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STRONG APPROXIMATION FOR THE SUPERMARKET MODEL

BY MALWINA J. LUCZAK AND JAMES NORRIS
London School of Economics and University of Cambridge

We prove three strong approximation theorems for the “supermarket” or
“join the shortest queue” model—a law of large numbers, a jump process
approximation and a central limit theorem. The estimates are carried through
rather explicitly, and rely in part on couplings. This allows us to approximate
each of the infinitely many components of the process in its own scale and to
exhibit a cut-off in the set of active components which grows slowly with the
number of servers.

1. Introduction. The supermarket model is a system Mf single-server
queues. Customers arrive as a Poisson process aVraterhere € (0, 1). Each
customer examineg queues, chosen randomly from all queues, wherd > 2,
and joins the shortest of thedequeues, choosing randomly if the shortest queue is
not unique. The service times of all customers are independent rate 1 exponential
random variables. We will be concerned with the behavior of this model when
A andd are fixed, over a finite time intervfl, 7g], asN — oo. We shall consider
the case when the system starts in some well-behaved state with low server loads
(in a sense to be made precise below).

This model has attracted attention because it turns out that the choice offered
to customers, even i = 2, dramatically reduces queue lengths (see [5, 14, 16])
and, in particular, the length of the longest queue (see [10, 11]). Given that our
analysis relies oV being very much larger thash, the model does not describe
well the behavior of a real supermarket. Rather it serves as an example where a
simple dynamic routing rule leads to a greatly improved performance, which is of
interest in the context of communications networks.

Our results provide strong approximations for the supermarket model, and
include a law of large numbers and a diffusion approximation. In arriving at
these results, we have developed techniques to establish weak convergence of
a sequence of Markov processg$ in infinitely many dimensions, where the
jumps of XV are of orderN~1 and occur at a rate of orde¥. The classical
results for fluid limits are set in a finite-dimensional context. We make essential
use of the fact that the number of “active” components(ih grows only very
slowly with N. We have used direct and quantitative methods based on exponential
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martingales and strong approximation of Poisson processes by Brownian motion.
These methods seem well-suited to deal with such “almost finite-dimensional”
Markov processes. Earlier results for this model include laws of large numbers
in [5, 6, 14, 16], quantitative concentration of measure estimates in [10] and a
central limit theorem [7]. See also [9] for a preliminary version of the law of
large numbers presented in the present paper (for a more general range of initial
conditions).

The limiting behavior of the supermarket modelds— co may conveniently
be described in terms of the vectdl; = (X¥:k € N), where X* denotes the
proportion of all N queues having at leagt customers at time. The process
X = (X;)r>0 Is a Markov chain. We will suppose throughout ti&t= xo with xo
nonrandom and we will suppress the dependencéai N to lighten the notation.
Now X has the form of a density dependent Markov chain such as considered by
Ethier and Kurtz in [4], Chapter 11. Thus, one might expect to be able to find a
deterministic procesé&;);>o and a Gaussian procegs);-o such that

X, =x,+O0N"Y?,  X,=x,+N Y2y, +0(ogN/N).

However, the number of nonzero componentXigrows with N so the standard
theory does not apply.
We will see that, for small initial data, the componeﬁf‘ has a scale

ap = A1ra+-+d"t \which, of course, decays very rapidly withThus, the number
of queues having at leagtcustomers is of ordeNa;. We can findm of order
loglogN such thatva,, is of order 1. Thus, we can exhibit a cut-off in the number
of active components which grows only slowly witi. Below the cut-off, for
k <m — 1, we prove convergence with explicit control of error probabilities for
each of the loglogv active components.

We thereby obtain results of the form

Xk =xk4 akO(\/Iog loglogN /Nay ),
XK= xk 4+ N7V2)k £ g 0(log(Nax) / Nay).

Note that each component is estimated in the correct scale, with an error depending
on the number of queues active at that level. The loglogMag the first equation
is a (small) price we pay for working with infinitely many components. These
asymptotics will be established with a degree of uniformityxin which thus
allows a dependence af on N. The Gaussian approximation relies, as in the
finite-dimensional case, on a sophisticated coupling of the compensated Poisson
process with Brownian motion due to Komlds, Major and Tusnady [8].

We will give a third result, fok < m — 1, of the form

X = xk + N"Y25% 4 4, 0((loglog logN / Nay) /4.

Here (7:):>0 iS a jump process with drift which depends an but is of a
simpler type thanX in that it is a linear function of additive Poisson noise. The
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characteristics of are derived in a simple and canonical way from those& of
Moreover,y andX share a common filtration. The error term is larger than for the
Gaussian approximation. On the other hand, the derivation is significantly simpler.

We obtain also the behavior of the queue sizes at and above the cut-off. We
see a residual randomness(iXi;");>o even for large values aV. This may be
approximated in terms of am//M /oo queue with arrival raté\/k(xt’”‘l)d and
service rate 1. Over a given finite time interval, there are no queues with lengths
greater tham.

Thus, we will show for the supermarket model that its infinite-dimensional
character does not prevent the derivation of precise asymptotics. We expect the
general approach taken here to adapt well to a number of further examples of
similar character.

2. Statement of results. Let So denote the set of nonincreasing sequences
x = (x*:k eN)in [0, 1], whereN = {1, 2, ...}. Forx € Sg, setx? = 1 and define
A () = A((FHE — (kD) ak (x) = xF —xk L andbt (x) = 2K (x) —AK (x). Itis
shown in [16] that, given € Sp, there is a unique solutiofx;);>o to x; = b(x;)
in So. Moreover, for any other solutioty;);>o in So, xé < y’5 for all k implies
xk < yk for all k and allr > 0.

