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COAGULATION–FRAGMENTATION DUALITY,
POISSON–DIRICHLET DISTRIBUTIONS AND

RANDOM RECURSIVE TREES

BY RUI DONG,1 CHRISTINA GOLDSCHMIDT2 AND JAMES B. MARTIN3

University of California, Berkeley, Cambridge University and Oxford University

In this paper we give a new example of duality between fragmentation
and coagulation operators. Consider the space of partitions of mass (i.e., de-
creasing sequences of nonnegative real numbers whose sum is 1) and the two-
parameter family of Poisson–Dirichlet distributions PD(α, θ) that take values
in this space. We introduce families of random fragmentation and coagulation
operators Fragα and Coagα,θ , respectively, with the following property: if the
input to Fragα has PD(α, θ) distribution, then the output has PD(α, θ +1) dis-
tribution, while the reverse is true for Coagα,θ . This result may be proved us-
ing a subordinator representation and it provides a companion set of relations
to those of Pitman between PD(α, θ) and PD(αβ, θ). Repeated application of
the Fragα operators gives rise to a family of fragmentation chains. We show
that these Markov chains can be encoded naturally by certain random recur-
sive trees, and use this representation to give an alternative and more concrete
proof of the coagulation–fragmentation duality.

1. Introduction. The subject of this paper is a duality relations for a frag-
mentation operator and a coagulation operator when applied to certain Poisson–
Dirichlet distributions. The idea of duality by time reversal for fragmentation
and coagulation is very natural: the opposite of splitting blocks apart is coa-
lescing them. However, demonstrating duality for coagulation and fragmentation
processes with desirable properties seems to be a difficult problem and there is no
general theory. There are, however, several beautiful examples where some form
of duality does hold; for instance, the additive coalescent of Aldous and Pitman [4]
and the Bolthausen–Sznitman [10] coalescent, whose duality properties were dis-
covered by Pitman [18] (see also the discussion in Chapter 5 of [19]).

We work on the space of partitions of mass (i.e., decreasing sequences of non-
negative real numbers whose sum is 1). Fix 0 ≤ α < 1 and θ > −α. Our fragmen-
tation operator takes a size-biased pick from the sequence and splits the chosen
block with a PD(α,1 − α) random variable. Our coagulation operator generates a
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Beta((1 − α)/α, (θ + α)/α) random variable and coalesces that proportion of the
blocks. If the input to the fragmentation operator has PD(α, θ) distribution, then its
output has PD(α, θ + 1) distribution. Moreover, an application of the coagulation
operator allows us to go back the other way. This extends a result of Bertoin and
Goldschmidt [7], which covered the α = 0 case. It also provides a companion set
of relations to those of [18] for the Poisson–Dirichlet distributions.

Building a Markov process using the fragmentation operator gives a self-similar
fragmentation process of index 1, dislocation measure PD(α,1 − α) and ero-
sion coefficient 0, in the terminology of Bertoin [6]. We show that this frag-
mentation process is naturally embedded in certain random recursive trees (i.e.,
rooted labeled trees whose labels increase along paths away from the root). These
(α, θ)-recursive trees can be viewed as nested systems of exchangeable parti-
tions, and their construction is an elaboration of the “Chinese restaurant process”
of Dubins and Pitman (see [19]). They can also be regarded as examples of
graphs constructed by preferential attachment [9, 15, 21], and our results com-
plement those which have previously been obtained in special cases, for example,
α = 1/2, θ = 0 [23] or α = 1/2, θ = 1/2 [14].

In Section 2 we collect various definitions and results concerning the family of
Poisson–Dirichlet distributions. The fragmentation and coagulation operators are
defined precisely in Section 3 and the duality relationship between them is proved
using a subordinator representation. The extension to fragmentation and coagu-
lation processes is described in Section 4. In Section 5 we introduce the random
recursive tree model and describe how it encodes the fragmentation process. In
Section 6 we use this representation to give an alternative and more concrete proof
of the duality between the fragmentation and coagulation processes. Finally, in
Section 7, we comment on relationships between the recursive tree model and pre-
vious representations of the Chinese restaurant process in terms of continuous-time
branching processes.

2. Poisson–Dirichlet distributions. We will be concerned with properties of
the two-parameter Poisson–Dirichlet distribution, introduced in its full generality
in [20]. We will first define the PD(α, θ) distribution and then mention some of its
properties which we will use in the sequel.

DEFINITION 2.1 (Stick-breaking scheme). For 0 ≤ α < 1 and θ > −α, let
B1,B2, . . . be independent random variables such that Bn ∼ Beta(1 − α, θ + nα)

for all n ≥ 1. Let

X̃1 = B1 and X̃n = (1 − B1) · · · (1 − Bn−1)Bn for n ≥ 2.

Let X1 ≥ X2 ≥ · · · be the ranked values of the X̃n. Then define the PD(α, θ) dis-
tribution to be the law of the vector (X1,X2, . . .).
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The sequence (X̃1, X̃2, . . .) is a size-biased permutation of (X1,X2, . . .) and is
said to have the Griffiths–Engen–McCloskey GEM(α, θ) distribution. In particu-
lar, X̃1 is a size-biased pick from (X1,X2, . . .). The next proposition is a direct
consequence of Definition 2.1.

