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SPECTRAL CHARACTERIZATION OF AGING:
THE REM-LIKE TRAP MODEL!?

BY ANTON BOVIER AND ALESSANDRA FAGGIONATO
Weierstrass Institut fir Angewandte Analysis und Stochastik

We review the aging phenomenon in the context of the simplest trap
model, Bouchaud’s REM-like trap model, from a spectral theoretic point
of view. We show that the generator of the dynamics of this model can
be diagonalized exactly. Using this result, we derive closed expressions for
correlation functions in terms of complex contour integrals that permit an
easy investigation into their large time asymptotics in the thermodynamic
limit. We also give a “grand canonical” representation of the model in terms
of the Markov process on a Poisson point process. In this context we analyze
the dynamics on various time scales.

1. Introduction. The particular properties of the long term dynamics of many
complex and/or disordered systems have been the subject of great interest in the
physics and, increasingly, the mathematics community. The key paradigm here
is the notion ofaging a notion that can be characterized in terms of scaling
properties of suitable autocorrelation functions. Typically, aging can be associated
to the existence oihfinitely manytime-scales that are inherently relevant to the
system. In that respect, aging systems are distinct fratastablesystems, which
are characterized by a finite number of well separated time-scales, corresponding
to the lifetimes of different metastable states.

Aging systems are rather difficult to analyze, both numerically and analytically.
Most analytical results, even on the heuristic level, concern either the Langevin
dynamics of spherical mean field spin glassesrap modelsa class of artificial
Markov processes that in some way tries to mimic the long term dynamics of
highly disordered systems (see, e.g., [8]).

One of the natural questions one is led to ask when being confronted with
phenomena related to multiple time-scales is whether and how they can be related
to spectral propertiesThis relationship has been widely investigated in the context
of Markov processes with metastable behavior (see, e.g., [12-14, 20, 21, 10]),
and it would be rather interesting to obtain a spectral characterization of aging
systems as well, at least in the context of Markov processes. To our knowledge,
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this problem has not been widely studied so far. The only papers dealing with the
problem are [24], by Butaud and Mélin, that have tackled one of the simplest trap
models and on which we will comment below, and [17] and [23], that investigate
convergence to equilibrium in the Random Energy Model (REM).

The present paper is intended to make a modest step in this direction by
analyzing the relation between spectral properties and aging rigorously in the
REM-like trap model. While this model may seem misleadingly simple, it has
in the past provided valuable insights into the mechanisms of aging, and it is our
hope that the analysis presented here will provide useful guidelines for further
investigations of more complicated models.

The paper will be divided into two parts. In the first we analyze the REM-like
trap model in the standard formulation of Bouchaud [9]. In the second part we go
one step further and reformulate the model in a slightly different way as a Markov
process on a Poisson point process. This formulation makes the relation to the real
REM more suggestive (see [3, 4] for a full analysis), and allows, in a natural way,
to study the dynamics of the model on different time scales.

2. The REM-liketrap model. Let us recall the definition dirap modelsas
introduced by Bouchaud and Dean [9]. Iget= (4, &) be a finite graph with vertex
set, 8, and edge se®. Let E := {E;,i € 4} be a random field, callednergy
landscapeand letY (¢) be a continuous-time random walk grwith E-dependent
transition ratesg; ;, such that; ; > 0iff {i, j} € &, and

P(Y(t +di) = jIY(t) =i) =i dt.

Setting rl.‘l =i Cij and p; ; := ¢; jt;, the random walk,Y (), can be
described as follows: after reaching the sit¢he walk waits an exponential time
of meanr; and then jumps to an adjacent sifgwith probability p; ;. In the trap
model, the transition rates are assumed to satisfy the following properties:

(2.1) efic; j=eFicj; vii,j} €€,
(2.2) E(ti) = o0,

whereE denotes the expectation w.r.t. the random fi€l&ince in several physical
experiments (see [26]) the system is initially in equilibrium at a high temperature,

T > T, and then is quickly cooled to a temperature smaller tiignand then

its response to an external perturbation is measured, it is reasonable to consider
Y (r) with uniform initial distribution. A classical time—time correlation function is
given by

[1(t, ty) :=P(Y(s) =Y (ty) Vs € [ty, ty + 1]).

In order to observe aging, it is necessary to consider a thermodynamic limit,
with the size ofg going to infinity, and possibly a suitable time-rescaling. Rather
recently, there have been a number of rigorous papers devoted to the analysis of
trap models on the latticés[5, 18, 19] andz [6, 11].
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In this paper we consider the simplest trap model, calledREM-like trap
model[9], that corresponds to choosiggto be the complete graph avi vertices,
that is,

9»N:(/3N,8N), 51\/ 2:{1,2,...,N}, SNZZ {{i,j}i#jESN},

and to take as energy landscape a famiy= {E;:i € N}, of independent,
exponentially distributed random variables, with parametenvith 0 < o < 1.
GivenN € N, letYy(¢) be the continuous-time random walk g with transition
ratesc; ; = e~ i /N, fori # j. Settingx; = e~ £, the infinitesimal generator of the
random walk is given by

(N —Dx1 X1 X1

N N N

X2 (N —Dx2 X2

(2.3) Ly=| N N N
XN XN (N —Dxn
- - S R

The dynamics can be described as follows: after reaching the stagewalk waits
an exponential time of mea IfleEi and then jumps with uniform probability
to another state. Although, strictly speaking, the mean waiting time is given by
refi, we cally; := x; ! = eFi waiting time (the discrepancy is negligible in the
thermodynamic limitV 1 00).

Note thatr; andx; have distributions given by

p(D)dr =at 1 %dr (r > 1D p(x)dx = ax® Ldx O<x <1,

respectively; in particulafii(t;) = oco. Moreover, the equilibrium measure is given
DY treq (i) = r,-/(Z?’:l 7;). We are interested in the out-of-equilibrium dynamic
with uniform initial distribution.Py denotes the law of this random walk, given a
realization of the random variablds.

Aging in the REM-like trap model is manifest from the asymptotic behavior of
the time—time correlation function

(2'4) [y (2, 1) = IP)N(YN(S) =Yn(tw) Vs € [ty, ty + t])
Namely, as shown in [9], for almost al, and for allé > 0,

sin(re) u*(1- u)“_ldu.

2. lim lim T1 w) =
(2.5) im_am. N Oty ty)

tw oo b/ 6/(146)

Our main aim here is to show that the aging behavior of the system, derived
in [9] using renewal arguments, can be obtained solely fspectral information
about the generatdcy . The method developed below will allow us to get further
information onYy(¢) from the spectral properties dfy. In particular, given
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a function on (0, o0), it is possible to describe the asymptotic behavior of
Enh(xy(@))) andEy(h(zy(2))), WwhereEy denotes the expectation w.ity,
and wherexy (1), Ty (¢) are defined as

xn (1) = xg, v(t) =1 if Yn(t) =k.

These results will allow us to investigate how the walk, as time goes on, visits
deeper and deeper traps, that is, sites with larger and larger waiting titaee
Section 2.2).

We start by giving a complete description of the eigenvalues and eigenvectors
of Ly. Letu = uy be the measure ofy with (i) = xl._l =1;. Note thafLy isa
symmetric operator oh?(x) and, trivially, LyI = 0, wherel is the vector with all
entries equal to 1. The following proposition is based on elementary linear algebra:

PROPOSITION2.1. Letxq, x2,...,xy bealldistinct Then Ly hasN positive
simple eigenvalueB= 11 < A2 < --- < Ay such that

(A, A2, ..., AN} ={reC:p(1) =0},

whereg¢ (1) is the meromorphic function

N

(2.6) P =)

j=1 Xj—

, L e ).
. ( )
If the x; are labelled such that; < x2 < -+ < xy, thenx; < X411 < xj+1,
fori=1,...,N — 1. Moreovey for anyi = 1,..., N, the vectory® e RV,
defined as

Xj

i =—t

forj=1,...,N,
XJ'—)\.i

is an eigenvector oLy with eigenvaluer;. v @, ..., v® form an orthogonal
basis ofL2().

Since thex; have an absolutely continuous distribution, we trivially have the
following:

COROLLARY 2.2. The assertions of Propositichl hold with probability one
forall N.

PROOF Let A be a generic eigenvalue and let us write the corresponding
eigenvectory, asy =a(l,...,1)" + w, Wherezj-\’:1 w; =0. Since(Lyy); =
xjw;, we have to solve the system

2.7) Xjwj=Aa+ Aw; Vj=1...,N.
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Sincexy, ..., xy are distinct, it must be true that£ 0 (otherwise we gefr = 0).
Without loss of generality, we set = 1. Note thats # x;, for j =1,..., N
since otherwise (2.7) would imply that= 0= x;. Therefore, we geb; = A

Xj—A"
Since it must be true thi W = O we get that is an eigenvalue withy
sty = = 0. This implies

that¢ has at mosN zeros. Since (0) = 0, and, for reak, limyyx; (X)) = —o0,
lim;.1; ¢ (1) = 0o, we get thatp has exactlyV zeros. From here the assertions of
the theorem follow immediately.]

Proposition 2.1 has the following simple corollary:

COROLLARY 2.3. With probability one the spectral distributionoy :=
Av?’:laxj converges weakly to the measuare? 1 dx on [0, 1].

REMARK. The results of Proposition 2.1 are incompatible with the heuristic
predictions in [24]. The discrepancy is particularly pronounced in the case of the
eigenfunction. The reason for this is an inappropriate use of perturbation expansion
in [24]. We will explain this in some detail in the Appendix.

