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Large deviation results are given for a class of perturbed nonhomoge-
neous Markov chains on finite state space which formally includes some
stochastic optimization algorithms. Specifically, {&,} be a sequence of
transition matrices on a finite state space which converge to a limit transi-
tion matrix P. Let {X,} be the associated nonhomogeneous Markov chain
where P,, controls movement from time — 1 ton. The main statements are
a large deviation principle and bounds for additive functionals of the non-
homogeneous process under some regulaonditions. In particular, when
P isreducible, three regimes that depend on the decay of certain “connection”
P, probabilities are idntified. Roughly, if the decay teo slow, too fast or in
an intermediate range, the large deviation behavior is trivial, the same as the
time-homogeneous chain run with or nontrivial and involving the decay
rates. Examples of anomalous behaviors are also given when the approach
P, — P is irregular. Results in the intermediate regime apply to geometri-
cally fast running optimizations, and to some issues in glassy physics.

1. Introduction. The purpose of this paper is to provide some large deviation
bounds and principles for a class of nonhomogeneous Markov chains related to
some popular stochastic optimization algorithms such as Metropolis and simulated
annealing schemes. In a broad sense, these algorithms are stochastic perturbations
of steepest descent or “greedy” procedures to find the global minimum of a
function H and are in the form of nonhomogeneous Markov chains whose
connecting transition kernels converge to a limit kernel associated with steepest
descent.

For instance, in the Metropolis algorithm on finite state spacthe transition
kernel connecting timess — 1 andn is given by

g, jyexp{—B.(H(j) — H(@)), }, for j #1,
1.1 PG D=11-3 PG, D), for j =1,
I

whereg is an irreducible transition function ang), represents an inverse tem-
perature parameter which diverg@gs,— oo. Here, the limit kernelP = lim,, P,
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corresponds to steepest descent in that jumps freonj whenH (j) > H(i) are
not allowed.

These types of schemes are intensively used in image analysis [35], neural
networks [4], statistical physics of glassy systems and combinatorial optimiza-
tions [26]. More general tutorials include [8, 16, 17] and [32].

Virtually all previous large deviations work with respect to optimization
chains has been through Freidlin—Wentzell-type methods [14]. This approach is
to consider a sequence of time-homogeneous Markov chains, parametrized by
temperature, which approaches the steepest descent chain as the temperature cools,
and then to transfer “short time” large deviation estimates to a single related system
in which temperature varies with time. For instance, with respect to the Metropolis
algorithm, by studying the sequence of time-homogeneous chi#ifisg > 0}
whereg, = B and g 1 oo, estimates can be made on the nonhomogeneous chain
whereg, varies. Although this approach has had much success, especially related
to statistical physics metastability questions, it seems that only large deviation
bounds are recovered for the position of the nonhomogeneous process rather than
large deviation principles (LDPs) (see [2, 5, 6, 8, 9] and references therein). It
would be then natural to ask about LDPs for empirical averages which are more
regular objects than the positions.

In a different, more general vein, LDPs have been shown for independent non-
identically distributed variables whose Cesaro empirical averages converge [29],
and also for some types of Gibbs measures, which include nonhomogeneous chains
whose connecting transition kernels are positive entrywise and converge in Cesaro
mean to a positive limit matrix [31].

Other work in the literature treats an intermediate case of nhonhomogeneity,
namely Markov chains whose transition kernels are chosen at random from a time-
homogeneous process. The results here are then to prove an LDP for almost all
realized nonhomogeneous Markov chains chosen in this fashion [20, 30]. Also, we
note that an LDP has been shown for a class of near irreducible time-homogeneous
processes that satisfy some mixing conditions [1].

In this context, we develop here an LDP in natural sealgith explicit rate
function for the empirical averages of nonhomogeneous Markov chains on finite
state spaces whose transition kernels converge to the general limit matrix which
allows for reducibility, a key concern in optimization schemes. We note the
methods used here differ from Freidlin—-Wentzell-type arguments in that they focus
on the nonhomogeneous process itself rather than homogeneous approximations.
The specific techniques used are constructive and involve various “surgeries” of
path realizations and some coarse graining.

LetX ={1,2,...,t} be afinite set of points. Le®, = {p,(i, j):i,j € X} bea
sequence of x t stochastic matrices for > 1 and letr be a distribution ork.

