somewhat misleading, since individuals with different phenotypes do not really
cooperate with each other. Nevertheless, we use “cooperation” and “competition”
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to describe the effect of individuals of a certain phenotype on individuals of an-
other phenotype out of convenience. If Bz = 0, then we say phenotypes separated
by distance z do not cooperate at all (i.e., compete at full intensity), and if Bz = 1,
we say they cooperate at full intensity (i.e., do not compete at all).

2.1. The model. Let K :E → [0,1] be the carrying capacity function, and
B : Z → [0,1] be the cooperation kernel. We assume B is symmetric. We define

G =
L∑

x=−L

[
µ

2

(
1 − (2L + 1)πx

) + σπx

(
mx(π) − mπ

)] ∂

∂πx

(5)

+ 1

N

L∑
x,y=−L

πx(δxy − πy)
∂2

∂πx ∂πy

to be the generator of our Fleming–Viot process with selection and mutation,
where δxy = 1 if x = y and = 0 otherwise, and the fitness of site x in a popu-
lation with distribution π and the mean fitness of the population mπ are defined
in (4). A Fleming–Viot process with finitely many types is also known as a Wright–
Fisher diffusion (see [2]), but to stress the continuous time nature and avoid con-
fusion with the discrete time Wright–Fisher model, we still refer to our model as
a Fleming–Viot process, which is a special case of the Fleming–Viot process with
selection as described in Chapter 10.1.1 of [2].

In (5), the terms that correspond with the effect of selection and replacement
sampling are the following:

GS = σ

L∑
x=−L

πx

(
mx(π) − mπ

) ∂

∂πx

+ 1

N

L∑
x,y=−L

πx(δxy − πy)
∂2

∂πx ∂πy

.

GS approximates the following Moran particle system (see page 26 of [2] for a
precise definition of Moran particle systems) with a population of N individuals
undergoing strong selection for suitably small σ (e.g., σ ≤ 1/2 if K ≤ 1):

• πN
x decreases by 1/N and πN

y increases by 1/N at rate N
2 πN

x (1
2 +σ(my(π

N)−
mx(π

N)))πN
y .

To see this, we expand the generator GS,N for the particle system above for smooth
and compactly supported f (π−L, . . . , πL) : R2L+1 → R:

GS,Nf (πN) =
L∑

x,y=−L

[
f

(
πN − 1

N
δx + 1

N
δy

)
− f (πN)

]
NπN

x

×
(

1

4
+ σ

2

(
my(π

N) − mx(π
N)

))
πN

y
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=
L∑

x,y=−L

[
∂f (πN)

∂πy

− ∂f (πN)

∂πx

+ 1

2N

∂2f (πN)

∂πy
2 + 1

2N

∂2f (πN)

∂πx
2

− 1

N

∂2f (πN)

∂πx ∂πy

+ O(1/N2)

]

× πN
x

(
1 + σ

2

(
my(π

N) − mx(π
N)

))
πN

y

= σ

L∑
x=−L

πN
x

(
mx(π

N) − mπN

)∂f (πN)

∂πx

+ 1

N

L∑
x,y=−L

πN
x (δxy − πN

y )
∂2f (πN)

∂πx ∂πy

+ O(1/N2).

Therefore the generators of the particle system and the Fleming–Viot process with-
out mutation, GS,N and GS respectively, agree up to O(1/N ), and as N → ∞, the
stochastic process associated with them both converge to the solution of the fol-
lowing system of deterministic ordinary differential equation (ODEs).

∂tπx = σπx

(
mx(π) − mπ

)
.(6)

In the mutation component of G,
∑L

x=−L µ(1 − (2L + 1)πx)∂/∂πx , we use the
simplifying assumption that the mutation is symmetric, that is, the rate µxy = µy

at which phenotype x mutates to phenotype y depends on y only, and furthermore
µy = µ is constant in y; the latter assumption makes the proofs a bit cleaner. In
the original Dieckmann–Doebeli model, the variance of the mutation kernel only
affects the speed of evolution, not the eventual configuration taken up by the pop-
ulation. Therefore the assumption of symmetric mutation should not affect the sta-
tionary behavior of the process a great deal, and it is precisely this assumption that
enables one to write down the unique stationary distribution for the Fleming–Viot
process, as well as a Lyapunov function for its infinite population limit. Further-
more, the mutation component of G is an approximation of the N -particle system
that undergoes the following:

• πN
x decreases by 1/N and πN

y increases by 1/N at rate N
2 µπN

x , with an error
term of O(µ/N). We can expand the generator GM,N of the particle system above:

GM,Nf (πN) =
L∑

x,y=−L

[
f

(
πN − 1

N
δx + 1

N
δy

)
− f (πN)

]
N

2
µπN

x

= µ

2

L∑
x=−L

(
1 − (2L + 1)πN

x

)∂f (πN)

∂πN
x
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+ µ

4N

L∑
x,y=−L

πN
x

[
∂2f (πN)

∂πN
y

2 + ∂2f (πN)

∂πN
x

2 − 2
∂2f (πN)

∂πN
x ∂πN

y

]

+ O(1/N2),

which has a rather messy noise term (the term involving second derivatives of f ).
The interesting cases are those with small µ, and we only retain the drift term
(terms involving first derivatives) in the expansion of GM,N . Combining this with
the drift and noise terms in the expansion of GS,N , we obtain the generator G. As
N → ∞, the process with generator G converges to the solution of the following
system of deterministic ODEs:

∂tπx = σπx

(
mx(π) − mπ

) + µ

2

(
1 − (2L + 1)πx

)
.(7)

One can apply Theorem 1.6.1 from [5] to establish this convergence.
The generator G is of the form defined in Lemma 4.1 from [7] if one speeds up

time by N/2 in (5), and a direct application of that result implies the following
result:

PROPOSITION 2.1. For the Fleming–Viot process with generator G,

νN(dπ) = C

(
L∏

x=−L

πx

)(N/2)µ−1

e(N/2)mπ dπ−L · · ·dπL

is the unique stationary distribution, where C is the normalizing constant such that
νN is a probability measure on �.

We define µ̃ = µ − 2
N

, which we assume to be positive, and write

νN(dπ) = C exp

{
N

2

(
mπ +

(
µ − 2

N

) L∑
x=−L

logπx

)}
dπ−L · · ·dπL.

As N → ∞, we expect νN to concentrate more and more on the configuration that
maximizes

Vπ = mπ + µ̃

L∑
x=−L

logπx.(8)

One can imagine a scenario where initially all birds in the population have beaks
that specialize in eating seeds of say size 5, 5 being the most common size in
the forest. As time passes, the selection part G,

∑L
x=−L σπx(mx(π) − mπ)∂/∂πx ,

moves the population toward a fitter configuration, since the mean fitness mπ is
a Lyapunov function of the dynamical system (6). [A proof of a slightly more
general statement can be found in Lemma 2.4(a).] If the forest produces nearly as
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many seeds of size 4 and 6 as seeds of size 5, but the birds can really just eat one
size of seeds (e.g., if a bird’s beak specializes in seeds of size 5, then it is very
bad at eating seeds of size 4 or 6), then it is quite possible that the population as a
whole does better, that is, is more fit on average, if half the birds specialize in seeds
of size 4, while the other half in seeds of size 6. This way, even though each bird
has to spend slightly more effort to find seeds that suits her (since K5 is slightly
larger than K4 or K6), she only competes with half the population.