PROPOSITION 2.2 ([20]). Let (Yn, n ≥ 1) ∼ PD(α, θ + α) and let B be an
independent Beta(1 − α, θ + α) random variable. Let the sequence (Xm,m ≥ 1)

be defined by inserting B into the sequence ((1 − B)Yn,n ≥ 1) and reranking.
Then (Xm,m ≥ 1) has PD(α, θ) distribution and B is a size-biased pick from (Xm,

m ≥ 1).

There are many representations of the PD(α, θ) distribution. For α = 0 and
θ > 0, we have Kingman’s subordinator representation:

PROPOSITION 2.3 ([13]). Let γ be a standard gamma subordinator on the
time interval [0, θ ], with ranked jumps ξ1 > ξ2 > · · · > 0. Then

1

γ (θ)
(ξ1, ξ2, . . .) ∼ PD(0, θ)

independently of γ (θ), which has a Gamma(θ,1) distribution.

A related subordinator representation holds for 0 < α < 1 and θ > 0:

PROPOSITION 2.4 ([20]). Fix 0 < α < 1. Let (τ (s), s ≥ 0) be a subordinator
with Lévy measure αx−α−1e−xdx. Let S be an independent Gamma(θ/α,�(1 −
α)) random variable and let ξ1 > ξ2 > · · · > 0 be the ranked jumps of the subordi-
nator in the time interval [0, S]. Then

1

τ(S)
(ξ1, ξ2, . . .) ∼ PD(α, θ)

independently of τ(S), which has a Gamma(θ,1) distribution.

3. Dual fragmentation and coagulation operators. Let 0 ≤ α < 1, θ > −α

and

�↓∞ =
{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · > 0,

∞∑
i=1

xi = 1

}
.

Let Fragα :�↓∞ → �
↓∞ be a random operator which takes a size-biased pick from

its input, splits it using an independent PD(α,1−α) random variable and then puts
the resulting vector in decreasing order. More precisely, fix x ∈ �

↓∞. Let I be an
index chosen according to the distribution

P(I = i) = xi, i ≥ 1,
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and let η = (η1, η2, . . .) ∼ PD(α,1 − α) independently of I . Then

Fragα(x) = (x1, x2, . . . , xI−1, xI η1, xI η2, . . . , xI+1, xI+2, . . .)
↓,

where here, as throughout this paper, the arrow used as a superscript on a sequence
means that the sequence is to be put into decreasing order. Let Coagα,θ :�↓∞ →
�

↓∞ be another random operator which picks a Beta((1−α)/α, (θ +α)/α) propor-
tion of the blocks if α > 0, or a deterministic proportion 1/(θ + 1) if α = 0, joins
them together and puts the resulting vector in decreasing order. More precisely, if
α > 0, let B ∼ Beta((1 − α)/α, (θ + α)/α), and if α = 0, let B = 1/(θ + 1). Let
I1, I2, . . . be 0–1 random variables which, given B , are independent and identically
distributed with Bernoulli(B) law. Then

Coagα,θ (x) =
( ∑

i : Ii=1

xi, (xj : Ij = 0)

)↓
.

THEOREM 3.1. Let 0 ≤ α < 1 and θ > −α. Suppose that X and Y are random
variables that take values in �

↓∞. Then the following statements are equivalent:

• X ∼ PD(α, θ) and, conditional on X, Y ∼ Fragα(X).
• Y ∼ PD(α, θ + 1) and, conditional on Y , X ∼ Coagα,θ (Y ).

PROOF. The α = 0 case is Proposition 2 of [7] but, for completeness, we re-
produce the proof here. Let (γ (t), t ≥ 0) be a standard gamma process and let
ξ1 > ξ2 > · · · > 0 be the jumps of (γ (t),0 ≤ t ≤ θ + 1). Then, by Proposition 2.3,

1

γ (θ + 1)
(ξ1, ξ2, . . .) ∼ PD(0, θ + 1)

independently of γ (θ + 1), which has a Gamma(θ + 1,1) distribution. Now let
ξ ′

1 > ξ ′
2 > · · · > 0 be the jumps of (γ (t),0 ≤ t ≤ 1) and let ξ ′′

1 > ξ ′′
2 > · · · > 0 be

the jumps of (γ (t),1 < t ≤ θ + 1). Note that coagulating the jumps which happen
in the time interval [0,1] coagulates a proportion 1/(θ + 1) of ξ1, ξ2, . . . chosen
uniformly at random. Then the following relationships hold independently:

1

γ (1)
(ξ ′

1, ξ
′
2, . . .) ∼ PD(0,1),(1)

1

γ (θ + 1) − γ (1)
(ξ ′′

1 , ξ ′′
2 , . . .) ∼ PD(0, θ),(2)

γ (1)

γ (θ + 1)
∼ Beta(1, θ).(3)

The independence is a consequence of beta–gamma algebra and the fact that the
jumps of a subordinator on disjoint time intervals are independent. From (1), it is
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clear that in the fragmentation step we split with PD(0,1). Furthermore, (2), (3)
and Proposition 2.2 then imply that

1

γ (θ + 1)

(
γ (1), ξ ′′

1 , ξ ′′
2 , . . .

