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In this paper we give a complete analysis of the phase transitions in
the mean-field Blume—Emery—Griffiths lattice-spin model with respect to
the canonical ensemble, showing both a second-order, continuous phase
transition and a first-order, discontinuous phase transition for appropriate
values of the thermodynamic parameters that define the model. These phase
transitions are analyzed both in terms of the empirical measure and the
spin per site by studying bifurcation phenomena of the corresponding sets
of canonical equilibrium macrostates, which are defined via large deviation
principles. Analogous phase transitions with respect to the microcanonical
ensemble are also studied via a combination of rigorous analysis and
numerical calculations. Finally, probabilistic limit theorems for appropriately
scaled values of the total spin are proved with respect to the canonical
ensemble. These limit theorems include both central-limit-type theorems,
when the thermodynamic parameters are not equal to critical values, and
noncentral-limit-type theorems, when these parameters equal critical values.

1. Introduction. The Blume—Emery—Griffiths (BEG) model [4] is an impor-
tant lattice-spin model in statistical mechanics. It is one of the few and certainly
one of the simplest models known to exhibit, in its mean-field version, both a
continuous, second-order phase transition and a discontinuous, first-order phase
transition. Because of this property, the model has been studied extensively as
a model of many diverse systems, including®H¢e* mixtures—the system for
which Blume, Emery and Griffiths first devised their model [4]—as well as solid-
liquid-gas systems [18, 24, 25], microemulsions [23], semiconductor alloys [19]
and electronic conduction models [17]. Phase diagrams for a class of models in-
cluding the Blume—Emery—Giriffiths model are discussed in [1], which lists addi-
tional work on this and related models. On a more theoretical level, the BEG model
has also played an important role in the development of the renormalization-group
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theory of phase transitions of the Potts model; see [16, 20] for details and refer-
ences.

As a model with a simple description but a relatively complicated phase
transition structure, the BEG model continues to be of interest in modern statistical
mechanical studies. In this paper we focus on the mean-field version of the BEG
model or, equivalently, the BEG model on the complete graph wvertices. Our
motivation for revisiting this model was initiated by a recent observation in [2, 3]
that the BEG model on the complete graph has nonequivalent microcanonical
and canonical ensembles, in the sense that it exhibits microcanonical equilibrium
properties having no equivalent within the canonical ensemble. This observation
is supported in [15] by numerical calculations both at the thermodynamic level, as
in [2, 3], and at the level of equilibrium macrostates. In response to these earlier
works, in this paper we address the phase transition behavior of the model by
giving separate analyses of the structure of the sets of equilibrium macrostates for
each of the two ensembles. Not only are our results consistent with the findings
in [2, 3, 15], but also we rigorously prove for the first time a number of results
that significantly generalize those found in these papers, where they were derived
nonrigorously. For the canonical ensemble, full proofs of the structure of the set
of equilibrium macrostates are provided. For the microcanonical ensemble, full
proofs could not be attained. However, using numerical methods and following an
analogous technique used in the canonical case, we also analyze the structure of
the set of microcanonical equilibrium macrostates.

The BEG model that we consider is a spin-1 model defined on the complete
graph om: vertices 12,...,n. The spin at sitg € {1, 2, ..., n} is denoted by,

a quantity taking values in = {—1, 0, 1}. The Hamiltonian for the BEG model is
defined by

n K n 2
Ho@ =3 —(ij) ,

whereK > 0 is a given parameter representing the interaction strengtlwand
(w1, ...,w,) € A". The energy per particle is defined by

n 2 n N2
LD k@ == n,K(w>=ﬂ—K(M) .
n n n

In order to analyze the phase transition behavior of the model, we first intro-
duce the sets of equilibrium macrostates for the canonical ensemble and the micro-
canonical ensemble. As we will see, the canonical equilibrium macrostates solve a
two-dimensional, unconstrained minimization problem, while the microcanonical
equilibrium macrostates solve a dual, one-dimensional, constrained minimization
problem. The definitions of these sets follow from large deviation principles de-
rived for general models in [10]. In the particular case of the BEG model, they are
consequences of the fact that the BEG-Hamiltonian can be written as a function of
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the empirical measures of the spin random variables and that, according to Sanov’s
theorem, the large deviation behavior of these empirical measures is governed by
the relative entropy.

We use two innovations to analyze the structure of the set of canonical
equilibrium macrostates. The first is to reduce to a one-dimensional problem the
two-dimensional minimization problem that characterizes these macrostates. This
is carried out by absorbing the noninteracting component of the energy per particle
function into the prior measure, which is a product measure on configuration space.
This manipulation allows us to express the canonical ensemble in terms of the
empirical means, or spin per sifg/n = Z’}:le/n, of the spin random variables.
Doing so reduces the analysis of the BEG model to the analysis of a Curie—Weiss-
type model [9] with single-site measures dependington

The analysis of the set of canonical equilibrium macrostates is further simplified
by a second innovation. Because the thermodynamic parameter that defines the
canonical ensemble is the inverse temperafiyra phase transition with respect
to this ensemble is defined by fixing the Hamiltonian-param&tand varyings.

Our analysis of the set of canonical equilibrium macrostates is based on a much
more efficient approach that fixgsand variesk . Proceeding in this way allows

us to solve rigorously and in complete detail the reduced one-dimensional problem
characterizing the equilibrium macrostates. We then extrapolate these results
obtained by fixing8 and varyingK to physically relevant results that hold for
fixed K and varyingB. These include a second-order, continuous phase transition
and a first-order, discontinuous phase transition for different ranggs of

For the microcanonical ensemble, we use a technique employed in [2] that
absorbs the constraint into the minimizing function. This step allows us to reduce
the constrained minimization problem defining the microcanonical equilibrium
macrostates to another minimization problem that is more easily solved. Rigorous
analysis of the reduced problem being limited, we rely mostly on numerical
computations to complete our analysis of the set of equilibrium macrostates.
Because the thermodynamic parameter defining the microcanonical ensemble is
the energy per particle, a phase transition with respect to this ensemble is defined
by fixing K and varyingu. By analogy with the canonical case, our numerical
analysis of the set of microcanonical equilibrium macrostates is based on a much
more efficient approach that fixasand variesK. The analysis with respect #&
rather than: allows us to solve in some detail the reduced problem characterizing
the equilibrium macrostates. We then extrapolate these results obtained by:fixing
and varyingK to physically relevant results that hold for fixéd and varyingu.

As in the case of the canonical ensemble, these include a second-order, continuous
phase transition and a first-order, discontinuous phase transition for different
ranges ofK .

The contributions of this paper include a rigorous global analysis of the first-

order phase transition in the canonical ensemble. Blume, Emery and Griffiths did
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a local analysis of the spin per site to show that their model exhibits a second-
order phase transition for a range of valueskoand that, at a certain value &f,

a tricritical point appears [4]; a similar study of a related model is carried out

in [5, 6]. This tricritical point has the property that, for all smaller valuekofve

are dealing with a first-order phase transition. Mathematically, the tricritical point
marks the beginning of the failure of the local analysis; beyond this point, one
has to resort to a global analysis of the spin per site. While the first-order phase
transition has been studied numerically by several authors, the present paper gives
the first rigorous global analysis.

Another contribution is that we analyze the phase transition for the canonical
ensemble both in terms of the spin per site and the empirical measure. While
all previous studies of the BEG model, except for [15], focused only on the spin
per site, the analysis in terms of the empirical measure is the natural context for
understanding equivalence and nonequivalence of ensembles [15].

A main consequence of our analysis is that the tricritical point—the critical
value of the Hamiltonian parametéf at which the model changes its phase
transition behavior from second-order to first-order—differs in the two ensembles.
Specifically, the tricritical point is smaller in the microcanonical ensemble than in
the canonical ensemble. Therefore, there exists a range of valuésoth that
the BEG model with respect to the canonical ensemble exhibits a first-order phase
transition, while, with respect to the microcanonical ensemble, the model exhibits
a second-order phase transition. As we discuss in Section 5, these results are
consistent with the observation, seen numerically in [15], that there exists a subset
of the microcanonical equilibrium macrostates that are not realized canonically.
This observation implies that the two ensembles are nonequivalent at the level of
equilibrium macrostates.

A final contribution of this paper is to present probabilistic limit theorems for
appropriately scaled partial sunis = Z’}Zl w; With respect to the canonical en-
semble. These limits follow from our work in Section 3 and known limit theorems
for the Curie—Weiss model derived in [12, 14]. They include conditioned limit
theorems when there are multiple equilibrium macrostates representing coexisting

phases. In most cases the limits involve the central-limit-type scafiffgand con-
vergence in distribution ofS,, — nz)/n1/? to a normal random variable, whetés

an equilibrium macrostate. They also include the following two nonclassical cases,
which hold for appropriate critical values of the parameters defining the canonical
ensemble:

S,/n¥* L5 X whereP{X e dx) = const exd —const x*] dx
and
S,/n®® L5 X whereP{X e dx) = const exd —const x®] dx.

As in the case of more complicated models, such as the Ising model, these
nonclassical theorems signal the onset of a phase transition in the BEG model ([9],
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Section V.8). They are analogues of a result for the much simpler Curie—Weiss
model ([9], Theorem V.9.5).

The outline of the paper is as follows. In Section 2, following the general
procedure described in [10], we define the canonical ensemble, the microcanonical
ensemble and the corresponding sets of equilibrium macrostates. In Section 3 the
structure of the set of canonical equilibrium macrostates is studied. The initial
analysis is carried out in Sections 3.2 and 3.3 at the level of the spin pe, gite
after the BEG model is written as a Curie—-Weiss-type model in Section 3.1. In
Sections 3.4 and 3.5 the information at the level of the spin per site is lifted to the
level of the empirical measures of the spin random variables using the contraction
principle, a main tool in the theory of large deviations. In Section 4 we present
new theoretical insights into, and numerical results concerning, the structure of
the set of microcanonical equilibrium macrostates. In Section 5 we discuss the
implications of the results in the two previous sections concerning the nature of the
phase transitions in the BEG model, which in turn is related to the phenomenon
of ensemble nonequivalence at the level of equilibrium macrostates. Section 6 is
devoted to probabilistic limit theorems for appropriately scaled s8ymns

2. Sets of equilibrium macrostates for the two ensembles. The canonical
and microcanonical ensembles are defined in terms of probability measures on a
sequence of probability spaces&”, ¥,). The configuration spaces™ consist of
microstateso = (w1, ..., w,) With eachw; e A ={-1,0, 1}, and¥, is theo -field
consisting of all subsets af”. We also introduce the-fold product measur®,
on ,, with identical one-dimensional marginads= %(8_1 + 80 + 61).

In terms of the energy per particlg x defined in (1.1), foreache N, g >0
andK > 0, the partition function is defined by

Z,(B,K)= /An exp—npBh, k1dP,.

For setsB € #,, the canonical ensemble for the BEG model is the probability
measure

(2-1) Pn,ﬁ,K(B) = exq_nﬁhn,K]dPn-

zno;, K) /B

Foru e R, r >0, K > 0 and setsB € ¥,,, the microcanonical ensemble is the
conditional probability measure

P K (BY = P{Blhyk €lu—ru+rl)

. PBN{h, gk elu—ru+rl}}
 Pihpxelu—ru+rl}

2.2)

As we point out after (2.4), for appropriate valuesiand all sufficiently large:,
the denominator is positive and, thug*"X is well defined.
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The key to our analysis of the BEG model is to express both the canonical and
the microcanonical ensembles in terms of the empirical measumefined for
w € A" by

1 n
Ly=Ly(@,) == 8u,().
n j=l

L, takes values inP(A), the set of probability measures an={—1, 0, 1}. For
i e, L,(w,{i}) denotes the relative frequency of spinstaking the value. We
rewrite h, x as

2

n n . 2
j=1W; i=1@;
hn’K(w): JI’L ]_K( ]l’l )

- yan(w,dy)—K( [ yLn(w,dy>)2,

and, foru € £ (A), we define

2
fiew = [ Pt - & ( / yu(dy)>
(2.3) A A
= (u1+p-1) — K(u1 — pn-1)2

The range of this function is the closed intery@min(1 — K, 0), 1]. In terms of fx,
we express, g in the form

hn,K(a)) = fK (Ly()).

We appeal to the theory of large deviations to define the sets of canonical
equilibrium macrostates and microcanonical equilibrium macrostates. Since any
w € P(A) has the formy L 11;6;, wherew; > 0andy: =1, P(A) can
be identified with the set of probability vectorsIR?. We topologizes (A) with
the relative topology that this set inherits as a subs&ofThe relative entropy of
u € P(A) with respect tq is defined by

1
R(ulp) = wilog(3u:).
i=—1
Sanov’s theorem states that, with respect to the product meayrbe empirical
measuresL,, satisfy the large deviation principle (LDP) af® (A) with rate
functionR(-|p) ([9], Theorem VII1.2.1). Thatis, for any closed subgebf £ (A),
we have the large deviation upper bound

. 1 .
limsup—log P,{L, € F} < — inf R(u|p),
neF

n—oo N
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and, for any open subsét of 2 (A), we have the large deviation lower bound

lim sup} log P,{L, € G} > — inf R(u|p).
n—oo N neG
From the LDP for theP,-distributions ofL,, we can derive the LDPs df,,
with respect to the two ensemblé} g x and P,’,”vK. In order to state these
LDPs, we introduce two basic thermodynamic functions, one associated with
each ensemble. Fg > 0 andK > 0, the basic thermodynamic function for the
canonical ensemble is the canonical free energy

.1
ek (B) =~ lim_~logZ,(p, K).