Proposition 2.2 below says that as the population size becomes large and the
mutation parameter becomes small, the stationary distribution νN focuses more
and more on the configuration that achieves the maximum fitness. This configura-
tion is also the one that the population spends the most time in. Going back to the
example in the last paragraph, if it can be verified that the configuration where half
the birds specialize in seeds of size 4 while the other half in seeds of size 6 max-
imizes fitness, then starting from an initial population where all birds specialize
in seeds of size 5, the population will eventually drift to the fitter bimodal con-
figuration. In this case, we can say that speciation has occurred. Because of the
stochastic nature of the model, eventually the population will leave this maximally
fit configuration and enter some less fit configuration. But this may not happen for
a long time, after which the validity of the approximation that carrying capacity is
constant over time may no longer be valid.

We broadly say that speciation is likely to occur eventually if the population
configuration that achieves maximum Vπ has significant mass at phenotype(s) dif-
ferent from the original one (the original phenotype may or may not die out as a
result of speciation). In general, however, it is difficult to identify the configuration
that (globally) achieves maximum Vπ , or even to verify that a certain configuration
achieves it, due to the nonconcave nature of the Vπ and even mπ . Studying local
maxima of Vπ then becomes useful, where one can exclude certain classes of con-
figuration from candidates for the global maximum of Vπ . For example, if one can
exclude configuration close to δ0 as a local maximum, then the global maximum
will have significant mass at sites other than 0, and we may also say speciation will
eventually occur in this case.

Mutation effects alone produces individuals of all phenotypes in E, so the word
“significant” in our definition of speciation is taken to mean a number that does
not go to 0 as the mutation parameter µ goes to 0. Since mutation just distributes
mass evenly to all sites in E, a large µ obscures the effects of selection, thus we
are mainly interested in small µ. We attempt to bound mass at various phenotypes
away from 0 as µ → 0. The case of µ = 0 is not interesting, since with initial
condition δ0 the configuration will then remain monomorphic and no speciation
can ever occur.

Propositions 2.2 and 2.3 below relate local/global maximum of mπ to those
of Vπ when µ is small. In particular, as can be expected, they are quite close to
each other when µ is small.
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PROPOSITION 2.2. Let {π̃1, π̃2, . . . , π̃k} be the finite set that consists of all
global maxima of mπ for π ∈ �. For any sufficiently small ε > 0, we can pick µ

small and N large, such that

νN

(
k⋃

i=1

Ball(π̃i , ε)

)
> 1 − ε,

where Ball(π, ε) denotes the intersection of � and the ball of radius ε centered at
π .

PROPOSITION 2.3. Let π̃ be the unique local maximum of mπ for π ∈ � in a
small neighborhood of π̃ . If µ̃ is sufficiently small, then Vπ as defined by (8) has a
local maximum in a small neighborhood of π̃ .

LEMMA 2.4. We have (a) Vπ :
◦
�→ R is a Lyapunov function for the dynami-

cal system

∂tπx = πx

(
mx − mπ + µ̃

2

(
1

πx

− (2L + 1)

))
,(9)

and therefore any local maximum of Vπ is a stationary point of (9).
(b) If π is a stationary point of (9), then mx + µ̃

2πx
is constant for all x ∈ E,

and (
∑

x∈J mx(π̂)π̂x)/(
∑

x∈J π̂x) + µ̃/(2
∑

x∈J π̂x) is equal to the same constant
for all J ⊂ E.

(c) Suppose π̂ is a stationary point of (9), then mx(π̂) ≥ mπ̂ (resp. ≤) if and
only if π̂x ≥ 1/(2L + 1) (resp. ≤). And mx(π̂) > my(π̂) if and only if π̂x > π̂y .

To say something specific about when speciation is likely to occur, we specialize
to m, K and B of the following form in most of the results we establish (in fact,
all results except Theorem 2.5):

ASSUMPTION 1. We have (1) mx is of the form defined in (4).
(2) K :E → (0,1] symmetric and unimodal (i.e., increasing on [−L,0] ∩ Z

and decreasing on [0,L] ∩ Z) with K0 = 1.
(3) B : Z → [0,1] with Bx = b + (1 − b)1{|x|≥M} with b ∈ [0,1].

With the cooperation kernel as defined in 3 above, the individuals of phe-
notype x are more efficient at using resource of types inside the interval
(x − M,x + M) than inside [−L,x − M] ∪ [x + M,L], and b can be thought
of as a measure of how efficiently individuals of phenotype x use resources of
types (x − M,x + M), with b = 0 meaning maximally efficient.

If b = 1, then each individual can use resources of all types equally efficiently
(or inefficiently), and every individual suffers exactly the same level of competition
from the rest of the population. This actually means that competition plays no part
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in determining how fit site x is and mx is proportional to Kx . Therefore, since
Kx is unimodal (hence Kx is strictly increasing in [−L,0] and strictly decreasing
in [0,L]), the fitness should be unimodal, too. Lemma 2.4(c) says that stationary
distributions of (9) has the property of fitter sites having more mass, thus we expect
the stationary distribution π̂ to be unimodal as well. In particular, π̂ should attain
its maximum at x = 0. As µ̃ → 0, Proposition 2.2 tells us that we can expect the
peak of π̂ concentrated around 0 to become sharper and sharper, approaching δ0,
the δ-measure concentrated at 0. In fact, Theorem 2.5 (where we do not assume
Assumption 1) shows that if B is of the form as in Assumption 1(3), then b only
needs to be close to 1 for this behavior to occur. In this case, speciation is not likely
to occur.

THEOREM 2.5. If K :E → (0,1] is symmetric and unimodal with K0 = 1,
and K1 = K−1 < Bx ≤ 1 for all x ∈ E, then for any ε > 0, there exist µ and 1/N

small enough such that νN({π ∈ � :πx > ε for some x ∈ E\{0}}) < ε, where νN

is the stationary distribution of the Fleming–Viot model with generator G.

2.2. Results for intense competition with relatively large µ. More interesting
behavior arises when there is intense competition between pairs of sites that are
close to each other, that is, b is small and individuals of phenotype x are far better
at using resources of type (x −M,x +M) than other types. In this case, speciation
is likely to occur for certain K and B . Whether or not speciation occurs depends
on the exact shape of K and the mutation parameter µ, and is a difficult problem
for general K (even assuming symmetry and unimodality) and µ.

We first present a result (Theorem 2.6 below) that roughly says that if any local
maximum π̂ of Vπ with π̂0 suitably small cannot have all the remaining mass on
one side of 0, that is, there is significant amount of mass in both [−L,−1] and
[1,L], which does not go to 0 as µ → 0.

THEOREM 2.6. Suppose Assumption 1 holds. Let M ≥ 1. If π̂ is a stationary
point of (9) where π̂0 < K1/(2M − 1)(2L+ 1) and π̂x > 1/(2L+ 1) for some site
x ∈ [−L,−1] (resp. x ∈ [1,L]), then

L∑
z=1

π̂z ≥ K1

(2M − 1)(2L + 1)
min

(
1,

1

2(1 − b)
,

1

2(1 − b)

(
1

K1
− 1

))

[resp.
∑−1

z=−L π̂z ≥ K1 min(1/K1 − 1,1)/(2(1 − b)(2M − 1)(2L + 1))].