)↓ ∼ PD(0, θ)

and that γ (1)/γ (θ + 1) is a size-biased pick from this vector.
Suppose now that α > 0. Then a variant of the same argument applies. Let

(τ (t), t ≥ 0) be a subordinator of Lévy measure αx−α−1e−xdx and let S be an
independent Gamma((θ + 1)/α,�(1 −α)) random variable. Let B be an indepen-
dent Beta((1 − α)/α, (θ + α)/α) random variable. Suppose that ξ1 > ξ2 > · · · > 0
are the ranked jumps of (τ (t),0 ≤ t ≤ S), that ξ ′

1 > ξ ′
2 > · · · > 0 are the ranked

jumps of (τ (t),0 ≤ t ≤ BS) and that ξ ′′
1 > ξ ′′

2 > · · · > 0 are the ranked jumps of
(τ (t),BS < t ≤ S). Then, as θ + 1 > 0, by Proposition 2.4,

1

τ(S)
(ξ1, ξ2, . . .) ∼ PD(α, θ + 1)

independently of τ(S) = ∑∞
i=1 ξi , which has Gamma(θ + 1,1) distribution. Now

note that coagulating the jumps that occur in the interval [0,BS] coagulates a pro-
portion B of the jumps ξ1, ξ2, . . . . We have BS ∼ Gamma((1 − α)/α,�(1 − α))

by standard beta–gamma algebra. Then the following relationships hold indepen-
dently:

1

τ(BS)
(ξ ′

1, ξ
′
2, . . .) ∼ PD(α,1 − α),(4)

1

τ(S) − τ(BS)
(ξ ′′

1 , ξ ′′
2 , . . .) ∼ PD(α, θ + α),(5)

τ(BS)

τ(S)
∼ Beta(1 − α, θ + α).(6)

From (4), we see that in the fragmentation step we split with PD(α,1 − α). From
(5), (6) and Proposition 2.2, we see that

1

τ(S)

(
τ(BS), ξ ′′

1 , ξ ′′
2 , . . .

)↓ ∼ PD(α, θ)

and that τ(BS)
τ(S)

is a size-biased pick from this vector. �

REMARKS. (i) Corollary 13 of [18] gives a set of duality relations for cer-
tain coagulation and fragmentation operators applied to Poisson–Dirichlet distrib-
utions. In particular, for 0 < α < 1, 0 ≤ β < 1 and θ > −αβ , PD(αβ, θ) is frag-
mented in such a way that each block is split with an independent PD(α,−αβ)

random variable [call this (α,−αβ)-FRAG]. This results in a PD(α, θ) random
variable. In reverse, a coagulation of PD(α, θ) which coagulates infinitely many
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different groups of blocks gives PD(αβ, θ) back. The coagulation operator is a lit-
tle more involved: suppose that the PD(α, θ) random variable is Y = (Y1, Y2, . . .).
Take an independent random variable, Q = (Q1,Q2, . . .), with PD(β, θ/α) distri-
bution, and create an open subset IQ of [0,1] composed of open intervals whose
lengths are given by the vector Q:

IQ = (0,Q1) ∪
∞⋃
i=2

(Q1 + · · · + Qi−1,Q1 + · · · + Qi).

Now throw independent U(0,1) random variables U1,U2, . . . down on the inter-
val. Let C1 = {j ≥ 1 :Uj < Q1} and, for i ≥ 2, Ci = {j ≥ 1 :Uj ∈ (Q1 + · · · +
Qi−1,Q1 +· · ·+Qi)}. Finally, let X = (X1,X2, . . .) be obtained by reranking the
terms

X̃i = ∑
j∈Ci

Yj , i ≥ 1.

Then X has a PD(αβ, θ) distribution. We denote by (β, θ/α)-COAG the operation
on the vector Y which produces X.

Theorem 3.1 provides a companion set of relations (see Figure 1). While Pit-
man’s relations affect the first parameter multiplicatively, our relations affect the
second parameter additively.

(ii) For α = 1/2 and θ = n − 1/2, n ≥ 1, Jim Pitman has pointed out that the
operation of splitting a size-biased pick from PD(α, θ) according to PD(α,1 − α)

can be interpreted in terms of the continuum random tree T embedded in a Brown-
ian excursion, as follows. Let Rn be the subtree of T spanned by n points picked at
random according to the mass measure µ of the tree (corresponding to Lebesgue
measure on [0,1]). Let µn be the image of µ on Rn via the map which takes a point
t ∈ T to its closest point in Rn. It follows from the line-breaking construction of Rn

in [1] that µn is a random discrete distribution whose ranked atoms are distributed
according to PD(1/2, n − 1/2) and that, in the growth step from Rn to Rn+1, a
size-biased choice of one of these atoms is split according to PD(1/2,1/2) to cre-
ate the atoms of µn+1. The inverse coagulation operation can also be seen in this
setting as a corollary of Aldous’s results. It appears that similar interpretations in
terms of continuum trees for other values of (α, θ) can be based on Section 5.3
of [12]. Such interpretations are the subject of work in progress by Pitman and
Winkel. (See [2, 3, 19] for further background.)