It follows from Theorem 2.4(a) in [10] that this limit exists for @ll> 0 andK > 0
and is given by

ek (B)=inf {R(ulp)+ Bfx (W)}
HeP(A)

For the microcanonical ensemble, the basic thermodynamic function is the
microcanonical entropy

(2.4) sk (u) = —inf{R(ulp) 1 € P(N), fx () =u}.

Since R(u|p) > 0 for all u, sx(u) € [—o0, 0] for all u. We define domg to
be the set ofs € R for which sg (1) > —o0. Clearly, domyg coincides with the
range of fx on £(A), which equals the closed interviahin(1 — K, 0), 1]. For
u € domsg and all sufficiently large:, the denominator in the second line of (2.2)
is positive and, thus, the microcanonical ensem®je-X is well defined ([10],
Proposition 3.1).

The LDPs for L, with respect to the two ensembles are given in the next
theorem. They are consequences of Theorems 2.4 and 3.2 in [10].

THEOREM 2.1. (&) With respect to the canonical ensemble P, gk, the
empirical measures L,, satisfy the LDP on £ (A) with rate function

(2.5) Ig. k(1) = R(ulp) + Bfk (n) — ¢k (B).

(b) With respect to the microcanonical ensemble P“"K | the empirical mea-
sures L, satisfy the LDP on £ (A), in the double limit n — oo and r — 0, with
rate function

(2.6) Iu,K(M):{R(MIp)JrsK(u), if fx(n)=u,

00, otherwise.

For uw € # and ¢ > 0, we denote byB(u,¢) the closed ball iny with
center u and radiuse. If Ig(n) >0, then for all sufficiently smalle > O,
infuep(ue) Ig(1) > 0. Hence, by the large deviation upper bound for with
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respect to the canonical ensemble, for ale #(A) satisfying Ig(un) > 0, all
sufficiently smalle > 0 and all sufficiently large,

P k{Ln € B(u,€)} < exp[—n( inf 1,3(1)))/2},

veB(u,¢)

which converges to 0 exponentially fast. Consequently, the most probable
macrostatesy solve Ig g (v) = 0. It is therefore natural to define the set of
canonical equilibrium macrostates to be

27 &gk ={veP(A): Igk(v) =0}
' = {v e P(A):v minimizesR(v|p) + Bfk (v)}.

Similarly, because of the large deviation upper bound Egrwith respect to
the microcanonical ensemble, it is natural to define the set of microcanonical
equilibrium macrostates to be

ek =peprn): 1" W)=0)
(2.8)
={v € P (A):v minimizesR(v|p) subject tofx (v) = u}.

Each element in &g ¢ and &“X has the formv = v_18_1 + vodo + v1é1
and describes an equilibrium configuration of the model in the corresponding
ensemble. For = —1,0, 1, v; gives the asymptotic relative frequency of spins
taking the value.

In the next section we begin our study of the sets of equilibrium macrostates for
the BEG model by analyzingg x .

3. Structure of the set of canonical equilibrium macrostates. In this
section we give a complete description of the &g of canonical equilibrium
macrostates for all values ¢f and K. In contrast to all other studies of the
model, which fixK and varyp, we analyze the structure @l x by fixing g
and varyingK . As stated in Theorems 3.1 and 3.2, there exists a critical value
of B, denoted bys. and equal to log4, such th&g x has two different forms
for 0 < B < B. and forB > B.. Specifically, for fixed O< g < B, &g k exhibits

a continuous bifurcation ak passes through a critical valuéz)(ﬁ), while for
fixed B > B., &g,k exhibits a discontinuous bifurcation & passes through a

critical vaIueKc(l) (B). In Section 5 we show how to extrapolate this information
to information concerning the phase transition behavior of the canonical ensemble
for varying 8: a continuous, second-order phase transition for all fixed, sufficiently
large values ofK and a discontinuous, first-order phase transition for all fixed,
sufficiently small values oK.

In terms of the uniform measupe= %(8_1 + 80 + 81), we define

1
(3.1) ppldw)) = o exp(—pw?)p(dw)),



PHASE TRANSITIONS IN THE MEAN-FIELD BEG MODEL 2211

where Z(8) = [, exp(—ﬂa)?)p(da)j). The next two theorems give the form
of &g,k for 0 < B < B. and forg > .. Theorem 3.1 will be proved in Section 3.5
as a consequence of Theorem 3.6, which is proved in Section 3.2.

THEOREM3.1. Define 8. =log4 and let pg be the measure defined in (3.1).
For 0 < B8 < B, thefollowing conclusions hold:

(a) There exists a critical value KC(Z)(,B) > 0 defined in (3.19)and having the
following properties:

(i) For0<K <KP(B), &s.x = {op).
(i) For K > K (B), there exist probability measures v* (8, K) and
v (B, K) in P(A) suchthat vH (B, K) # v= (B, K) # pp and & x = (VT (B, K),
v (B, K)}.
(b) If wewritevt (8, K) =v*t 6_1+vg 8o+ vy 81, thenv=(8, K) =v{8_1+
US—SQ + U__Flﬁl.
(c) For each choiceof sign, v* (B, K) isa continuousfunction for K > chz) B),
andas K — (Kﬁz)(ﬁ))ﬂ vE(B, K) — ppg. Therefore, &g x exhibits a continuous
bifurcation at KC(Z) B).

The continuous bifurcation described in part (c) of the theorem is an analogue
of a second-order phase transition and explains the superscript 2 on the critical

value Kéz)(ﬁ). The next theorem shows that, fér> B, the set€s ¢ exhibits a
discontinuous bifurcation at a valug'? (B). This analogue of a first-order phase

transition explains the superscript 1 on the corresponding critical \Iéﬂ])e(ﬂ).
Theorem 3.2 will be proved in Section 3.5 as a consequence of Theorem 3.8,
which is proved in Section 3.3. As we will see in the proof of the latter theorem,

Kc(l) (B) is the unique zero of the functiofi(K) defined in (3.31) foK > K1(B);
K1(B) is specified in Lemma 3.9.

THEOREM 3.2. Define . =log4 and let pg be the measure defined in (3.1).
For 8 > B., the following conclusions hold:

(a) There existsa critical value Kc(l) (B) > 0 having the following properties:

(i) For 0< K < KB, €p.x = pp).

(i) For K = K.Y (), there exist probability measures v+ (8, K (B))
and v (8, KV(B)) such that v £ v~ # pg and & x = {pg. vF (B, K (),
v (8, KM (B))).

(i) For K > Kc(l)(,B), there exist probability measures v (B, K) and
v~ (B, K) such that vf(8,K) # v (B,K) # pg and &g x = (v (B, K),
v (B, K)}.
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(b) 1f wewrite v (8, K) =v*6_1+vddo+ vy 81, thenv=(B, K) =v8_1+
Ua_ﬁo + vf181.

(c) For each choiceof sign, vE(8, K) isa continuous function for K > K.Y (8),
andas K — (KM (B)T, vE(B, K) — vE(B, KV (B)) # pp. Therefore, &5 x ex-
hibits a discontinuous bifurcation at Kc(l) B).

We prove Theorems 3.1 and 3.2 in several steps. In the first step, carried out
in Section 3.1, we absorb the noninteracting component of the energy per particle
into the product measure of the canonical ensemble. This reduces the model to a
Curie—Weiss-type model, which can be analyzed in terms of the empirical means
Sy/n= Z’}:la)j/n. The structure of the set of canonical equilibrium macrostates
for this Curie—-Weiss-type model is analyzed in Section 3.2 fer § < . and
in Section 3.3 forB > B.. In Section 3.4 we lift our results from the level of the
empirical means up to the level of the empirical measures using the contraction
principle, a main tool in the theory of large deviations. Finally, in Section 3.5 we
derive Theorems 3.1 and 3.2 from the results derived in Section 3.24@# & B.
and in Section 3.3 fo > B..

3.1. Reduction to the Curie-Weiss model. The first step in the proofs of
Theorems 3.1 and 3.2 is to rewrite the canonical ensem®pjex in the form of a
Curie-Weiss-type model. We do this by absorbing the noninteracting component
of the energy per particlé, g into the product measure a?, g x. Defining
Sn(w) =31 wj, we write

Pu gk (dw) = -expl—nphy, g (w)]P,(dw)

1
Zu(B. K)
2

_ Y o e (BE g (Zim®i }

= 2. 6.K) exp[ nﬂ( . K( - )) P,(dw)
_ 1 Sn(a)) 24 n ) |
_M'GX"[’”}K< . ) ]jzlexp(—ﬁwj)p(dw])

ey Su(@) \?
_m-exp[nm{( » )]Pn,,s(dw)-

In this formulaZ(8) = [, eXF(—,B(,U?),O(dCl)j) and P, g is the product measure
on A" with identical one-dimensional margingdg defined in (3.1).

We define
. S, \ 2
Z,(B, K):/Anexp[nﬁ(7> :|dPn,/3.
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SinceP, g k is a probability measure, it follows that

 Z,(B.K)

Z.(B,K) =
5. K) [(Z(®)1"

and, thus, that
S (w)

>2:| P, pldw).

By expressing the canonical ensemble in terms of the empirical mgans
we have reduced the BEG model to a Curie—Weiss-type model. Cramér’s theorem
([9], Theorem 11.4.1) states that, with respect to the product measBygs
S, /n satisfies the LDP of+1, 1] with rate function

(3.3) Jg(z) =suptz —cp(1)}.
teR

1
3.2 : -t
(32 Puprldor=7 exp["ﬂ K<

In this formulacg is the cumulant generating function defined by

cp(0) =log [ exptonps(don)
(3.4) A

[1+e"3(et+e_’)}

=log .

1428

Jg is finite on the closed interval—1, 1] and is differentiable on the open
interval (—1,1). This function is expressed in (3.3) as the Legendre—Fenchel
transform of the finite, strictly convex, differentiable functiop. By the theory

of these transforms ([22], Theorem 25.1, [9], Theorem VI.5.3(d)), for each
ze (=11,

(3.5) J5(2) = (cp) ).

From the LDP forS,, /n with respect taP, g, Theorem 2.4 in [10] gives the LDP
for S, /n with respect to the canonical ensemble written in the form (3.2).

THEOREM 3.3. Wth respect to the canonical ensemble P, g ¢ written in the
form(3.2),the empirical means S, /n satisfy the LDP on [—1, 1] with rate function

(3.6) Ip.x = Jp(2) — BK2? = inf (J5() = BK1%).

In Section 2 the canonical ensemble for the BEG model is expressed in terms of
the empirical measure,. The corresponding sél x of canonical equilibrium
macrostates is defined as the set of probability measuee® (A) for which the
rate functionlg x in the associated LDP satisfidg x (v) = 0 [see (2.7)]. By
contrast, in (3.2) the canonical ensemble is expressed in terms of the empirical
meanssS, /n. We now consider the sé;g,K of canonical equilibrium macrostates
for the BEG model expressed in terms of the empirical means. Theorem 3.3 makes
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it natural to definé’ﬁ,K as the set of € [—1, 1] for which the rate function in that
theorem SatiSfieéﬂJ((Z) = 0. Sincez is a zero of this rate function if and only if
z minimizesJg (z) — BK 72, we have

(3.7) €p.x ={z €[—1,1]:z minimizesJs(z) — BK 72).

As we will see in Theorem 3.13, eacke &5 ¢ equals the mean of a corresponding
measurey € &g . Thus, each e éﬂ,K describes an equilibrium configuration of
the model in terms of the specific magnetization, or the asymptotic average spin
per site.

Although Jg(z) can be computed explicitly, the expression is messy. Instead,
we use an alternative characterizationéBfK given in the next proposition to
determine the points in that set. This proposition is a special case of Theorem A.1
in [7].

PrROPOSITION3.4. For z € R, define

(3.8) Gp x(2) = BKZ* — cp(2BK2).
Then for each § > 0and K > 0,
(3.9) min{Jp(2) — K%} = min(Gp.x ().

In addition, the global minimum points of J4(z) — BK z2 coincide with the global
minimum points of G x . As a consequence,

(3.10) Ep.x ={z e R:zminimizes Gg k (z)}.

PrRooOF The finite, convex functionf(z) = cg(28Kz)/(28K) has the
Legendre—Fenchel transform

Jp(2)/(2BK), for |z <1,
0, for |z] > 1.

F*(2) = suplxz — F(0) ={

xeR
We prove the proposition by showing the following three steps:

1. supcp{f(2) —2%/2} = sup,<1{e®/2 — f*()}.

2. Both suprema in step 1 are attained, the first for som® and the second for
somez € (—1,1).

3. The global maximum points gf(z) — z2/2 coincide with the global maximum
points ofz2/2 — f*(z).

The proof uses three properties of Legendre—Fenchel transforms:

1. Forallz e R, f**(2) = (f*)*(z) equalsf (z) ([9], Theorem VI.5.3(e)).

2. If for somex € R andz € R, we havez = f’(x), then f(x) + f*(z) = xz
([22], Theorem 25.1, [9], Theorem VI.5.3(c)). In particular,zit= x, then
fO)+ f*) =x2
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3. Ifthere existst € (—1, 1) andy € R such that
(3.11) f @)= f*)+y@z—x) forallze[-1,1],
theny = (f*)'(x) ([22], Theorem 25.1). Hence, by properties 1 and 2,

P+ 70 =)+ () =xy.
In particular, if (3.11) is valid withy = x, then £ (x) + f*(x) = x2.