We will now show that Proposition 2.1 allows to derive the asymptotics of the
autocorrelation functions easily. In fact, it contains far more information on the
long time behavior of the systems, some of which we will bring to light later.

Recall thatp,(i, j), the probability to jump fromi to j in an interval of
time ¢, can be expressed as(i, j) = (e ~"IV);. ;- In particular, by writingy, for
the probability distribution ofty (#) and thinking of the Radon derlvatl\@;f— as
column vector,

dv; _ eftLN dl)o

9

du du
we see that
dvt_ (dvo/du, y®) o~y &)
(2.8) n ZW v
k=1 ’

The above formulas are true for an arbitrary initial distribution. Takifntp be the
uniform distribution, by Proposition 2.1, we get

dv ~ N N
s Z yw®  wherey L= (y® y®) =y U

j=1 (x] - )"k)z

Then, by Proposition 2.1 and (2.8),

Aklw
(2.9) My (t, ty) = Z Z Yke T —((N=1)/N)xjt
j=lk= l
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and

(2.10) En (h(xn (1)) ZZW

j=1k=1%J

The above formulas (that may appear rather ugly at first sight) admit a nice
complex integral representation through the following lemma:

— Akt

h(x_,-).
Ak

LEMMA 2.4. Lety be a positive oriented loop oid containing in its interior
A, ..., An. Let g be a holomorphic function on a domaib c C with y C D.
Thenforanyj=1,...,N

(2.11) i wglw) _ 1 g(h)
XM 2Zmidy ¢ (xj—A)
PROOE Let us setX := {x1,...,xny} and A := {A1,A2,...,An}. Then,

¢ (1) is a holomorphic function orC \ X, where¢’'(A) = j\’ 1(xx—)2, and,

in particular,¢’(x;) = yj‘l. Moreover, the functiorig (L) (x; — A)]~ 1 a priori
defined onC \ (X U A), can be analytically continued t& as a meromorphic
function with simple poles only at the points af. Now the conclusion follows
from a trivial application of the residue theoreni]

We can obviously use Lemma 2.4 to rewrite (2.9) and (2.10) in the form

1 e—twk e—(N—l)/Nxﬂ 1
2.12) Ty, ty :—/ (Av- Av‘—)d)u,
@12) Mt =575 | = T /’x,-—
—tA
(213) Ex(h(x) = 5~ f ( (xf)/A )dx,

where Av; denotes the average ovee=1,2,..., N.

The above integral representations Qfy(z,1,) and Ey(k(x,)) have two
advantages. First, the appearance of averages allows to compute their limiting
behavior agVv 1 oo easily by using the ergodicity of the random fiid Second,
by means of the residue theorem, their Laplace transform can be easily computed
in order to derive the asymptotic behavior bfy(z, t,) and Ey (h(x,)), for
N, t,,t > 1 (see Sections 2.1 and 2.2).

A much more general derivation of the above integral representations is
discussed in Appendix A.3.

2.1. Aging behavior of 1y (¢, t,,).

PrRoOPOSITION2.5. Let us define

1 [ e Ey (e /(- x))
(2.14) I(t, tw) == 2ri ), A E (1/(h—x)) @




SPECTRAL CHARACTERIZATION OF AGING 2003

whereE, is the expectation wt. the measurexx®*~1dx on [0, 1] and y is any
positive oriented complex loop around the interf@l1]. Then

(2.15) lim Iy, t,) =T1(t, ty) Yt ty,, as.
N1too

ProOOFE Recall (2.12) and fix &< § < 1/2. Due to analyticity, we can choose
the integration contoury, to have distance 1 from the segmédt1]. For each
A € y, the random variableg:; — A)*l, j € N, are i.i.d. and bounded. Therefore,
for a suitable positive constaat- 0,

1 1
(2.16) P(‘Avyzl —Ex< )
Xj—A A—x

Since for each € [0, 1] andx € y, |3%(x — 1)1 < 1, asimple chaining argument
allows to deduce from the pointwise estimate (2.16) uniform contral idsing
the Borel-Cantelli lemma, one can then infer that, a.s.,

1
Xj—A

Z N—1/2+5> S e—CNZ(S V)\. c y

(2.17) sup
rey

1
Av?’:1 —Ex(k >‘§CN_1/2+5 VN eN.
— X

Similar arguments show that, a.s., givkhe N, there exists a constanty;, such
that

e—((N—l)/N)le‘ e—xjt
sup sup — x(
(2.18) M-1l<r<Maiey

AN, )‘ < ey N-L/2+0

Xj—)» )»—XJ'

VN eN.

Note that, for eachy € y, Av?’zl(xj — 1)~ Lis a convex combination of points of
modulus larger or equal tharyd, contained in an angular sector with angle non-
larger than a suitable constant< 7. In particular,|Av§.V:1(xj — A)—1| >c >0,

for all N. From here the assertion of the proposition follows from Lebesgue’s
dominated convergence theorent.

Given# > 0, we are interested in the limit a1 (6¢,, t,,), ast,, 1 oo. This will
be done using the Laplace transformiofor,,, t.,),

~ o0
I, o) ::/ e T (Oty, ty) dty, [9(w) > O]
0

The computation of this Laplace transform is trivial, if we use the integral
expression (2.14).

Let w € C, with R(w) > 0, and fix a positive oriented loop;, around the
segment[0, 1], such thaty C {z € C:N(z) > —N(w)}; see Figure 1. Then,
MN(w+ A +x0) >0, forx € [0, 1] andA € y, so that (2.14) implies

A6, w)=E (i/[m— YO+ w40 )E-(L)]_ldx)
=520 ), o @TOVENG T ’
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FiG. 1. Possible integration contour

HereE, andE; denote the expectation w.r.t. the measur&—1dx on[0, 1].
Let us consider the change of variabtes % and writey for the pathy with
inverted orientation (i.e., positive oriented w.kt= 0o0). Then we get

ﬁ(@,w)=Ex<i_/};[(1—zx)(l-l—zw-l-sz)IE,;( ! _)}1&).

2mi 1—2zx

Givenx € [0, 1], the integrand is a meromorphic function@h\ [1, co) that has
only a single pole of order 1 inside, namely, at = —(w + x6) 1. By the residue
theorem, we get

R 1 w+x0
2.1 I =Bl e/ M\ orxers))
( 9) 6, w) x<w+x9+x/ x(a)+x9+i))

LEMMA 2.6. The ths. of (2.19)is well defined and holomorphic for any
w € C\ (—o00,0]. In particular, the functionI1(8, w), defined fori(w) > 0, can
be analytically continued to the sét\ (—oc, 0].

PROOF As proved in [15], Chapter 3, the Laplace transfoihg, ), is
holomorphic on the set of convergence points. Therefore, we only need to show
thatther.h.s. of (2.19) is well defined and holomorphi&sén) # 0. Let us assume
thatI(w) > a > 0. Then, trivially,v x, x € [0, 1],

0 0.

0% Bi=(reCiz=zlel with0<6 < 6o, || = ).

w+x0+x
for suitable constants, 6p, depending om and satisfyingg < 7. Moreover, since
iMoo pbis = 1.

w+ x6
(2.20) O<ci(a) < ‘7_‘ < c2(a) Ya>0,Vo:J(w)>a.
w—+x0+x

By (2.20) and the geometry &8, we have tha]E;(w‘jr’jgﬁi) is well defined and has

distancers(a) > 0 from the origin. Moreoveliw + x6 + x| > J(w). Therefore, the
r.h.s. of (2.19) is well defined and, due to the previous estimates and Lebesgue’s
dominated convergence theorem, it is continuouqd®) # 0}, thus implying
continuity onC \ (—o0, O].

We recall Morera’s theorem: if (w) is defined and continuous in a open set
QcCand iffy fdw =0, forall closed curvesg;, in 2, then f (w) is holomorphic
in Q. Therefore, using Fubini’s and Morera’s theorems, one can prove that the
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functionEz (=2+2%_) is holomorphic orC \ (—oo, 0]. The proof can be concluded

w+x0+x

by a second appllcatlon of the same theorenis.

In what follows, we keep the notatioﬁL(@, w), for the analytic continuation of
the Laplace transform. The next lemma describes the behaviot@fw) near the
origin. Using the Laplace inversion formula, we then derive from this result the
asymptotic behavior of1(9, t,), ast,, 1 co.

LEMMA 2.7. Foranyd > 0, set

AB) = ST w1 — ) Ldu.
T 0/(0+1)
Moreover define
(2.21) Ai={re'?:r>0,|¢| < %TL’}.
Then for a suitable positive constant > 0,
(2.22) 10, w)| <clo|™? VoeAi|o>1,
(2.23) |f[(9,w)—A(9)/w| <clw|™¢ Voeh: ol <1

PrROOFE The first estimate (2.22) follows trivially from (2.19) and (2.20). Let
us prove (2.23) fow € A and|w| < 1.