FIG. 1. Left: Pitman’s duality relations. Right: Theorem 3.1.
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4. Fragmentation and coagulation processes. Define a discrete-time Mar-
kov fragmentation chain (X(i), i ≥ 0) that takes values in �

↓∞ as follows: for
i ≥ 0, conditional on X(i),

X(i + 1) ∼ Fragα(X(i)).

If X(0) ∼ PD(α, θ), then, by Theorem 3.1, X(i) ∼ PD(α, θ + i) for i ≥ 1.
Likewise, define an inhomogeneous Markov coagulation chain by

. . . ,X(i + 1),X(i), . . . ,X(1),X(0).

By Theorem 3.1, conditional on X(i + 1),

X(i) ∼ Coagα,θ+i

(
X(i + 1)

)
for i ≥ 0.

We can construct a continuous-time Markov fragmentation process (Y (t), t ≥
0) by taking an independent standard Poisson process (N(t), t ≥ 0) and letting

Y(t) = X(N(t))

for t ≥ 0. In the terminology of Bertoin [6], this is a self-similar fragmentation
of index 1, erosion coefficient 0 and dislocation measure PD(α,1 − α). Since the
dislocation measure is finite (it is a probability measure), the fact that the fragmen-
tation has index of self-similarity δ just means that a block of size x splits at a rate
proportional to xδ , and independently of the other blocks. Since here the total rate
of splitting is 1 at any time, and we split a size-biased pick from among the blocks,
we must have each block splitting at the rate of its length, that is, δ = 1.

Suppose that we fix θ . In the α = 0 case, it was shown in [7] that a dual
Markovian coagulation chain may be defined by (Y (e−t ), t ≥ 0). It can be checked
that when the state has distribution PD(0, θ + n), for any n ≥ 1, the process
waits an exponential time of parameter n and then jumps to a state distributed
as PD(0, θ + n − 1). In principle, the same construction may be performed in
the α > 0 case. However, here the inhomogeneity of the discrete-time coagulation
chain becomes a problem. In the α = 0 case, the distributions PD(0, θ) are almost
surely distinguishable as θ varies. Thus, it is possible to tell from the current state
which coagulation operator to apply to it to get the next state. In the α > 0 case,
however, the distributions PD(α, θ) are mutually absolutely continuous as θ varies.
Thus, it is not possible to detect almost surely from the state what the second pa-
rameter is and then work out which coagulation operator to apply.

REMARKS. In [7], the α = 0 case of these processes is shown to arise
naturally in the context of the genealogy of certain continuous-state branching
processes. We do not see any way to generalize those results to the case α > 0.
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5. Random recursive trees. Let α ∈ [0,1) and θ > −α. An exchangeable
(α, θ) partition of N (or of any infinite subset A ⊆ N) is defined as follows:

(i) Generate a PD(α, θ)-distributed vector (Y1, Y2, Y3, . . .).
(ii) Conditionally on Y1, Y2, Y3, . . . , assign i to block j with probability Yj ,

independently for each i ∈ A.

Suppose we order the blocks of this partition in increasing order of their smallest
elements. Let Bi be the ith block and let Fi be its asymptotic frequency, that is,

Fi = lim
n→∞

|Bi ∩ {1,2, . . . , n}|
|A ∩ {1,2, . . . , n}| .

Then (F1,F2, . . .) is a size-biased ordering of (Y1, Y2, . . .). In particular, (F1,F2,

. . .) has the GEM(α, θ) distribution.
An alternative way to construct an exchangeable (α, θ) partition is via the Chi-

nese restaurant process of Dubins and Pitman (see [19]), defined as follows. Per-
son 1 enters a Chinese restaurant and sits at the first table. Person 2 sits either at
the same table or at a new one; in general, each subsequent person (numbered suc-
cessively 3,4, . . .) sits either at one of the occupied tables or at a new one. Suppose
that people 1,2, . . . , n have sat at k tables, where table i has ni customers (with
ni ≥ 1 and

∑k
i=1 ni = n). Then person n + 1 starts a new table with probability

θ + kα

n + θ

and sits at table i with probability

ni − α

n + θ

for 1 ≤ i ≤ k (see Figure 2). The partition of N into blocks that correspond to the
different tables is an exchangeable (α, θ) partition of N. (Of course, the construc-
tion for general A ⊆ N is analogous.)

We are now ready to describe the model of an (α, θ)-recursive tree. A recursive
tree is a rooted labeled tree such that the vertex labels increase along paths away
from the root. We now construct a random recursive tree as follows. We start with

FIG. 2. The Chinese restaurant process.
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the root labeled 0 and a single child labeled 1. Vertices 2,3, . . . are now added
in turn; vertex i is added as a child of one of the existing vertices 0,1, . . . , i − 1.
When vertex i is added, the probability that it is added as a child of vertex j is
proportional to 1 −α +αkj if j ≥ 1, where kj is the current number of children of
vertex j . It is added as a child of vertex 0 with probability proportional to θ +αk0.
A tree on Z+ that arises in this way is called an (α, θ)-recursive tree.