Let nowP, = IPJ{,P"} be the (honhomogeneous) Markov measure on the sequence
spaceX > with Borel setsB(X>°) that correspond to initial distribution and
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transition kernelg¢ P, }. Thatis, with respect to the coordinate proc¥gsXy, ...,
we have the Markov property

]P)T[ (Xn+1 = ]|X07 Xla ey Xn—17 Xn = l) = Pn—s—l(h ])

for all i, j € ¥ andn > 0. We see then thak,,1 controls “transitions” between
timesn andn + 1.

We now specify the class of nonhomogeneous processes focused on in this
article. Letzr be a distribution and leP = {p(i, j)} be a stochastic matrix oB.
Define the collection

AP) = PP p, — P},

where the convergend®, — P is elementwise, thatis, lim, » p, (i, j) = p(, j)

for all i, j € . The collectionA can be thought of as perturbations of the time-
homogeneous Markov chain run withand is a natural class in which to explore
how nonhomogeneity enters into the large deviation picture.

We also remark that this class has been studied in connection with other
types of problems such as ergodicity [19], laws of large numbers [34, 35] and
fluctuations [18]. See also [24] and [15] for some laws of large humbers and
fluctuation results for generalized annealing algorithms and Markov chains with
rare transitions.

Let now f: ¥ — R< be a(d > 1)-dimensional function. Let alsB,, € A(P)
be aP-perturbed nonhomogeneous Markov measure. In terms of the coordinate
process, define the additive stp = Z,,(f) forn > 1 by

1 n
Zy==)_ f(X).
iz

The specific goal of this paper is to understand the large deviation behavior of
the induced distributions diZ,, : n > 1} with respect tdP,, in scalen. That is, we
search for a rate functiof so that for Borel set® c R¢,

— inf J() <liminf } logP,(Z, € B)
zeB? n
. 1 .
<limsup-logP,(Z, € B) < — inf J(z).
n Z€B

An immediate question which comes to mind is whether these large deviations for
the nonhomogeneous chain, if they exist, differ from the deviations with respect to
the time-homogeneous chain run with The general answer found in our work
is “Yes” and “No,” and as might be suspected depends on the rate of convergence
P, — P and the structure of the limit matriR.

More specifically, wherP is irreducible, it turns out that the large deviation of
behavior of{ Z,,} underP, is the same as that under the time-homogeneous chain
associated withP and independent of the rate of convergencépto P. (Note
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that [31] covers the casB is positive entrywise and [29] covers the case when
eachpP, has identical rows.)

Perhaps the more interesting case is when the target matis reducible.
Indeed, this is the case with stochastic optimization algorithms whkreas
several local minima, for example, with respect to the Metropolis process, the local
minima sets off do not communicate in the limit steepest descent chain. In this
situation, the large deviations ¢¥,} depend on both the type of reducibilities
of P and the decay rate, with respect®y, of certain “connection probabilities”
betweenP-irreducible sets, and fall into three categories. Namely, when the
decay is fast, or superexponential, the large deviation behavior is the same as
for the time-homogeneous Markov chain run underwhen the speed is slow,
or subexponential, a trivial large deviation behavior is obtained; finally, when the
speed is intermediate, or when the connection probabilities are on thecofder
a nontrivial behavior is found which differs from stationarity.

We remark now, in terms of applications, the intermediate processes are
important in situations such as (i) fast annealing simulations, and (ii) models of
glass formation.

() In Metropolis-type procedures, classic convergence theorems mandate that
the temperatures satisf, < Cy logn with respect to a known consta@ty for
the process to converge to the global minima sédtf. [8] and [17]):

lim P, (X, € global minima set o) = 1.
n—oo

However, with only finite time and resources, the optimal logarithmic speed is too
slow to yield good results. In fact, in violation of classic results, exponentially fast
schemes wherg, ~ n are often used for which the process may actually converge
to a nonglobal but local minimum d@f . Whereas connecting probabilities between
local minima sets are on the order of €x@3,), these chains fit naturally in

the intermediate framework mentioned above (cf. discussion after Corollary 3.1).
Although there are some good error bounds for these geometrically cooling
experiments in finite time [7], it seems the structure of the associated dynamics
is not that well understood (cf. [35], Section 6.2).