Step 1 in the proof is a special case of Theorem C.1 in [8]. For completeness,
we present the straightforward proof. Let=sup g { f(z) — z2/2}. Since for any
|zl <1landx e R

fR@+M=xz— f(x)+M=xz—x%/2,
we have

f*(@) + M > suplxz — x?/2} = z2/2.
xeR
It follows that M > z2/2 — f*(z) and thus that/ > sup,,.1{z%/2 — f*(2)}. To

prove the reverse inequality, |8t = sugz|§1{z2/2 — f*(2)}. Then for anyz; € R
and|x| <1,

22/24+ N >xz—x%/24 N >xz— f*x).
Since f*(x) = oo for |x| > 1, it follows from property 1 that

2%/24+ N > sup{xz — f*(x)} = f(2)

lx]<1

and thus thatv > sup cg{f(z) — z2/2}. This completes the proof of step 1.

Since f(z) ~ |z| asz — o0, f(z) — z2/2 attains its supremum ové. Since
72/2 — f*(z) is continuous and lig—1(f*)'(z) = o0, z2/2 — f*(z) attains its
supremum ovef—1, 1] in the open interva{—1, 1). This completes the proof of
step 2.

We now prove that the global maximum points of the two functions coincide.
Let x be any point inR at which f(z) — z?/2 attains its supremum. Then
x = f’(x), and so by the second assertion in property &) + f*(x) = x2. The
point x lies in (—1, 1) because the range ¢f (z) = c},(Z,BKz) equals(—1, 1).
Step 1 now implies that

sup{z?/2— f*(z)} = SupL/ () = 2%/2)

lz]<1
= f(x) —x?/2=x%/2— f*(x).

We conclude that?/2 — f*(z) attains its supremum ate (—1, 1).
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Conversely, letx be any point in(—1, 1) at whichz2/2 — f*(z) attains its
supremum. Then for anye [—1, 1],

x2/2— f*(x) = 22/2— f*(2).
It follows that, for anyz € [—1, 1],

Y@= f*0) + @ =x))/2= f* () +x(z - x).
The second assertion in property 3 implies thatx) + f(x) = x2, and, in
conjunction with step 1, this in turn implies that

SUH f (2) — 2/2) = sup(z®/2 - f*(2)}

zeR lz|<1
=x2/2— f*(x) = f(x) —x%/2.

We conclude thay (z) — z2/2 attains its supremum at This completes the proof
of the proposition. [

Proposition 3.4 states tha; ¢ consists of the global minimum points of
Gpx(2) = BKz%— cg(2BK z). In order to simplify the minimization problem, we
make the change of variables- z/(28K) in Gg, x, obtaining the new function

2
(3.12) Fgk(z) = GﬁK(2;K> 4;K cp(2).

Proposition 3.4 gives the alternative characterizatioé,goi to be

(3.13) Epk = { € R:w minimizesFpg, K(w)}

28K
We useFg g to analyzeeﬂ, x because the second term B4 ¢ contains only the
parameteg, while both terms irG g x contain both parametefsandK . In order
to analyze the structure cifﬂ, k, we take advantage of the simpler form Bf g
by fixing 8 and varyingK . This innovation makes the analysis &f x much
more efficient than in previous studies. Our goal is prove that the elemeé,§$1<of
change continuously witlk for all 0 < 8 < 8. =log4 (Theorem 3.1) and have a
discontinuity ath.l) forall 8 > B. (Theorem 3.2). y

In order to determine the minimum points Bf x and, thus, the points iés
we study the derivative

(3.14) Ff;,K(w) = —cl’g(w).

w
28K
Flg,K(w) consists of a linear panb/(26K) and a nonlinear palzit;g(w). As we
will see in Sections 3.2 and 3.3, the basic mechanism underlying the change in
the bifurcation behavior ofg x is the change in the concavity behaviorcgtw)
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for 0 < B < B. versusB > B, which is the subject of the next theorem. A related
phenomenon was observed in [11], Theorem 1.2(b), and in [13], Theorem 4, in the
context of work on the Griffiths—Hurst—Sherman correlation inequality for models
of ferromagnets; this inequality is used to show the concavity of the specific
magnetization as a function of the external field.

THEOREM3.5. For 8 > B. =log4, define
(3.15) we(B) = costrt(3ef — 4eF) > 0.
The following conclusions hold:

(@) For0< B <8, cl/g(w) isstrictly concave for w > 0.
(b) For B > B, c%(w) is strictly convex for 0 < w < w.(B) and c;s(w) is
gtrictly concave for w > w.(8).

PROOF (@) We show that for all & 8 < S, cg’(w) < Oforallw > 0. A short
calculation yields
[2¢—P sinhw][1 — 2¢—# coshw — 8¢ 2]
[1+ 2¢—# coshw]3 '

Since 2~ sinhw and 1+ 2¢~# coshw are positive forw > 0, ¢j/(w) < 0 for
w > 0 if and only if

1—2¢ P coshw — 8% <0 forw > 0.

(3.16) cg (w) =

The inequality coskv > 1 for w > 0 implies that
[1—2¢ P coshw —8e 2] < [1— 2P — 8e= 2]
=(1—4e?)142¢F) forallw>0.

Therefore, for all 0< 8 < log 4,c//3”(w) <Oforw > 0.

(b) Fixing B8 > B., we determine the critical value.(8) such thatcl’g(w)
is strictly convex for O< w < w.(8) and strictly concave forw > w.(f).
From the expression farg'(w) in (3.16), cg'(w) > 0 for w > 0 if and only if

(1—2¢ P coshw — 8¢=2#) > 0 forw > 0. Therefore¢) (w) is strictly convex for
0 <w < cosh(3ef —4e7F).

On the other hand, sinm%/(w) <0 forw > 0 if and only if (1 — 2¢—# coshw —
8¢=2F) < 0 for w > 0, we conclude thatj, (w) is strictly concave for

w > cosh (3¢ — de™F).

This completes the proof of part (b)(J
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The concavity description Qf/ stated in Theorem 3.5 allows us to find the
global minimum points offg x and thus the points |ﬁ,3 g for all values of the
parameterg andK . We carry this out in the next two sections, first foe( < 8.
and then foB > B.. In Section 3.4 we use this information to give the structure of
the setgg x of canonical equilibrium macrostates defined in (2.7).

3.2. Description of é’,g,K for0 < B8 < B.. InTheorem 3.1 we state the structure
of the set&g x of canonical equilibrium macrostates for the BEG model with
respect to the empirical measures whea g < 8. =log4. The main theorem in
this section, Theorem 3.6, does the same for thé?@g{, which has been shown
to have the alternative characterization

(3.17) Epk = { € R:w minimizesFyg, K(w)}

w
2BK
We recall thatFg x (w) = w?/(4BK) — cp(w), wherecg is defined in (3.4). In
Section 3.4 we will prove that there exists a one-to-one correspondence between
éﬂ’]{ and&g k. In Section 3.5 we will use this fact to fully describe the latter set
forall0< B8 < 8. andK > 0.

According to part (a) of Theorem 3.5, for<08 < 8., c (w) is strictly concave
for w > 0. As a result, the study (ﬁﬁ x is similar to the study of the equilibrium
macrostates for the classical Curie—Weiss model as given in Section V.4 of [9].
Following the discussion in that section, we first use a graphical argument to
motivate the continuous bifurcation exhibited B/)(K for0 < B < B.. A detailed
statement is given in Theorem 3.6.

Minimum points of Fg g satisfyF/;’K(w) =0, which can be rewritten as

(3.18) = c}} (w).

26K

Since the slope of the functiom — w/(28K) is 1/(28K), the nature of the
solutions of (3.18) depends on whether

1 1
cg(O)gz— or 0< —— <cy(0).

BK 2BK
This motivates the definition of the critical value
1 1 1
(3.19) K2 (pB) =

2B5(0) ~ 4peF top

We use the same notation here as for the critical value in Theorem 3.1 because, as
we will later prove, the continuous bifurcation ki exhibited by both set§g x
andéﬂ,K occur at the same Va|LIéC(2) B).

We illustrate the minimum points aofg x graphically in Figure 1 fo = 1.
For three ranges of values &, this figure depicts the two components of
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Fic. 1. Continuousbifurcationfor g =1. (a)K < chz) (B), (b) K = Kﬁz)(ﬂ), (0K > Kc(z)(ﬁ).

F;‘;,K: the linear componeniv/(28K) and the nonlinear componera}‘g(w)

Figure 1(a) corresponds toO K < K(Z)(ﬂ) Sincec 0 = 1/(2,8K(2)(ﬁ)) for
0<K< K(Z)(ﬂ) the two components aof; mtersect at only the origin, and,
thus, Fg, x has a unique global minimum point at= 0. Figure 1(b) corresponds
to K = KC(Z)(,S). In this case the two components b‘g x are tangent at the
origin, and againfg ¢ has a unique global minimum point at= 0. Figure 1(c)
corresponds t& > Kﬁz)(ﬂ). For suchk’, the global minimum points ofg x are
symmetric nonzero points = +w (B, K), w(B, K) > 0.

Figures 1(a) and 1(c) give similar information as Figures IV.3(b) and 1V.3(d)
in [9], which depict the phase transition in the Curie—~Weiss model. In these two
sets of figures the functions being graphed are Legendre—Fenchel transforms of
each other.

The graphical information just obtained concerning the global minimum points
of F  for 0 < g < B, motivates the form o€ x stated in the next theorem. The
positive quantityz(8, K) equalsw(B, K)/(28K); w(B, K) is the unique positive
global minimum point ofFg ¢ for K > KC(Z)(ﬁ), the existence of which is proved
in Lemma 3.7. According to part (c) of the theores{s, K) is a continuous
function fork > K2 (), and ask — (K2 (8))*, (8, K) converges to 0. As a

result, the bifurcation exhibited kf;/ﬂ,K at KC(Z) (B) is continuous.

THEOREM3.6. Define &5 ¢ by (3.7); equivalently,

é { w
PR =128k

For all 0 < 8 < B, the critical value Kéz)(ﬂ) = 1/(2,3cg(0)) has the following
properties:

(a) For 0< K < K2 (B), é.x = {0}.

(b) For K > Kéz) (B), there exists a positive number z(8, K) such that éﬂ’]( =
{£z(8. K)}.

(c) z(B, K) is a strictly increasing continuous function for K > K(fz)(ﬁ),
and as K — (Kc(z)(ﬁ))+, Z(B, K) — 0. Therefore, éﬁ,K exhibits a continuous
bifurcation at KC(Z) B).

e R:w minimizes Fg g (w) ;.
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The proof of the theorem depends on the next lemma, in which we show that,
for K > KC(Z) (B), Fg,x has a unique positive global minimum at a painig, K).

LEMMA 3.7. For 0 < B < B. =log4, define Fg x by (3.12). The following
conclusions hold:

(@) Foreach K > Kc(.z)(ﬁ), Fg k hasacritical point w(8, K) > 0 satisfying
Fyx(0(B,K)) =0 and Fj (d(B.K))> 0.

(b) For each K > K2 (B), Fp,x hasunique nonzero global minimum points at
w=+w(8, K).

(c) The points {w (8, K), K > Kc(.z) (B)} span the positive real ling; that is, for
each x > 0, thereexists K > KC(Z)(/B) suchthat x = w(B, K).

PrROOFE (a) For anykK > Kc(z)(ﬁ), we have

1 1 ﬂ(w)

= @

26K 28K:(B)
Sincec}j is continuous, for sufficiently small > 0, we havew/(28K) < c};(w)
and, thus,F/;’K(w) < 0. On the other handc/g(w)| < 1 for all w and, therefore,
liMy_ 00 Ff; x (w) = oo. It follows thatF/; x (w) > 0 for sufficiently largew > 0.
Consequently, by the continuity aﬁ” k- there exists at least one positive critical
point ofFg g ; the analyticity of Fg |mpI|es thatFg x has at most finitely many

critical points. Denote by (8, K) > 0 the smallest posmve critical point &g k.
We now prove thaﬂ’lg’,((w(ﬂ K)) > 0. SinceF K(w(ﬁ K)) =0, the mean

value theorem yields the existenceoo€ (0, w(8, K)) such that

e cﬂ(w(ﬁ K)) 1

PETTRE K 28K
By part (a) of Theorem 3.5, since < w(g, K), it follows that cg(a) >
cg(Ww(B, K)) and thus that

(3.20)

(3.21) F,é’,K(zb<ﬁ,K))=2/3—K—c:é(ﬁ)(ﬂ,K>)> — () =0.

This completes the proof of part (a).
(b) For anyw > w(B, K), the strict concavity okj(w) for w > 0 [Theo-

rem 3.5(a)] implies that (w) < c ;(w(B, K)). Therefore, by (3.21), we have

1
28K

F// (w) _ i _ C//(w)

> 55% ~ CH(B. K)) = Ff ¢ (. K)) > ©.
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Thus,Fl;K is strictly increasing foiw > w(B, K). This property allows us to con-
clude thatv (8, K) is the unique positive critical point and the unique positive local
minimum point ofFg . By symmetry,F ¢ has a unique negative local minimum
point atw = —w (B, K). In addition, as shown in (3.20), for a§ > K2(8), we
haveFl;”K(O) =1/(2BK) — cg(O) < 0. Since limy|— o Fp,kx (w) = 00, We con-
clude that:w (B, K) are the unique global minimum points 8§ x .

(c) Givenx > 0, define the positive numbéf, = x/(2/8c;3 (x)). Then

FAKx (x) = - 6;3 (x)=0.