In what follows, cg, c1, ... denote positive constants depending only éan
Moreover, givenz € C, we denote by/; and f;’o the integrals over the
paths{sz:0 < s < 1} and {sz:s > 1}, respectively. We extend the functions
z~® andz*~1, defined on(0, 00), to C \ (—o0, 0] by analytic continuation. Then,
(2.19) implies

oI1(0, w)
l/w 1w Olfl -1
2.24 = [1+x(1+60)][1+x0 Y 4 d
(2.24) / ( O 4 ]f T+x0+y y> *
1w Lo (1+x6) yo a—1 -1
_/ (1+x(1+9)][1+x9]“/ dy> dx.
14y
Define

B = {(a),x)ECZS.t.a)EeA,XZi

for somes:0<s 51}.
w

Since(w(1+x0))"1e AN{z:|z] > co}, We obtain

(2.25)

‘/l/(a)(l-i—xQ)) Ve ld ‘
ylzca

(2.26) ‘ [ ‘ < colw 1+ x0)|.
1/ (1+x6) 1 +y



2006 A. BOVIER AND A. FAGGIONATO

Let B(x) be defined as

ya—l 1
dy:f uL—uw)tdu=
+y 0

(2.27) B(x) :=/0 1

sin(ra)

[note that the above second identity follows from the change of variables
y(14 y)~1, while the last one is well known in the theory of the Gamma function].
Using (2.25) and (2.26), we obtain

00 - s [
w , W) —
(2.28) B(a)Jo (1+x(A+0)(1+x0)*
' Yo e[~ dx|
< l—otf < 1—0:.
< [o] T+ x4 0|1+ xo2e1 = 2l
Since
‘foo x*Ldx < calo]
C4|lw
Vo (L+x(1+0)(L+x0)@| =

and, using analyticity and integrability of the singularities aroung 0 and
z=09,

/‘ x®Llax _/00 x Ly
50520 A+xA+0))A+x0)*  Jo A+xA+60)A+x6)¢
we get
R 1 00 xa—l
‘“’H(@"") - B(ot)/o ArxA10)droe’

X‘ < cslw|.

Using the change of variables= x 1 4+ 6 andu = v(1+ v) "%, we obtain
a—1

00 x 1
/ dx:f u 1 —u)*du,
0 I+x(A+6)A+x0)* 6/(6+1)

which implies the assertion of the lemma.]

Lemma 2.7 and Proposition A.1 allow us to conclude the proof of the aging
behavior oflIy (¢, t,,), that is, to recover the result of Bouchaud and Dean [9]:
PrROPOSITION2.8. For almost all energy landscapds, givend > 0,

sin(ra) 1
T Joya+e

u 1 —uw)* tdu.

(2.29) tllul?loo z\lzlmo Iy Oty, ty) =
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2.2. Visiting deeper and deeper trapsln this section we use the integral
representation (2.13) in order to study the probability that the walk at tilse
in a deep trap, that is, in a state with large waiting time. In Proposition 2.9 we
first prove that the probability to be in a site with waiting time smaller tg)
decays as* 1, thus implying the aging behavior of correlation functions described
in Section 3. In the second part, we will investigate the random variallé) and
show that, for almost alE, it has a weak limit, as firsV 1 co and thery 4 oco.
As consequence, with high probability, at timehe system is in a state of waiting
time O(t), as stated in Proposition 2.10.

Reasoning as in the proof of Proposition 2.5, we can prove, for almost all
energy landscapeg;, that, given a functiork on [0, 1], that can be uniformly
approximated by piecewigg! functions,

H(t) = A|]imoEzv(h()w(f)))

(2.30) - .
1 -t h A— “=td
_ L b (/G Hdx g

i Sy A fy(1/ (0 —x))x4Ldx

wherey is a positive oriented loop arourid, 1]. A
SinceH (1) is abounded function, the Laplace integktlw) := [5° H (t)e " dt

is absolutely convergent whet(w) > 0. By the same arguments we used to de-
rive (2.19), it is easy to deduce from the integral representation (2.30) that

1 o)/ (@ +x))x*Ldx
o fol(l/(a)—i-x))x"‘*ldx .

In the following proposition we concentrate on the case) :=I,>s. By (2.31),
we can give precise information on the asymptotic behavior of the probability to
be at timer in a site with waiting time smaller thary&:

(2.31) H (o)

PROPOSITION2.9. Let

fglx“_zdx
Joo x4 /(14 x)dx’
Then for almost all energy landscapeB,
(2.33) lim s1— ]ywaN(xN(s) > 8) = B(8)/c(a).

stoo

(2.32)  B(S):=

o0
c(a) :=f v eV dy.
0

Finally, we show that, with high probability, at timre the walk is in a trap of
depth of orderO(z). In particular, the random variablesy (z) converge weakly
to a nonnegative random variable, as fiétt co and then: 1 oo, a.s. This
result corresponds to the convergence of the expectation of bounded, continuous
functions and, due to Lemma 2.11, such a convergence can be extended to the
larger class of bounded, piecewise continuous functions, which is more suitable
for the investigation of the phenomenon of visiting deeper and deeper traps:
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ProOPOSITION 2.10. Let Z be the unique random variable with range
in (0, o0) having Laplace transform

sin(ma) 1

E(e %) = u 1 —uw)?* Ldu.

T 0/(6+1)
Then for almost all energy landscapg, given a bounded piecewise continuous
function &, on (0, c0),

lim lim Ey(h(txn(1)))

t1too N1oo
1 —th [(L(h(xt)/(h — x)x*"Ld
(2.38) i _./ e fpthan)/0.— )y,
oo 2ri Jy A 51/ (h — x))x*Ldx
=Eh(Z)).
In particular, for almost all energy landscapgekE,
lim lim IP(TN—(I) > u> =PZ<utH Vu>0.
t1o0 N1oo t

PROOF OF PROPOSITION2.9. We have to prove that limy s H (s) =
B(8)/c(a), where H is given by (2.30) withz(x) := I;>s. As in the proof of
Lemma 2.6, we can show that the r.h.s. of (2.31) is well defined and holomorphic
on C \ (—oo, 0]. We keep the notatioi for this extended function. Changing
variablesx = wy, we get

1x
(2.35) f
0 w+x v L4+

where y,, is the oriented patHs/w}o<s<1. Let y, be the path{s/w};>0. By
analyticity and integrability of the singularitiesat= 0, z = co, we have

a—1

o0 a—1
Y dy:/ Y dy.
7o L4+ o 1+y

Let us definea := {re'? :0 < r < 00, |6| < %n}. Then, for a suitable constast,

a—1 a—1

ya—l
/ dy‘§c1|a)|1_°‘ Voeh: o <1,
Yo \Vo 1+y

implying
1 xot—l 1 fo%e) yot—l 1
2.36 f dx =%~ (/ dy + O(Jo|7™¢ ),
(2.36) ) otx 01+yy (lo]™%)
whereA = B + O(1/N) is understood to mean that there exiSts: co such that
|A — B| < C/N. Trivially,

1 ,a-1 1
(2.37) /5 > dx=(1+0(|a)|))/8 X2,

w—+x
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Note that the estimate of the error terms in (2.36) and (2.37) is unifoumdna,
|w| < 1. Then, from (2.31), (2.36) and (2.37), we get

(2.38) |0 H (w) — B(S)| < colw|*™ YoeA o <1l

Since, trivially, |H(w)| < c3lw|™L, for w € A with |o| > 1, the assertion of the
proposition follows from Proposition A.1.0]

PROOF OF PROPOSITION2.10. As discussed before (2.30), one can show
that, for almost all energy landscapés,given a piecewise continuous functisn
on (0, 00),

@, (h) = ]yTrgo En (h(rxn(1)))

Vi >0,

1 / e~ [ (h(xt)/(h — x))x* Ldx
2niy A 32/ —x))xeldx

wherey is a positive oriented loop arouri@, 1]. Note that®, defines a positive
linear functional on the space of continuous functiong@rmo) that decay ato

and satisfy®, (1) = 1. Therefore, the Riesz—Markov representation theorem (see
Theorem V.18 in [25]) implies thab, (h) = u,(h), for a unique Borel probability
measureu; on [0, oo). In particular, there exists a random varialite,on (0, co),

such that

lim txy(t) — Z; weakly,Vs > 0 a.s.
Ntoo
If we take h(r) = ¢!, then ®,(h) = u,(h) = I1(6¢, ), with IT defined as

in (2.14). That means thdi (6¢,t) is the Laplace transform af,. As proved
in Section 2.1,

sin(ra) 1

tIiTm s, 1) = u L= uw)* Ydu = f().

T 0/(6+1)
We claim thatf(9) is the Laplace transform of a random varialdlenith range
in [0, oo). To show this, we apply the criterion given by Theorem 1, Section XIII.4
in [16]. By (2.27), £(0) = 1. Moreover, f D (9) = — ST g-c (1 4 6)~1 thus
implying (by trivial computations) that—1)* f®(9) > 0. This completes the
proof of our statement.