REMARK 2.7. If π̂ is a stationary point of (9) where π̂0 < K1/(2M − 1) ×
(2L + 1) < 1/(2L + 1), then some site other than 0 is bound to have more mass
than the mean 1/(2L + 1).
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Let �c� denote the largest integer less than or equal to c, and �c� denote the
smallest integer larger than or equal to c. Theorem 2.6 requires the mass at pheno-
type 0 to be rather small. Proposition 2.8 below guarantees this to be the case for
any local maximum of Vπ if µ2/3 is relatively large compared to b and the carry-
ing capacity function Kx decreases rapidly to very small levels (smaller than µ2/3)
before reaching M or −M .

PROPOSITION 2.8. Define l = −(n − M) and p = �M/2�. Suppose Assump-
tion 1 holds and π̂ is a stationary point of (9). If µ̃ ≤ 4K2

p/(4L + 2)3 and there is
an n ≤ M such that

b + Kn < (µ̃Kp/4)2/3,(10)

then

π̂x ≤ µ̃

2((µ̃Kp/4)2/3 − b − Kn)

for x ∈ [−L,−n] ∪ [−l, l] ∪ [n,L].

In the parameter regime of Proposition 2.8, the sites in [−L,−n] ∪ [n,L] have
very small carrying capacity such that they cannot support significant population,
and there is enough mutation effects to force most of the population into inter-
vals (−n,−l) and (l, n) for any local maximum of Vπ . This is a different effect
from mutation simply spreading mass to all sites in E evenly, since the mass in
(−n,−l) ∪ (l, n) does not go to 0 as µ̃ → 0, as long as b + Kn < (µ̃Kp/4)2/3

is satisfied. As shown by Proposition 2.10(b) below, δ0 is a local maximum
of mπ if KM < b, which may hold in the parameter regime of Proposition 2.8.
But with the combined effect of mutation and selection, no configuration close
to δ0 can be a local maximum of Vπ . If for example (b + Kn)/(µ̃Kp/4)2/3 → 0,
then Proposition 2.8 implies that for sufficiently small µ̃, π̂x ≤ (16µ̃/K2

p)1/3 for
x ∈ [−L,−n] ∪ [−l, l] ∪ [n,L]. Furthermore, the mass in (−n,−l)∪ (l, n) cannot
concentrate on one side of 0 by Theorem 2.6. Therefore in this case, speciation is
likely to occur and there are at least 2 new species, with phenotypes in (−n,−l)

and (l, n).
Proposition 2.8 holds even if δ0 is not a local maximum of mπ , in which case

Proposition 2.10(d) below provides possible existence (which is verified by our
simulation) of a local maximum of mπ of form π̂ = pδ−M + (1 − 2p)δ0 + pδM ,
where p may be quite small. In this case, the relatively large mutation effects still
prevent any configuration close to π̂ from being a local maximum of Vπ , and the
population is driven toward a bimodal configuration.
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2.3. Results for intense competition with small µ. If b is fixed but µ is suffi-
ciently small, then it is possible for a configuration close to δ0 to be a local maxi-
mum of Vπ . For such a parameter regime, we first present Theorem 2.9 below that
says if there is little mass outside the intervals (−�M/2�, �M/2�), then all mass
must be concentrated at site 0 for sufficiently small µ̃. This result precludes the
existence of any configuration with mass spread amongst sites near 0 as a local
maximum of Vπ , such that if there is speciation, then there must be new pheno-
types far away from 0 if µ̃ is small.

THEOREM 2.9. Let q = �M/2�. If Assumption 1 holds and π̂ is a stationary
point of (9) that satisfies

∑
x∈[−L,−q]∪[q,L]

π̂x < ε <
b(1 − K1)Kq−1

b(1 − K1)Kq−1 + K1
,

then

∑
x∈(−q,0)∪(0,q)

π̂x ≤ µ̃

2(b(1 − K1)Kq−1(1 − ε) − K1ε)
.

Simulations indicate that all local maxima of mπ have supports that consist of
sites spread exactly M apart, but a proof of this statement remains elusive. The
landscape of mπ is rather complicated – explicit calculations for low dimensional
systems (L = 1 and L = 2) indicate that there are interior stationary points of (6)
but they are all saddle points of mπ . Therefore if one tries to prove the above
support property of local maxima, an approach that only looks at the stationary
points of (6) would probably not work.

Proposition 2.10(a) below shows that the support of any local maximum π̂

of mπ cannot have a support that consists of sites spread more than M apart, and
the rest of Proposition 2.10 gives formulas of local maxima with supports that
consist of 1, 2 and 3 sites. Existence of local maxima with support that consists
of more than 3 sites is also possible, but then explicit calculation becomes pro-
hibitive. If µ̃ is sufficiently small, Proposition 2.3 provides local maxima of Vπ

that are close to the local maxima of mπ .

PROPOSITION 2.10. Suppose Assumption 1 holds and π̂ is a stationary point
of (9).

(a) If π̂ has mass only on x1 < · · · < xk and xj+1 − xj ≥ M + 1 for some j ,
then π̂ cannot be a local maximum of mπ .

(b) If KM = K−M < b, then δ0 is the unique local maximum of mπ in a small
neighborhood of δ0. If KM = K−M > b, then δ0 is not a local maximum of mπ .
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(c) Let x ∈ [−M + 1,−1] ∩ Z and p = K−x+M(K−x − bK−x+M)/(2K−x ×
K−x+M − bK2−x − bK2−x+M), then π̂ = pδ−x + (1 −p)δ−x+M is the unique local
maximum of mπ in a small neighborhood of π̂ with

mπ̂ = K2−xK
2−x+M(1 − b2)

2K−xK−x+M − bK2−x − bK2−x+M

,

if b, K−x−M , and K−x+2M are all < K−xK−x+M(1 + b)/(K−x + K−x+M), and
bK2−x + bK2−x+M < 2K−xK−x+M .

(d) Let x ∈ [−M + 1,0] ∩ Z (resp., x ∈ (0,M − 1] ∩ Z),

a = K2
x−MK2

x + K2
x−MK3

x+M + K2
xK3

x+M,

c = 2Kx−MKxKx+M(Kx−M + Kx + Kx+M) − (1 + b)a,

p = KxKx+M

c

(
Kx−MKx+M + Kx−MKx − (1 + b)KxKx+M

)
,

q = Kx−MKx+M

c

(
Kx−MKx + KxKx+M − (1 + b)Kx−MKx+M

)
,

then π̂ = pδx−M + qδx + (1 − p − q)δx+M is the unique local maximum of mπ in
a small neighborhood of π̂ with

mπ̂ = (2 − b − b2)K2
x−MK2

xK2
x+M

2Kx−MKxKx+M(Kx−M + Kx + Kx+M) − (1 + b)a
,

if

2 − b > (1 − b)

(
1

Kx

+ 1

Kx−M

)
− 1

Kx+M[
resp., 2 − b > (1 − b)

(
1

Kx

+ 1

Kx+M

)
− 1

Kx−M

]
,

Kx−2M <
Kx−MKxKx+M(2 − b − b2)

(1 − b)(Kx−MKx + Kx−MKx+M + KxKx+M)
,

Kx+2M <
Kx−MKxKx+M(2 − b − b2)

(1 − b)(Kx−MKx + Kx−MKx+M + KxKx+M)

and

1 + b <
2

a
Kx−MKxKx+M(Kx−M + Kx + Kx+M).