Recall thata, = A3+4++4"* for k € N. Thena = (ax :k € N) is the unique
solution in Sy to h(x) = 0 such that lim_ . x* = 0; to see this note that
xk1 1 (x%)? is independent of for any solutionx.

Define ||x|| = sup, [x¥|/ax, setE = {x e RN ||x| < oo} and setS = So N E.
We shall work on a fixed intervdD, rg]. For us, the good initial conditions will be
thosexg € S for which || x;|| < p for all ¢ € [0, rg], for somep < oo. Write S(p, tg)
for the set of suchg. We note that, ifcg € Sp with ||xg|| < 1, then, by comparison
with the stationary solution, ||x;|| < 1 for all z, soxg € S(1, to) for all 5. More
generally, ifxg € S, thenr — | x| is continuous (and finite) on some interval
[0, ), soxg € S(p, o) for somep < oo for all 1p < ¢. To see this, we extentd.
andb to RN by settingak (x) = A((F 19 — ()N +, Ak (x) = (F — yHH T,
wherey* = (x¥)*; thenb mapsE to itself and is locally Lipschitz for the given
norm [to prove this fact, carry out estimates similar to those in (5) and (6) below];
so if xg € S, then there is a local solutiog;), -, in S, which must coincide with
the global solutior(x;);>o in So for r < ¢.

The state-space of the Markov chainX = (X;);>0 is the set of nonincreasing
sequences inN*l{O, 1,..., N} with finitely many nonzero terms. Thug,C S.
The Lévy kernel forX is given by

o

K(x,dy) =Y [NAL()8er/n (@y) + NAE (x)8_e /v (dy)],
k=1
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wheree; denotes thetth standard basis vector. Givene N, let (X/*),<,, be a
process starting fromg' and such thatv X is an M /M /oo queue, with arrival
rate NA(x" 1) and service rate 1. We can now state our law of large numbers.

THEOREM 2.1. Set m = m(N) = inf{k € N: Nag < (logN)?}. There is a
coupling of X™ and X™ such that, for all p > 1,79 > 0 and all sequences R(N)
with R(N)/./logloglogN — oo, we have

sup Py (VNIXN* — xK| > R(N)/ay for somek <m —1
xo€lINS(p,to)

or XV £ XN or x NVt £ 0 for somet < 1p) — 0.
In particular,

sup sup| XN — x¥|jar — 0
k=m—11=10

in probability, uniformly in xg € I N S(p, 1o).

We know (see [16]) that ip > 0 and||xo|| < p, thenx¥ — a; ast — oco. Thus,
for k <m — 1, the proportional error in approximating® by the deterministic
processcf is small for large values a¥.

The central limit theorem shows generically that the pow@f in Theorem 2.1
cannot be improved while the approximating process$;>o remains determin-
istic. Our next result is a refined approximation which allows an improvement
to N34, Let i be a Poisson random measurelh x (0, 7o] with intensity

v(dy,dt) = K(x;,dy)dt.
For anyy,
ka(x)y _ M(xk—l)d—lyk—l _ kd(xk)d—lyk _ yk + yk+1_

We show in Section 6 that the linear equations

t
(1) k=N VE(E — B)(dy, ds) + f Yok (x,) 7 ds
RN % (0,7] 0

have a unique cadlag solutiefi* -k € N, r < 19). SetX, =x, + N~1/2,.

_ THEOREM 2.2. Define m(N) as in Theorem 2.1. There is a coupling of
X and X,Nin a common filtration, such that, for all p > 1, 1op > 0 and all
sequences R(N) with R(N)/(logloglogN)3/* — oo, we have
sup P (N¥4x* — XX > R(N)a;'* for somek <m — 1,1 < 1) — 0.
x0€INS(p,to)
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The final result is a diffusion approximation. Lﬂﬁ, B¥ k eN, be independent

standard Brownian motions. Sef (x) = /A% (x). We show in Section 6 that the
linear equations

= [ oheasio - [ otaanto + [ viwonas
2

r <Io,

have a unique solutioty} : k € N, ¢ < 19) with

supE(sup|yt"|2> < o0.

keN I=to

Set}_(; = Xt + N_l/zj/l.

_ THEOREM 2.3. Define m(N) as in Theorem 2.1. There is a coupling of
X and X such that, for all p > 1, 1o > 0, thereisa constant R, independent of N,
such that

sup Py (N|XF — X¥| > Rlog(Nay) for somek <m — 1,1 <tg) — 0.
x0eINS(p,to)

We remark that there are alternative versions of all three theorems in wich
is replaced byxé’") = (x§, ..., xg71,0,...) andr+(x) is replaced byis (x)™,
so that the approximating deterministic dynamics @te— 1)-dimensional. The
proofs are a minor modification of the proofs given below. These alternative ver-
sions would have merit in any computational implementation of the approxima-
tions sincen is of order only log logV.

In comparison with previous results, our theorems for the first time approximate
each component of the infinite dimensional process in its own scale, while at
the same time providing explicit rates of convergence. In particular, Theorem 2.1
strengthens the law of large numbers in [5, 6, 16], and Theorem 2.3 strengthens
the central limit theorem in [7]. Unlike the techniques developed in [10], ours
apply only on finite time intervals and do not extend to the equilibrium distribution.
On the other hand, the estimates in [10] do not distinguish between the magnitudes
of different components of the process.

3. Law of large numbers. In the first half of this section, we fiXy and
A, R >1 and setm = inf{k € N: Na; < A}. We will obtain, subject to certain
constraints, a global estimate on the probability appearing in Theorem 2.1. In
the second half we will show that this estimate becomes small as oo when
A = (log N)* and whenr is chosen as in Theorem 2.1.