Since the Laplace transform &f; converges to the Laplace transform of
ast 1 oo, it follows that Z, converges weakly t&, implying (2.34), whenever
h is a bounded continuous functions @@, co). Finally, due to Theorem 5.2
in [7], convergence still holds if is a bounded measurable function, whose set
of discontinuity points has zero measure w.r.t. the distributio ofrherefore,
Lemma 2.11 allows to prove (2.34) forbounded and piecewise continuous§l
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LEMMA 2.11. The distribution functionF(z) := P(Z < z), of the positive
random variableZ is continuous

ProoOF Trivially, F is increasing and right continuous. Therefore, it has
a countable set of points of discontinuity. Moreover, by the Laplace inversion
formula (see [16], XIII.4), ifx is a point of continuity, then

F(x)=a”_>moo Z ( na) f(n)( ).

n<ax

Givens =0,1,2,... andy > 0, letcs(y) > 0 be such thaD}a™" = (-1)° x
¢s(y)a—v~%. Then the Leibniz formula implies

(—1)”DZ (a—a(l + a)_l) = Z cs(@)cn—s(Da (1 + a)—l—lH-S
s=0

<(=1"D'a"*7L
Since

FO @) = —@a—“mar%

the above estimate implies

sin(ra) "=
T Tkt ara ™ Wnz2

k=1

(1" (@) =|f™(a)| <

In particular, given two points of continuity, 9 x < z, we have

sin(ra)
(2.39) F()—Fx)< - Ilmsupa > ]‘[<1+)

ax <n<az

One can prove that the sequenﬁﬁje‘“/”(l + %) is convergent (see [1],
Chapter 5, Section 2.4). Denote its limit by and lety be Euler’s constant

y = lim (1+ +=4-+ lo )
= i gn).
Then we can write

e

(2.40)
oo (L 1/2441/ (=D —log(n—1)) 1 — D” (” —a/k(l g)
]:[ +7)-
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In particular, we can substitute in (2.4}])}:;} e~k + 7) With ¢, with an error
term in (2.39) bounded by

n—1

o
consta™%(az — ax) (@z) H e_a/k(l + g) — Cq
k=1 k
n—1 a
<cx )] e‘“/k(1+ ;) — Cal,
k=1

which is negligible, ag 1 co. Therefore,

F(z) — F(x) < const. imsugga e’ Y (n—1)~ 1

a—00 ax<n<az

(2.41)

=< C/(Za - xa)7

for some positive constant. Since (2.41) is valid almost everywhere afds
monotone, it follows thafF is continuous. [J

3. Other correlation functions. In this section we study the asymptotic
behavior of different time—time correlation functiorﬁﬁ\})(t, tw), Hﬁ)(t, tw), for
which deeptraps play a special role. This section is mainly a preparation of what
is to follow in the second part of the paper.

Givens > 0, we define the set of sites with small waiting timelag := {i : x; >
8,i=1,..., N}. Moreover, we set

B.1) TP, 1) :=Py(Ynu) € Dy Vi € (ty, t + 11 SLYy () # Yy (1))

@) N, 1) :=Pn (Yy () € Dy U{Yy(tn))
' Vi € (ty, ty + 11 Stxy () # xy W)

Given asubsef C 8y,i € A ands > 0, letgy a(i, s) be defined as
oN.AG,s):=Pn(YN(u) € AVu €[0,s]|Yn(0) =i).
Then
N ¢, 1) = M (¢, tw)
(3.3)

L ,—SXj
xje J

N t
4 ZPN(YN<rw>=j)fO ds S on it — ),

j=1 ieDy

N
3.4) NP, 1w) = Py (xn(tw) = xj)on. pyuti) Us 1,
j=1

where the first identity can be derived by conditioning on the first jump performed
after the waiting time,, and by recalling the following realization of the dynamics:
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after arriving at the statg the system waits an exponential time with parameter
and after that it jumps to a site $y with uniform probability.

The following proposition is mainly a consequence of the phenomenon of
visiting deep traps with higher and higher probability. Recall that Proposition 2.10
implies

(3.5) IIITTO AI/I%T(I)OIP)N(xN(t) >g)=0 Ve>D0.

ProPOsSITION3.1. Foralmost allx,
(3.6) lim sup|l‘[§\’})(t, tw) — N (t, 1) =0 fori =1, 2.
w100 >0

PRooOF We consider first the case= 1.
We claim that, for any: > 0 andi € Dy,

(3.7) ON.Dy (I, u) < exp( (1 — %))

In order to prove such a bound, we introduce a new random Wglk;), whose
generatorlL*, defined as the r.h.s. of (2.3) wiity replaced by if i € Dy. By a
simple coupling argument, one gets

on,Dy (i, u) <@y p, (@ u),

where the functlompND is the analogue ofpn p,(i,u) for the random
walk Yy (). At this pomt it is enough to observe thaf; , equals the r.h.s.
of (3.7).

Now fix ¢ > 0. Then, due to (3.3) and (3.7),

TP (2, ) — TN (2, 1)

<Pn(xy(ty) > ¢)

+ Y Pa(Vn() =) Z/goNDN(z £ —s)ds

j: txj<e zeDN

(3.8)

t
<Py (xy(tw) =€) + 8/ =S A=IDNI/N) gy,
0

By the law of large numbers,

lim o—du(l=|DyI/N)
N1too JO

The proposition now follows from the fact thais arbitrary and from (3.5).

To deal with case (ii), one proceeds in essentially the same way, decomposing
the path of the process at its returns to the peipand summing over the number
of these returns. One finds easily that the case when the process does net leave
for the entire period dominates, leading to the assertion of the proposition. We
leave the details to the readef]

<0 a.s.
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4. TheREM-liketrap model on a Poisson point process. In this section we
consider a slightly different formulation of the REM like trap model that betrays
more directly its connection to the REM dynamics (see [3, 4]) and that offers a
somewhat more natural insight in the role of time-scales in the analysis of aging
systems. Let us consider a Poisson point process, ; §g;, onRR with intensity
measurexe *£ dE, where O< o < 1. Note that such processes arise naturally as
the extremal process of sequences of random variables. Almost surely, the support
of & is an infinite set of points, whose maximal element is finite. Thus, we can
label the points in the support & in decreasing orderE; > E» > ---. The
energy landscapd;, is defined a& = (E1, E2, ...). We want to define a random
process on the support of this point process that jumps “uniformly” from any point
to any other point in the support. To do this, we need to introduce a cut-off. Here
we fix an energy threshold and set

Ng=max{i:E; > E}.

Note thatNg is a Poisson random variable with expectatioZ. Moreover, the
probability thatNgy = 0 can be made as small as desired wheis chosen small
enough, as we assume in what follows.

Let 4 = (8£, k) be the graph with

/SEZZ{J.,Z,...,NE}, 8152:{{1',]'}21'75]'6515}.

Since we want to investigate the effecttimhe rescalingwe introduce a time unit,
10 = ¢£0. Then, the continuous-time random walk; (¢), is the random walk on
g having uniform initial distribution and such that, after arriving at site€g,
it waits an exponential time with meq(ﬁ;’%leEf/ro and then jumps with uniform
probability to a different site ofg. In particular, the Markov generattug for the
above defined randtl)vm walk is givenby; in (2.3) with N := N andx; := tge %

E

(since forE « 0, me1 1 when referring to waiting time, we disregard the

coeﬁicient%, as in Section 2). Note thafg () depends onyg, but we do not
make this explicit in our notation. In what follows we denotefyythe probability
measure on the path space determinedrpy-), and byEg the corresponding
expectation.

Note that the physical waiting time (the absolute one) for the system ati state
is given byT; := efi, while in the above dynamics the waiting timerjs= T; /7o,
in agreement with the choice to considgras our new time unit. In what follows
we consider, when taking the thermodynamic lidif, —oo, three different kinds
of time rescalingrg fixed, 7o := e” (i.e., Eg = E) andtg | 0 afterE | —oo.

As in Section 2, we are interested in the asymptotic behavior of time—time
correlation functions. In particular, let us introduce here the correlation function

Mg, t,) = PE(YE(S) =Ye(ty), Vs €[ty, ty + l])

We will prove that, whenrg is fixed, the system exhibits fast relaxation, thus
excluding aging behavior (see Proposition 4.2). At the other extreme, the scaling
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10 = ef corresponds to the implicit choice made in the standard Bouchaud model
considered in the previous sections. In fact, with this choice the system can be
thought of as grand canonicalersion of the original REM-like trap model and

all the results of the previous sections carry over. Finally, we consider the third
scaling:tg | 0 afterE | —oo. In Proposition 4.6 we show that, when performing
such limits, the correlation functioA g (¢, r,,) converges tof (9), whered =1 /1,

and f(0) denotes the r.h.s. of identity (2.29), that is, the limiting behavior of the
correlation functionllg (¢, t,,) is trivial. At this point, a simple consideration is
fundamental. If we assume that the physical instruments in the laboratory have
sensibility up to the time unitg, then it is natural to disregard jumps into states
whose physical waiting timeT; = e, is much smaller thamg. Therefore, it

is more appropriate to consider insteadI®f (z,z,) the time—time correlation
function Hg)(t, tw), defined, fors > 0 fixed, as

M (2, 1) =Pr(xp@) = 8 Vi € (thy, ty + 111 x5 W) # xpwO)),

wherexg () := x;, wheneverYg () = k. In Section 5 we prove thdﬂg)(t, tw)

exhibits aging behavioﬂ?[%l) (0ty, ty) CcONverges tg () after taking the (ordered)
limits E | —o0, 10 | 0 andz,, 1 oco.

Finally, we discuss the asymptotic spectral behavior for the above time
rescalings. We will show that aging appears whenever the limiting spectral density
has a singularity of orde® (x*~1) at 0.

Let us recall some properties of the Ppp; sy, with intensity measure
on(;“xo‘*ldx on (0, o0), which will be frequently used below. Giver1 > 0, the
truncated Ppp}_,. < 8, can be realized as follows: Lej, be a Poisson variable

with expectation(%)“ = [P ary®x*Ldx and letX;, i € N, be i.i.d. random
variables on[0, M] with probability distribution p(X)dX = aM*X*"1dX.
Then

ny
(4.1) > 8~ 8,
i=1

xi <M
in the sense that the point processes above have the same distribution. In particular,
taking M = toe £, we get

n

(4.2) D 8~ 8xi
i=1

i<Npg

whereny, is a Poisson variable with expectatien®”, and X;,i € N, are i.i.d.
random variables, independent g, distributed on[0, roe~£] with probability
distribution p(X) dX = e*Eat;* X 1dX.
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NOTATION. It is convenient to introduce the random walkg(z), tg(),
defined as
xg(t) = xg, te(t) =1, if Ye(t) =k.
We denote by the positive oriented loop having support
SUpHyE) = {x +i:x € [-1, t0e” F + 1]}
U{—=1+bi:|b| <1} U{roe £ +1+bi:|b| <1).