2.4. Simulation and discussion. Even though we have no general recipe for
identifying the global maximum of Vπ , but only a class of local maxima, it is
nevertheless possible to check whether speciation is likely to occur. For that, we
can first check whether a configuration close to δ0 is a local maximum of Vπ ; if
not, then speciation is likely to occur.
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As µ̃ → 0, local maxima of Vπ converge to those of mπ . If we are interested in
the behavior of the process when µ̃ is in this regime, it suffices to check whether
δ0 is a local maximum of mπ , and Proposition 2.10(b) provides the answer.

If we are interested in the behavior of the process when µ̃ is small but fixed,
then Theorem 2.6 and Theorem 2.9 provide partial answers. If there is no con-
figuration close to δ0 which is a local maximum of Vπ , then by Theorem 2.9 (its
contrapositive), there must be significant mass in [−L,−�M/2�]∪[�M/2�,L] for
sufficiently small µ̃, so that there are new phenotypes far away from 0. Moreover,
if π̂0 is quite small (< K1/(2M − 1)(2L + 1)), then Theorem 2.6 says that there
must be significant mass on both sides of site 0. These two results taken together
mean that if configurations close to δ0 is not a local maximum of Vπ , then for
any local maximum, there is significant (i.e., does not get small when µ̃ gets very
small) mass at more than one site, hence speciation is likely to occur.

Proposition 2.8 provides a condition under which all local maxima of Vπ are
bimodal. In this case, µ2/3 is relatively large compared to b and the drift compo-
nent (terms involving first derivatives) of G drives the population toward a bimodal
configuration. An example of this case is shown in Figure 4.

On the other hand, if µ is small and δ0 is a local maximum of mπ , then a
configuration close to δ0 is a local maximum of Vπ . But it does not mean that
speciation is unlikely to occur since δ0 may not be the global maximum of mπ ,
Proposition 2.10(c) and (d) provides other local maxima of mπ . If one of these
local maxima, not δ0, is the global maximum of mπ , then the stationary distri-
bution νN concentrates mostly on a configuration that has at least 2 modes, and
speciation is likely to occur. But if the initial configuration is very close to δ0, then
the drift component of G moves π toward the local maximum of Vπ that resem-
bles δ0. One must wait long enough for the noise component (the term involving
second derivatives) of G to drive π away from δ0 and to a configuration in the basin
of attraction of the more fit bimodal configuration. Since the noise component of G
is O(1/N), it may take a long time to get away from the less fit local maximum
that resembles δ0 when the population size is large, that is, speciation may take
much longer to occur than in the case of δ0 not being a local maximum of mπ . An
example of this case is shown in Figure 5.

As can be seen from the figure above, speciation occurs around time t = 13500,
but this is a different configuration from the one reached in Figure 4 (µ = 6×10−5)
at time t = 2750. The configuration in Figure 4 at time t = 2750 has the two
peaks symmetrically placed on both sides of x = 0, at x = 5 and x = −5, but the
configuration in Figure 5 (µ = 5 × 10−5) at time t = 13,500 has the one of the
peaks at x = 1 and the other at x = −9, a much less fit configuration than the one
with symmetrically placed peaks. At time t = 60,750, the selection component
of G succeeds in driving π to a fitter configuration, with two peaks placed at x = 2
and x = −8, but with µ = 5 × 10−5 instead of µ = 6 × 10−5, it will take much
longer to reach a configuration with peaks at x = −5 and x = 5, supposedly the
global maximum.



ON SYMPATRIC SPECIATION 859

FIG. 4. When µ is relatively large, δ0 is not a local maximum and speciation occurs at time
t = 2750. Here L = 14, N = 2252, Bx = 0.01 + 0.99 · 1{|x|≥10}, Kx = exp(−x2/20) and

µ = 6 × 10−5.

Simulations indicate that for µ > 5.028 and K , B and N as given in Figures 4
and 5, δ0 is a local maximum of Vπ , but δ0 is not a local maximum of Vπ if
µ < 5.027. We surmise that the deterministic dynamical system (9) has a bifurca-
tion near µ = µ̌ (µ̃ ≈ 5.027 for the simulations shown in Figures 4 and 5), which
causes the drastically different speciation time of the Fleming–Viot process (5)
when µ decreases from 5.5 × 10−5 to 4.5 × 10−5 (see Figure 6). Notice that our
simulation has N = 2252, so that the noise component is large enough for the sim-
ulation to achieve speciation in reasonable amount of time when µ < µ̌. When N

is much larger than 2252, we expect the increase in the time until speciation to be
much more drastic. And if N = ∞, then speciation will never occur for µ < µ̌

if one starts with initial condition δ0, since in this case, the dynamical system (9)
coincides with (7), the infinite population limit of the Fleming–Viot process.

Thus whether or not a configuration close to δ0 is local maximum of Vπ affects
the length of time it takes for speciation to occur, assuming that a configuration
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FIG. 5. When µ is small, δ0 is a local maximum and speciation occurs at t = 13500, much
later than in Figure 4. Even after speciation occurs, the population continues to move to fitter lo-
cal maxima, but this takes even longer. Here L = 14, N = 2252, Bx = 0.01 + 0.99 · 1{|x|≥10},
Kx = exp(−x2/20) and µ = 5 × 10−5. For comparison purposes, the dotted lines at t = 12,500
to t = 60750 are duplicates of the figures on their left.

with significant mass at sites other than 0 is the global maximum of Vπ such that
speciation is likely to occur. In addition to the unexpected dependence on the mu-
tation parameter µ, the carrying capacity K and cooperation kernel B also affects
greatly whether a certain configuration is a local maximum of mπ or Vπ . In Propo-
sition 2.10(b), for example, a small change in K or b can change whether δ0 is a
local maximum of mπ . This is somewhat similar to the behavior exhibited by the
conditioned Dieckmann–Doebeli model, where we remarked near Figures 2 and 3
that a slight change in K or C may have a large effect on the shape of stationary
distributions of (1).

3. Proofs. We start by proving Proposition 2.2 and Proposition 2.3, the two
statements that relate global/local maximum of Vπ to that of mπ , when µ is small.
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FIG. 6. A plot of speciation time (mean of 20–50 realizations) against the mutation parameter µ.
Here L = 14, N = 2252, Bx = 0.01 + 0.99 · 1{|x|≥10} and Kx = exp(−x2/20). We did not perform

simulations for µ < 4.4 × 10−5 because it takes too long, but we expect speciation time to grow at a
fast rate as µ decreases beyond 4.4 × 10−5.