X
2B K
Since cjg(w) is strictly concave forw > 0, we havecg(O) > cjg(x)/x, and,
therefore,

X 1

(2)
26,0~ 2pe0) e P

x:

It follows thatx is a positive critical point ofg g for K = K > KC(Z) (B); by the
uniqueness of the positive critical point= w(8, K,). This completes the proof

that the point§w (g8, K), K > KC(Z) (B)} span the positive real line.d

PROOF OF THEOREM 3.6. (@) For O< K < Kéz)(,B), Ff;’K(O) =0, and,
thus, w = 0 is a critical point of Fg x. We prove thatw = 0 is the unique
global minimum point ofF x by showing that, for > 0, Fg ¢ (w) > 0 and for
w <0, F/g x (w) < 0. Sincecy (w) is strictly concave forw > 0 [Theorem 3.5(a)],
for any w > 0, we havec (O) > cﬁ(w)/w As a result, for allw > 0 and all

0<K<KP2(p) = 1/(2,3c (0)),

Fg g (w) = — cg(w)

w
ﬂK
> % — cy(w) = welj(0) — ¢ (w) > 0.

2BK:™(B)

On the other hand, sincg; , is an odd functlon,F/ xw) <0 forallw<0.
Thereforew = 0 is the unique global minimum pomt &g, . It follows that, for
0<K < KZ(B), €.k = {0},

(b) ForK > Kc(z) (B), letw(B, K) be the unigue positive global minimum point
of Fg k, the existence of which is proved in part (a) of Lemma 3.7, and define
(B, K) = (B, K)/(2BK). Itfollows that, fork > K2 (B), €s.x = {£Z(B, K)}.

(c) By part (a) of Lemma 3.7,

Fj (0B, K))=0 and Ff (b(B,K))> 0.
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The implicit function theorem implies that, f& > Kéz)(ﬂ), w(B, K) and, thus,
Z(B, K) are continuously differentiable functions &f and are thus continuous.
Straightforward calculations yield
dw(p, K) _ w(B, K)
0K 2BK2Fj (D (B, K))

and

9Z(B, K) _ 2Bu(B, K)( cg(w(B, K)) )
0K (2BK)? \Fj (0B, K)/)

Since w(B, K) is positive and both’; s(W(B, K)) >0 and F”K(zb(ﬁ, K)) > 0,

w(B, K) andz(8, K) are strictly increasing functions f&f > Kc(z) B).

As K N\ KC(Z)(,B), w(B, K) > 0, w(B, K) is strictly decreasing, and the points
{w(B,K), K > KL(.Z)(ﬁ)} span the positive real line [Lemma 3.7(c)]. We conclude
that IimK_”K(@(ﬂ)+ w(B, K) = 0 and thus that Iir}g_ﬁ{((‘z)(ﬂ)+ Z(B, K) = 0. This
completes the proof of the theorenti]

Theorem 3.6 describes the continuous bifurcation exhibitedépy for
0 < B < B. Theorem 3.8 in the next section describes the discontinuous bifur-
cation exhibited byeg x for g in the complementary regiof > B..

3.3. Description of éﬂ’K for 8 > B.. In Theorem 3.2 we state the structure of
the setgg x of canonical equilibrium macrostates for the BEG model with respect
to the empirical measures wheh> .. The main theorem in this subsection,
Theorem 3.8, does the same for the é@k, which has been shown to have the
alternative characterization

(3.22) Ep.x = € R:w minimizesFg, K(w)}

Zﬂ
As in Section 3.2Fg g (w) = w?/(4BK) — cg(w), wherecg is defined in (3.4). In
Section 3.4 we will prove that there exists a one-to-one correspondence between
éﬁ,K and&g . In Section 3.5 we will use this fact to fully describe the latter set
forall 8 > 8. andK > 0.

Minimum points of Fg g satisfy the equation

(3.:23) Fhxw) = 5o — cy(w) =

w
ﬂK
In contrast to the previous section, where fot @ < 8., cjg(w) is strictly concave
for w > 0, part (b) of Theorem 3.5 states that, e S., there existav.(8) > 0
such thatc;g(w) is strictly convex forw e (0, w.(8)) and strictly concave for
w > we(B). As aresult, foB > B., we are no longer in the situation of the classical
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Curie—Weiss model for which the bifurcation with respectkiois continuous.
Instead, forg > 8., as K increases through the critical vaIdéc(l)(ﬁ), éﬁ,K
exhibits a discontinuous bifurcation.

While the discontinuous bifurcation exhibited Ii)g,K for 8 > B, is easily
observed graphically, the full analytic proof is more complicated than in the case
0 < B < B.. As in the previous subsection, we will first motivate this discontinuous
bifurcation via a graphical argument. A detailed statement is given in Theorem 3.8.

For 8 > B., we divide the range of the positive paramekeinto three intervals
separated by the valudé; = K1(8) and K2 = K2(B). K1 is defined to be the
unique value ofK such that the linaw/(28K) is tangent to the curve), at a
point w1 = w1(B) > 0. The existence and uniquenessif and w1 are proved
in Lemma 3.9.K, is defined to be the value af such that the slopes of the
line w/(28K) and the curve;; atw = 0 agree. Specifically,

11 1
T 2Bcj(0)  4peP + 28

Figure 2 represents graphically the valueskafand K> for g = 4, showing that
K1 < K». InLemma 3.9 it is proved that this inequality holds for &l 8.

In each of Figures 3-7, for fixe@ > B. and for different ranges of values
of K > 0, the first graph (a) depicts the two componentng]‘K: the linear
componentw/(28K) and the nonlinear componeg. The second graph (b)
shows the corresponding graphf®f k. In these figures the following values gf
were usedp = 4 in Figures 3, 5, 6, 7 anfl = 2.8 in Figure 4.

(3.24) K>

7

_w e
/

FIG. 2. Graphical representation of the values K, and K5 for g = 4.
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(a) (b)
Fﬁ,K(w)

w

FiG. 3. (a)Graph of two components of F/é,K and (b) graph of Fg g for 0 < K < K.

(a) (b)

¢ly(w) Flg re(w)

FiG. 4. (a)Graph of two components of F/S,K and (b) graph of Fg g for K > K».

(a) (b)

cp(w) Fp x(w)

w

FiG. 5. (a)Graph of two components of F/é x and (b) graph of Fg g for K3 < K < Kc(l) B).

(a) (b)

cp(w) Fa,x(w)

VoIV

FiG. 6. (a)Graph of two components of Fé x and (b) graph of Fg g for KL(.l) (B) <K < K».
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(a) (b)
cp(w) Fj i (w)

w

FiG. 7. (a)Graph of two components of Flé x and (b) graph of Fg g for K = Kc(l) B).

As we see in Figure 3, for & K < K1, the linear component intersects the
nonlinear component at only the origin and, thu%, ¢ has a unique global
minimum point atw = 0. Since§ is fixed, the graph of the nonlinear compone(/pt
also remains fixed. AX increases, the slope of the linear componept24K)
decreases, leading to the discontinuous bifurcatidig with respect tak .

The graph ofFg x is depicted in Figure 4 foK > K>. We see thatg ¢ has
two global minimum points atw = +£w(8, K), where w(B, K) is positive.
Therefore, for O< K < K1, we haveéﬁ,K = {0} and for K > K5, we have
&s.x = {£Z(B, K)}, wherez(8, K) = (B, K)/(28K) is positive.

Now suppose thak € (K1, K>2). In this region there exist® (8, K) > 0 such
that Fg, x has three local minimum points at= 0 andw = £w(B, K). As we see
in Figure 5, forkK > K3 but sufficiently close toX1, Fg x (0) < Fg x (W(B, K));
as a result, the unique global minimum point 8f ¢ is w = 0. On the other
hand, we see in Figure 6 that, for<0 K < K2 but sufficiently close toK>,

Fg k(0) > Fg g (w(B, K)); as a result, the global minimum points 6§ x are
w = *w(p, K). As K increases over the intervdlky, K»), Fg x(w(B, K))
decreases continuously (Lemma 3.12). Consequently, as Figure 7 reveals, there
exists a critical vaIué(c(l) (B) such thatFﬂ 1<§.1>(,3)(0) = Fﬂ Kc(_l)(ﬂ)(ﬁ)(ﬂ, K));as a

result, the global minimum points dTﬂ’KF@(ﬂ) arew =0 andw = £w(B, K).

We use the same notatidhc(l) (B) as for the critical value in Theorem 3.2.
As we will later prove, the discontinuous bifurcation &hexhibited by both sets
&p K andéﬁ,K occur at the same poinktc(l) B).

The graphical information just obtained concerning the global minimum points
of Fgx for B > B. motivates the form of€s ¢ stated in the next theorem.
The positive quantityz(8, K) equalsw(B, K)/(28K), where w(B, K) is the
unique positive global minimum point dfg x for K > Kél) (B) [Lemma 3.10(b)].
According to part (d) of the theoren(8, K) is a continuous function for
K > Kél)(ﬂ), and asK — (Kf-l)(ﬂ))”L, Z(B, K) converges to the positive
quantity z (8, Kc(l)(,B)). Hence, the bifurcation exhibited béj,g,,( at Kc(l)(,B) is

discontinuous. As we will see in the proof of Theorem EKé%)(ﬂ) is the unique
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zero of the functiomA (K) defined in (3.31) folK > K1(8); K1(B8) is specified in
Lemma 3.9.

THEOREM3.8. Define &g x by (3.7); equivalently,
Ep.x = {2/8 e R:w minimizes Fp, K(w)}

For all 8 > B. = log4, there exists a critical value Kf.l)(ﬁ) satisfying K1 <
Kc(l) (B) < K2 and having the following properties:

(a) For 0< K < K(B), €s.x = {0}.

(b) For K = KY(B), €.k = {0, +3(B, K)}, where Z(8, K) > 0.

(c) For K > KM(B), €.k = {£3(B. K)}, whereZ(8, K) > 0.

(d) For K > Kél)(ﬂ), Z(B, K) isa dtrictly increasing continuous function, and
as K — (Kf-l)(ﬁ))Jr, Z2(B, K) — Z(B, I(f.l)(ﬁ)) > 0. Therefore, éﬂ[( exhibits a
discontinuous bifurcation at Kc(l) B).

The proof of the theorem depends on several lemmas. In the first lemma we
prove that, for eacls > 8., there exists a uniqu& = K1(8) such that the
line w/(28K) is tangent to the curvélg at a pointw1(8) > 0.

LEMMA 3.9. For 8 > 8. =log4, wedennecﬁ by (3.4), Fg,x by (3.12),w.(B)
by (3.15)and K2 = K»(8) by (3.24).Thenintheset w > 0, K > 0, there existsa
unique solution (w1, K1) = (w1(B), K1(8)) of

(3.25) F,B k(W) = cﬁ(w)

w
,BK

(3.26) Fg g (w) = — cg(w) =0.

1
2BK
Furthermore, wy > w.(B8) and K1 < K> for all 8 > B..

PROOF The function g(w) = wcg(w) — c;g(w) has the properties that
g'(w) = weg (w) and that solutions of (3.25)—(3.26) solyew) = 0. According to
part (b) of Theorem 3. &ﬁ(w) is strictly convex for O< w < w.(8) andcﬁ(w) is
strictly concave fow > w.(B); equivalently,c/”(w) >0 for 0<w < w.(B) and

”’(w) < 0 forw > w.(B). Therefore,

(3.27) g(w)>0 forO<w<w.(B) and g'(w)<O0 forw > w.(B).

Since
2we P coshw + dwe=28
[1+4 2¢—P coshw]?

weg(w) =
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we see that lim_, » wcg(w) = 0. It follows that
: L /7 T / _
wl[)noog(w) = wll_r)noO wcg(w) wl[)noo cg(w)=—-1
This limit and the fact thag (0) = 0, combined with the continuity gf and (3.27),
imply that there exists a unique; > w.(8) such thatg(w1) = 0; that is,
cjg(w1)
w1

Substitutingw1 into (3.25) and (3.26), we define

(3.28) = c//é(wl).

. 1 . w1
 2Bch(wy)  2Bcy(w)

The pair (w1, K1) is a solution of (3.25)—(3.26) in the sat > 0, K > 0. If
(, K) is another solution of (3.25)—(3.26) in this set, thérsolvesg(w) = 0,
a contradiction to the fact that, is the unique positive solution gf(w) = 0.
It follows that (w1, K1) is the unique solution of (3.25)—(3.26) in the set- 0,
K > 0.

We complete the proof by showing th&i < K». SinceKo = 1/(2;8cg (0)), we
are done if we show that)'g(wl) > cg(O). By the mean value theorem and (3.28),
there existsr € (0, w1) such that

(3.29) K1

3.30 A A
(3.30) cpla) = ™ = cg(w1).

We claim thata < w.(8). If « > w.(B8), then sincec;3 is strictly concave
on (w.(B), o0), the inequalitiesw.(B) < a < w1 imply that cg(a) > cg(wl).
Because this contradicts (3.30), we conclude that w.(8). This inequality
in combination with the strict convexity oﬁf’/3 on (0, w.(B)) and (3.30) yields
cg 0) < cg (o) = cg(wl). The proof of the lemma is completel]

We next state two lemmas that are analogous to Lemma 3.7 and part (c) of
Theorem 3.6. Before stating them, we need some preliminaries. In Lemma 3.9, we
proved that, foB > 8., equations (3.25)—(3.26) have a unique solutwn, K1) =
(w1(B), K1(B)) inthe setw > 0, K > 0 and thatw; > w.(8); according to (3.25),

1
Ff k(1) = 5= — cj(wy) =O.

BK1
In addition, for 0< 8 < B, the quantitch(z)(,B) = 1/(2/3c/’3/(0)) introduced
in (3.19) has the property that

O — cg (0)=0.

i
2 =" -
PREOT 28K (B)
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For 8 > B, c:g(w) is strictly concave fow > w.(8) [Theorem 3.5(b)]. Thus for
w > wi, the graph ofFg x, (w) over the intervalwy, oo) for g > B, (Figure 2)
is similar to that 0fF,3,K§2>(,3)(w) over the interval[0,oc0) for 0 < 8 < B
[Figure 1(b)]. Specifically, fop > 8. andw € [w1, o0), the graph of

Fg k. (w) =f

w1

w

(ﬁ . cjg(x)> dx + Fy x,(w1)

is determined by the difference between the strictly concave funcg(m) and

the linear functionw/(28K1), which is tangent to:/g at w = w1. Similarly, for
0 < B < B. andw € [0, 00), the graph of

w X ,
Fox@p™) :[0 (251(_52)(/9) _Cﬁ(x)> dx

is determined by the difference between the strictly concave fun(zt;cm)

[Theorem 3.5(a)] and the linear functi@W(ZﬂKc(Z)(ﬂ)), which is tangent t@:jg
atw =0.