Moreover, we call the infinite open path, oriented fromo +i to co — i, having
support

SUPAYso) ={x £i:x > -1} U{-14bi:|b| <1}.

Finally, for given E, 0 = A(lE) < A<2E) < .o < A%EE) are the Ng distinct
eigenvalues of the infinitesimal generalor (see Proposition 2.1).

4.1. 1o fixed. Let us first observe thgdtf 2, 1; < oo, for almost allE. In fact,
since the Ppfy_; 8-, has intensity measuter§t~+% dz on (0, 00),

o
E({i:n >1}) :/ (xt(‘,’r_(H“)dr < 00,
1

1
IE( Z t,'):/ atgt “dt < oo.
0

i<l

Whenevery_°, 1; < oo, itis easy to derive the asymptotic spectral behavior of
the system from Proposition 2.1 and to show its fast relaxation, thus implying the
absence of aging:

ProPOSITION4.1. ForalmostallE,
Ng [e’e)
(4.3) EliirpooZ(sA(‘E):ZsAj vaguely inM ([0, 00)),
=17 j=1

whereM ([0, 0o0)) denotes the space of locally bounded measuroto) and

S
{0=r<iz<iz<--}=1reC:)_ =01.
P

PROOF In what follows we assume thaf;°; 7; < oo, which is true a.s.
Then the functionpe,(A) := Z,filxk%k is well defined onC \ {x;:i > 1} and
has nonnegative zeros9i1 < A2 < ---, such thatx;_1 < A; < x; foranyi > 1.
At this point it is enough to show that

im WO —x vi=12,....
—00
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The assertion is trivial foi = 1. Suppose thalg > i > 1 and setyg(A) :=

Z,ivjl xk%)» Due to Proposition 2.1§E) is the unique zero of £ (1) in the interval
(xi—1, x;). In particular,

(E) Al
VEQD) =VEQX) — Ve, )= A(E)lﬁE()»)d)»-

Sinceyg (L) > m forall A € (x;_1, x;), we get

D =il < (i = xi- D) YE ()|
and, therefore, the assertion follows by observing that the ide#tifyr;) =0
implies

s 1
eI < Y

ProPOSITION4.2. For almostallE,

. . ‘L'/' .

. =xj)= : Vj=
(4.4) I"TTO EUTOOPE(XE(I) x;) S % o i=12...,
thus implying
(4.5) lim lim IIg@ty,5,) =0 Vo >0,

thOO J,—OO
. . Z(?ilfie_xit
4.6 lim lim Mg, t,) = —"—=r—— Vi >0.

PrROOF In what follows we assume that satisfies) ; 7; < co. Setting
h(x) = Li=y; in (2.13), we get the integral representation

1 —\t Ne  q -
(4.7) PE(XE(t):xj):ﬁ/); h(ZM—Q -
E k=1

Applying the residue theorem [see the arguments used in order to derive (2.19)],
it is easy to compute the Laplace transfotfig,(w) = [~ Pg(xg(t) = xj)e“ dt
for f(w) > 0:

. Ne g\t
4.8 Fp(w)=w(w+x; .
@8) 0 = (o0 +x) X =)
Using that, forw = a + ib and N is any positive integer,
1
_ if a >0,
N 1 |ow + x1]
=R if a <0,

(a+x1)%+b?
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we obtain that, almost surely, there exists 0, such that

(4.9) |Fr(w)| < c% VE,VweA:={re :0<r <oo, 0] < %n}.
Let us now introduce the patfi, consisting of the parabolic ar¢sr +ir2:r > 1}

and the circular arc of radiug2 around the origin connecting (in anti-clockwise
way) —1 — i to —1 + i. The orientation ofy is such that-1 + i comes before
—1+i. Then, by means of (4.9), the Laplace inversion formula and Lebesgue’s
dominated convergence theorem, we get

1 o
lim P =x;) == | {’F(w)d
Jm Pe(xe() =) =5 /y ¢ F () do,

-1
1
F(o) = <w(w+x,)zw+Xk> :

Note thatﬁA(w) is the limit of Fz(w), asE | oo; in particular, it satisfies (4.9).
Moreover,F () is the Laplace transform of ligy _oc P (xg (1) = x;) and

a)ﬁ(a)) —

<c|w| Vio|<1l:we A.

yj

Z/?il Tk
At this point (4.4) follows from Proposition A.1. Moreover, from (4.4) and the
identity

Ng

ME(t tw) = ) Pp(xe(t) = xj)e NEDNESL,

j=1

one infers (4.5) and (4.6).0

4.2. 1o =ef. Note that, choosingg = %, the random variableX 1, X, ...
introduced in (4.2) are i.i.d. with distribution given gy X)dX = «X* 1dX
on [0, 1]. Therefore, due to (4.2), we can think B (r) as thegrand canonical
version of Bouchaud’s REM-like trap model. In particular, it exhibits the same
asymptotic spectral density and the same aging behavior:

ProPOSITION4.3. ForalmostallE,

Ellmoo N Z 5A<E) =ax®1dx  weakly inM ([0, 1]).

PROOF Approximating continuous functions ofD, 1] by step functions
having rational values and jumps at rational points, it is enough to prove that,
given0<a <b <1,

1 E
lim —|{j:1<j<Ng, A& b1} =b* —a® a.s.
Am oy, =i = Ne Ay ela. blY] a
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We set
Ap:=|{j:1<j < Ng,x;j €la,bl}]
=|{j:j=1e i ele Fa,e b))
Then, due to Proposition 2.1, we only need to prove that

. A
lim Z£ —po — 4@ a.s.
El-oo Ng

To do so, observe thaVr and Ag are Poisson variables with paramete®”
ande *E(b* — a%). Forn € N, we setE (n) = — 2 Inn, that is,e *E™ = n2. The
Chebyshev inequality and Borel-Cantelli lemma then imply that

lim New) =1 lim Arm) =b% —a” a.s
ntoo e—@EMm) ’ ntoo e~ aEm) o

By monotonicity, one can extend the first limit to lim_o Ne =1, a.s. In order

e

to extend the second limit to gener&l we observe that, whenevér(n + 1) <
E < E(n),

|AE — Apw| < |{j:e7F € [ae M, ae EH DU [pe B peEM+DI|.

Since the r.h.s. is a Poisson variable with expectation of apdey, the Chebyshev
inequality and the Borel-Cantelli lemma imply

|AE - AE(n)| _

lim sup aEm = 0 a.s,

nto0 g(n+1)<E<E )

which allows, to prove that lig Y a%*,a.s. O

e~k

PROPOSITION 4.4. For almost all E, and y a positive oriented loop
around[O, 1],

lim Tg,t
El—o0 E( w)

P P -
(4.10) 1 /e e /Gt Thdx
Y

“2ni)y n EA/0o— x)xetdx
In particular, for almost allE, givené > 0,

sin(ra) [ u 1 —uw)* tdu.

411 lim Iim g8y, t,) =
( ) TOOIZl—OO E( wo w)

ty

v/ 0/(1+6)
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PrROOFE Our starting point is (4.2) and the following inequality, which holds
for any bounded functionf, with E(f(X;)) = 0:

k&2
Al flloo
In particular, conditioning on’; [see (4.2)], we get

P(|Av’;:lf(xj)|za)52exp(— ) Vé>0k=12,....

(4.12)  B(AVE f(x))| = 8) < 2exp{—e “E (1 e /A %)),

(4.10) can now be derived from (4.12), the Borel-Cantelli lemma, and the integral
representation

1 —twh AVNE =it [(x; — M)
(4.13) Mpty) = — [ £ = I
enidy A AVGEL/(xj— 1)

wherey is a positive oriented closed path aroyfdl] [see (2.12)]. Note that the

r.h.s. of (4.10) corresponds to the functifitz, ¢,,) introduced in Proposition 2.5.

Therefore, the assertion of Proposition 4.4 follows from Propositions 2.5 and 2.8.
O

4.3. 1o | 0 after E | —oo. In this scaling regime, we show that the vague
limit of the suitably rescaled spectral density is given by the meastfte! dx on
[0, o0) and we recover the aging property of the correlation function. Moreover,
due to the fact that we are effectively already at “infinite times” on the microscopic
scale, we get a pure aging function even before takiagdr,, to infinity:

ProPOSITION4.5. For almostallE,

Ng
lim Iim @ 6. =ax* 1d vaguely inM([0, 00)).
roLOEi—ooTOj;)‘;E) o * guely € 2
PrROPOSITION4.6. For almost all energy landscapgg, given positive, ¢,

A 16 2o 1/ (xj =)

4.14)  lim Tg(t, ty) = 1/
' Elmoo 0 T omi L

and
lim lim Tg(,¢
00 E|—00 E( w)
(4.15) _sin(ra) [t

1
u*Q—uw)*tdu  wheref = —.
T 6/(1+6) tw

REMARK. The integral in (4.14) exists due to Lemma 4.8.
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Due to Proposition 2.1, Proposition 4.5 follows, if one is able to prove that
1£6) Z?’jl 8x; converges vaguely tex*~1dx on [0, co) when taking the (ordered)
limits £ | —o0, 10 | 0. This is the content of Lemma 4.7 below (which is
analogous to Lemma 4.16 in [4]). Finally, the proof of Proposition 4.6 is based
on (and given after) the technical Lemmas 4.7 and 4.8.