PROOF OF PROPOSITION 2.2. We observe that m :π �→ mπ is a quadratic
function, hence a continuous and open mapping. Near each global maximum π̃i ,
the Hessian matrix must be positive definite; otherwise, there would exist an entire
subspace of global maxima. Therefore for sufficiently small ε, we can pick open
neighborhoods A and B such that B ⊂ A ⊂ ⋃k

i=1 Ball(π̃i, ε) and

inf
π∈B

mπ − sup
π∈�\A

mπ > δ

for some positive δ. Since the π ∈ � that maximizes
∑L

x=−L logπx places equal
weights on x ∈ E,

sup
x∈�

L∑
x=−L

logπx ≤ −(2L + 1) log(2L + 1).(11)

Furthermore, there exist positive δ1 and δ2 (independent of µ and N ) and an
open set D ⊂ B , even if some π̃i ’s are on the boundary of �, such that |D| > δ1
(where |D| is the volume of D) and πx > δ2 for all π ∈ D and x ∈ E (see Figure 7),
thus

inf
x∈D

L∑
x=−L

logπx ≥ −(2L + 1) log
1

δ2
.

Combining the three inequalities above, we obtain

inf
π∈D

Vπ − sup
π∈�\A

Vπ > δ + µ̃(2L + 1)

(
− log

1

δ2
+ log(2L + 1)

)
.
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FIG. 7. How to pick D.

Consequently, if µ and 1/N are sufficiently small, then

inf
π∈D

Vπ − sup
π∈�\A

Vπ >
δ

2
,

and thus
infπ∈D exp((N/2)Vπ)

supπ∈�\A exp((N/2)Vπ)
> eNδ/4.

Define C1 = supπ∈�\A exp(NVπ/2), then we obtain the following bounds for∫
exp(NVπ/2) dπ :∫

A
exp

(
N

2
Vπ

)
dπ >

∫
D

exp
(

N

2
Vπ

)
dπ > δ1C1e

Nδ/4,

∫
�\A

exp
(

N

2
Vπ

)
dπ < C1|�|,

where we use |D| > δ1 to obtain the first inequality above. The two inequalities
above in turn imply that

νN(A) =
∫
A exp((N/2)Vπ) dπ∫
� exp((N/2)Vπ) dπ

≥ δ1e
Nδ/4

|�| + δ1eNδ/4

= 1 − |�|
|�| + δ1eNδ/4 > 1 − ε,

if N is sufficiently large. Since A ⊂ ⋃k
i=1 Ball(π̃i, ε), we are done. �

Part of the proof above can be easily adapted to prove a related statement on
local maxima.

PROOF OF PROPOSITION 2.3. We use similar ideas as in the proof of Propo-
sition 2.2. Near π̃ , the Hessian matrix of the quadratic function mπ must be pos-
itive definite. Therefore we can pick open neighborhoods A, B and Z such that
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B ⊂ A ⊂ Z of π̃ and

inf
π∈B

mπ − sup
π∈Z\A

mπ > δ

for some positive δ. Furthermore, there exists positive δ2 (independent of µ), and
an open set D ⊂ B such that πx > δ2 for all π ∈ D and x ∈ E, and thus

inf
x∈D

L∑
x=−L

logπx ≥ −(2L + 1) log
1

δ2
.

The two inequalities above and (11) imply

inf
π∈D

Vπ − sup
π∈Z\A

Vπ > δ + µ̃(2L + 1)

(
− log

1

δ2
+ log(2L + 1)

)
.

Consequently, if µ̃ is sufficiently small, then

inf
π∈D

Vπ − sup
π∈Z\A

Vπ >
δ

2
,

and there exists a local maximum of Vπ in A. �

We study local maxima of Vπ by checking various points in � for stationarity
when evolved according to (9). It also happens that the dynamical system (9) is
almost the same as the limiting dynamical system of our Fleming–Viot process (7).

PROOF OF LEMMA 2.4. (a) Notice that ∂πxmπ = 2
∑

z KxBx−zKzπz = 2mx .
Therefore if π evolves according to (9), then

∂tVπ = ∑
x

(∂πxVπ)(∂tπx)

= ∑
x

(
2mx + µ̃

πx

)
πx

(
mx + µ̃

2πx

− mπ − µ̃

2
(2L + 1)

)

= 2
∑
x

(
mx + µ̃

2πx

)
πx

(
mx + µ̃

2πx

− mπ − µ̃

2
(2L + 1)

)

−
(
mπ + µ̃

2
(2L + 1)

)∑
x

πx

(
mx + µ̃

2πx

− mπ − µ̃

2
(2L + 1)

)
,

where the term in the last line
∑

x πx(mx + µ̃
2πx

− mπ − µ̃
2 (2L + 1)) = ∑

x πx ×
mx − mπ , which is zero. This implies

∂tVπ = 2
∑
x

πx

(
mx + µ̃

2πx

− mπ − µ̃

2
(2L + 1)

)2

≥ 0,

which establishes (a).
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(b) From (a), at any stationary point π̂ of (9), we have mx(π̂)−mπ̂ + µ̃
2 (1/π̂x −

(2L + 1)) = 0 for all x ∈ E, therefore mx(π̂) + µ̃/2π̂x is constant for all x ∈ E.
We define this constant to be c = mx(π̂) + µ̃/2π̂x , then mx(π̂)π̂x + µ̃/2 = cπ̂x

for all x ∈ E. Thus for all J ⊂ E,∑
x∈J mx(π̂)π̂x∑

x∈J π̂x

+ µ̃

2
∑

x∈J π̂x

= c.

(c) Since

mx(π̂) − mπ̂ + µ̃

2

(
1

π̂x

− (2L + 1)

)
= 0,(12)

mx(π̂) ≥ mπ̂ implies 1/π̂x − (2L + 1) ≤ 0 and vice versa. The cases of mx(π̂) ≤
mπ̂ and mx(π̂) > my(π̂) are similar. �

In fact, according to Theorem A.9 of [1], (9) is a so-called Svirezhev–
Shahshahani gradient system with potential Vπ , that is, ∂tπ = ∇̃V (π), where
∇̃V (π) = Gπ∇V (π) and Gπ is the matrix formed by entries gxy = πx(δxy −πy).
Any gradient system, such as (9), has the property that all orbits, regardless of
initial condition, converge to some point in the ω-limit set

Dω = {p :p is an accumulation point of π(t) as t → ∞}.
All points in Dω are stationary points of (9).

3.1. Mild competition. In this section, we establish Theorem 2.5, which says
that speciation is impossible if competition between phenotypes close to each other
is mild.

LEMMA 3.1. If π̂ is a local maximum of mπ with support S, that is, π̂x > 0 for
x ∈ S only, then mx(π̂) are all equal for x ∈ S. In other words, if mx(π̂) �= my(π̂),
then either π̂x = 0 or π̂y = 0.