The integern, which will turn out to give the maximum queue length, is of order
loglogN/logd for the values ofA we shall consider. To see this, fix> 1 and
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fo > 0 and assume thatA? < N¢~1. Seta = (loglogN — loglog(1/4))/logd,
so thatN A% =1 andNa; = A1Hd++d"1=d* |t k < o, thenNa; > 1, whereas
if k>a+1,thenNa; < 1. Hence, at least for sufficiently largé, we will have
me(a—2,a+2).

Consider the caseo € S(p, o). Then Nx' ™' < Npa11 < Npal, < pA?/
N9t <1, soxg™ = 0. SetTy = inf{r > 0:X"*! £ 0}. Note that, while
x"*t1=0, X" increases at rat&1(X”" )¢, whereasx” + X" increases at
rateNA(XT_‘l)d and decreases at rateX" . We can therefore find all /M /oo
queue(Q;)>o, Starting fromNxg', without arrivals and with service rate 1, and
a Poisson random measuyr€dr, dx, du) on (0, 00)3, independent o) and of
intensitye " dt dx du, such that, for < Ty,

NX?H_l = M({(S,X, M) s<t<sHtu,x< N)M(X;n,)d})
and
N(X;n + X;"-i-l) = QO +M({(S,X, u:s<t<s4+u,x< N)L(X;”__l)d})‘

Here theu variable encodes the exponential service time of the current customer
in each queue.
Define(X]");>0 by

N)A(;" =0+ u({(s,x,u):s<t<s4ux=< N)L(x;"_l)d})

and sefl» = inf{r > 0: X" 4+ X"t £ X} Then(N X!"),0 is anM /M /oo queue
starting from~xg', yvith arrival rateN 2 (x/" )¢ and service rate 1. Fix> 1 and
setTz =inf{r > 0: X" > ra,}. Fix R > 1, set
Ty =inf{r > 0:v/N|X* — x¥| > R\/a; for somek <m — 1},

and setl’ = T1 A T> A T3 A T4 A fo. Finally, set

p=p(N,r,d,x0,A, R, r)=P(T <tg).

PrOPOSITION 3.1. Assume that xg € S(p,19), that A, R,p > 1 with
pA? < N1 that r > p and that
2r Atge™ 0/ NV/2A=VD < R < (15 A 1)V/A,

where L = 2(do? 1+ 1)ando = p + 1. Then p < p1 + p2 + p3 + pa, where

p1=A%"1/NT,

P2 = AYY@D gpd=1ps0 N A/DA-1/d)
pa=pto/(r — p),
pa = 2m exp(—R?/ (2009 19e?L10)).
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ProoFE It will suffice to show thatP(T = T;) < p; fori =1, 2, 3, 4. Recall
that, for a Poisson random variable of parametery > 0 and fora > 0, we
haveP(Y > a) < v/a. Fort < T, we haveNA(X"™)? < NA(ra,)? < A%r? /N1,
sz’}’*l is dominated by a Poisson random variabBjeof parametep,, and so

P(T =T1) =P(X2™ =1) <P(Y1 > 1) < p1.

Sincexg € S(p, t0), we havex{C < pa; forallk e Nand allr <. Fork <m — 1,
we haveR./a;/N < arR//Na; < akR/\/Z < ai. Hence, fort < T andk <
m-—1,

©) Xffx,k+R\/ak/N§cmk.
Then, forr < T,
< Nido?tal~ 1R,/am 1/N
< A1—1/(2d)d0d—1R/N(l/Z)(l—l/d)’
where the final inequality follows from,, = Aai_l. Set
A=pu({(t,x,u):t <T, NA(x" T A X" Hd < x < Na@x™ v xmhydy),
ThenA is dominated by a Poisson random variabjeof parametep,. Hence,
PT=T)=P(A=1) <P(Y2=1) < p2.

Note thatr(x/" 1)¢ < rpald_, = p?a,, for all t < 19. Thus, NX" < NxZ' + Y3
for a Poisson random variablg of parametetVp?a,, 1o and so

P(T =T3) = P(X} > ray) <P(Y3= N(r — p)an) < pa.
It remains to estimatB(T = T4). For this, we write
4 Xf:xlé-l—M,k—i-/otbk(Xs)ds
so that
Xj —xf =M + /(:(bk(xs> — b*(xy)) ds

Then we use a combination of exponential martingale inequalities and Gronwall's
lemma to obtain the desired estimate. First we investigate how gihalill need
to be to obtain the required bound pX’\k —X; k| for k <m — 1. Note that

DA ) =28 )] < ad Ry R hy ATk L kv Ry R -k
so, provided that* v yf < oar andx¥ =1 vyl <oa_q,
B @) =0 <do? Har/a—) X = Y 4k — R,
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Also,
(6) M) =28 0l < I =y I — R
Hence, provided that* v y* < oq; andx*~1 v y*=1 < oa;_1, we have

Ib*(x) —bE (I /Jax <L sup  |x) —yi|/Ja;.

j=k—1kk+1

We note that the definitions @, and T3 force X < ra,, forallt < T. Set

f@)= sup sup|Xy —x{|//a.

k<m—1s<t
Then, fort < T andk <m — 2,
B (Xy) = b (x)l //ax < Lf (1)
and
"X = " )| /a1 < L (1) + ram/ /am 1.