LEMMA 4.7. Let M > 0 and let f be a boundedcontinuous function
on[0, M]. Then there exist$ > 0, such thatfor almost all energy landscapeg,

M 1
D> f(xi)—/ fx)ax* tdx

xXi <M 0
wherec > 0 is a positive constant

(4.16) < Crg V19> 0,

PROOE Let X1,Xo,... and ny, be as in (4.1). Due to (4.1) and since
Var(ny) =E(ny) = (M/70)%,
P( ix; < M)
(M/70)*
In particular, giveny,s > 0 such that 2 — ya < —1, using the Borel-Cantelli

lemma, we obtain that, for almost all energy landscapes, there exis® such
that

1‘ > 8) < (to/M)%e 2.

ixj <MY
(M /t0)*
Due to this estimate, we get that

1‘ <ck™S Vk=12,...,wheretg:=k77.

Y ) = MOAV<m f (x| < k| flloo

xXi<M

(4.17)
Vkel 2, ..., whererg:=k~7,

where Ay, <y denotes the average over the fet< M}. As done for (4.12), if

O<p<l,
M
P(‘Avxifo(xi) — M—“/ f)ax®tdx| > ,0)
0

<2 exp{— (%)a(l — e‘c’)z)}

;) 2 _—a
<2e P,

In particular, by the Borel-Cantelli lemma, for almost &ll

M
‘Ainng(xi) — M_“/o Foax® tdx| <ck™

(4.18)
Yk=1,2,...,wheretg:=k~7,



SPECTRAL CHARACTERIZATION OF AGING 2021

if s is chosen small enough. Now (4.17) and (4.18) imply the assertion of the
lemma, ifto = k™7, for somek =1, 2, .... The general casg > 0 follows easily
from the uniform continuity off. O

LEMMA 4.8. For almost all energy landscape#, there are positive con-
stants 7§, c1, c2, such that the following holdsf 7o < 7§, N > [{j:x; < 1}| and
A€ Yoo (Or A=a+ib,with |p| <landa >x; +1,forall j <N), then

N
%D
j=1

Moreoverif 7o < 75 and M > 1,then

1

4.19
(4.19) =

> c1|A| 72

o0
1
4.20 & <ol LIn(@+ & if A ,
( )"’;m—u—cz" 1+ 12D € Yoo
4.21) & <coM®tinm if A€y OF RO =M +1,
( )roxnglxj_M_cz Yoo OF () =M +
jf

WherezszM meansy_ ;- 1. xj=M-

PROOF. It is convenient to introduce the nonrescaled Ppps,,, where
yi = e Ei, with intensity measurexy®~1dy on (0,00). We setx; = 1y;.
Moreover, we fixg > 2 and O< y < /2 — 1 and we define

Ny = |{j:nPl" <y; < (n + P/,

for n positive integer. Then the Borel-Cantelli lemma implies that, for almost
all E,
Ny

(4.22) e

l’fcn_y Vn=12,....

Moreover, again using the Borel-Cantelli lemma and a simple argument based on
monotonicity, one can prove that there exists 0, such that, for almost alt,

L
(4.23) 'w — 1‘ <iku=®  Vux1,
MC{

wherex is a positive constant. We leave this proof as an exercise.
In what follows we write, = a + ib. Then

N 2 N Xj—a ? N b 2
2 -(Sa ) (Saas)

j=1 j=1

1

4.24
@24 |
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In order to prove (4.19), we assume (4.22) and (4.23) to be valid and we let
0 <10 <1} <1, wheret is such that > «(z$)?. This implies that{x; :x; <
1} # @. By (4.24),ifN > |{j :x; < 1}| andX € y,

N1
o
%o Zx_
j=17]

6] ) | 1
i xglm > cla|2og Iy 1 < 1), if [b] > 3,
>
B xj+1 |
§ — = > Ii{xi:x; <1}, if 5] < 1
le(xj+1)2+b2 0lWXj-Xj= 1

At this point, (4.19), fok € oo, follows from (4.23). The case=a +ib, with
|b| <landa > x; +1, forall j < N, can be treated similarly.

Itis easy to derive (4.20) and (4.21) from the estimates (4.25)—(4.31) below that
hold for almost allE :

if a <100, 1< M andA =a +ib € y, then

o
(4.25) Y
j= -1 | - )\'|
1
(4.26) Y <cMeY
x;j>M lxj =
if 79 is small enough and > 100, then
(4.27) g Y ca® L,
xj<a/2 |xf |
(4.28) 75 Z <ca*tna,
a/2<xj<a— llx] _al
o 1 a—1 ; .
(4.29) 70 Z <ca ifA=a+ibe€yx,
a—1s<xj<a+1 lxj = Al
o 1 a—1
(4.30) 173 Z <ca* "Ina,
a+1<x;<2a |x] - al
(4.31) > <cT* Y ifT>2a.
=T |x] —a|
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Let A € Yoo With a < 100. Then, due to (4.23),

1 1
7§ <ctf {] v } <c,
0 ijSI |xj Y 0 j= 70
while, due to (4.22),
1 1 1 1
(432) 'L'g Z m < C'fg Z x— < C/Tg Z ﬂ Bla < C//’
)CJZ]. J )Cjzl J l’l>|_‘L’ a/ﬁJ

which proves (4.25). The proof of (4.26) follows from the same arguments.
(4.27) is a simple consequence of (4.23). The l.h.s. of (4.29) can be bounded by
5l{j:a —1<10y; <a+1}| and (4.22) allows to conclude the proof of (4.29).

The proof of (4.28), (4.30) and (4.31) can be easily derived from the following
estimate. Let kK A < Bwith B<a—10rA>a+ 1, then (4.22) implies

o 1 "~ ﬁ /_a v xﬂ_l
T, <CT
gy W 3 mnm_ = |

——— ax
A<x;<B |xl - a| |CZ - Toxﬂ/a|

)

/ —1+a /v(ro/a)"‘/ﬂ y'B_l
=ca —_—
u(ro/ay/p |1 — yPle|

wheren_ = [(A/t0)*?| —1,ny = |[(B/to)P| +1,u=n_—1,v=ny +1
(we assumeg small enough in order to exclude the singular point in the above
intervals of sum and integral).[]

PROOF OFPROPOSITION4.6. In order to avoid confusion, we underline here
the dependence om = ¢£0 by writing [ Ey(t, ty) instead of[1g (¢, 1,,). Our
starting point is given by the integral representation (2.12):

1 —twh T ZNE X/ (x; —)»)
(433) HE,Eo(tatw)z—/ ¢ A ° Ng :
e rg Y VE 1/ (x; — 2)

2mi
Let us chooseE satisfying Lemma 4.8. Then, due to the exponential decaying
factor e=»* and Lemma 4.8, ifrg < 75, and E is small enough, such that
t0e~ £ > 1, the integration pathz in (4.33) can be replaced by, . At this point,
(4.14) follows from Lemma 4.8 and Lebesgue’s dominated convergence theorem.
To prove (4.15), given a positive integkf, we set

e L f ewh T8 Y e (xj = A)
M, Eo\l, =5 s
o AT em Y (=)

2mi
whereTy is the positive oriented path whose support is

supaT'y) ={r € C:|x — x| =1 for somex € [0, M]}.
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Then, applying Lemma 4.8, whenever< 5,

Eljm Mg gt tw) — gm.Eo (1, 1) <cM®*InM VM eN,.
—o0

Let us assume thdf satisfies (4.16), for alM € N and for f(x) = fc_—_xi or

fx) = ﬁ for all A in a countable dense setBj, and for all rational positive.
Then, by a chaining argument, we get

lim  gum Eo(t, tw) = gm(t, ty) Vi, ty, >0,
Egl—o0
where

dx,

1 / e_’“’kféwe_x’/()»—x)xo‘_ldx
Iy

434 slw) — —
(4.34) gm(t, ty) o . fé”l/()\—x)x“—ldx

which implies

limsup| lim Mg g,(t, tw) — gm(t, tw)| <cM*tInM VM eN,.

Egl—oo | Ed—00

At this point, we observe (see the proof of Lemma 4.8) that there exist> 0
such that for allM € N, :

M xafl
’/ dx| > c|A| 2 Vi €Ty U Yoo
0 A—X
M xa—l
(4.35) f dx < Ve Ty Uye,
0 [A—x|

o0 xO{—l
/ dx <M*InM Vi€ ys.
M A —x|

From the above estimates, we infer
(4.36) lgm(t, tw) — g(t, t)] < ecM* N M,

where

1 ek [T /(A — x)x*Ldx
4.37 fty) = —— / 0
(4.37) 8t tw) 2ni Jyse A 57 L/(A—x)x*Ldx

Using the analytic properties of the integrand in the r.h.s. of (4.37), one can show
that g(¢, t,) = g(t/ty, D). In order to computez (6, 1), we observe that for a
suitable positive constamt |g(0s,s) — gy (0s,s)| < cM®LIin M, for anys > 1

[in fact, the constant in (4.36) can be chosen uniformlysf, > 1]. By the results

of Section 2.1 [cf. (4.34) witl1(z, #,,) in Proposition 2.5], we get

lim gp(0s,s) = r.h.s. of (4.15)
stoo

dh.

thus concluding the proof.]
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5. Other correlation function when 7o} O after E | —oo. As stated in
Proposition 4.6, the standard time—time correlation funciigs(z, ¢,,) has trivial
behavior after taking the limit& | —oo, 79 | 0. For physical reasons, it is more
natural to disregard jumps into states with physical waiting tifne- e£i much
smaller thanrp, since we assume that the physical instruments in the laboratory
have sensibility up to the time unig. Therefore, let us fi¥ > 0 and consider here
the more natural time—time correlation function

NP, 1) =Pr(xp@) = 8 Vi € (ty, ty + 111 xpw) # xg @)
The main result of this section is the following:

ProPOSITIONS.1. ForalmostallE,

(5.1) lim suplim suplimsup|TTY (7, 1,,) — T (¢, £,,)| = 0.
w10 150 Egl—00 El—o0

In particular, for almost allE,

im lim  lim 190,

tytoo Egl—o0 E|—00 E ( wH u))

(5.2) . )
Sin

- S u (1 —u)* tdu Vo > 0.

b 0/(1+6)

Note that the correlation functioﬁ[%l)(t, ty) is the analog Oﬂ'IE\})(t, ty) Of
Proposition 3.1. As for the proof of Proposition 3.1, a useful observation is that,
givens > 0,

5.3 limlim lim P t)>48)=0 a.s.