It is useful to generate the same distribution via a continuous-time Markov
chain. Namely, we again start with the root labeled 0 and a single child labeled 1.
From then on, new children of the root arrive at rate θ + αk0 and new children of
vertex j , j ≥ 1, arrive at rate 1 − α + αkj (where, again, kj is the current number
of children of vertex j ). The new vertices are numbered in the order they arrive.
This continuous-time construction will make it possible to deduce directly various
useful independence properties of the tree.

Now consider the following procedure. Remove vertex 0 and record the parti-
tion of N given by the resulting forest. Call this partition B(0), where the blocks
B

(0)
1 ,B

(0)
2 , . . . are listed in increasing order of smallest element (note that this

smallest element is necessarily the root of one of the recursive trees in the for-
est). Now, for i ≥ 1, define B(i) to be the partition of N \ {1,2, . . . , i} obtained
by removing vertices 0,1,2, . . . , i (again, the blocks B

(i)
1 ,B

(i)
2 , . . . of this partition

are listed in increasing order of smallest element).

THEOREM 5.1. For all i ≥ 0, the blocks B
(i)
1 ,B

(i)
2 , . . . form an exchangeable

(α, θ + i) partition of N \ {1,2, . . . , i}. In particular, B
(i)
1 ,B

(i)
2 , . . . possess asymp-

totic frequencies F
(i)
1 , F

(i)
2 , . . . such that (F (i))↓ ∈ �

↓∞ and F (i) ∼ GEM(α, θ + i)

for all i ≥ 0. Moreover, letting G(i) = (F (i))↓, we have that (G(i), i ≥ 0) is a
Markov chain such that the following statements hold:

• For i ≥ 1, conditional on G(i), G(i+1) has the same distribution as Fragα(G(i)).
• For i ≥ 1, conditional on G(i+1), G(i) has the same distribution as

Coagα,θ+i(G
(i+1)).

This result is illustrated in Figure 3. It entails that as long as X(0) ∼ PD(α, θ),
then (

G(i), i ≥ 0
) d= (

X(i), i ≥ 0
)
,

where (X(i), i ≥ 0) is the Markov fragmentation chain of Section 4, and clearly
implies Theorem 3.1. The size-biased view of the fragmentation chain given by
the random recursive tree seems a very natural description: rather than having two
sources of external randomness (one to take a size-biased pick from the state vec-
tor and another to split it), here the randomness is entirely in the tree; given the
tree, the fragmentation is deterministic. The tree can be thought of as a concrete
representation of the filtration of the fragmentation.
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FIG. 3. Fragmentation and coagulation for the (α, θ)-recursive tree.

REMARKS. (i) For a general survey of results on recursive trees, see [22].
Random recursive trees similar to certain (α, θ)-recursive trees have been stud-
ied by Szymański [23] and by Mahmoud, Smythe and Szymański [14]. One ob-
ject of interest is the kth branch, that is, the subtree rooted at k in a random re-
cursive tree labeled by {0,1, . . . , n}. Call the size of the kth branch Tn,k . In our
model, F

(k−1)
1 is the almost sure limit of Tn,k/n as n → ∞. In his Theorem 8,

Szymański [23] finds the mean and variance of Tn,k in the (1/2,0)-recursive tree;
his results are consistent with the limiting mean and variance implied by Theo-
rem 5.1. Theorem 5 of [14] gives the limiting distribution of Tn,k/n as Beta(1/2, k)

in a model which is essentially the (1/2,1/2)-recursive tree; this is also what we
expect from Theorem 5.1. Various related classes of random graphs and trees con-
structed by preferential attachment are considered, for example, by Barabási and
Albert [5], Bollobás, Riordan, Spencer and Tusnády [9], Móri [15] and Rudas,
Tóth and Valkó [21].
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(ii) Taking α = −1/m and θ = r/m for integers m ≥ 1 and r ≥ 2 in
the Chinese restaurant process gives an exchangeable random partition into r

blocks whose asymptotic frequencies are the decreasing rearrangement of a
Dirichlet(1/m, . . . ,1/m) random vector with r parameters all equal to 1/m. The
construction of the (α, θ)-recursive tree works for these parameters as well [to be
precise, the probability we add a vertex to the root is proportional to (r − k0)+/m

and the probability we add to any other vertex is proportional to (m+1−kj )+/m],
giving a tree whose out-degrees are all equal to m + 1, except for the root which
has degree r . Analogs of Theorems 3.1 and 5.1 hold in this case too; see [7] for
details.

6. Proof of Theorem 5.1. We prove Theorem 5.1 in a series of lemmas. (Note
that this proof is independent of Theorem 3.1.)

LEMMA 6.1. The blocks B
(i)
1 ,B

(i)
2 , . . . form an exchangeable (α, θ + i) par-

tition of N \ {1, . . . , i}.