(i) In the manufacture of glass, a hot, fired material is quickly quenched into a
substance which is not quite solid or liquid. The interpretation is that under rapid
cooling the constructed glass is caught in a local energy optimum associated with
some spatial disorder—not the regularly structured global one associated with a
solid—from which over much longer time scales it may move to other states [22].
Such glassy systems are intensively studied in the literature. Two rough concerns
can be identified: What are the typical glass landscapes which specify the local
optima and what are the dynamics of the quick quenching phase and beyond?
Much discussion is focused on the first concern [27], but even in systems where
statics are quantified, dynamical questions remain open [23], Part IV, and [26].
However, with respect to metastability, as mentioned earlier, much work has been
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accomplished (cf. [3, 11] and [33] and references therein). Less work has been
done though when certain time inhomogeneities are severe, say on exponential
scalee=¢", in the context of Metropolis models in the intermediate regime.

At this point, we observe, as alluded to above in the two examples, that (from
Borel-Cantelli arguments) the typical large scale picture of general intermediate
speed nonhomogeneous Markov chains is to get trapped in one of the irreducible
sets that correspond to the linftt(e.g., the locaH -minima sets in the Metropolis
scheme). In this sense, the large deviations rate fundtidmund with respect to
averagesZ,}, is relevant to understanding how atypical deviations arise, namely
how the process average can “survive” for long times, that is, Agw- z for
large n whenz is not a P-irreducible set average. More specifically, wh&n
corresponds tX > 2 irreducible sets{C;j}, we show that] is an optimization
between two types of costs and is in the form

K-1/ i
J(z)=mininf inf — Z(Zv,) (Soti)s Soti+1)) +Zv1H§o(1)(xl)

oeSveQxeD(V,z) i1 i=1

Herel; is the rate function for the” time-homogeneous chain restricteddg,
and represents a “resting” cost of moving withi,, and U(¢;, &) is a Iarge
deviation “routing” cost of traveling betweety; andC,;k Also, S and<2 are the
sets of permutations and probabilities{dn2, ..., K}, respectively, an®d(v, z) is
the set of vectorsg such thaEﬁ’-‘:1 ViXj=2Z. The intuition thenis thak, optimally
deviates ta by visiting sets{C;,} finitely many times, in a certain order with
time proportionsv, so that the averageis maintained, and resting and routing
costs are minimized.

Our main theorem (Theorem 3.3) is that under some natural regularity
conditions on the approach, — P, the averageZ,, satisfies an LDP with rate
function J. WhenU = —o0 or U = 0, that is, when connection probabilities
vanish too fast or too slow, the ratk reduces to the rate function for the
time-homogeneous chain run undBror a trivial rate. When the connections
are exponential-oo < U < 0 andJ nontrivially incorporates the convergence
exponents (Corollary 3.1). Some comments on the Metropolis algorithm are made
at the end of Section 3. When the approach is irregular, large deviation bounds
(Theorems 3.1 and 3.2) and examples (Section 12) of anomalous behaviors are
also given.

Finally, it is natural to ask about the large deviations on scaleslifferent
from scalen, that is, the liminf and lim sup limits ofl/«;,) logP, (Z, € B). The
metaresult should be, if the typical system behavior is to be absorbed into certain
sets, the analogous large deviation (LD) behavior holds in sgalgith revised
resting and routing costs reflecting the scale. In fact, with respect to the Metropolis
model, by the methods in this article, large deviation bounds and principles in
scaleg, can be derived as long as limigf/n’ = oo for somed > 0. In principle,
similar results should hold wheg, > Clogn and C > 1, although this is not
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pursued here. On the other hand, large deviation principles in ggatelogn

are of a completely different category, because in this case there is no local
minima absorption (see, however, [9] for LD bounds with respect to metastability
concerns).

2. Preliminaries. We now recall and develop some definitions and notation
before arriving at the main theorems. Throughout, we use the convention that
F+o00-0=0and log0= —oc.

2.1. Rate functions and extended LDP. LetI:R? — R U {oo} be an extended
real-valued function. We say thdtis an extended rate function if T is lower
semicontinuous and, further, thais agood extended rate function if, in addition,
the level sets ofl, namely{x :I(x) < a} for a € R, are compact. This definition
extends the usual notion of rate function where negative values are not allowed
(cf. [10], Section 1.2). Namely, we sdyis a @ood) rate function if T:R¢ —

[0, 0o] is a (good) extended rate function.