Hence, forr < T,

F@O) < (M + rapt ) Jam—1) + L /0 F(s)ds,
where

M} = sup sup|M{|/a.

k<m—-1s=t

Setay = %e‘L’ORa/ak/N and consider, fok < m — 1, the stopping time§* =
Tk A TE, where

Tf =inf{t > 0:£MF > o).
Suppose thal < T*A---AT"~1. ThenM; < Je~t0R/+/N. On the other hand,
ramto//am—-1= kl/(Zd)ra,}fl/(Zd)to
< r AT Y@ NI @D < Lp-Liog) /N,
So by Gronwall’s lemma,
f(T) < e"(M3 + ramto/ Jam—1) < R/V'N.

Hence,

m—1
P(T =Ty <) PT'<T)
k=1
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and it remains to estima@(Tj’g <T)fork<m—1.ForkeN,x € § andd e R,
set

¢ (x,0) =25 ()R ©) + AL (0)h(=0),
whereh(9) = e —1—6. Fort < T andk <m — 1, we havex* < oa; so
(7) oK (X:,0) <rodal (h(©O) +oarh(—0) < o%arg(d),

whereg(0) = ¢’ — 2+ ¢~%. Consider, fo® > 0, the exponential martingale

t
zfzexp{Ne(Xf—Xg)—f /N(eNeyk —1)K(Xs,dy)ds}
0 JR

t
:exp{N@M," — N/ ¢k(XS,9)ds}
0
and note that, on the eveﬁj{ < T, we have

Zk, = exp{NOay — Noarg(6)1o}.
+
By optional stoppinglE(Z’}’kN) <1,so0
1

P(T¥ < T) < exp(—NOay + No?arg(0)10).

We choosed = ax/(20%aryto), wherey = g(1) < 2. Using R < 1oV/A it is
straightforward to check thét< 1, so from Taylor’s theoreng,(8) < y62. Hence,

P(T¥ < T) < exp(—Naf /(4o ary o)) = exp(—R?/ (160 y 1ge?L1)).

The same bound applies B{7* < T). So we have shown th&(7; = T) < pa,
as required. O

PROOF OFTHEOREM2.1. We will determine conditions on sequendasV)
andr(N) so that, forA(N) = (logN)*, asN — oo, all the constraints of Propo-
sition 3.1 are satisfied and, with an obvious notatjaiN) — O fori =1, 2, 3, 4.
For p4(N) — 0, it suffices that loglo@V exp(—R?/(200%19e?L0)) — 0 and,
hence, thatr/./logloglogN — oo. For p3(n) — O, it suffices thatr — oc.
For po(N) — 0, it suffices thatA2~1/4R2/N1-1/d 5 0 and for p1(N) — O,
it suffices thatAr/N1-1/4 — 0. If we can also arrange thd/+A — 0 and
rA/(RN®/21=1/d)y _5 0 then all the constraints of Proposition 3.1 will be sat-
isfied eventually. A possible choice is to takgV) = N /21-1/d /(jog N)* and
any sequenc®(N) with R(N)//TogloglogN — oo and R(N)/(logN)? — 0.
This proves the first part of the theorem. For the final assertion, it suffices to note
that, fork <m — 1, R(N)/~/Na;y < R(N)//A(N) — 0. O

We remark that the choic®(N) = logN leads to a bound of the form
p(N) < CN~-/2A=1/d) yn to logarithmic corrections. This is the best rate of
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decay of probabilities we have found. We remark also that a marginally shorter
proof can be had by replacing the exponential martingale inequality by Doob’s
L?-inequality, at the small cost of requiring th&t~N)/./ToglogN — co.

4. A refinement of the fluid limit. This section leads to a proof of Theo-
rem 2.2. The deterministic limit (for componerits< m — 1) just discussed will
be refined by approximating the martingadein (4) by another martingale whose
characteristics are determined by the limit path, and at the same time lineariz-
ing around the limit path. The accuracy of the approximation is thereby improved
from N~1/2 to N—3/4 at the cost of moving to an approximating process which is
not deterministic but has a simple random structure, being a linear function of a
Poisson random measure.

Define a measur2 on RN x (0, rg] by

v(dy,dt) = K(x;,dy)dt.

We will take (1 to be a Poisson random measure with intensitpupled, in a way
to be specified, with the proce&s DefineM = (M," ke N, <1 by

Mf = Yo (it — D) (dy. ds)
RN % (0,7]
and defingy = (p}:k e N, t <o) by
o t
7= VNI + [ Vb ds.
We show in Section 6 that we can writeas an explicit linear function qi — v,
) 7 =vN @, sy(ii — V)(dy, ds),
RN % (0,7]
where(®; ;:s <t <1p) is theN x N matrix-valued process given by
d
gq)t,s = Vb(xt)cbt,Sa <I)s,s =1.
Thus, y has a simpler stochastic structure th&nIn particular, we can write
the characteristic function of any finite-dimensional distributionyoin terms
of (x)r<sp @NA(Dy 55 <1 < 10).
Recall that
t
X, :X0+ Mt +‘/0 b(Xs)dS
On the other hand, if we sét, = x, + N~Y2p, then

~ ~ t t ~
X,:xo—i-Mt—i-/O b(xs)ds-i-/o Vb(xs)(Xs — x5)ds.



2048 M. J. LUCZAK AND J. NORRIS

SetY =X —-X,D=M — M and

t
©) A= fo (b(X,) — b(xy) — Vb(x,)(Xs — x5)) ds.
Then
~ ~ t ~
(10) V= D+ A+ / Vb(x,) ¥, ds.
0

We will obtain a good approximation if we can couplewith M to makeD small.
Define kernelsko, K, K_ on (0, 1] x E x RN by

Ko(t,x,dy) = K(x,dy) A K(x;,dy),
Ke(t,x,dy) = (K (x,dy) — K (x;,dy))",
and letK, (7, x, w, dx’, dw’) be the image of the measure
Ko(t, x,dyo) ® K4(t,x,dy4) @ K_(t,x,dy-)

by the map(x’, w") = (yo + y+., yo + y-). Let (X;, W;),>0 be a Markov chain,
starting from(xg, 0), with time-dependent Lévy kerndl,.. Set

e = Z 84, AW,)-
AW, #£0

Then (X;);>0 is @ Markov chain with Lévy kernek and f is a Poisson random
measure with intensity. We have coupleX and W so that, as far as possible,
they have the same jumps. Sgt=inf{r > 0:|y"| > r/a,, }, wherer is as in the
previous section. Fix > 0 and set

Te = inf{t > 0: N¥4|X* — X¥| > Ra;’* for somek < m — 1}.