PROOF. A simple calculation involving Lagrange multipliers:

∂

∂πx

(
mπ + λ

∑
x∈S

πx

)
= 0 �⇒ 2mx + λ = 0

establishes the desired result. �

This observation enables us to establish the following:

LEMMA 3.2. If K :E → (0,1] is symmetric and unimodal with K0 = 1, and
K1 = K−1 < Bx ≤ 1 for all x ∈ E, then δ0 is the unique global maximum of the
mean fitness function mπ .
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PROOF. Assume K1 = K−1 < Bx ≤ 1 for all x ∈ E. The following two esti-
mates

m0 = K0
∑
z

B−zKzπz ≥ K0

(
inf
z

Bz

)∑
z

Kzπz =
(

inf
z

Bz

)∑
z

Kzπz,

mx = Kx

∑
z

Bx−zKzπz ≤ Kx

∑
z

Kzπz for x �= 0

imply that m0 > mx for all x �= 0 if infz Bz > supx �=0 Kx = K1. Lemma 3.1 then
implies that any local maximum π̂ of mπ whose support includes 0 must have
either π̂0 = 1 or π̂0 = 0. If π̂0 = 1, then π̂ = δ0, and mπ̂ = m0(π̂) = B0 > K1. But
if π̂0 = 0, then for all x in the support of π̂ ,

mπ̂ = mx ≤ K1
∑
z

Kzπz ≤ K1 < B0

by assumption. Therefore a local maximum π̂ whose support does not include 0
must have smaller mean fitness than δ0, that is, δ0 is the unique global maximum
of mπ . �

PROOF OF THEOREM 2.5. A direct application of Proposition 2.2 leads to the
desired result, which actually applies to very general B (but still requires K to be
symmetric and unimodal). �

3.2. Intense competition. Now we focus on the case of intense competition,
that is, b is small. The goal is to establish some conditions under which speciation
is likely to occur. The first result in this direction is Theorem 2.6, which roughly
says that any local maximum π̂ of Vπ with π̂0 suitably small cannot have all re-
maining mass on one side of 0. For this, we first establish the following lemma,
which assumes that there is significant mass at site −y to the left of site 0. If
−y > −M , then the lemma shows there is mass in the interval [−y + M,M],
which implies Theorem 2.6. But if −y ≤ −M , then the lemma shows there is
mass in the interval [−y + M,2 − M], which implies that the previous case holds,
and in turn Theorem 2.6 holds as well.

LEMMA 3.3. Let M ≥ 1. Suppose Assumption 1 holds and π̂ is a stationary
point of (9).

(a) If π̂−y ≥ 1/(2L + 1) for some −y ∈ [−L,−M] and π̂z < 1/(2L + 1) for
all z ∈ [−y + 1,−1], then

∑M
z=2−M π̂z ≥ ∑M

z=max(−y+M,2−M) π̂z ≥ K1/(2L + 1).
(b) If π̂−y ≥ D ≥ π̂0 for some −y ∈ [1 − M,−1], then

M−1∑
z=−y+M

π̂z ≥ min
(
D,

D

2(1 − b)
,

D

2(1 − b)

(
1

K1
− 1

))
.
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PROOF. (a) We observe that −y + M < 1, therefore the cooperation intensity
between sites −y and 1 is 1. We define

A =
−y−M∑
z=−L

Kzπ̂z + b

M∑
z=−y−M+1

Kzπ̂z +
L∑

z=M+1

Kzπ̂z + (1 − b)

1−M∑
z=−y+M

Kzπ̂z,

where the last sum may be over an empty set, in which case that sum is defined to
be 0. The fitness of sites −y and 1 are

m−y(π̂) = K−y

(
A + (1 − b)

M∑
z=max(−y+M,2−M)

Kzπ̂z

)
,

m1(π̂) = K1

(
A + (1 − b)

min(1−M,−y+M−1)∑
z=−y−M+1

Kzπ̂z

)
.

If m−y(π̂) < m1(π̂), then π̂1 > π̂−y ≥ 1/(2L + 1) > K1/(2L + 1) by Lem-
ma 2.4(c) and we are done. Otherwise, m−y(π̂) ≥ m1(π̂) and since K−y ≤ K1,
the two equations above imply

K−y

M∑
z=max(−y+M,2−M)

Kzπ̂z ≥ K1

min(1−M,−y+M−1)∑
z=−y−M+1

Kzπ̂z ≥ K1K−y

2L + 1
,

therefore
M∑

z=max(−y+M,2−M)

π̂z ≥
M∑

z=max(−y+M,2−M)

Kzπ̂z ≥ K1

2L + 1
,

as required.
(b) We define

B =
−y−M∑
z=−L

Kzπ̂z + b

M−1∑
z=−y−M+1

Kzπ̂z +
L∑

z=M

Kzπ̂z,

then the fitness of sites −y and 0 (the cooperation intensity between these sites
is b) are:

m−y(π̂) = K−y

(
B + (1 − b)

M−1∑
z=−y+M

Kzπ̂z

)
,(13)

m0(π̂) = K0

(
B + (1 − b)

−M∑
z=−y−M+1

Kzπ̂z

)
.(14)

If m−y(π̂) < m−y+M(π̂), then π̂−y+M > π̂−y by Lemma 2.4(c), and we are done.
Otherwise,

m−y(π̂) ≥ m−y+M(π̂) ≥ K−y+MK−yπ̂−y ≥ K−y+MK−yD.
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The above inequality and (13) imply that either

K−yB ≥ K−y+MK−yD

2
or

K−y(1 − b)

M−1∑
z=−y+M

Kzπ̂z ≥ K−y+MK−yD

2
,

or both. If K−y(1 − b)
∑M−1

z=−y+M Kzπ̂z ≥ K−y+MK−yD/2, then

K−y+MD

2(1 − b)
≤

M−1∑
z=−y+M

Kzπ̂z ≤ K−y+M

M−1∑
z=−y+M

π̂z

since M − 1 ≥ −y + M > 0, hence

M−1∑
z=−y+M

π̂z ≥ D

2(1 − b)
.(15)

And if K−yB ≥ K−y+MK−yD/2, then

B ≥ K−y+MD

2
.(16)

Since π̂0 ≤ D ≤ π̂−y , we have m−y(π̂) ≥ m0(π̂), then (13) and (14) imply the
following:

1 ≤ m−y(π̂)

m0(π̂)
= K−y(B + (1 − b)

∑M−1
z=−y+M Kzπ̂z)

K0(B + (1 − b)
∑−M

z=−y−M+1 Kzπ̂z)
,

1

K−y

≤ B + (1 − b)
∑M−1

z=−y+M Kzπ̂z

B
= 1 + 1 − b

B

M−1∑
z=−y+M

Kzπ̂z,

M−1∑
z=−y+M

Kzπ̂z ≥ B(1 − K−y)

(1 − b)K−y

≥ (1 − K−y)K−y+MD

2(1 − b)K−y

by (16). Since maxz∈[−y+M,M−1] Kz = K−y+M , we obtain

M−1∑
z=−y+M

π̂z ≥ (1 − K−y)D

2(1 − b)K−y

.(17)

Inequalities (15) and (17) imply the desired result. �

PROOF OF THEOREM 2.6. We prove this for the case of x ∈ [−L,−1]. The
other case of x ∈ [1,L] is similar. Let −y be the right most (i.e., the largest) site in
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[−L,−1] where π−y > 1/(2L + 1). We distinguish two cases, −y + M < 1 and
−y + M ≥ 1.

If −y + M < 1, then Lemma 3.3(a) implies that at least one site y′ ∈ [2 −
M,M] has more mass than K1/(2M − 1)(2L + 1). If y′ ∈ [1,M] then we are
done; y′ cannot be 0 by assumption; and if y′ ∈ [2 − M,−1], then we use the next
paragraph to establish the result.