PROOF. By the children of a set of vertices, we will mean here vertices which
are neighbors of that set in the tree, but are not contained within it. We work via the
Chinese restaurant process. Think of children of the set of vertices {0,1,2, . . . , i}
as starting new tables. Consider the construction of the (α, θ)-recursive tree and
suppose that vertices labeled i + 1, i + 2, . . . , i + n have already arrived, includ-
ing k children of the set {0,1,2, . . . , i}. Suppose that the k subtrees rooted at these
children have sizes n1, n2, . . . , nk , where

∑k
j=1 nj = n (the subtrees correspond

to tables in the Chinese restaurant process). Then i + n + 1 forms a new table
at rate θ + i(1 − α) + α(k + i) = θ + i + αk and is added to table j at rate
nj (1 − α) + α(nj − 1) = nj − α for 1 ≤ j ≤ k. Hence, the total rate is

∑k
j=1 nj −

kα+θ + i+αk = n+θ + i. Thus, i+n+1 forms a new table with probability (θ +
i+αk)/(n+θ + i) and adds to table j with probability (nj −α)/(n+θ + i) for 1 ≤
j ≤ k. Hence, we have a Chinese restaurant process of parameters (α, θ + i) and
so removing vertices 0,1,2, . . . , i gives blocks which form an (α, θ + i) partition.

�

We now describe the (α, θ)-recursive tree in terms of a set of “nested” (α, θ)

and (α,1 − α) partitions.

LEMMA 6.2. The distribution of the (α, θ)-recursive tree is characterized
(among distributions on recursive trees on Z+) by the following properties:

(i) The blocks that correspond to subtrees rooted at different children of the
root form an exchangeable (α, θ) partition of N.
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(ii) Let i ≥ 1. Consider the set D(i) ⊆ N \ {1,2, . . . , i} of labels which are
descendants of i in the tree. Conditional on D(i), the blocks that correspond to
subtrees rooted at different children of i form an exchangeable (α,1 −α) partition
of D(i) and this partition is independent of the structure of the subtree on Z+ \
D(i).

One could say that the subtree rooted at any vertex except the root has the struc-
ture of an (α,1 − α)-recursive tree; in the special case θ = 1 − α, the whole tree
also has this structure and so one has full self-similarity.

PROOF OF LEMMA 6.2. The partition of N into blocks as in part (i) deter-
mines the labels of the children of the root (because of the property that labels
increase along paths away from the root, so that the children of the root are the
smallest elements of each block of the partition). Then the subpartitions of the
blocks (minus their smallest elements) as in part (ii) determine the next level of
the tree and so on; thus we indeed have a characterization of the distribution of the
tree.

Property (i) is the i = 0 case of Lemma 6.1. The self-similarity and indepen-
dence properties in (ii) are most easily seen via the continuous-time construction
of the tree. Considering only the subtree rooted at vertex i, we see that the process
of vertices arriving at that subtree corresponds precisely to that for building an
(α,1 − α) tree (with a different set of labels); its structure depends on the evolu-
tion of the rest of the tree only through the sequence of labels which are assigned
to new vertices that join the subtree. �

The following alternative procedure also builds the (α, θ)-recursive tree and in
addition will describe precisely the evolution of the process (G(i), i ≥ 0) obtained
by removing the vertices 0,1,2, . . . in turn. This construction employs the self-
similarity and naturally gives the Markov property of the fragmentation process,
which is not easily obtained by other means.

At stage n of the procedure we have a tree with n + 1 internal vertices labeled
0,1,2, . . . , n, each of which has infinitely many children which are leaves. At each
stage we label one of the leaves and create new leaves which are children of the
newly labeled vertex (which, of course, ceases to be a leaf itself). Each vertex of the
tree carries a weight. The weight of a vertex represents the asymptotic frequency
of the set of all the labels which will be assigned to the descendants of that vertex.
In particular:

• The weight of the root is 1.
• For any internal (i.e., already labeled) vertex, the weight of the vertex equals the

sum of the weights of all its children. [In fact, the weights of the children are a
splitting, by a PD(α,1 − α) random vector, of the weight of the parent, unless
the parent is the root, in which case the splitting is by PD(α, θ).]
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We start at stage 0 with a tree that consists of the root, labeled 0, with weight 1, and
an infinite number of unlabeled leaves which are children of the root and whose
weights are given by a PD(α, θ) random vector.

To pass to stage 1, we choose one of the children of the root in a size-biased
way (according to the weights assigned to the vertices) and assign label 1 to this
vertex. We create an infinite number of children of the newly labeled vertex (which
become leaves); these are assigned weights given by a splitting of the weight of
the parent vertex by a PD(α,1 − α) random vector.

To pass from stage n to stage n + 1, we similarly choose between the children
of the root in a size-biased way. If we choose an already labeled vertex, we now
choose between the children of that chosen vertex in a size-biased way. This con-
tinues until we reach a leaf. This leaf is now labeled n + 1; its children are created
and their weights are assigned by a PD(α,1 − α) splitting as above.

All of the size-biased picks and random vectors are independent.
Proceeding in this way, one constructs a tree on 0,1,2, . . . . From the description

of the random recursive tree in Lemma 6.2 in terms of nested exchangeable (α, θ)

and (α,1 − α) partitions, it follows that this tree indeed has the distribution of an
(α, θ)-recursive tree.

We can now use this construction to identify the chain (G(i), i ≥ 0) with the
chain obtained by applying Fragα repeatedly.