Finally, setl =T A Ts A Ts and p = P(T < 1g).

PropPoOsSITION4.1. Assume that the conditions of Proposition 3.1 hold. Set
H = 1d(d — 1)0?2 and assume, in addition, that r A < N(1/2(1-1/d) gng
AH R?1pel0 ) NY4 + 4r Arge™0 ) N YDA D < R < AR Ligel 0 A4,

Then p < p1 + p2 + p3 + pa+ ps + pe, Where p1, p2, p3, p4 are defined in
Proposition 3.1 and

ps = 8(p? + Dtget0 /12, p6 = 2m exp{— R?/(20R Ltge?-10))}.

PROOF.  Given Proposition 3.1, it will suffice to show th&t7T = 7;) < p; for
i =5, 6. By Proposition 6.1,

E(supl 7" |2) <8(p + Drge?H 0y

I=fo
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SoP(T = Ts) < ps by Chebyshev’s inequality.
We now follow an argument similar to the proof thB{7 = T1) < ps in
Proposition 3.1. Set

Ff6y= sup sup|¥¥|/a;’*,

k<m—1s=<t

A*= sup sup|AX| /a1/4+/ 7" ds fay ",

k<m—1s=<t

Df = sup sup|D¥|/a;’”.

k<m—1s=t
We recall that
VbE(x)y = Ad (k=14 yk=1 _ pgekyd=Tyk _ yk 4 ket
so, provided that* < oa; andx*~1 < oa;_1,

1/4 i 1/4
Vo yl/a’* <L sup  |y/|/a)
j=k—1kk+1

Fort < g, we havex,k < pay < oa; forall k, so, fork <m — 1,
IV Vil fa < L) + Sem—tl V" Ja .
Then, from (10), we get
- - - ro
fo=b;+A;+L [ feras,
0
so, by Gronwall's Iemma,f(t) < e”(Af + 13;“) for all + < rg. Note that, for
k<m-—1,
b (y) — b (x) — VB () (y — x)
— )\‘((ykfl)d _ (xkfl)d _ d(xkfl)dfl(ykfl _ xk*l))
AMOHT = T —dTEE - xh),
so, provided that*, y* < oa; andx*—1, y*=1 < oap_1,
¥ (y) — b* (x) — VB* () (y — x))
< Ha(ap gyt =2 1 a2t = o),

Fort < T andk <m —1, we hanXk —X; k|l < R./a;/N; moreover, as we showed
at (3), this implies thak* < oa;. Hence,

IBF (X)) — b* (x) — VB* () (X, — x0) | Jag”

< HAR?(al =} + o ™Y /(Na!*) < 2CR?/N.
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Also, [T < [X™ — x| + N=¥2|5m|, so, fort < T, |¥|/a*] < (ram +
N=Y2r jazyja?, <2r(A/N)1 1/4d) 1t follows that

A% < 2HR?t0/N + 2rtg(A/N)'"HED < Se Lo R /N34,
Setd; = %e‘L’ORa,%/4/N3/4 and consider the stopping timé§ = 7% A TX, where
T§ =inf{t > 0:£DF > &}.
Suppose thaf < TIA-.-AT"—1 ThenD* < e LoR/N¥*so f(T) < R/N¥*
andT < Ts. Hence,
P(T=Tg) < ) P(T*<T)
k=1

and it remains to estimaf®(T4 < 7) for k <m — 1.
Fork <m —1, set

W, x,0) = (A (x) = 2K () Th©) + (WX (x) — 2K (x)) Th(—0)
+ (W) =2 () Th(=0) + (AE(x) — 2K (x) Th(9).

Fix 6 > 0 and consider, fok <m — 1, the exponential martingale

—exp{Ne(Xk X5 — Wk)—// (N — 1)K+t (s, Xy, dy) ds

// —N‘9y 1)K~ (s, Xs,dy)ds}
]RN
o t
:exp{NeDf—N/ wk(s,Xs,G)ds}.
0

Fork <m — 2 andr < tg, for x*¥ < oa; andx*~1 < 5ax_1, we can estimate as
at (5), (6) and (7) to obtain

i, x,0)/Jar < g @) (1M () — 2K o)l + 1A5 0 — AR onl) /vax

<Lg®) sup |x/—xl|/ya;,
j=k—1,k,k+1

so, fort < T andk <m — 2,

(11) vk (t, X,,0) < Lg(@)RVar/N.

Similarly, since we assumg > 1,rA < N1/2U1-1/d and Ng,, < A, we have,
fort <T, X" <ran < Ra,—1/N and we can show that (11) remains true for
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k =m — 1. By optional stopping we ha\E(Z’;k) <1forallk <m —1.Buton
+

the eventl’¥ < T, we have
7%, = exp{N6&" — Lg(0)Riov/Nay }.
+

We choos# = 2/Na* /(5L Rtg./ax ), checking thad < 1, so thatg(9) < 5602/4,
and deduce

P(T¥ < T) < exp{—N¥2a2/(5L R /ax )}
= exp{— R?/(20L R1pe?-10)}.