( ) t1too 19l 0 E | —00 E(XE( ) = )

We can prove a stronger result concerning the phenomenon that with high
probability the system visits deeper and deeper traps. In fact, note that, by (2.13),

oy I P— A
Pe(xe) > 8) = 5o [ © Ljz s/ =0
A Ng
vE Zj:ll/(xj —A)

2ri
Then, reasoning as in the proof of Proposition 4.6 and using the results of
Section 2.2, one can easily show the analog of Proposition 2.9:

ProOPOSITIONS.2. ForalmostallE,

. . . _ B($)
5.4 lim lim | l-ap §)=——
(5-4) im lim) im e P (xe () > 8) =
where
o x2=2x o0
B(§) := 5 , :=/ L= dy.
€) e (4 x)dx c(a) A y© e “dy
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PROOF OFPROPOSITIONS.1. Trivially, (5.2) follows from (5.1) and Propo-
sition 4.6. SinceEg | —oo afterE | —oo, we assume thal < Eg and define

Dg gy ={i1E < E; < Eo}.
This set corresponds to the small traps into which we allow the particle to jump.

By (5.3) and the same arguments used in the proof of Proposition 3i1=fdr

(with exclusion of the last step since here }im 'D;fol =1la.s.), itis easy to

derive the assertion of the proposition from Lemma 513.

LEMMA 5.3. For almost all E, there exist positive constants, ¢, indepen-
dent of E, Eg, satisfying the following propertyWhenevet{i : E; > Ep}| > 0,

. 1
(5.5) limsup— > @pgi,t)<ce™”  Vi>0,

EJ,—OO NE iEDE,EO

where Dg g, == {i: E < E; < Eg}, for E < Ep, and the function ¢g g, is
defined as

(5.6) §0E,Eo(i, t) = PE(YE(M) € DE,EO Yu € [0, t]|YE(0) = i).

PrROOE Let us assume thdf < Eo, |{i: E; > Eg}| > 0 and, without loss of
generality,s = 1.
We fix ¢ > 0 such that=*¢ < } and define
Wig:={i:E<E; <E+{}, N1 g :=|W1El,
Wog:={i:E+{<E; <Eg}, N2 g :=|W2E|.
Note that Dg g, = Wi g U Wo g and Ng, N1 g, N2 g are Poisson variables

with parameterg=*F, ¢=*E(1 — ¢=%%) and e @£t — ¢=2Fo, respectively. In
particular, for almost alE,

. N .
lim —2 —1, pri= lim SRE 1 el
E|l—co ¢—@E El-co Ng
(5.7) N 1
2.E —al
= lim —=—=¢7¢ —.
p2 El-~ Ng 2

We observe that := Np — N1 g — N2 g is a positive integer, independent bf
andx; > eFo~E—¢ if i € Wy g, while x; > 1, if i € W2 . Let us introduce a new
random walk,Y(¢), on 8¢, whose infinitesimal generatdLy,, is defined ag.r,
with x; replaced by defined as

Xi, If i ¢ DE,EO,
xf={ Ap=efomE=t  ifie Wy,
1, ifi e WZ,E-
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We denote byP}, the probability on path space associated f@r) with uniform
initial distribution and we set

(5.8) 05 o1, 1) ' =P5(YE(u) € Dg, gy Vu € [0,1]]Y5(0) =i).

By a simple coupling argument, one gets g, (i, t) < (ngo(i, t). In particular,

. 1 .
> PRGNS @ = Y g g0

NE iEDE,EO E iEDE,EO

(5.9)
Vie DE,EO’ vVt >0.

At this point, it remains to estimat®. In order to simplify notation, we write
D, N, N1, No, A, dropping the indext. Moreover, we consider the following
realization of the dynamics of;: after arriving at a site, the walk waits an
exponential time of parametef and then it jumps to a point ofg with uniform
probability. In particular, jumps can kegeneratgethat is, initial and final sites
can coincide.

We claim that

D=9+ P+ P3,

where
[ lENe'e) k k N k1 N ko+1
e= X X (M 0)(F) (F) A
k1=1kp=0 ka N N
(5.10)
x/t du e o e =1 (t — )
0 (kpy — 1! kp!
oo 00 k1+1 k
k1 + ko N1\™ N2\ "2
va= 2 3 (M) (F) (w)
k1=0ko=1 1
(5.11)

Ak1/ due” At e~ u)([_”)k2
(ko — D!~

(5.12) ®3 :=%exp{ (1—%>}+%exp{ (1—%)}

The above identities can be derived from the probabilistic interpretatién, @b
as

k; = |{jumps performed before timehaving starting point irW; }|
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and from the following simple identities:

P(Ti+ T+ -+ T, €lz,z+dz))

n—1
—kz,n_ %

(n—1)!
P(Ti+To+-- -+ T, <zandT1+To+ -+ T+ Tpt1> 2)

n

_ Z
—e Ky
n!

dz,

wherez > 0 and Ty, T», ... are independent exponential variables with parame-
terk.
Finally, we only need to prove that, for suitable positive constapt> O,

(5.13) limsup®; <ce™?  Vi=123.
E|—oc0

We give the proof in the case= 1; the case = 2 is completely similar, while the
casei = 3 follows directly from (5.7).
We fixy :a <y < 1, setkp := AY and write
CD _ qleO + CI)>k0,

<ko

IA

1 <kq <kopandky > 0.
N — No\k 1\
1_ ~ )
(=) (%)
thus implying that

where &7 is the contribution to®; of addenda in the r.h.s. of (5.10) with

If k1 > kg, then

N1\t /N — N\l ik

= — 1—

F) -7 (-7%)

N —N; 1\4" 1\

>ko 2
o< P SN2 W1 — — <(1-— 0 ask | —oo,
() 1) (- 1) o s

N— N2

where ®1( , N2) is defined as in the r.h.s. of (5.10) wiiki; replaced by
N — N». Note that it does not exceed 1 since it corresponds to the probability
of a certain event.

Let us now consider the term;*. To this aim, sincd*2) < 2k+hz,

<k 2AN1\*t /2tNo\*2 (0, 1)
7 < Z Z( ) ( ) — D!’
1 190 N (k1 — 1)'ko!

where

w2
I(w:]_, wz) :=/ e_(t_u)_AMukl—]_du‘

w1
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Fix 0 <m < 1 with 2p> 4+ 2mp1 < 1 (recall that 22 < 1). Then, trivially,

k
(5.14) 1(0, ”’_t) - ie—ra—m/A)(m_t) g
A) Sk A

From such a bound, one gets immediately

2AN1\X1 /2t Np\ k2 1 mt
Z Z( ) ( N ) <k1—1>!kz!1(07>

k1=1ko=0

N N
§cexp{—t(1— m —2—1m —2—2)}.
A N N

The last expression, whe | —oo, converges t@ exp(—z (1 — 2pim — 2p>)), in
agreement with (5.13).

In order to estimate the integrdl(%¢, 1) = e~ [, 4 e~ A"V uk 1" du, we
observe that

(5.15)

d e 3 — e~ W

w
/ T du= (<D
s Z

e—ZS 1 n e—le) l n
< <s+—) + <w+—> Vs, w,z>0,
z z z z

thus implying the bound

—.t) <ce m e — _— .
A A-1

The contribution ofce " A= 1 (mr + 1)k1~1 to d)fko can be treated by means of
estimates similar to the ones leading to (5.15).
In order to conclude, we only need to show that

2AtNq k1= 2t No k2 1

At

E E 0
ke ( ) ( N ) (kl—l)!kz! ¢

ask | —oo.

(5.16)

To this aim, observe that

AY
rh.s. of (5.16)c ¢ A2 N2/N 37 (
k1=0

<c)e MAY (4 AN =c@t)exp—At +yInA + AY In(4r A)}.

2Al‘N1)k1
N

Since O< y < 1, we get (5.16), thus concluding the proof]
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APPENDIX
A.l. Laplacetransform.

PrROPOSITIONA.1. Let G(z) be a bounded measurable function ) co)
and let us consider the Laplace transform

R 00
G(w) :/ G(t)e '“dt
0
well defined ifi (w) > 0. Let us define
(A.1) A={re’?:0<r < o0, |9|§%n}.

Suppose tha6 can be analytically continued t6 \ (—oo, 0] and that there are
positive constantg, 3, «, c and B € R such that

(A.2) IG@)| <clo|™  VYoeh |o>1,
(A.3) 0P G (w) — B| < c|w|* Vo e, o <1.
Then

JiTr’é]osl_ﬁG(s) = % wherec(8) := /OOO yP=te™V dy.

PrROOFE If we setH(s) := C(ﬂ)sﬂ 1 with s > 0, then the Laplace transform

H(w) is well defined for%(w) > 0, H(w) = Bo~* and, trivially, H () can be
analytically continued t& \ (—o0, Q].