As we saw in Section 3.2 for @ 8 < 8., asK increases froch(z)(ﬁ) and
thus the slope of the line/(28K) decreases[g x develops a unique positive
local minimum pointw (8, K), which is shown to be the unique global minimum
point on the intervall0, co) [Lemma 3.7(b)]. This can be seen graphically in
Figure 1(c). Similarly, as Figures 4(b)-7(b) illustrate, for 8., asK increases
from K1, Fg x develops a unique positive local minimum poin{s, K). As in
part (b) of Lemma 3.7w (B, K) can be shown to be the unique global minimum
point on the intervalws, o). However, it is not a global minimum point on the
entire halfling0, co) unlessFg x (w(B, K)) < 0= Fg x (0); in fact, this inequality
is valid only for all K sufficiently large. WhenFg x (w(B, K)) > 0= Fg x (0),
which holds for all K > K sufficiently close toK4, 0 is the unique global
minimum point of F .

Because the behavior of the functiép x over the intervalws, oo) for g > 8.
is similar to that of Fg ¢ over the intervall0, co) for 0 < 8 < B., the proofs
of Lemma 3.10 and Lemma 3.11 are analogous, respectively, to the proofs of
Lemma 3.7 and part (c) of Theorem 3.6. Therefore, we state these new lemmas
without proof.

In Lemma 3.10 we state the existence and two properties of a positive critical
pointw (B, K) of Fg g for eachK > K.

LEMMA 3.10. For B > B. =log4, define Fg x by (3.12)and let (w1, K1) =
(w1(B), K1(B)) be the unique solution of (3.25)—(3.26)intheset w > 0,K >0
(Lemma 3.9). The following conclusions hold:

(a) For each K > K1, Fg x hasacritical point w (B, K) > wy satisfying
F}[},K(ﬂ)(ﬁ, K))=0 and Fg’K(&)(ﬁ, K)) > 0.
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(b) For each K > K1, Fp x has unique nonzero local minimum points at
w=+w(B, K).

(c) Thepoints {w(B, K), K > K1} span theinterval (w1, 00); that is, for each
x > w1, thereexists K > K suchthat x = w(B, K).

The next lemma states continuity and related propertiesv 8, K) and
Z(B, K) that are similar to properties of the analogous quantities far@< 8.
[Theorem 3.6(c)].

LeEmmA 3.11. For B8 > B. =log4 and K > K1, let w(B, K) be the
unique positive local minimum point of Fg x considered in Lemma 3.10. Then
for K > K1, w(B, K) and z(8, K) = w(B, K)/(28K) are continuous, strictly
increasing functions of K and IimK_ﬂq w(B, K) = w1.

We fix B > B.. The proof of Theorem 3.8 also makes use of the function
Fp k,(w1), if K =Kj,
Fpx(w(B, K)),  if K> Ki.

The quantityw (B, K) isthe unique positive local minimum point @ x, the
existence of which is given in Lemma 3.10.

(3.31) D(K) = {

LEMMA 3.12. For B8 > B. = log4, the function D(K) defined in (3.31)is
continuous and strictly decreasing on its domain [K1(8), 00).

PROOF.  Since Fg g (w) is a continuous function ofv and w(B, K) is a
continuous function ofK (Lemma 3.11),D(K) is continuous forK > Kj.
Furthermore, by part (c) of Lemma 3.11, I);mmfzi)(ﬂ, K) = wy and, thus,
|im1<_>1<1+ Fg gk (W(B, K)) = Fg k,(w1). We conclude thatD(K) is continuous
on[K1, 00).

We now prove thatD(K) is strictly decreasing ofK1, o0). For K > K1, we
have

9Fp.x (W(B, K)) =0
w
by part (a) of Lemma 3.10. As in the proof of part (c) of Theorem 3.6, one can
show thatw (8, K) is continuously differentiable fok > K. Hence, fork > K,

dFg x(w(B, K))

D'(K) =

dK
_Fpk . IFp K . 3B, K)
= (@B K) + == (0, K)) - —
[@(B, K)1?
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This completes the proof.[]

ProOOF OF THEOREM 3.8. As we showed in Lemma 3.9, f@# > B,
equations (3.25)—(3.26) have a unique solutien, K1) = (w1(B8), K1(8)) in the
setw > 0, K > 0. In addition,K1 < K = 1/(2;%}3/(0)). We start the proof of
Theorem 3.8 by proving the following two facts:

1. For O< K < K3, Fg k has a unique global minimum point at= 0 [Figures
2 and 3(b)].

2. For K > K3, Fg x has unique global minimum points at = +w (B, K)
(Figure 7).

According to Lemma 3. 10‘% x (w1) = 0. Using concavity properties og(w)
established in part (b) of Theorem 3.5 and calculations similar to those used
to establish other results in this and the preceding section, one shows that, for
0<K <Ky, F/ x(w) >0 for all w > 0 and thatF’ k(W) >0 for all w > 0,

w # wi. These propertles which can be seen |n Flgure 2 and Figure 3(a), are

proved in detail in Lemma 2.3.10 in [21]. By symmetry, for<0K < Kj,
x(w)<Oforallw <0 andF/S (w) <O forallw <0, w# —ws. It follows

that forO< K < K31, Fgx is strlctly decreasing fow < 0 and strictly increasing

for w > 0. We conclude that, for @ K < K3, Fg g has a unique global minimum

point atw = 0, as claimed in fact 1.

Since limy- 00 Fg,x (w) = 0o, the global minimum values ofg x must be
attained at local minimum points of the function. Lemma 3.10 states that, for
K > K1, w ==%w(B, K) are the unique nonzero local minimum pointsFf k.
Therefore, we prove that, f&k > K>, Fg x has unique global minimum points
atw = x+w(B, K) by proving thatw = 0 is a local maximum point ofg k.
According to part (b) of Theorem 3.5;3(11)) is strictly convex for O< w < w.(B8).
Therefore, forK > K> andw € (0, w.(8)),

/ w /

< G Ow <0;
28K P 2/31( 2,8K2 =7
that is, forw € (0, w.(B)), F/;’K(w) < 0. By symmetry, forw € (—w.(B), 0),
F}g’K(w) > 0. It follows thatw = 0 is a local maximum point of’s k. Therefore,
as claimed in fact 2, foK > K5, Fg x has unique global minimum points at
w=+w(B, K).
For K1 < K < K», Fg g has exactly three local minimum pointsat= 0 and
w = £w(B, K). Since global minimum values afg x must be attained at local
minimum points of the function anfig x is symmetric, finding global minimum
points of Fg ¢ requires comparing the values of the functionuat= 0 and at
w=w(, K).
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Since for O< K < K1 Fg ¢ has a unique global minimum point at= 0, we
have

D(K1) = Fp.k,(w1) > Fp.x,(0) =O.

Similarly, since for K > K, Fg g has unique global minimum points at
w=xw(B, K), for K > K5, we have

D(K) = Fg g (W(B, K)) < F.x(0) =0.

SinceD(K) is continuous and strictly decreasing ®r> K1 (Lemma 3.12), there
exists a unique critical valuﬂ’,ﬁl)(ﬁ) satisfying K, < Kc(l)(ﬂ) < K2 and having
the following properties:

(i) For k1<K <KP(B),
Fg.k(W(B, K)) = D(K) > 0= Fg k,(0),

and, thus Fg x has a unique global minimum pointat= 0.
(i) For kK =K (),

Fg.x(W(B, K)) = D(K)=0= Fg k,(0),

and, thus Fg x has three global minimum points at= 0, (B, K).
(iiiy For KP(B) < K < K>,

Fp.x (i(B. K)) = D(K) < 0= Fp g, (0),

and, thus Fg x has two global minimum points at = £w (8, K).

We definez(8, K) = w(B, K)/(28K). The form ofég x given in parts (a)—(c)
of Theorem 3.8 follows from the information on the global minimum points
of Fg k just given in items (i)—(iii) and from facts 1 and 2 stated at the start of the
proof. In addition, the positivity of (3, Kc(l) (B)) is a consequence of the positivity
of w(B, Kc(l) (B)). Since by Lemma 3.1%(8, K) is a strictly increasing function
for K > KV (B), part (d) of the theorem is also proved. The proof of Theorem 3.8
is now complete. [

Together, Theorems 3.6 and 3.8 give a full description of thé’&@{ for all
values of8 and K. In the next section, we use the contraction principle to lift our
results concerning the structure of the 8gtx up to the level of the empirical
measures, making use of a one-to-one correspondence between the points in the
two setséﬂ,;( andég x of canonical equilibrium macrostates.
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3.4. One-to-one correspondence between &5 x and &4 x. We start by recall-
ing the definitions of the se x andé; k:

(3.32) &g,k ={v e P(A):v minimizesR(v|p) + Bfk (v)}
and
(3.33) €p.x = {z € [—1, 1]:z minimizesJs(z) — BKz°).

In the definition ofé&g x, R(u|p) is the relative entropy oft with respect to
0= %(6_1 + 80 + 61) and fx () is the function defined in (2.3). In the definition

of &g k, Jg is the Cramér rate function defined in (3.3). We now state the one-to-
one correspondence between the poini&sk and the points ir€s ¢ . According

to Theorems 3.6 and 3.@,3,1( consists of either,12 or 3 points.

THEOREM 3.13. Fix 8 >0 and K > 0 and suppose that &g x = {za},_,
r=12or 3.Definevy,,a=1,...,r,tobemeasuresin 2 (A) with densities
dvgy
(3.34) —(y) = expltay) - :
dpg ST [y expliey) pp(dy)
where 1, is chosen such that [, yvy(dy) = z. Then for each « =1,...,r,
1, existsand isunique, and &g g consists of the unique elements vy, ¢ =1, ..., r.
Furthermore, t, = 28Kz, fora=1,...,r.

Forz € [—1, 1], we define

(3.35) @ ={uerw: [ yuay =z,

The proof of the theorem depends on the following two lemmas. Both lemmas
use the contraction principle ([9], Theorem VIIl.3.1), which states that, for all
ze[-1,1],

(3.36) Jp(z) = Min{R(ulpp) : 1t € AR)).

LEMMA 3.14. For 8 >0and K > 0,

min_ { Reulog) — 8 ([ yu(dy))z} = mintJs(@ - K2,

REP(A)

PrROOF The contraction principle (3.36) implies that

min {R(Mpﬁ) - ﬂK(/A y“(dy)>2}

HeP(A)

= min (min{ R(ulop) - K ( [ yu(dy))z neam))
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= min(min{R(ulpp) 1 € A)} — BK )
= min{Js(z) — BKz%).
|Z|§1{ p(z) — BKzZ"}
This completes the proof.(]

The second lemma shows that the mean of any measai@;  is an element
of éﬂ,[(.

LEMMA 3.15. Fix $ >0 and K > 0. Given v € &g g, we define 7 =
[ yv(dy), where A = {—1,0,1}. Then 7 € &5 .

PROOF  Since v € &k, v is a global minimum point ofR(u|pp) —
BK ([, yu(dy))?. Thus, for allu € £ (A),

R1op) - K ([ yv(dy>)2

2
= ROvlop) - BKE = RGulop) — K ( [ yuian)

In particular, this inequality holds for any that satisfies/, yu(dy) = z. For
suchy, the last display becomes

R(vipp) < R(ulpp)-
Thus,v satisfies
R(v|pg) =min{R(1zlpp): 11 € A))}.
whereA(z) is defined in (3.35). The contraction principle (3.36) and Lemma 3.14
imply that
2
Ip(@) - BKZ2 = ROlop) - K [ yvidy))

2
= min {R — BK / d ) }
MGP(A){ (ulpg) — B ( Ayu( y)
= min{Jz(z) — BK7?}.
lz|<1
Therefore? e é,g,K, as claimed. This completes the proof]

We next prove Theorem 3.13.
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PrROOF OFTHEOREM3.13. A short calculation shows that, for gimye 2 (A),

R(ulp) + Bfk (1) — VGEQIA){R(VI/)) + Bfk ()}

= Riulop) — K ( [ yu(dy))z - anf {Roion - ([ yv(dy))z}.

Hence, we obtain the following alternate characterizatioéiz0f :

(3.37) &k = {v € P(A):v minimizesR(v|pg) — ,3K</A yv(dy))z}.

We first show for eachw = 1,...,r and z, € éﬁ,K, Ve IS the unique global
minimum point of R (1| pg) — BK ([, yi(dy))? over

A(zg) = {u = ?(A):/Ayu(dy) =za}.