The same bound applies R{T* < T). So we have shown th&(T = Tg) < p,
as required. [

PROOF OFTHEOREM 2.2. Choose(N) as in the proof of Theorem 2.1, so
thatr(N) — oo and sops(N) — 0. AssumeR(N)/(logN)2 — 0, and sek(N) =
R(N)/(logloglogN)34. Thens(N) — oco. SetR(N) = s(N)(logloglogN)¥/2
and r(N) = NYHA=Y4d) ;(ogN)4. It is straightforward to check that all the
constraints in Propositions 3.1 and 4.1 are satisfied eventually. Moreover, as
in the proof of Theorem 2.1, we havg,(N) — 0 for i = 1,2, 3,4. Finally,
R(N)2/RlogloglogN — oo, so alsops(N) — 0, which proves the theorem[J

5. Diffusion approximation. In this section we prove Theorem 2.3. The
method follows the lines set out in [4], Chapter 11. As we have already seen,
our processX has around loglogy active components, which have a wide range
of scales. This will require special consideration in the implementation of the
general method. We also have to deal with the fact that the variance of the diffusion
approximation has degeneracies. The diffusion coefficient, obtained as the square
root of the variance, then fails to be Lipschitz and some special care is needed to
arrive at the desired convergence.

Let (X¥:k e N, > 0) be the supermarket process starting fregrand recall
equation (4)

t
Xk = xk + MF +/O bk (Xy) ds.

Recall also that we seéX, = x, + N2y, where(y} :k e N, 1 < 1o) is defined by
the linear equations (2)

_ t
vk =vNMF + /0 Vb* (xg)ys ds
and

VNMF = /Ol ok (x)dBk (s) — /Ot ok (xy) dBX (5).
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SetY =X —XandD =M — M. Then
t
Y, =D, + A, +/ VoK (x)Y, ds,
0

whereA; is defined at (9). We will obtain a good approximation if we can couple
M with M to makeD small.

The coupling relies on the following approximation result of [8]: there exists a
constantc € (0, o0) and a probability space on which are defined a compensated
Poisson procesg of rate 1 and a standard Brownian motiBhsuch that, for all
t >0andx e R,

(12) IP’(SUp|Z(s) — W(s)| > clogt + x) <ce /e,
s<t

See [13] for a recent review of developments and clarifications in connection with
this result.

Given independent compensated Poisson procéﬁf@ez’i, k e Nofrate 1, we
can construcK by the equations (4) and

t t
M :N*{Zﬁ(Nfo Ai(xs)ds) —Z’i(N/o /\"_(xs)ds>}.

On the other hand, by a theorem of Knight, see, for example, [15], there exist
independent Brownian motion&X, W  k e N, such that, for alk € N ands < 1o,

Wi(zvfotx’jt()‘(s)ds) =\/N/Olai(5(s)d8i(s)-

The law of (BX, BX :k € N), given (WX, Wk :k e N), is given by a measurable
kernel. So we may assume that these processes are defined on the same probability
space asZk, z* 1k e N) and that(zX, wk), (zK, wk), k e N, are independent
copies of(Z, W).

SetTy =inf{t > 0:|y"| > r\/am }. Fix R > 0 and set

Tg=inf{r > 0:N|X* — X¥| > Rlog(Nay) for somek <m — 1}.
Finally, setT =T ATy A Tg and p = P(T < tg).
ProPOSITIONS.1. Assume that the conditions of Proposition 3.1 hold, and

assume, moreover, that A > ¢2 and R < v/A/2. There is a constant C < oo,
depending only on d, A, p and #p, such that, if

C+C(R?+rA)/logN <R < A/(2logA),

then p < p1 + p2 + p3 + pa + p7 + ps, Where p1, p2, p3, p4 are defined in
Proposition 3.1 and

pr=C/r? ps=Cm(A"1 4+ (RlogA)~?).
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PrROOFE Given Proposition 3.1, it will suffice to show that7 = 7;) < p; for
i =7,8. By Proposition 6.1,

5 suply” ?) < 8" + Dioe? .

t<tp
SoP(T = Ty) < p7 for a suitably largeC by Chebyshev’s inequality. Set

f(t)= sup sup|Y¥|/log(Nay),

k<m—1s=t

t
A} = sup sup|A’§|/Iog(Nak)+/ |Y"|ds/log(Na,—1),
0

k<m—1s=t

D} = sup sup|D|/log(Nay).

k<m—1s=t

Since Na,,—1 > A > e, we haveNay/log(Nay) < Nay_1/log(Nai—1) for all
k <m — 1. So we can use an argument from the proof of Proposition 4.1 to obtain
f@) <el'(Ar + D) forall t < 1.

The functionF (s) = logs/(N14x1s?) is decreasing when> e ande < A <
Nan_1 < (AN9=1/0)1/4 50

l0g(Nay—1)/(Nam) = F(Nay_1) > F((AN71/3)Y4) > log N /(24).
Similarly, l0g(Nay—1)/~/Nan, > logN/(2/A). Hence,
r(Nam ++v/Nan )/10g(Nay—1) < 4rA/logN.
We estimate as in the proof of Proposition 4.1 to obtains farT andk <m — 1,
B*(X1) — b*(x,) — VB! (x1) (X, — x,)]/l0g(Nax)
< HAR?*(a’~1 + a~Y)/Nlog(Nay) < 2HR?/(N logN)
and
Y™ /10g(Naym—1) < (ram + N~Y?r fan, )/ 10g(Nay, 1) < 4rA/(N logN).