By the inverse formula for Laplace transform (see Chapter 4, Section 4 in [15]),
we have

1 x+iK n
(A.4) G(s) = IIm —/ e’“G(w)dw Vs>0,x >0,
— 00 27Tl iK

wherew runs over the vertical path connecting- i K andx + i K. The above
formula remains true if substituting with H. Therefore,

B s1=B [x+iK R .
s BGs) — 2 — | » B
(A.5) GO =28 M, 2 / G — Hw)do

Vs >0,x>0.

Let p :=min(y, B)/2. Fix a positive number and, givenK ands, define the
following paths (see Figure 2).

vk is the vertical path fromx —iK to x +iK. y1 4+ is the segment from
—s7 14+ s7lito—1+i. yp, is an arc from—1+i to —K” + iK given by the
parametrization(r) = —t +itY? with r € [1, K*]. y3.+ IS the horizontal segment
from—K” +iK tox +iK.Fori =1,2, 3, we define the patjy _ by considering
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—K? 41K T +iK
V3,4

V2,+

TK

KPP —iK x— 1K

FIG. 2. The integration path in the Laplace inversion formula

the reflection ofy; . w.r.t. the real axis and inverting the orientation. Lgtbe
the positive-oriented circular arc of radiurs! from —s=1 — s~ to —s =1 4+ 571
crossing the axis of positive real numbers.

Note that the above paths dependscand/ork.

Because of analyticity, the integral oveg of ¢*“G(w) is equal to the sum of
the integrals oveps —, y2.—, y1.—, Y0, Y1.+» Y2.+, ¥3.4+. The same is valid witlty
replaced withH .

By (A.2), we have that

(A.6) /y G (w)||dw| < ce*KP™Y |0 asK 1 oo
3,+
and, for a suitable rational functiofy,
s e G(w)ldol
V2,+
(A7) <8 /100 ]es(‘”"’l/p)é(—t +itYPy (=14 p L A=P)/P}) | dr

o0
< csl_ﬂ/ e f(t)dt < /sl Bes/2 10 ass 1 oo.
1
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Similarly, it can be proved that the corresponding integrals wiubstituted with
H go to 0 by taking the limit« 1 oo, s 1 0.

Let us now estimate'# 1, e=3"1%~F dr by dividing the path of integration in
two paths. Choosing @ § < 1,

—1+8
(18 /Sl e gt < cs1B|sCLHOWrap) _ —(ra—p))
-

<s@ + C/s—(x+8(l+ot—;3)
1 )
sl_ﬁ/ e B gr < 1P g(s)
§—148

for a suitable rational functiog(s). In particular, choosing small enough, the
above upper bounds imply

1
lim sl_ﬁ/ e P dr=0.
STOO s_l
This result, together with (A.3), implies
1 o N
lim s1=f_— / ¢*?(G(w) — H(w))dw =0.
STOO Tl Y1+

Trivially, by (A.3),

sl_ﬁ

/ esw(é(a))—ﬁ(a)))da)‘ <s %00 ass 1 oo.
Yo
The proposition now follows from the estimates above and (A.5).

A.2. Perturbation theory. In this appendix we comment on a paper by Melin
and Butaud [24] where the eigenvalues and eigenfunctions of the generator of
our model were computed using perturbation theory. As pointed out earlier, these
results are at variance with our exact results, and it may be worthwhile to point
out the flaw in their arguments. Melin and Butaud write the genellattefined in
(23)asL=T + 4+ TV, where

x1 0 ... O
0 xo 0
T = )
0O 0 ... xmy
(A.8)
—Xx1 —x1 —x1
s | T TR —X2

_xN _XN oo _xN
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The factor ¥ N in front of the second term encourages them to consider this term
as a small perturbation. Bothand7 ® are symmetric operators drf (i), where
w(i) :=x; . We denotg-, -) the scalar product iL2(n) and assumes, ..., xy
to be distinct positive numbers.

Given an operator : L2() — L2(), we write ||A| for its operator norm.
Because of symmetry|7|| and ||TV|| are given by the maximum d# |, with
A eigenvalue. Trivially,T has eigenvalues,...,xy and T (¢;) = x;e;, where
e1,..., ey is the canonical basis &”", while T has eigenvalues, 6-(x; +
X2+ -+ xN).

Given z € C, we can define the holomorphic functidh(z) = T + zT'D.
A natural condition in order to apply perturbation theory T@z) (see [22],
Chapter Il) is

d
A.9 < =—,
(A.9) || 20
where
. . X1+x2+---+x
d=inflx, —x;l,  ap:=min|T® — g =212 N
] aeR 2

In this case, we can conclude thdt(z) = T + zTY has N eigenvalues
M@@), - Ay (2) With Ak (2) = Y02 0 A 2", where, fom > 2,11 | < afl(2/d)" "}
and
(TDex, er)

(e, ex)

D \2

) _1 (T Ve, ej)
A= E (xk—xj) —(e e e_),

j?ék k> €k J* %

D =

Similar series exist for the perturbed eigenvectors.
However, the crucial condition (A.9) is hardly satisfied whes % since it
reads

(A.10) AV x;j < l-iQf,- Ixi — x;l,

while a.s. the L.h.s. of (A.10) has nonzero limit and the r.h.s. converges to O at least
like 1/N.

The fact that the conditions for the application of perturbation theory are
violated explains why its predictions are incorrect. This discrepancy happens not to
be too obvious as far as the eigenvalues are concerned (which are caught between
the diagonal elements of the generator and thus are somewhat similar to them, but
the shape of the eigenfunctions is sharply different).

Namely, by Proposition.2, whenj # 1 andx;_1, x; are very near each other,
the eigenvectors /) related to the eigenvalue; :x;_1 < A; < x; has two main
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peaks of opposite sign given byj(.j_)l and wj(.j); this is very different from the
predictions of [24] (see their Figure 4).

A.3. Complex integral representation. LetIL be a Markov generator on the
state spacé := {1, 2, ..., N}, reversible w.r.t. a positive measyteWe can think
of L as a linear operator dR”, symmetric w.r.t. the scalar produgt s Where

N
(a,b), =Y _u(i)aib;

i=1

In what follows we endovR”" with the scalar product:, -),, (and not with the
standard Euclidean scalar product). Sificés symmetric, we can orthogonally
decomposeRY asRY = Wy @ W2 @ --- @ W, such thatL = "7 ; i Pw,,
where Py, denotes the orthogonal prOJection on andx; #A; if i # j. Given
A€ C\{A1,..., An}, we write R()) for the resolvent

o1

R(AV):=I—-L) 1=
(1) == ( ) kX::l)”_)Lk

Py, .
Then, the residue theorem implies the integral representation
1
(A.11) e = _— / e R(\) d,
27Tl y

wherey is a positive oriented loop containing in its interior, A2, ..., Ay.

Given a probability measune on 8, we denote byP, the probability measure
on the path space associated to the continuous-time randon@alion § with
generatorl. and initial distributionv. Fix j € 8 and letv € RV be such that
v =8; ;. We write 4% for the Radon derivate, that ig® (i) = Z((‘l)) Then the
symmetry ofL w.r.t. the scalar produgt, -),, implies

N

Py(Y(1)=j) =Y vk "),

k=1
d d
(A.12) = (—v, e_tLv) = (e_ﬂl'—v, v)
du © di /oy

N
_ . —tlLy . V(k)
—M(J)l;(e )j,k'u(k)-

By plugging (A.11) in the r.h.s. of (A.12), we get the integral representation

(A13)  P(r(=j)=5 f‘“{Zu(J)RJk(M ((k))}
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In particular, giverk function on4,

Eo (7)) = 3 Z (i) Ryt i
j=lk= 12 p(k)
thus allowing to get an integral representation farz,t,) := P,(nojump
in[ty, ty +2]). If we setu@@) =1 = xl._l and v(i) = N~ (uniform initial
probability), then

1 1
(A.14) PV<Y<r>=j)=%/ye“{NEI%Rik(A)}dA.
X

Let us consider now the special case given by Bouchaud's REM-like trap model
wherelL := Ly is defined in (2.3) and is the uniform distribution or. Note that
all the integral formulas obtained in Section 2 can be derived from the following
one:

1 1
(A.15) P =j)=5; [

—d
A —x))p()
where ¢ (1) = Zk 1 A - In what follows we prove that (A.15) corresponds
to (A.14).

We know already that détl — IL) has distinct zeros given by th€ distinct
zeros ofp (). In particular, it must be

(A.16) detal-L)= —¢(A)H(A Xj) = —AZ [T &—xp.

k j:j#k
Given a matrixA, we write[A]; ; for the determinant of the matrix obtained from
A by erasing théth row and thejth column. Since

AT — L]k,j
detAl — L)

and due to (A.16), in order to derive (A.15) from (A.14), we only have to show
that

(A.17) Z(-l)”’(*lz—"_[m—mk,j = [T &—x).
k

J SISHE]

In order to prove the above identity, observe thidt— L], ; is a polynomial of
degreeN — 1 if k = j, otherwise it has degre®¥ — 2. The |L.h.s. of (A.17) is a
monomic polynomial of degre®&y — 1. At this point, we only have to verify that
xs, S # j, are zeros of the L.h.s. of (A.17). This is trivial if one observes that the
l.h.s. of (A.17) is the determinant of the matrix obtained froin- L. by replacing

the jth column with the vectow with w; = - fori =1,2,..., N. Itis easy to

verify that, if A = x; for somes # j, the jth row and thesth row in such a matrix
are proportional, thus implying the thesis.

k)

Rjx(h) = (=1)/ T+l
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