We then prove that

inf | Roulog) - (| yu(dy))z}

HEA(za)

2
= int {RGulop) — p& ([ yuan) |
for all o,¢ =1,...,r. It will then follow that {v,}/,_; equals the set of
global minimum points of R(u|pg) — BK ([, yu,(dy))2 over the setA =
w—1A(zq). Finally, by showing that all the global minimum points®f.|pg) —
BK ([, yu(dy))? lie in A, we will complete the proof thaés xk = {val},_q. If
r =2 or 3, then sincg, y vy (dy) = zq, itis clear that ifz, # z¢, thenv, # vy.
By Theorem VII1.3.1in [9], for eaclx =1, .. ., r, the pointz, in the statement
of Theorem 3.13 exists and is unique,

(3.38) Jp(za) = R(va|pp),

andR(u|pg) attains its infimum oveA (z,) at the unique measusg. Therefore,
for eacha = 1,...,r, v, is the unique global minimum point oR(|pg) —

BK ([, yi(dy))? over A(zq).
We next show that

2
nt L RGulog) — & ([ sutan) |

= inf {R(M|Pﬁ) - ﬁK(/A y“(dy)>2}

neA(ze)
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foralle,£=1,...,r. Sincez,, zy € éﬁ’]{, Z¢ andzg are global minimum points
of Js(z) — BKz2. Thus, by (3.38), we have

inf {R(Mlpﬁ) - ﬂK(/A y’“‘(dy))z}

HEA(Zq)

= inf R — BK7Z?
et (lpg) — BKzg

= Jﬂ(za) - ,BKth
= Jp(ze) — BK 22

= inf R _BK7?
o (lpg) — BKzg

= int {RGulop) - pK ([, yu(dy))z}.

neA(ze)

As a result,{v,},_; equals the set of global minimum points &f(1.|pp) —

BK ([, yn(dy))? over the seth = |, _; A(zq).

Last, we showR(u|pg) — 5K(fAyM(dy))2 attains its global minimum at
points in A. Let o be a global minimum point oR(w|pg) — BK ([, yu(dy))?.
By (3.37), this implies that € €5 k. Define¢ = [, yo(dy). Then Lemma 3.15
implies thatz < éﬂ’K and, thus, that =z, forsomex =1, ..., r. It follows that
o€A(zg) CAforsomea=1,...,r.

The last step is to prove thgt= 28Kz, fora =1, ..., r. From definition (3.4),
we have

cplta) = [ yvuldy) =za.
In turn, the inverse relationship (3.5) implies that
to = (cp) " (za) = T4 (2a)-

Therefore, since,, € éﬁ,K, the definition (3.33) guarantees thgt is a critical
point of Jg(z) — BK z2. Thus,

(3.39) ty = Jé(za) =26Kz,.
This completes the proof of Theorem 3.13]

In the next section we use Theorem 3.13 to prove Theorems 3.1 and 3.2.

3.5. Proofs of Theorems 3.1 and 3.2 Theorem 3.1 gives the structure of
the set€g ¢ of canonical equilibrium macrostates, pointing out the continuous
bifurcation exhibited by that set for @ g < 8. = log4. The structure ofg g
for 8 > B., given in Theorem 3.2, features a discontinuous bifurcatioki i he
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proofs of these theorems are immediate from Theorems 3.6 and 3.8, respectively,
which give the structure Oéﬂ’]( for 0 < B < B. and for 8 > B., and from
Theorem 3.13, which states a one-to-one correspondence befiygeand &g k.

Before proving Theorems 3.1 and 3.2, it is useful to express the measures
pp andy, in Theorem 3.13 in the formpg = pg,—16_1 + pp,080 + pp,161 and
Vo = Vq,—16-1 + Vu,080 + Vo181, respectively. Since, = 28K z,, in terms of
2o € €.k We have

e P 1 e P
T T
and
e 2BKza—p 1 e2BKza—P
T Tc k) T ek T e k)
Here

C(B,K)= e 2PKza—B | ,2BKza=B | 9

In particular,v, = pg whenz, =0.

We first indicate how Theorem 3.1 follows from Theorem 3.6. Fix 8 < B..
The critical vaIueKc(Z)(ﬂ) in Theorem 3.1 coincides with the vaILIéC(Z)(ﬂ)
in Theorem 3.6. For & K < KC(Z)(,S), part (a) of Theorem 3.6 indicates that
€s.x = {0); hence,&s.x = {pg}. For K > K2 (B), part (b) of Theorem 3.6
indicates thaéﬂ,,( = {+z(8, K)}, wherez (8, K) > 0. It follows that the measures
v(B, K) andv~ (B, K) in part (a)(ii) of Theorem 3.1 are given by (3.34) with
ze = 2(B, K) andz, = —Z(B, K), respectively. Sincé(gs, K) > 0, it follows that
v (B, K) # v~ (B, K) # pg. Finally, part (c) of Theorem 3.6 allows us to conclude
that, for each choice of sigm (8, K) is a continuous functions fok > K2 (8)
and that a¥X — (Kc(z) BN, vt — pg- This completes the proof of Theorem 3.1.

In a completely analogous way, Theorem 3.2, including the discontinuous
bifurcation noted in part (c) of the theorem, follows from Theorem 3.8.

In this section we have completely analyzed the structure of thetsgt
of canonical equilibrium macrostates. In particular, we discovered that, for

0< B < B, &gk undergoes a continuous bifurcation Kt= Kf.z)(ﬂ) (Theo-
rem 3.1) and that, fop > B., &g x undergoes a discontinuous bifurcation at
K = Kél)(ﬁ) (Theorem 3.2). We depict these bifurcations in Figure 8. While the
second-order critical vaIuer.z)(ﬂ) are explicitly defined in Theorem 3.6, the
first-order critical values(c(l) (B) in the figure are computed numerically. The nu-

merical procedure calculatdsc(l)(ﬂ) for fixed values ofg by determining the
value of K for which the number of global minimum points 6fg x (z) changes
from one at; = 0 to three at = 0 andz = +2(B, K), wherez (B, K) > 0. Accord-
ing to these numerical calculations for the discontinuous bifurcation, it appears

that KV (B) tends to 1 ag — oco. However, we are unable to prove this limit.
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FiG. 8. Bifurcation diagram for the BEG model with respect to the canonical ensemble.

In Section 5 we will see that Figure 8 is a phase diagram that describes the phase
transitions in the canonical ensemble aghanges. We will also show that the
nature of the bifurcations studied up to this point by varykigwhile keepings
fixed, is the same if we vary and keepK fixed instead. The latter situation
corresponds to what is referred to physically as a phase transition; specifically,
the continuous bifurcation corresponds to a second-order phase transition and the
discontinuous bifurcation to a first-order phase transition. In order to substantiate
this claim concerning the bifurcations and the phase transitions, we have to transfer
our analysis o€g x from fixed g and varyingK to an analysis o€ g for fixed
K and varyingg.

In the next section we study the BEG model with respect to the microcanonical
ensemble.

4. Structure of the set of microcanonical equilibrium macrostates. In
previous studies of the BEG model with respect to the microcanonical ensemble,
results were obtained that either relied on a local analysis or used strictly
numerical methods [2, 3, 15]. In this section we provide a global argument to
support the existence of a continuous bifurcation exhibited by thes%ét of
microcanonical equilibrium macrostates for fixed, sufficiently large values of
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and for varyingK . Specifically, for fixed, sufficiently larga, &*X exhibits a
continuous bifurcation ak passes through a critical vallm(z)(u). The argument
is similar to the one employed to analyze the canonical ensemble in Section 3.
However, unlike the canonical case, where a rigorous analysis of the structure
of the setég x of canonical equilibrium macrostates was obtained for all values
of g and K, the analysis of*-X for sufficiently largex and varyingK relies
on a mixture of analysis and numerical methods. At the end of this section we
summarize the numerical methods used to deduce the existence of a discontinuous
bifurcation exhibited bye*-X for fixed, sufficiently small and varyingK. In
Section 5 we show how to extrapolate this information to information concerning
the phase transition behavior of the microcanonical ensemble for vamying
a continuous, second-order phase transition for all sufficiently large valuks of
and a discontinuous, first-order phase transition for all sufficiently small values
of K.

We begin by recalling several definitions from Sectionf2(A) denotes the
set of probability measures with suppatt= {—1, 0, 1}; p denotes the measure
$(6_1+ 80+ 81) € P(A); for e P(A),

1
R(ulp)=Y_ nilog3u;
i=—1

denotes the relative entropy afwith respect tqo; and fx (1) is defined by

2
_ 2 _
fK(M)—/Ay n(dy) K(fA yu(dy))

= (u1+p-1) — K (p1— p-1)>
For K > 0, we also defined the set of microcanonical equilibrium macrostates by
e =weprn): 1" w)=0)

(4.2)
= {v e P(A):v minimizesR(v|p) subject tofx (v) = u},

&K is well defined fork > 0 andu € domsg = [min(1— K, 0), 1]. Throughout
this section we fixt € domsg; sk is defined in (2.4).

Determining the elements & X requires solving a constrained minimization
problem, which is the dual of the unconstrained minimization problem associated
with the set€g g of canonical equilibrium macrostates defined in (2.7). In order to
simplify the analysis of the sét“ X, we employ the technique used in [2] to reduce
the constrained minimization problem definigf-X to another minimization
problem that is more easily studied. For fix€d> 0 andu € domsg, we define

(4.2) Dy xk ={pnePN): fx(n) =u}.
Forpe Dy k. letz=pu1 —pn—1andg = ug + pn—1. Sincen € O, g implies that

frw) =i+ u_1)— K —pu_1?=u,
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we see thay = u + Kz2. Thus, foru € D, g, we have

1
R(ulp) =Y nilog3u;

i=—1

9z § B qg+z §

=" Iog[z(q z)} + > Iog[z(q +z)}
+(1—¢g)log[3(1—q)]

_ —Q;Z l0g(q +2) + 15~ log(g —2)
+ (A —¢g)log(l—g¢q)— (glog2—1og3).

Settingg = u + K z2, we define the quantity

+z -z
R, k(2) = qT log(g +2) + qT log(g — z)
(4.3)
+ (1 —¢)log(1—¢q) — (glog2—log3)
and the set
(4.4) My xk ={zeR:z=p1— pn_1forsomeu € D, g}

The derivation ofR,, ¢ makes it clear that(, x C (—1, 1) is the domain oiR, k.
We next introduce the set

&K = (Z € My k :Z minimizesR, x (z)}.

The following theorem states a one-to-one correspondence between the elements
of €-K and &“X under an assumption on the structure&¥fX. In [15], for
particular values of: and K, numerical experiments show th&t-X consists of

either 1 2 or 3 points. Although we are not able to prove that this is valid for all

u € domsg and K > 0, because of our numerical computations, we make it an
assumption in the next theorem.

THEOREM 4.1. Fix K > 0 and u € domsk . Suppose that &K = {z,}"_,,
where r equals 1, 2or 3. Define v, = Z}rlva,i&- € P(A) by theformulas

u+Kz2 +zq u+Kz2 — zq
Va,1 = - 2 Vo, -1 = - 2 Ve,0=1— V41— Vo, —1.

Then &“-X consists of the distinct dlements vy, =1, ..., r.

PROOF  Using the definition (4.2) ofD, g, we can rewrite the seg*-X of
microcanonical equilibrium macrostates defined in (4.1) as

"k = (v e D, g :vis aminimum point ofR (1| p)}.
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We show that, fora = 1,...,r, fx(vy) = u and R(vy|p) < R(u|p) for all
u € Dy, k for which p # vy,.
From the definition ob,, we have

Ik We) = (Va1 4 ve—1) — K (Vg1 — va—1)? = u+ Kz2) — Kz2 = u.

Therefore, vy, € D, x for all @« = 1,...,r. Since for all z4,z¢ € gk,
a,l=1,...,r,

R(vy|p) = Ry k (zo) = Ru,k (z¢) = R(v¢|p),

it follows that R (v, |p) are equal foralk =1, ..., r.

We now considep = Z}:_l widi € Dy k suchthap # vy foralla =1,...,r.
Defining¢ = n1 — -1, we claim thatt # z, foralla =1, ..., r. Suppose other-
wise; that is, for some,,

(45) U1— 1= =2Z¢ =Vg1— Vo, —1.
But u € D, x implies thatfx (1) = u = fx (vy) and, thus, that
(4.6) U1+ U—1= Ve 1+ Vo, 1.

Combining (4.5) and (4.6) yields the contradiction that v,. Because # z,
forala=1,...,r, it follows that¢ ¢ &K and, thus, thaR, k (z4) < Ry k (¢)
foralla=1,...,r. Asaresult, fox =1, ..., r, we have

R(vylp) = Ru,K(Z(x) < Ru,K({) = R(ulp).

We complete the proof by showing thatzf # z¢, thenv, # v,. Indeed, if
vy = vg, then, for each choice of sign, we would hate? + z, = K z2 £ z;. Since
this leads to the contradiction that = z¢, the proof of the theorem is complete.

O

Theorem 4.1 allows us to analyze the 8&tX of microcanonical equilibrium
macrostates by calculating the minimum points of the functiyng defined
in (4.3). Define

+z

ok (@) =15 10g(g +2) + 5= loglg —2) + (1 - ) log(L - g).

whereg = u + K z2. With this notation (4.3) becomes
Rux(2) = ¢u,x (2) — (u+ Kz%)log 2+ log 3.