We denoteQ; c R¢ as the domain of finitenes®y = {x € R¢:I(x) < oo}. We
also recall the standard notation fBrc R? thatl(B) = inf,cp I(x).

Let now {u, :n > 1} be a sequence of nonnegative measures with respect to
Borel sets onR¢. We say that{u,} satisfies a large deviation principle with
(extended) rate functiohif, for all Borel setsB ¢ R?, we have

1 1
(2.1) — inf I(x) <liminf —logu,(B) <limsup—logu,(B) < — inf I(x).
xeBe n n xeB

2.2. Nonnegative matrices. Let U = {u(i, j)} be a matrix onX and let
C C X be a subset of states. Defitie = {u(i, j):i, j € C} as the corresponding
submatrix. We say thalUc is nonnegative, denotedUs > 0, if all entries
are nonnegative. Analogouslyjc is positive, denotedU¢ > 0, if its entries
are all positive. We say a nonnegative matfilx is stochastic if all rows
add to 1,Zjecu(i, j)=1for all i € C; of course,U¢ is substochastic when
> jecu(i, j) <1foralli e C.Also, we sayUc is primitive if there is an integer
k > 1 such thatUf > 0 is positive. In addition, we say/c is irreducible if,
for anyi, j € C, there is a finite path = xqg, x1,...,x, = j in C with positive
weight,Uc (xg, x1) - - - Uc (x5, —1, x,) > 0. Theperiod of a state € C is defined as
dc(i) = g.c.dn > 1:Up(i,i) > 0}. WhenUCc is irreducible, all states i@ have
the same periodc. Whendc = 1, we sayU¢ is aperiodic. Finally, note thaU¢ is
primitive < Uc is irreducible and aperiodies (Uc)® > 0.

2.3. Construction CON. We now construct a sequence of nonnegative Markov-
like measures. Ldl;, = {ux (i, j)} for 1 < k <n be a sequence of t nonnegative
matrices. Let alsa be a measure oB. Then define the nonnegative measuge
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onX” forn > 1, wherelU, (Xo € B) =7 (B) and

Ur(Xp€B)=)Y > n(xo)]‘[u (xi—1. Xi),

X0€EX X, €B

whereX, = (X1, ..., X,) is the coordinate process up to timelLet aIszij =
(Xi,...,X;)for0<i < j be the observations between timieand j, and denote,
forO<k<m<l,

Uy (XL, € BY =UL(X* e B),
whereU’, is made with respect t&/; = U;4 for i > 1. Whenux is the point

masss, for x € X, we denotél s,y = U, x) for simplicity.
The measuréJ,; shares the Markov property:

Ur(Xk € A, X €B)= ) > > n(xo)l_[u(xl 1, X;)

XQEX X €A xk+1eB

= Y Up Xk =X Uk, xp) (Xi 11 € B).

Xp€A

2.2)

2.4. LDP for homogeneous nonnegative processes. Let U be a nonnegative
matrix onX. Let alsoC ¢ = and letf: ¥ — R? be a subset and function on the
state space.

Fora e R?, define the “tilted” matrixic ;. rv = ¢ by

Mc, = {uG, je*" D jec).
Suppose now that is such thaU¢ is irreducible. Therf1¢  is irreducible for all
A and f, and we may define
(2.3) p(C, M) =p(C,x; f,U) as the Perron—Frobenius eigenvaludlef

(cf. [10], Theorem 3.1.1, or [28]). Define also the extended funciipn=
Ic ru:RY— RU{oo} by

e, fu(x) = sup{(r,x) —logp(C, 1)}
reRd

and letQ¢ = Qr,. be its domain of finiteness.

Let nowsw be a distribution or® and letU,, be made from CON witl;, =
for all k > 1. We call such a measuii¢, a homogeneous nonnegative process.
Also, for xg € C, define the measures @&f for n > 2 by

Mn(B) :Uxo(zn(f) € B, Xn € Cn)-

Define also for i< k </ thatZ} = Z! (f) = (1/1 —k+ 1) X!, f(X)). Note,
as|X| < oo, that f is bounded|| f|| = maxi<j<4 || fillL~ < oo and soZ,l( varies
within the closed cub& = B, (0, || f||) of width 2| f|| about the origin.
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The following proposition is proved in the Appendix.