Now we define D = K1/(2M − 1)(2L + 1) and deal with the case of
π̂−y ≥ D for some −y + M ≥ 1. This includes the case π−y > 1/(2L + 1) where
−y + M ≥ 1. We only need to apply Lemma 3.3(b) to reach the desired conclu-
sion. �

3.2.1. Relatively large µ. For µ suitably large compared to b, we establish
Proposition 2.8, which says that most of the mass is forced into 2 intervals on both
sides of site 0, with little mass everywhere else. Theorem 2.6 implies that there
must be significant mass in both these intervals, therefore speciation is likely to
occur. For this, we first establish a lemma that gives a lower bound on the mean
fitness mπ in terms of the mutation parameter µ̃.

LEMMA 3.4. Let p = �M/2�. Suppose Assumption 1 holds and π̂ is a sta-
tionary point of (9). If µ̃ ≤ 4K2

p/(4L + 2)3, then mπ̂ ≥ (µ̃Kp/4)2/3.

PROOF. If π̂ is a stationary point of (9), then since mx ≥ 0 for any x, (12) im-
plies

1

π̂x

− (2L + 1) ≤ 2mπ̂

µ̃
,

hence

π̂x ≥ 1

(2mπ̂/µ̃) + 2L + 1
.

Since 2p ≥ M , we have Bp−(−p) = 1, therefore

mπ̂ ≥ π̂−pK2
pπ̂p ≥

(
Kp

(2mπ̂/µ̃) + 2L + 1

)2

≥ min
(

µ̃Kp

4mπ̂

,
Kp

4L + 2

)2

and

mπ̂ ≥ min
((

µ̃Kp

4

)2/3

,

(
Kp

4L + 2

)2)
.

If µ̃ ≤ 4K2
p/(4L + 2)3, then the above estimate reduces to the desired conclusion.

�
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PROOF OF PROPOSITION 2.8. We estimate the fitness of sites near 0. For
x ∈ [−l, l],

mx(π̂) = bKx

∑
z

Kzπ̂z + (1 − b)Kx

∑
z/∈[x−M+1,x+M−1]

Kzπ̂z

≤ bK0
∑
z

K0π̂z + K0Kn

∑
z/∈[x−M+1,x+M−1]

π̂z(18)

≤ b + Kn,(19)

where we use the fact that Kx is decreasing in [0,L] in the second line. And for
x /∈ [−n + 1, n − 1],

mx(π̂) ≤ Kx ≤ Kn.(20)

Define c1 = (µ̃Kp/4)2/3 − b − Kn. Condition (10) implies that c1 is positive,
and (19), (20) and Lemma 3.4 applied to (12) imply that for x ∈ [−L,−n] ∪
[−l, l] ∪ [n,L],

µ̃

2

(
1

π̂x

− (2L + 1)

)
= mπ̂ − mx(π̂) ≥ c1.

Therefore for x ∈ [−L,−n] ∪ [−l, l] ∪ [n,L],
π̂x ≤ 1

(2c1/µ̃) + 2L + 1
≤ µ̃

2((µ̃Kp/4)2/3 − b − Kn)

and the proof is complete. �

3.2.2. Small µ. Finally, we turn to the case of small µ, where we only consider
local maxima of mπ and then we can use the perturbation result Propositions 2.2
and 2.3 to say something about Vπ .

We first establish Theorem 2.9, which says that if there is very little mass out-
side the interval (−�M/2�, �M/2�), then the mass inside the interval (−�M/2�,
�M/2�) is concentrated at site 0.

PROOF OF THEOREM 2.9. Since 2q − 1 < M , By,z = b for y, z ∈ (−q, q),
therefore for x ∈ (−q,0) ∪ (0, q),

m0(π̂) = K0
∑
z

B−zKzπz ≥ b

q−1∑
z=−q+1

Kzπz,

mx(π̂) = Kx

(
b

x+M−1∑
z=x−M+1

Kzπz +
x−M∑
z=−L

Kzπz +
L∑

z=x+M

Kzπz

)

≤ Kx

(
b

q−1∑
z=−q+1

Kzπz +
−q∑

z=−L

Kzπz +
L∑

z=q

Kzπz

)
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≤ K1

(
ε + b

q−1∑
z=−q+1

Kzπz

)

and

m0(π̂) − mx(π̂) ≥ b(1 − K1)

q−1∑
z=−q+1

Kzπz − K1ε

≥ b(1 − K1)Kq−1(1 − ε) − K1ε(21)

= c > 0

if ε < b(1 − K1)Kq−1/(b(1 − K1)Kq−1 + K1). Let J = (−q,0) ∪ (0, q), then
Lemma 2.4(b) says that∑

x∈J mx(π̂)π̂x∑
x∈J π̂x

+ µ̃

2
∑

x∈J π̂x

= m0(π̂) + µ̃

2π̂0
,

therefore

1∑
x∈J π̂x

= 2

µ̃

(
µ̃

2π̂0
+ m0(π̂) −

∑
x∈J mx(π̂)π̂x∑

x∈J π̂x

)

≥ 1

π̂0
+ 2

µ̃

(
m0(π̂) − max

x∈J
mx(π̂)

)
≥ 2c

µ̃

by (21), which implies the desired conclusion. �

Now we focus on the local maxima that has their support spread M sites apart,
which seem to be the only local maxima from simulation. Suppose a subset I of
E = [−L,L] ∩ Z has the properties that all x ∈ I are at least M apart. Define

�I = {π ∈ � :πx = 0 for x /∈ I }.
We observe that �I is a closed subset of �. We first establish Proposition 3.6
below that states a condition necessary for a local maximum in �I to be a local
maximum in �, then establish Proposition 2.10, which has some results regarding
the kinds of local maxima that various fitness functions can have.

LEMMA 3.5. Let k ∈ R
+ and

k�I =
{
(π−L, . . . , πL) :πx ≥ 0 ∀x ∈ I,πx = 0 ∀x /∈ I and

L∑
x=−L

πx = k

}
,

then π̃ ∈ �I is the unique local maximum of mπ for π lying in a small neighbor-
hood in �I if and only if kπ̃ ∈ k�I is the unique local maximum of mπ for π lying
in a small neighborhood in k�I .
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PROOF. If π̃ ∈ �I is the unique local maximum of mπ for π lying in a
small neighborhood in �I , then the Hessian matrix of mπ at π̃ is positive defi-
nite, and Lemma 3.1 implies that mx(π̂) are all equal for x ∈ I . Thus mx(kπ̃) =
Kx

∑
z∈I Bx−zKzkπ̃z = kmx(π̃) are all equal for x ∈ I as well. This shows kπ̃ is

a local extremum of mπ for π ∈ k�I . To verify it is a local maximum, we define
I ′ = I\{p} where p is an arbitrary member of I , rewrite mπ in terms of x ∈ I ′,
and calculate its first and second derivatives:

mπ = ∑
x,z∈I ′

KxπxBx−zKzπz + 2Kp

(
k − ∑

x∈I ′
πx

) ∑
z∈I ′

Bp−zKzπz

+ B0K
2
p

(
k − ∑

x∈I ′
πx

)2

,

∂mπ

∂πw

= 2Kw

∑
z∈I ′

Bw−zKzπz − 2Kp

∑
z∈I ′

Bp−zKzπz

+ 2Kp

(
k − ∑

x∈I ′
πx

)
Bp−wKw − 2B0K

2
p

(
k − ∑

x∈I ′
πx

)
,

∂2mπ

∂πw ∂πy

= 2KwBw−yKy − 2KpBp−yKy − 2KpBp−wKw + 2B0K
2
p,

where w,y ∈ I ′. We observe that the second derivatives do not depend on k, there-
fore the Hessian matrix of mπ is also positive definite at kπ̃ , and kπ̃ is the unique
local maximum lying in a small neighborhood in k�I . The proof of the reverse
direction is similar. �

PROPOSITION 3.6. Suppose π̃ ∈ �I is the unique local maximum of mπ for π

lying in a small neighborhood of π̃ in �I , π̃x > 0 for all x ∈ I , and mx(π̃) = m1

for all x ∈ I .