So A% < 2t0(HR? + 2rA)/(NlogN) < 3e~LR/N, provided C is chosen
suitably large. Fok <m — 1, seta; = %e—LfORIog(Nak)/N and consider the
event ; = {sup_5 |Df| > o). ON Qo =02\ (21U - U Qy,_1), We have
D: < leLoR/N,so f(T) < R/N andT < Ts. Hence,

m—1

P(T=Tg) < Y  P(%)
k=1
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and it will suffice to estimat®(2;) for eachk <m — 1. Fixk <m — 1. We can
write DX = D (t) — D_(t), whereD(t) = D1 (t) + D3.(¢) + D3 (r) and

Diy=N"1(zk - Wi)( /x (X)ds)

D2(1) = _1{Wi( /A (X)ds) Wi( fx (X)ds)}
D3 (1) = N2 fo (ok(Xy) — ok ()} dBE(s).

Hence IP’(Qk)<q++q +q++q +q++q , where, forj = 1,2, 3,
gl =P(Q}) andQ) = {sup_; IDi(t)I > 0y /6}.

Fort < T, we haverk (X,) < oq, so, takingg = No?aito andx = Ny /6 —
clogr in (12), we obtain

gt < IP’( sup |Z(1) — W()| > Nock/6>
t<Nodatg
< cotgNage New/(6) — cadtoNake_RIog(N“k)/(lzﬁeLto)

— colig(Nay) = R/A2e0) < g pL-RIAZ) < C4p),

for a suitable choice of .
We turn to estimatg?. This will rely on the following continuity estimate for
Brownian motion: forr, k, § > 0, settingn = |t/ k],

IP’( sup [W(t) — W(s)| > 8)

S, t<t,|s—t|<h

< IP’( sup |W (kh +1) — W (kh)| > 5/2)
ke{0,1,....n—1},t<2h

< 2nIP’< supwi() > 5/2) < (Z.E/h)eﬂSZ/(lGh)'
t<2h

Fort < T, we have
XK < xF 4 1xF — <K+ | XK — XF| < pax + Ryax/N + Rlog(Nag)/N
<(p+R/VA+RlogA/A)ay < oa,
o)

t _
N/O A (X5)ds < otoNay.
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Also, using (5) and (6), for < T,

t _
‘N /0 (A5 (X = A (Xy)) ds

< Ndo"toRar{log(Nax—1)/(Nag—1) +10g(Nay)/(Nag)}
<2do?gRlog(Nay)
and

! k k /vy
’N/O (A (xy) — Ak (Xy))ds

< Rito{log(Nag) + 109(Nag+1) Lx<m—2} + rto(Nam + v Nam )Sk.m—1
< 2i0R10g(Nay),
provided thatC is sufficiently large. We take = o?ioNay, h = 2do? 1o x
Rlog(Na) and
8 = Nax /6= Rlog(Nay)/(12e570)
to obtain
2 oNay Rl0og(Nay)
+= o= eXpy — d—1; ,2L1,
dR1og(Nayg) 4608]/c 4~ LigesLto

for a suitable choice of.
It remains to estimatg3. We shall show below that there exists a constgt
such that, for <y and allk e N,

E(lyf1%) < Colef ™t = xf) A (xf — xf .

q = C/(44)

Then, forr < T,
NIk (X)) — ok (el = VN (RO — (D) = ak — x|
_VNIEXHT = XHHT = of =5
O J® = R g ek

< (Iyf1+ 1) 1y k= Xk

so, by Doob’sL2-inequality,

fo _
E(sup|1)i(t)|2) < 4IE/ N7 Yok (Xy) — 0% (x;) 2 ds < 161Co/N2.
t<T 0
Hence,
¢* =P(suplD? (1) > /6

t<T

< 23040e?L0Co/(Rl0g(Nay))* < C(Rlog A)~2/2
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for a suitable choice of . )
The argument foqf_ is similar. Forr < T,

VNIok (X)) — ok (xp)

— VNI (XYY = (X =k = oy
<ad{(fhv XphHA 1|yk—1|+<xfv)‘ff‘)d—1|y,k|}/¢x<xl“1)d—A(x{‘)d
<Aad2¢71

X (=1 (Y2t ke fy ke (et

+ 22 (VY2 DY e = by e,
so, by Doob’sL?-inequality,

[{ _
E(sumDi(r)F) <4B [N ok (X)) - ke Pds
n 0

ZST
< 842224~V 1o(14 NUY=D/2C(d))Co/N?,
whereC(d) = E(W(1)%). Hence,

g = IP’(sup|Df’L(t)| > ozk/6>

t<T
< 21522224V (14 N4=D/2C(d)) Coe? 0/ (R log(Nay))?
< C(RlogA)~2?/2

for a suitable choice of. On combining this with the bounds fart and g2
already found, we obtain the desired boundper O

PROOF OF THEOREM 2.3. SetA(N) = r(N) = (logN)¥2 and define
m(N) =inf{k e N: Na; < A(N)}. SetR(N) = (logN)Y4(1 A tg)/2. It is straight-
forward to check that, ifC is the constant appearing in Proposition 5.1 and if
R = 3C, then all the constraints in Propositions 3.1 and 5.1 are satisfied eventually
and, moreover, thagp;(N) — 0 fori = 1,2, 3,4,7,8. Sincem(N) > m(N), this
proves the theorem.[]

6. Fluctuation variance estimates. We have deferred from other sections
the analysis of certain linear equations associated with our processes. The basic
guestions of existence and unigueness in suitable spaces may be resolved by
standard methods, so we review this only briefly. The more delicate result,
Proposition 6.1, which is needed for the diffusion approximation, relies on the
particular structure of our model.