PrROPOSITION 2.1. The function I and domain Q¢ satisfy the following
criteria:

1. Domain Q¢ isa nonempty convex compact subset of the cube K.

2. Function I¢ isa good extended rate function. In fact, when U is substochastic,
I isagood rate function.

3. Function I¢ is convex on R¢ and strictly convex on the relative interior of Q.
Also, when restricted to Q¢, I¢ is uniformly continuous and hence bounded

onQc.
4. Measure {u, } satisfiesan LDP (2.1)with extended rate function Ic.

2.5. Upper block form. For a stochastic matri® = {p(i, j)} on X, we now
recall the upper block form. By reorderirlg if necessary, the matri® may be
putin the form

rU@©,0 UO1L --- --- U@ Mo
0 S1) o - 0
.0 ... 0 S(Mo)
where 1< Mg <tandS(1), ..., S(Mp) are stochastic irreducible submatrices that
correspond to disjoint subsets of recurrent states—denotstbawmstic sets—
and submatrice#’ (0, 0), ..., U (0, Mp) correspond to transient states when they

exist.
When there are transient states, the square big¢R, 0) itself may be
decomposed as (cf. [28], Section 1.2)

~R(1) V(1,2 < V(1, No)

0 R(2) V(2,3 --- V(2 Np
U(0,0) = : 0 : ,
L 0 0 R(Ng) J

where 1< Ng <t — 1 andR(i) is either the 1x 1 zero matrix or an irreducible
submatrix that corresponds to a subset of transient states<far4 Ng. We call

the R(i) = [0] matrices and corresponding statiegenerate transient, and the
irreducible R(i) and associated statesndegenerate transient, since returns to

these states are, respectively, impossible and possible under the time-homogeneous
chain run withP.
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Define the number of degenerate transient submatrices as

N — { 0, when no transient states i,
|l {1<i < Ng:RG) =01}, otherwise.
Also let the number of nondegenerate and stochastic submatrices be

_ { Mo, when no transient states it
| (No= N) + Mo, otherwise.

It will be useful to rewrite the upper block form by inserting the form for
U (0, 0) into (2.4). To this end, when there are transient states (8t= R(i) for
1<i<NgandletP(i)=S(i — Ng) for Ng+ 1 <i < Ng+ Mp. When all states
are recurrent, leP (i) = S(i) for 1 <i < Mp. Also, in the following discussion, let
T (i, j) for i < j denote the appropriate “connecting” submatiig, -) or V (-, -).
We remark thaf’' (i, j) is a matrix of zeroesfoNg+ 1<i < j <N + M.

We have now the canonical decomposition

~P(1) T(1,2 o TA,N+ M)
0 P2 T@23) --- TR N+M)

P=] : 0
L 0 0 P(N+M) |

Let now C; = C;(P) C ¥ be the subset which correspondsRgi) so that
Pc, = P(i) = {p(x,y):x,y € C;} for 1L <i < N + M. Define also the sets
D=D(P),N=N(P), M =M(P)andg = 4(P) by

D ={i: P(i) degenerate transignt
N = {i: P(i) nondegenerate transiént
M = {i: P(i)stochastig,
G =~NUM (= {i : P(i) nondegenerate transient or stochagtic

To link with previous notation, note that = |D| and M = |§|.

It will be convenient to enumerate the elementohs ¢ = {¢1, ¢2, ..., Cm}-
WhereasP (i) is (sub)stochastic and irreducible foe ¢, we may denote, with
respect tof : £ — R, the rate functiorl; = I, s p and its domain of finiteness
Qi = Qc;. In addition, let

(2.5) Pmin=min{p(x,y):p(x,y) #0,x,y € C;,i € §}

be the minimum positive transition probability in the irreducible submatricés of
Consider now a sequence of transition matri¢8s}, where P, = {p, (i, j)}
converges taP. With respect to the sefg”;(P):1<i < N + M} above for the
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matrix P, thenth step matrixP, can be putin the form

- P Tx(1,2) Th(L,N+M)T]
T,(2, 1) P(2) Ty(2,3) T,(2,N + M)
P, = : T,(3,2) : ,
| Thn(N + M, 1) Twu(N+M,N+M—-1) P,(N+M) |

whereP, (i) = (P,)c; - P(i) forl<i <N+ M, T,(i, j) governsP, transitions
from C; to C;, andT7,(i, j) — T, j) for i < j and vanishes otherwise. As a
warning, we note that the form above By is NOT the canonical decomposition
of P,.