LEMMA 6.3. The process (G(i), i ≥ 0) is a Markov chain such that condi-
tional on G(i), G(i+1) has the same distribution as Fragα(G(i)).

PROOF. First note that the weights of all the leaves at stage i correspond to
the state G(i), recording the asymptotic frequencies of the subtrees obtained when
the vertices 0,1, . . . , i are removed and ranking these frequencies in decreasing
order. The procedure of passing from stage i to i + 1—choosing first between
the children of the root in a size-biased way, then between the children of that
child in a size-biased way and so on until a leaf is chosen—is equivalent simply
to choosing between all the leaves in a size-biased way. Given the state of the tree
at stage i, this choice of vertex i + 1 is made independently of previous choices.
Thus, given G(i), we obtain G(i+1) precisely by applying the random operator
Fragα to G(i) independently of G(0), . . . ,G(i−1). �

We have proved that (G(i), i ≥ 0) is a Markov chain and that G(i+1) is the
required fragmentation of G(i). It remains only to show the coagulation property.
To understand the coagulation mechanism in the tree, we need some more notation.
For i ≥ 0, starting from blocks B

(i+1)
1 ,B

(i+1)
2 , . . . , create new blocks B̃

(i)
1 , B̃

(i)
2 , . . .

as follows. Let Ĩ
(i+1)
1 be an independent Bernoulli((1 − α)/(θ + i + 1)) random

variable and recursively generate Ĩ
(i+1)
2 , Ĩ

(i+1)
3 , . . . that take values 0 or 1 via

P
(
Ĩ

(i+1)
k+1 = 1|Ĩ (i+1)

1 , Ĩ
(i+1)
2 , . . . , Ĩ

(i+1)
k

) = 1 − α + α
∑k

j=1 Ĩ
(i+1)
j

θ + i + 1 + αk
(7)
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independently of B(i+1). Let C(i+1) = {k : Ĩ (i+1)
k = 1}, let

B̃
(i)
1 = {i + 1} ∪ ⋃

k∈C(i+1)

B
(i+1)
k

and let B̃
(i)
2 , B̃

(i)
3 , . . . be the blocks B

(i+1)
k not contained in the union B̃

(i)
1 , listed

in increasing order of smallest element (notice that this retains the ordering of the
indices from the previous step). Let B̃(i) = (B̃

(i)
1 , B̃

(i)
2 , . . .).

LEMMA 6.4. For i ≥ 1, B̃(i) is a partition of N \ {1,2, . . . , i} and

(
B̃(i),B(i+1)) d= (

B(i),B(i+1)).
PROOF. Suppose that we are given B(i+1). We know that in the full recur-

sive tree, each of the blocks B
(i+1)
1 ,B

(i+1)
2 , . . . is connected to one of the vertices

0,1, . . . , i + 1. We need to know which of them are connected to i + 1.
Let (a1, a2, a3, . . .) be the sequence of children of the nodes {0,1, . . . , i + 1} in

order. (In particular, a1 = i + 2.) Let (b1, b2, . . .) be {i + 2, i + 3, . . .} \ {a1, a2 . . .}
in order. Now for j ≥ 1, let pj be the parent of node aj and let qj be the parent
of node bj . (Thus pj ∈ {0,1, . . . , i + 1} and qj ∈ {i + 2, i + 3, . . .}.) From the
continuous-time construction of the random recursive tree, one can deduce that
the three sequences (a1, a2, . . .), (p1,p2, . . .) and (q1, q2, . . .) are independent.
Since B(i+1) is a function of (a1, a2, . . .) and (q1, q2, . . .), we therefore have that
(p1,p2, . . .) is independent of B(i+1).

Since pj is the vertex to which block B
(i+1)
j is attached, we need to know specif-

ically which of the pj are equal to i +1. Now, regardless of the form of the subtree
spanned by vertices 0,1, . . . , i + 1, vertex i + 1 has children at rate 1−α +αni+1,
where ni+1 is the number of children that it has already, and the group 0,1, . . . , i

has children at total rate θ + i + α + αñ, where ñ is the combined total number
of children that the group already has other than i + 1. Hence, the probability that
p1 = i + 1 is equal to (1 − α)/(θ + i + 1). For k ≥ 1, let I

(i+1)
k be the indica-

tor function of the event {pk = i + 1}, which of course is the same as the event
{B(i+1)

k is attached to i + 1}. Then for k ≥ 1 we have

P
(
I

(i+1)
k+1 = 1|I (i+1)

1 , I
(i+1)
2 , . . . , I

(i+1)
k

) = 1 − α + α
∑k

j=1 I
(i+1)
j

θ + i + 1 + αk
,

so that the sequence (I
(i+1)
1 , I

(i+1)
2 , . . .) has the same law as the sequence

(Ĩ
(i+1)
1 , Ĩ

(i+1)
2 , . . .) constructed at (7). Thus, conditional on B(i+1), B̃(i) d= B(i).

�

The proof of Theorem 5.1 is now completed by the following lemma.
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LEMMA 6.5. Conditional on G(i+1), G(i) has the same distribution as
Coagα,θ+i(G

(i+1)).