ASYMPTOTICS OF SUPERMARKET MODEL 2057
We recall theN x N matrix-valued equation

d
_q>t,s = Vb(xt)q)t,Sa CI>s,s =1,

ot
to be solved for O< s <t < rg. Note that, forxg € S(p, r0) andr € [0, 1g], we
have | Vb(x;)|| < L, where]|| - || is the operator norm corresponding [t®| =

sup, |x¥|/ax. Hence, it is standard that this equation has a unique continuous
solution with||®, || < X9 for all s, 1.

The other relevant equations may be considered as stochastic perturbations of
the preceding equation. In Theorem 2.2 we used (1)

. t
7k =VNMF +fo VoK (x5) 75 ds, t <fo,

and in Theorem 2.3 we used (2)

_ t
(13) vk =vNMF+ / Vb (xg)ysds,  t<1o.
0
Here
Mf = Yo (it — ) (dy, ds)
RNX(O,I]
and

—_ t t
*/NMzk=/ oJ"r(xs)dBi(s)—/ ok (x5) dBX (s).
0 0
Note that

B t
NEQM P =N [ 6M2K G dyds

t
- /0 (K (o) + 48 () ds = NE(MFP2)

andak (x;) 4+ A% (x,) < (p? + Dy for ¢ < 1o. Hence, a standard type of iteration
argument, using Doob’&.2-inequality, shows that these equations have unique
measurable solutions with, respectively,

B supl7 ) <806 + roe? Ea
t<tg
and
E(sup|ytk|2) <8(p? + Dytge?ay.
1<ty
The details for (1) follow below; (2) may be treated in the same way. Note that, for
any vectory and for allk € N,
V¥ (x5) yk| S il
vk j=k—1,kk+1 Vaj
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Now let
70 = VN,

and forn e N,
- t
"= VNM, + /0 Vbk (x) 7" ds.

Then for eaclt,

(n+1D).k _ ~(m).k 2 ¢ ~(n),j (n D.j 2
17, — 7" SLz( / |7s I S)
Ak 0 jk"Thk+1 N4j
Clad _ S 2
§3L2 (f |V.§ Vs lds) ,
j=k—Lkk+1 0 A4j

s0, using Cauchy—-Schwarz,

|)7(n+1),k _ ~(n),k|2 | ~n),j N(n 1),/ |2
! ! < 3L% / ds.
Ak j=k— 1kk+1
Thenforall 0O<s <7,

| "’(VH-].) k );(Vl) k| ~(n) J ?(n—l),j|2
sup : <3L% Y / sup ds.
s<t Ak jek—Lk k4170 4= 4j

(n+1),k

Let ™ (¢) = sup, E(sup -, |7s y(”)’k 12/ax); then fort < 1o,

t
™ () < 9Lt / RV (s)ds.
0

Hence,

2'n\(3L1g)?" -~
(n)
R (1) < WM(IO),

where
M(t) = supE<sup|MfI2/ak)
k S<t
~ 2
< 4supsupE(|M{|"/ay) < 41 (p? + 1).
k st

We deduce that?,(”) converges to a process uniformly on [0, 7], and thaty,
satisfies (1). The uniqueness part of the proof is similar. Let

(1) = supB(supl7 ) /.
k s<t
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Then it follows from the above estimates that, fot rq,
g(t) < M(10)e®-"%.

It may be verified by substitution that (8) gives an explicit representation of the
solution of (1).

PROPOSITION6.1. Thesolution (y}:k € N, < to) to (2) satisfies

supsupE(|yf1?)/ min{x* =1 — xk xk — xk 1y < 0,

keN1t=tg

PrOOF  Note thatX (x;) < d(xf ™t — xf), so
th k+l _ )"]i(xt) _ )\’If:-l(xt) _ (x[k _ xk-i—l) + (xk-f-l x[k+2)

l
> 2K () — (@ + D — x4 - 2y,

Hence,
/Oz +(x )ds —|—f (xk+1 k+2) ds < e(d“)’(xl k+1)
and
/Oz (xk — xf“) ds < te(d+1)z(xtk _ x;ﬁLl)'
Also,

t t
/O A (xg)ds <d /0 (k= xkyds < drel D (xR xRy,
Fix e > 0 and set

f(t) = supsupE(|yX|?) /8%,
keN s<t

wheresk = min{x’ ! — x¥ xk — x¥™} 4 ¢. Then £ (10) < co. Note that
)

—/ Ak (xé)ds—i-/ (K —x Yy ds < (dr + De @t DIsE,

(| [ ot anto - [[otwanto

We have

VoF(x)y = 2d (T H Iy = (Y )yt R
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We will make use of the following estimates:

t 2
E(‘f ad(xkhyd=1y k=1 g )
0

t t
5/0 Azdz(xic—l)zu—l)gf—lds/o E(|ysk—1|2)/8§—1ds

t t t
§d2/ x’;(xs)ds/ f(s)ds < (d2+d3t)e<d+1>f5§</ f(s)ds
0 0 0

and
t 2
E(’/ (hd (5471 4 1)k ds >
0
t t
5/ (,\d(xf)d—l+1)25(;ds/ E(lyX[?) /8% ds
0 0
t
< (d +1)%reld+Digk / f(s)ds
0
and
t 2 t t t
E(‘/ VL gy )5/ 3§+1dsf E(|ysk+1|2)/8f+ldsSe(d“)’aff £(s)ds.
0 0 0 0

Now, from (13), for allz < 1o,
t
B D) = a5+ B [ f6)ds,

whereA = 4(dt + 1)e“tD" and B = 84(d + 1)(dt + 1)e@tD! So £ (1) < AeP!
by Gronwall’s lemma. This bound does not depend o the proposition follows
by lettinge — 0. O
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