This separation oR, k into the nonlinear componewi, ¢ and the quadratic
component is similar to the method used in Sections 3.2 and 3.3 in determining the
elements in the seé,g,K. There we separated the minimizing functiép, x (w)
into a nonlinear componentg(w) and a quadratic component?/(48K);
minimum points ofFg g satisfyFAK(w) = c/g(w) —w/(2BK) = 0. Solving this
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equation was greatly facilitated by understanding the concavity and convexity
properties otg, which are proved in Theorem 3.5.

Following the success of this method in studying the canonical ensemble, we
apply a similar technique to determine the minimum pointsRpfx. We call
a pair (u, K) admissible ifu € domsg. While an analytic proof could not be
found, our numerical experiments show that there exists a chrve C(u) in
the (u, K)-plane such that for all admissible, K) lying above the graph of this
curve,<p;’K is strictly convex on its positive domain. The graph Kf= C(«)
is depicted in Figure 9. We denote iyt the set of admissibléu, K) lying
above this graph and by _ the set of admissibléx, K) lying below this graph.
Using a similar argument as in the proof of Theorem 3.6 for the canonical case,
we are led to believe that, for alli, K) € GT, the BEG model with respect to
the microcanonical ensemble exhibits a continuous bifurcatid®;ithat is, there
exists a critical valud(f.z)(u) > 0 such that the following hold:

e For0< Kk < K?®u), K =0).

e For K > KC(Z)(u), there exists a positive numbétu, K) such thaté“-X =
{+Z(u, K)}.

° |ImK_)(K£2>(M))Jr Z(u, K)=0.

114

Double phase region
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FiG. 9. Bifurcation diagramfor the BEG model with respect to the microcanonical ensemble.
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Combined with the one-to-one correspondence between the elemesitsof
and €KX proved in Theorem 4.1, the structure 6f-X just given yields a
continuous bifurcation ik exhibited by&*X for (u, K) lying in the regionG™*
above the graph of the cund& = C(«). Similar to the definition of the critical
value Kﬁz)(ﬂ) given in (3.19) for the continuous bifurcation K exhibited by
é‘f}’]{, the critical vaIueKc(Z) (u) is the solution of the equation

R, x(0)=0 or ¢ ,(0)=2Klog2

Consequently, sinaﬁ;’,K(O) =1/u + 2K [log(u/(1— u))], we define the second-
order critical value to be
(P;/,K(O) _ 1

2log2  2ulog(2(1—u)/u)’

(4.7) KPu) =

The derivation of this formula fOKC(Z)(u) for the critical values of the continuous
bifurcation in K exhibited by&* X rests on the existence of the curkie= C(u),
which in turn was derived numerically. However, the accuracy of (4.7) is supported
by the fact that the graph of the cur\léc(z)(u) fits the critical values derived
numerically in Figures 2 and 3 of [15].

For values of(u, K) lying in the regionG_ below the graph of the curve
K = C(u), the strict convexity behavior op;, , no longer holds. Therefore,
numerical computations were used to determine the behavioR,0f for
such(u, K), showing a discontinuous bifurcation ki in this region. Specifically,
there exists a critical vaIch(l) (u) such that the following hold:

e For0< K < k), 6K ={0}.
e ForK = Kél)(u), there exist§(u, K) > 0 such tha€*X = {0, £Z(u, K)}.
e Fork > K (u), there exist§ (4, K) > 0 such tha€* K = (£3(u, K)).

The critical vaIuech(l) (u) were computed numerically by determining the value
of K for which the number of global minimum points &, x (z) changes from
one atz =0 to three at =0 andz = +Z(u, K), Z(u, K) > 0.

The results of this section are summarized in the bifurcation diagram for
the BEG model with respect to the microcanonical ensemble, which appears in
Figure 9. In the next section we will see that Figure 9 is a phase diagram that
describes the phase transition in the microcanonical ensemhblechanges. In
order to substantiate this, we have to transfer our analys&“é‘f from fixed u
and varyingk to an analysis o&*-X for fixed K and varyingu.

5. Comparison of phase diagrams for the two ensembles. We end our
analysis of the canonical and microcanonical ensembles by explaining what our
results imply concerning the nature of the phase transitions in the BEG model.
These phase transitions are defined by varfirandu, the two parameters that
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define the ensembles. As we will see, the order of the phase transitions is a
structural property of the phase diagram in the sense that it is the same whether we
vary K or g8 in the canonical ensemble afdor « in the microcanonical ensemble
while keeping the other parameter fixed.

Before doing this, we first review one of the main contributions of the
preceding two sections, which is to analyze the bifurcation behavior of the sets
&p.x and €“X of equilibrium macrostates with respect to both the canonical
and microcanonical ensembles. Figure 8 summarizes the canonical analysis and
Figure 9 the microcanonical analysis. The figures exhibit two different valugs of
called tricritical values and denoted B§*"°"and K[1'“°. As we soon explain, at
each of these values @& the corresponding ensemble changes its behavior from
a continuous, second-order phase transition to a discontinuous, first-order phase
transition.

For the canonical ensemble, the tricritical value in Figure 8 is given by

Kganon_ Kc('Z) (B.) = Kéz)(log 4) ~1.082Q

wherek? (B) is defined in (3.19). With respect to the microcanonical ensemble,

the tricritical valueKt’;?iC'O is the value ofK at which the curveX = C(u) and

Kﬁz)(u) shown in Figure 9 intersect. From the numerical calculation of the curve
K = C(u), we obtain the following approximation for the tricritical val&g,'":

KMer0 ~ 1,0813

These values oK $*"°"and K{:i"cro agree with the values derived in [2] via a local
analysis and numerical computations.

We first illustrate how our analysis ofg x in Theorems 3.1 and 3.2 for
fixed B and varyingK yields a continuous, second-order phase transition and a
discontinuous, first-order phase transition with respect to the canonical ensemble.
These phase transitions are defined for fikednd varyings, the thermodynamic
parameter that defines the ensemble. In order to study the phase transition, we must
therefore transform the analysis &f x for fixed g and varyingk to an analysis
of the same set for fixed and varyings. After we consider the microcanonical
phase transition in an analogous way, we will focus on the region

Ktr;iﬂcrox 1.0813< K < 1.0820~ K"

As we will point out, the fact that forK in this region the two ensembles
exhibit different phase transition behavior—discontinuous for the canonical and
continuous for the microcanonical—is closely related to the phenomenon of
ensemble nonequivalence in the model.

We begin with the continuous phase transition for the canonical ensemble.
Figure 8 exhibits a monotonically decreasing function= thz) (B)for0< B <
B. = log 4. Inverting this function yields a monotonically decreasing funcfiea

,36(2)(K) for K > KG"N= KC(Z)(,BC) ~ 1.0820. Consider, for fixed > K"
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and smalls > 0, values of (ﬁc(z)(l() -4, ﬁc(z)(K) +4). Our analysis ofg x
in Theorem 3.1 shows the following:

o Forg e (B2 (K) — 5, B (K)], the model exhibits a single phagg.
e For B € (;36(2)(1(),,30(2)(1() + §), the model exhibits two distinct phases
v (B, K) andv= (B, K).

We claim that, for fixedk > K2"", this is a second-order phase transition;

that is, asg — (82 (K))T, we havev (8, K) — pg andv=(8, K) — pg. To
see this, we recall from Figure 1(b) that, f@r= 0(2)(1(), the graph of the
linear componenty /(28K ) of F/g’K(w) is tangent to the graph of the nonlinear
componentc;g(w) of Flg’K(w) at the origin. This figure was referred to in

Section 3.1 when we analyzed the structure of thégg& (Theorem 3.6). Since
both components aﬂg’ x (w) are continuous with respect fiy a perturbation irg

yields a continuous phase transitionég\,,( and thus inSg g . A similar argument
shows that each of the double phase€gs, K) and v—(8, K) are continuous
functions ofg for 8 > ﬂéz)(K).

We now analyze the discontinuous phase transition for the canonical ensem-
ble in a similar way. Figure 8 exhibits a monotonically decreasing function
K =Kc(1)(,3) for B > B. = log4. Inverting this function yields a monoton-

ically decreasing functiorg = YKy for 0 < K < K"~ 1.0820. For

fixed 0< K < K" and smalls > 0, consider values o e (ﬂc(l)(l{) -4,

C(l)(K) + 6). Our analysis o€ g in Theorem 3.2 shows the following:

e Forpe (ﬁc(l)(K) -4, ,36(1)(1{)), the model exhibits a single phagg.

e For g = ﬁél)(l(), the model exhibits three distinct phasgg, v (B, K),
andv (B8, K).

e For B8 € (ﬂél)(K),ﬁﬁl)(K) + &), the model exhibits two distinct phases
v (B, K) andv= (B, K).

We claim that, for fixed O< K < Kg2"" this is a first-order phase transi-

tion; that is, as8 — (ﬁc(l)(K))Jr, we have, for each choice of signt (8, K) —
vi(ﬁﬁl)(l(), K) # pg. To see this, we recall from Figure 7(a) that, foe= ,851)(1(),

the graph of the linear componeny (28K of F;  (w) intersects the graph of the
nonlinear componenfig(w) of FAK(w) in five places such that the signed area
between the two graphs is 0. This results in three values thiat are global min-
imum points ofFg x; namely,w = 0, w(B, K), —w (B, K) (Theorem 3.8). These
three values ofw give rise to three values af = w/(28K) that constitute the
setéﬁ,K for g = [352)(1(). Since both components @’K(w) are continuous with

respect tg, a perturbation irg yields a discontinuous phase transitioréy)K and
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thus in&g k. A similar argument shows that each of the equilibrium macrostates
v (B, K) andv~ (B, K) are continuous functions ¢f for g > ;352)(1().

The phase transitions for the microcanonical ensemble are defined forkfixed
and varyingu, the thermodynamic parameter defining the ensemble. Therefore, in
order to study these phase transitions, we must transform the analg&i& afone
in Section 4 for fixed: and varyingK to an analysis of the same set for fix&d
and varyingu. This is carried out in a way that is similar to what we have just done
for the canonical ensemble. In particular, we find that,Kos K1~ 1.0813,
the BEG model with respect to the microcanonical ensemble exhibits a continuous,
second-order phase transition and that, fer & < K1, the model exhibits a
discontinuous, first-order phase transition.

We now focus on values & satisfyingK{l'™® < K < K£2"°" As we have just
seen, for suclk’, the two ensembles exhibit different phase transition behavior: for
K{lr® < K, the microcanonical ensemble undergoes a continuous, second-order
phase transition, while for & K < K2"" the canonical ensemble undergoes
a discontinuous, first-order phase transition. This observation is consistent with
a numerical calculation given in Figure 10 showing that, for a fixed value of
K e (Ko gcanon - there exists a subset of the microcanonical equilibrium
macrostates that are not realized canonically [15]. As a result, for this valkie of
the two ensembles are nonequivalent at the level of equilibrium macrostates.

Figures 10(a) and 10(b) exhibit, for a range of values ahdg, the structure
of the set&“X of microcanonical equilibrium macrostates and the &gt
of canonical equilibrium macrostates f& = 1.0817. This value ofK lies in
the interval(K e, K £an°" ~ (1.0813 1.0820. Each equilibrium macrostate in

(a) (b)
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FIG. 10. Sructureof (a)theset 6K and (b) the set &g,k for K =1.0817.
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gukK andég k is an empirical measure having the form
v =181 + vodo + v-16-1.

In both figures the solid and dashed curves can be taken to represent the
componentsy; and v_1. The components; and v_; in the microcanonical
ensemble are functions of [Figure 10(a)] and in the canonical ensemble are
functions ofg [Figure 10(b)]. Figures 10(a) and 10(b) were taken from [15].
Comparing the two figures reveals that the ensembles are nonequivalent for this
value of K. Specifically, because of the discontinuous, first-order phase transition
in the canonical ensemble, there exists a subseP k) that is not realized
by &g x for any g > 0. On the other hand, since the @tX of microcanonical
equilibrium macrostates exhibits a continuous, second-order phase transition, the
subset ofP (A) not realized canonically is realized microcanonically. As a result,
there exists a nonequivalence of ensembles at the level of equilibrium macrostates.
The reader is referred to [15] for a more complete analysis of ensemble equivalence
and nonequivalence for the BEG model.

6. Limit theoremsfor the total spin with respect to P, g k. In Section 3.1
we rewrote the canonical ensemi g x for the BEG model in terms of the
total spinS,. This allowed us to reduce the analysis of the&gk of canonical
equilibrium macrostates to that of a Curie—Weiss-type model. We end this paper
by deriving limit theorems for theP, g g -distributions of appropriately scaled
partial sumssS,, = 2?21 wj, which represents the total spin in the model. Since
Sn/n = [i_1.0.1y YLn(dy), the limit theorems fos,, are also limit theorems for the
empirical measures,,. As we will see, the new limit theorems follow from those
for the Curie—Weiss model proved in [12, 14].

Let = be a Borel probability measure dh satisfying /p explbx?]t(dx) < oo
for all b > 0. The Curie—-Weiss model considered in [12, 14] is defined in terms of
a canonical ensemble giR”, Br, ) given by

2
1 .eXp[@<S"(w)) :|P,f(da)).
Z;(B) 2\ n
In this formulag > 0, P is the product measure dR" with identical one-
dimensional marginals, and Z; () is a normalization making®; , a proba-
bility measure. The canonical ensemble for the BEG model is defined by the
measureP, g k in (2.1), which is re-expressed in (3.2) as a Curie-Weiss-type mea-
sure. This measure has the form (6.1), in whdls replaced by 2K andt equals
the measureg defined in (3.1).
Forr € R, definec’(r) = log [ exptw1)t(dw1). As shown in [12, 14], the
Pn”ﬁ—limits for S,, are determined by the global minimum points of the function

(6.2) Gp(2) = 1822 — ¢ (B2).