2.6. Routing costsand deviations. LetS,; andS2,, be the set of permutations
and the collection of probability vectors ¢h, 2, ..., M},

M
QM:{VGRM:ZU,-:l,Ogv,-§1for1§i§M}.
i=1

Forv e Q) andz € R?, define the set of convex combinations
(2.6) D(M,V,z):[X:(xl,..., ) e (RHM Zv,x,—z}

Let alsoU = {u(i,j):1<1i,j < M} be a matrix of extended nonpositive real
numbers. For a permutatiane Sy, v € Qp7, X € RHM andz € R?, define the
extended functions

M-1/ i
Z (ZW)” 8o (iys Soi+1)) +ZU1HCG(,)(xt) for M > 2,

i=1 \j=1 i=1
T1(x1), for M =1,

C'V,U (Gv X) =

and

Ju@)= inf inf min Cy y (o, X).
veQuy XxeD(M,v,z) 0 €Sy

It will be shown thaty is a good rate function (Proposition 4.1). Moreover, it will
turn out, for well chosen routing cost matricg&s thatJy (z) measures various
upper and lower large deviation rates of the additive sy#f)g f)}. Note that
Ju is defined in terms of¢;} = § and depends ohe D only possibly through
the routing cost/, which makes sense since it would be too expensive to rest
on degenerate transient states in any positive time proportion. Also, we observe
when M = 1, that is, when any transient states with respecPtdo not allow
returns, andP corresponds to exactly one irreducible stochastic block, the function
Ju () =11(z) is independent of/.
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2.7. Upper and lower cost matrices. With respect to &, € A(P), we now
specify certain relevant upper and lower coStsvhen N + M > 2. Define, for
distinct1<i,j <N+ M,

(2.7) t(n, (i, j)) = maxp,(x, y)
xeC;
yeCj

and the extended nonpositive numbers

v(i, j) =Iim sup Iogt( (G, j) and t(,j)= Ilmlnf |Ogt(n (i, j))-
n—o0
Also,forO<k <N+ M —2,letlg=1i,lx+1 = j andletL; = (lo, I, .o e, les1)
be a(k + 2)-tuple of distinct indices. Now define the upper cost

k
2.8 Uo(i, j) = max max ls,1
(2.8) o )=, max, maxd, vl
and the lower cost
k
Jo(i, j) = max max I, 1 .
o, j) L PR S:OT( 55 ls+1)
We remark briefly thatlo(i, j) andJo(i, j) represent, respectively, maximal and
minimal asymptotic travel costs of moving fro@ toC; ink+1<N+ M -1
steps by visiting setgC;} in the orderLy.
A more subtle lower cosT; is the following. LetO<k <N+ M —2,lp =1,
lr+1 = j andL; be as before. Let also

1 < qo, gk+1 <tv and wherk>1 and 1<s <k,
(2.9)
letl<g;<t+1

and callQx = (go. ..., qry1). Letx®= (x2, ... x0) andxk+t = (xi 1, . xkH1)
be vectors Wlth components i@; and C;, respectlvely, and wheh > 1, let
X = (xl,..., ) be a vector with elements i), for 1 <i < k. Denote also
the (k + 2) tuple Vi = (X9, xL, ... xkt1y,

For distincti, j € §, andy € C; andz € C;, define

1 ntrtdl) _ k1
n,vy,z max maxmaxmaxP X L X)),

Y.y, )= Osk=N+M—2 Ly or Voo b X = )

where the concatenated vectof, ..., x*1 z) = (x9, ... ,xk+12) is of length

at mostEq(N, M) + 1. Here,Eo(N, M) = (t + 1)(M — 2) + N + 2c andr(u) =
Y oq forO<u <k+1.
Also define

(2.10) yi(n, G, ) = }eclnf N Y.y, 2).
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Finally, define
1
713, j) =liminf =logy(n, G, j)).
L, 9

We now interpret the objects! (n, y, z), y1(n, (i, j)) and71(i, j). As with the
routing costJy, Ly is an ordered list of sets to visit on the way from pojnto
point z. More specifically hereQ; lists the O (r) number of steps taken in each
visited set andV}, details on which states this travel is made. Heres chosen
since all movement in a given irreducibi& C X is possible in at most = |X|
steps. Theny1(n, y, z) is the largest probability of movement fromto z within
the constraints of) (v) travel among distinct sets. Alspl(n, (i, j)) is the smallest
such chance of moving fror; to C;, and71(i, j) is the asymptotic exponential
rate of this quantity.