(a) If mx(π̃) ≤ m2 < m1 for all x /∈ I , then π̃ is also the unique local maximum
of mπ for π lying in a sufficiently small neighborhood in �.

(b) If there exists y ∈ E\I where my(π̃) = m3 > m1, then π̃ is not a local
maximum of mπ for π ∈ �.

REMARK 3.7. If the set I consists of a singleton y, then δy ∈ �I is trivially
the unique local maximum of mπ for π lying in a small neighborhood of π̃ in �I ,
which is an empty set. In this case, to verify that δy is also the unique local max-
imum of mπ for π lying in a sufficiently small neighborhood in �, we only need
to check that mx(δy) < my(δy) for all x �= y.
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PROOF OF PROPOSITION 3.6. (a) We examine the fitness of π in a small
neighborhood

A =
{
π ∈ � : max

x∈E
|πx − π̃x | < ε

}

of π̃ in �:

mπ = ∑
x∈I,z∈I

KxπxBx−zKzπz + ∑
x∈I,z/∈I

KxπxBx−zKzπz

+ ∑
x /∈I,z∈E

KxπxBx−zKzπz

(22)
≤ ∑

x∈I,z∈I

KxπxBx−zKzπz + 2
∑

x /∈I,z∈E

KxπxBx−zKzπz

= ∑
x∈I,z∈I

KxπxBx−zKzπz + 2
∑
x /∈I

πxmx(π).

Let c = ∑
x /∈I πx . By Lemma 3.5, the configuration π̃1 ∈ (1−c)�I that maximizes

(locally) the first term on the right-hand side of (22) is (1 − c)π̃ , which means that
it satisfies ∑

x∈I,z∈I

KxπxBx−zKzπz ≤ (1 − c)2m1

if ε in the definition of A is sufficiently small. If ε is sufficiently small, then be-
cause mx(π) is a continuous function of π for all x, we have

mx(π) ≤ m2 + m1 − m2

2

for x /∈ I . Applying the two estimates above to (22), we obtain

mπ ≤ (1 − c)2m1 + 2c

(
m2 + m1 − m2

2

)
= m1 − c(m1 − m2) + c2m1 < m1

if c ≤ (2L + 1)ε is strictly positive but sufficiently small. Hence π̃ is also the
unique local maximum of mπ for π lying in a small neighborhood in �.

(b) Let w ∈ I , then π̃w > 0 and mw(π̃) = m1. Along the line π̃ + p(δy − δw),

∂mπ+p(δy−δw)

∂p

∣∣∣∣
π=π̃ ,p=0

= ∂

∂(πy + p)

∣∣∣∣
π=π̃ ,p=0

mπx+p(δy,x−δw,x)

∂(πy + p)

∂p

+ ∂

∂(πw − p)

∣∣∣∣
π=π̃ ,p=0

mπx+p(δy,x−δw,x)

∂(πw − p)

∂p

= 2
(
my(π̃) − mw(π̃)

)
= 2(m3 − m1),
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which is strictly positive. Therefore π̃ is not a local maximum of mπ for π ∈ �.
�

Now we use the above result to establish Proposition 2.10, which explicitly
computes some local maxima, when the dimension of �I is low enough (less
than 3) to enable us to do hands-on computation.

PROOF OF PROPOSITION 2.10. (a) By Lemma 3.1, at any local maximum π̂ ,
the support of π̂ must have equal fitness. We will show that either xj + 1 or
xj+1 − 1 is more fit than sites in {x1, . . . , xk}. If xj+1 ≥ 1, then since K is
unimodal by assumption, Kxj+1−1 > Kxj+1 . Otherwise, xj+1 ≤ 0 and xj ≤ −1,
therefore Kxj+1 > Kxj

. So either Kxj+1−1 > Kxj+1 or Kxj+1 > Kxj
or both. If

Kxj+1 > Kxj
(the case of Kxj+1−1 > Kxj+1 is similar), then

mxj+1(π̂) = Kxj+1

( ∑
z∈{x1,...,xj }

Bxj+1−zKzπ̂z + ∑
z∈{xj+1,...,xk}

Bxj+1−zKzπ̂z

)
.

Since xj+1 − (xj + 1) ≥ M , all Bxj+1−z in the second sum above are 1 and equal
to Bxj−z for z ∈ {xj+1, . . . , xk} and Bxj+1−z ≥ Bxj−z for z ∈ {x1, . . . , xj } in the
first sum above, therefore

mxj+1(π̂) ≥ Kxj+1

( ∑
z∈{x1,...,xj }

Bxj−zKzπ̂z + ∑
z∈{xj+1,...,xk}

Bxj−zKzπ̂z

)

> Kxj

( ∑
z∈{x1,...,xj }

Bxj−zKzπ̂z + ∑
z∈{xj+1,...,xk}

Bxj−zKzπ̂z

)

= mxj
(π̂),

therefore π̂ cannot be a local maximum of mπ by Proposition 3.6(b).
(b) The fact that δ0 is a stationary point of (9) is obvious; in fact, it holds for

any K and b. But we need to check it is a local maximum of mπ if KM < b. We
compute the fitness of all sites in E when π = δ0. For x ∈ [−M + 1,M − 1],

mx(π) =
{

bKx, if x ∈ [−M + 1,M − 1],
Kx, if x ∈ [−L,−M] ∪ [M,L].

If KM < b, then mx < m0 for all x �= 0 since K is increasing in [−L,0] and
decreasing in [0,L]. Proposition 3.6(a) and Remark 3.7 imply that δ0 is a local
maximum of mπ .

Now we deal with the case of KM > b. Since mM(δ0) = KM > b = m0(δ0),
Proposition 3.6(b) and Remark 3.7 imply that δ0 is not a local maximum of mπ .

(c) For π̂ = pδ−x + (1 − p)δ−x+M where p is defined in the statement, brute
force calculation shows that

m−x(π̂) = m−x+M(π̂) = K2−xK
2−x+M(1 − b2)

2K−xK−x+M − bK2−x − bK2−x+M
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and

∂2mπ̂

∂p2 = bK2−x + bK2−x+M − 2K−xK−x+M,

which is < 0 if bK2−x + bK2−x+M < 2K−xK−x+M . This verifies that π̂ is
the unique local maximum of mπ for π lying in a small neighborhood of π̂

in �{−x,−x+M}.
It remains to check that all sites other than −x and −x + M are less fit, which

calculations of fitness at these sites show to be true if b, K−x−M , and K−x+2M are
all < K−xK−x+M(1 + b)/(K−x + K−x+M).

(d) This result can be proved by brute force calculation, just like part (c). We
omit the details. �
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