(6.1) P! 4(dw) =
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Let Z be a global minimum point Oth3 SinceGl’3 is real analytic, there exists a
positive integer = () such thai(Gg)(Z’) (%) > 0 and
o GR®@) i .
G5(2) = G5(2) + /S(ZT(Z —HT +0(—3%Y)  asz;—:.
We call (z) the type of the minimum poini. If » = 1, then(Gp)"(2) = B —
B2(ch)"(2), and ifr = 2, then(G})®) (2) = =% (c))® (@)
The canonical ensembl®, g x for the BEG model has the form of the Curie—
Weiss measuré’fﬁ with B replaced by BK andt = pg. Therefore, the function

that plays the role ot;§ for the BEG model |sG‘2’gK This coincides with the
function

Gp.x(2) =BKz>—c(2BKz)
=pK—log [ | exp2pKonpy(don),
{—1,0,1}

defined in (3.8). For & 8 < 8. andK > 0, detailed information about the @,K
of global minimum points o6 4 « is given in Theorem 3.6; fo > g. andK > 0,
detailed information abOLE,g,K is given in Theorem 3.8.

We next indicate the form of the limit theorems for the Curie—Weiss model,
restricting to those cases that arise in the BEG model. The first, Theorem 6.1,
states limits that are valid Wheﬁig has a unique global minimum point a&= 0.

The second, Theorem 6.2, states a conditioned limit that is valid \mgehas
multiple global minimum points all of type 1.

A law of large numbers fo§,, /n is given in part (&) of Theorem 6.1. In part (b)

Jo.o28) denotes the density of 8(0, o2(8)) random variable with

B-(c})"(0)

6.3 2(8) = .
(6.3) o“(B) @0

When the type of the minimum point at 0 #s= 1, 02(,3) > 0 because, in this
case,(Glg)”(O) >0and,in generahc/g)”(O) > 0. If f is a nonnegative, integrable
function onR, then, forr € N, we write

Plo{Su/n™ V% edx) =  f(x)dx

to mean that, a8 — oo, the P, s-distributions ofS,, /nt=Y% converge weakly to

a distribution having a density proportional to Whenr =1, f = f; ,2(4), and

the limit is a central-limit-type theorem with scaling/2. Whenr > 2, the limits
involve the nonclassical scaling~*/%, and thep; ,-distributions of the scaled
random variables converge weakly to a d|str|but|on having a density proportlonal
to exg—const- x%]. Theorem 6.1 is proved in Theorem 2.1 in [12] fbr=
rescaling yields the more general form given here.
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THEOREM 6.1. Consider the Curie-Weiss model, for which the canonical
ensemble Pfﬁ is defined by (6.1). For 8 > 0, assume that GT has a unique
global minimum point at z = 0 having type r. Let f, ;25 be the density of
a N(0,02(B)) random variable, where o2(8) is the positive quantity defined
in (6.3). The following conclusions hold:

@) P,fﬁ{Sn/n €dx} = §pasn — oo.

(b) Asn — oo,

Sn fo.o2ep)(X) dx, forr =1,
n ﬁ{ 112 © dx} exp(—(Gp) @ () - x¥/(2r)!)dx,  forr>2.

The next theorem is valid whe@?, has multiple global minimum points all
of type 1. Part (a), proved in Theorem 3.8 in [12], states a law of large numbers
for S, /n. Part (b), proved in Theorem 2.4 in [14], states a conditioned limit. For
each global minimum poiri of type 1, we define the positive quantity

B (ch)(B2)

6.4 2(B,7) = iy
(64) =Gy

THEOREM 6.2. Consider the Curie-Weiss model, for which the canonical
ensemble Pfﬂ is defined by (6.1).For 8 > 0, assume that G’ hasglobal minimum
points, all of type 1, at {z1, ..., zn} for m > 2. For each j = 1 , m, we define

o 0Bz
T Yo%,z
where o2(8, zj) is the positive quantity defined in (6.4). Let fo,gz(ﬁ’zj) be the
density of a N (0, o2(8, z;j)) random variable. The following conclusions hold:

(@) Py p{Su/nedx}= 31 1b;6;; asn — oo.
(b) Thereexistsa = a(zj) > O such that, for any a € (0, ),

S, —nz;
To| Tt edx

Sy
i € 76[2 azj+a]}

—> fO’OZ(ﬂ’Z],)(X)dX asn — 00.

In order to adapt these limit theorems to the BEG model, we now classify
each of the points ir€s ¢ by type. &g x denotes the set of global minimum

points of Gg x = Gg’gK, which plays the same role for the BEG model@§
for the Curie—Weiss model. The classification of the pointé/{rk by type is

done in Theorem 6.3 for & 8 < 8. and K > 0, in which caseé,g,K exhibits
a corltinuous bifurcation, and in Theorem 6.4 for- 8. and K > 0, in which
caseég x exhibits a discontinuous bifurcation. The associated limit theorems are
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given in Theorems 6.5 and 6.6. Except whEn= Kcz(ﬂ) [Theorem 6.3(b)], the

type of each of the global minimum points is 1. In these cases, the associated limit
theorems are central-limit-type theorems with scalin§2. Whenk = K2(8),

we haveé,g,K = {0}, and the type of the minimum point at 0#s=2 orr = 3,
depending on whether@ g8 < 8. or 8 = B.. The associated limit theorems have
noncentral-limit scalinga®# or %6, and in each case

Pny,B,K{Sn/nl_l/zr S d.X} — const exq_const. x2r] dx.

These nonclassical limit theorems signal the onset of a phase transition ([9], Sec-
tion V.8). AsK increases through’cz(,ﬁ), the global minimum point at O bifurcates
continuously into symmetric, nonzero global minimum poiftg 8, K).

We first consider G< 8 < 8. = log 4. According to Theorem 3.6, there exists a
critical value
1 1 1

@By = — —_
(6.5) KD =250 = 4pe " 25

with the following properties:

o For0<k < K2 (B), &s.x = {0}.
o Fork > K2 (B), there exist§ (8, K) > 0 such tha x = {£Z(8. K)}.

The next theorem gives the type of each of these pointéﬁ,iﬂ. The type is

always 1 except whek = KC(Z) (B); in this case the global minimum point at 0
hastyper =2if 0 < 8 < 8. and typer =3 if 8 = ..

THEOREM 6.3. Consider the BEG model, for which the canonical ensemble
isgivenby (3.2).Let 0 < 8 < B. = log4and define KC(Z) (B) by (6.5).Thefollowing
conclusions hold:

(@ For0<K < K2 B,z =0hastyper =1.
(b) Let K = K2 (B).

(i) For B < B, z=0hastyper =2.
(i) For B =P, z=0hastyper = 3.

(c) For K > KC(Z)(/B) and each choice of sign, z = +z(8, K) hastyper = 1.

PrROOF (a) By (6.5), we have
G} x(0)=2BK(1—-2BKc;(0))

:2,8K<1— KC(%(@)

Therefore, 0< K < K2 () implies thatG; . (0) > 0 and, thus, that = 0 has
typer =1.
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(b) ForkK = Kéz) B), Gg’K(O) = 0. A simple calculation yields

66 Gy (0) = —(2BK)*c’ (0)
' B(l+2eP)(1—2¢7F — 8e™ 2ﬁ)

(1+eF)*
Therefore, for < 8., G(4)K(0) > 0 and forg = 8., G(4) (0) = 0. Computing the
sixth derivative yields
6
(6.7) Gy ((0)=2-3"

As aresultz =0 has type 2 if8 < 8. and has type 3 iB = 8..
(c) Lemma 3.7 states the existence and uniqueness of nonzero global minimum
points+w (A, K) of

Fp.x(w) =w?/(4BK) — cp(w) = Gp x (w/(2BK)).
According to part (a) of the lemmaly , (w(B, K)) > 0. Sincez(, K) =
w(B, K)/(2BK), F/g’,K(zI)(ﬁ, K)N=>0 impIieng,K(Z(/S, K)) > 0. The symmetry

of Gg k allows us to conclude that, for each choice of sigii(8, K) has type
r = 1. This completes the proof.[]

— _pK)t 2

We next classify by type the points éB,K for B > B. and K > 0. According
to Theorem 3.8, there exists a critical valKIél) (B) with the following properties:

o For0< K < kM (B), &5 x = {0}.
e ForK = Kc(l) (B), there exist§(B, K) > 0 such thaé,g,;( ={0,£z2(B8, K)}.
o Fork > KV (B), €.k = (£Z(B. K)}.

The next theorem shows that the type of each of these poi®ts inis 1.

THEOREM 6.4. Consider the BEG model, for Whigh the canonical ensemble
isgiven by (3.2).Let B > 8. and K > 0. The pointsin &g x all havetyper =1

PrROOF We first assume that & éﬁ k, In which case O< K < K(l)(,s)

Define Ko = l/(Z,Bc (0)). According to Theorem 3.8, we ha\Ié( )(/3) < K».
Since

G} x(0) = 28K (1— 28K c;(0))
K

2

(6.8)

it follows that, whenever & K < kP (8), 1> K/K» and, thus G (0) > 0.
We conclude that the global minimum point 6 x atz = 0 has typ& =1, as
claimed.
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ForK > Kc(l)(,B), é,g,K also contains the symmetric, nonzero minimum points
+7(B, K) of Gg k. Lemma 3.10 states the existence and uniqueness of nonzero
global minimum pointstw (B, K) of

Fp k (w) = w?/(4BK) — cp(w) = Gp k (w/(2BK)).
Furthermore, according to part (a) of the Iemntég’K(zb(,B, K)) > 0. Since
7Z(B, K)=w(B, K)/(2B8K), F/g’K(zZ)(ﬁ, K))>0 impIieng’K(Z(,B, K)) > 0.The

symmetry ofGg g allows us to conclude that, for each choice of sigi(8, K)
has type- = 1. This completes the proof.[]

Theorems 6.1 and 6.2, together with the classification by type of the global
minimum points ofGg g, yield limit theorems for thepP, g x-distributions for
appropriately scaled partial sun§g for the BEG model. The first, Theorem 6.5,
states limits that are valid whe®g x has a unique global minimum pointai= 0.
Thisisthecasefor& g <8.,,0< K < Kc(z) (B) [Theorem 3.6(a)] and fg8 > 8.,
0<K< Kc(l) (B) [Theorem 3.8(a)]. The second, Theorem 6.6, states a law of large
numbers and a conditioned limit that are valid wh@p ¢ has multiple global
minimum points.

In Theorem 6.5/0 02(8, k) denotes the density of A(0, 02(8, K)) random
variable with
28K -cg(O)

vaK(O)

When the type of the global minimum point at Oris= 1, 02(8, K) > 0.

(6.9) o2(B,K) =

THEOREM6.5. Consider the BEG model, for which the canonical ensemble
P, gk isgiven by (3.2). Suppose that &g ¢ = {0} and let r be the type of the point
z=0asgivenin Theorems 6.3 and 6.4. The following conclusions hold:

(@) Pupk{Sy/nedx} = dpasn— oo.
(b) Asn — oo,
Sn
P”’ﬂ’K{W € dx}
fO,(rz(,B,K) (.x)d.x, fOI‘ r = l,
{ exp(—G Y (0) - x¥ /(2r)l)dx,  forr=2o0rr=3.

When r =2 [K = K& (B), p < Bc], Gy (0) is given by (6.6), and when r = 3
[K=KZ(B), =8 Gy (0)=2-3"

The last theorem states a law of large numbers and a conditioned limit that are

valid whenG g x has multiple global minimum points. This holds in the following
three cases:
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1. 0<B<pB.and K > KC(Z)(/_‘}), in which case the global minimum points
are+z(B, K) with z(8, K) > 0 [Theorem 3.6(b)];

2. 8> pB.andK = Kc(l)(ﬁ), in which case the global minimum points are O,
+z(8, K) with z(8, K) > 0 [Theorem 3.8(b)];

3.8 > and K > Kc(l)(ﬂ), in which case the global minimum points
are+z (B, K) with Z(8, K) > 0 [Theorem 3.8(c)].

In each case in whiclGg ¢ has multiple global minimum points, Theorems
6.3 and 6.4 states that all the global minimum points have typ€l. For each
global minimum point of type 1, we define the positive quantity

28K - c(2BKz))
Gy x @)

(6.10) o?(B. K, zj) =

THEOREM 6.6. Consider the BEG ~model, for which the canonical ensemble
P, gk isgiven by (3.2). Suppose that &g x = {z1,...,2n} for m =2 0or m = 3.
Foreach j =1,...,m, wedefine

__o%B.z))
Zzn:_']_ Uz(ﬂ’ Z@) ’

where o2(B, z;j) is the positive quantity defined in (6.10). Let fO,(Tz(ﬂ,z]') be the
density of a N (0, 02(B, z ;)) random variable. The following conclusions hold:

bj

(@) Pupk{Sp/nedx} = ZT:1bj3z,- asn — oo.
(b) Thereexistsa = a(z;) > O such that, for any a € (0, ),
nzj

Sp — S
Pn,ﬁ,K{%edx fe[zj—a,zj+a]}

——t fo’o.Z(’B’Zj)(X)dx asn — oQ.

This completes our study of the limits for thR g x -distributions of appropri-
ately scaled partial sunt, = Z;lea)j.
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