PROOF. Consider the construction of B̃(i) from B(i+1). The random variables
Ĩ

(i+1)
1 , Ĩ

(i+1)
2 , . . . defined at (7) describe the evolution of a “generalized Pólya urn.”

In particular, the limit

B = lim
k→∞

1

k

k∑
j=1

Ĩ
(i+1)
j

exists almost surely and has a Beta((1 − α)/α, (θ + i + α)/α) distribution [except
in the case α = 0, when B = 1/(θ + i + 1) a.s.]; then, conditional on B , the vari-
ables Ĩ

(i+1)
1 , Ĩ

(i+1)
2 , . . . are independent and identically distributed Bernoulli(B)

random variables (see [8] or [17]).
Thus, conditional on B(i+1), the ranked asymptotic frequencies G̃(i) of B̃(i)

have the same distribution as Coagα,θ+i(G
(i+1)). Since this distribution depends

on B(i+1) only through G(i+1), we have that the same is true if we condition in-
stead on G(i+1) (this follows by Dynkin’s criterion for a function of a Markov
process to be Markov; see Theorem 10.13 of [11]). But by Lemma 6.4, we have

(B̃(i),B(i+1))
d= (B(i),B(i+1)), so also (G̃(i),G(i+1))

d= (G(i),G(i+1)). Hence,
conditional on G(i+1), G(i) has the same distribution as Coagα,θ+i(G

(i+1)). �

7. Continuous-time branching models. Pitman [16], gave a construction of
the two-parameter partition structure [or, equivalently, the (α, θ) Chinese restau-
rant process] via continuous-time branching models (possibly with immigration).
In this section we discuss the relationship between such a construction and our
recursive tree model.

We first describe Pitman’s construction. Let 0 ≤ α < 1, θ > −α. Consider a
population of individuals of two types: novel and clone. Each individual is assigned
a color: a novel individual always has a new color, while a clone is always assigned
the same color as its parent. Every individual has an infinite lifetime. Starting from
a single novel individual at time t = 0, this first individual produces novel offspring
according to a Poisson process of rate θ + α and clone offspring according to an
independent Poisson process of rate 1 − α. The reproduction rules for the other
individuals are as follows:

• Novel individuals produce novel offspring according to a Poisson process of rate
α and independently produce clone offspring according to a Poisson process
with rate 1 − α.

• Clone individuals produce clone offspring according to a Poisson process of
rate 1.
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Individuals are labeled in the order they appear. The colors of individuals naturally
induce a random partition of N, which has the PD(α, θ) distribution, by compari-
son of the growth procedure with the (α, θ) Chinese restaurant process.

If θ > 0, we may treat the first individual just like any other novel individual
(i.e., producing novel individuals at rate α and clones at rate 1 − α) and intro-
duce an independent Poisson migration process of novel individuals which arrive
at rate θ . This way of looking at things provides an easy way to see the fact (due
to Pitman [18]) that taking a PD(0, θ) random variable and splitting each block
with an independent PD(α,0) random variable gives a PD(α, θ) random variable.
Indeed, by ignoring the clone/novel difference and just looking at the partition
generated by the descendencies of the immigrant individuals, we see a (0, θ) par-
tition. If we then keep track of the different colors as well, we see a refinement of
this partition. Moreover, within each block of the coarse partition, the colors are
generated according to the rules for an (α,0) partition.

Let us explain where the branching model construction of an (α, θ) partition
(in the no immigration setting) differs from the recursive tree construction. Novel
individuals in the branching model are exactly the children of the root in the re-
cursive tree (although which novel individual is the “child” of which other novel
individual has no meaning in the recursive tree setup). The growth rates for the sub-
families are the same: the collection consisting of a novel individual and its clone
descendents (say k of them) produces new clone individuals at rate 1 − α + k.
In the recursive tree, likewise the subtree descending from a particular child of
the root grows at rate (1 − α)(k + 1) + αk = 1 − α + k. However, the new in-
dividuals are not being added in the same places on the subtree. For example, a
novel individual in Pitman’s construction has clone children at fixed rate 1 − α.
In our subtree, however, the individual at the top of the subtree has children at
rate 1 − α + α#{children it has already had}. These genealogical differences make
no difference to the partition obtained, but do make a difference to the nesting
property for successive partitions.

The coagulation–fragmentation duality (Theorem 3.1) for 0 ≤ α < 1, θ > −α

can be interpreted through a variant of the branching model construction. We in-
troduce killing, as in the recursive tree, and also give the clones hidden features.
These hidden features enable us to obtain the required nesting of partitions. More
precisely:

• Each clone individual is different from its brothers and has a brand new color,
but this difference (in type as well as in color) is invisible until its parent is
killed.

• Each clone individual actually generates novel individuals at rate α and inde-
pendently generates clone individuals at rate 1 − α, but this difference (in type
as well as in color) among its offspring is invisible until its parent is killed and
it becomes novel.
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As in the recursive trees setting, start with a PD(α, θ) population and kill the first
individual, then the second, then the third and so forth. Notice that immediately
after killing an individual, its clone children and the offspring of those clone chil-
dren may change their novel/clone status or color and form a number of new blocks
which fragment the block of the killed individual. This provides an alternative en-
coding of the fragmentation chain.
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