3. Results. We now come to the main results for proces&gse A(P).
After a general upper bound and some lower bounds which depend on natural
assumptions, we present an LDP which follows from these bounds. Some remarks
on the Metropolis scheme and on the format of the article are made at the end of
this section.

The upper bound statement is the following.

THEOREM3.1. With respect to good rate function J, and Borel " C R?, we
have

n—oo

1 —
limsup—logP;(Z, eI') < — inf Jq,(2).
n zel

We now label conditions and assumptions to give LD lower bounds.

Sufficient initial ergodicity. To avoid degenerate cases, we introduce an initial
ergodicity condition forP, so that all information aboup is relevant. A typical
situation to avoid is wheP,, = P for n > m, and distributiont Py - - - P, locks
the process evolution into a striét-irreducible subset o&. To avoid lengthy
technicalities and to be concrete, we impose the following assumption on the
chains considered in this article. Leg = no({P,}) > 1 be the first indexn so
that for alls,r € C; andi € § whenp(s, r) > 0 we havep,(s,t) > 0 forn > m.

Such amg < oo exists sinceP,, — P.

CONDITION SIE. Thereis ami1 > ng— 1 such that
P, (X,, €Ci)>0 foralli € G.

A simpler condition which implies Condition SIE is the following.
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CONDITION SIE-1. Letng=1andletr(C;) >0foralli € g.

We say that a distribution is SIE-1positiveif = (C;) > 0 for alli € . A trivial
condition for SIE-1 positivity is whem is positive [e.g., whenr (x) > O for all
x € Xl

Assumptions A, B and C. We now state three assumptions on the regularity of
the asymptotic approach, — P.

ASSUMPTIONA. Supposes(i, j) =t(i, j) foralldistinct 1<i, j < N + M.

ASSUMPTIONB. Suppose for all distinct ¥ i, j < N + M there exists an
elementz = a(i, j) € C; and a sequendd, = b, (i, j)} C C; such that

. 1
(i, j) = n||—>moo ; log pu(a, by).

In other wordsz (i, j) is achieved on a fixed departing poing C;.

ASSUMPTIONC. DefineP*(i)={p*(s,t):s,t € C;} by
p(s, 1), whenp(s,t) > 0,
p(s,t)=11, when liminf(1/n)log p, (s, t) =0 andp(s,t) =0,
0, otherwise.
Suppose thaP*(i) is primitive fori € §.

In words, Assumption A specifies that the maximal connection probabilities in
the (1/n)log sense have limits. Assumption B states th@f j) can be achieved
in a systematic manner. Assumption C ensures there is “primitivity” in the system
and covers the case whénis periodic but the approadp, is slow enough to give
a sense of primitivity. We now list some easy sufficient conditions to verify these
assumptions.

PROPOSITION3.1.

LIM. AssumptionsA and B hold if, for distinct 1 < i, j < N + M and each pair
xeC;andyeCj,wehavelim,_,(1/n)logp,(x,y) exists.

PRM. Assumption C holdswhen {P (i) :i € ¢} are primitive.

We now come to lower bound statements for the process that obeys Condi-
tion SIE, the first of which holds in general and the second of which holds under
Assumption B or C.

THEOREM 3.2. Let P, satisfy Condition SIE.
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(i) Then with respect to good rate function Js, and Borel I C R?, we have
. o1
— inf J (z) <liminf —logPx (Z, € T'°).
ZGFO n—-oo n

(i) Inaddition, when either Assumption B or C holds, we have with respect to
good rate function J, that

. oo 1 v
_zlenrfaJTo(Z) < Ilnnllglof o logP,(Z, €T"?).

We note in the cas@/ = 1 (i.e., whenP possesses exactly one irreducible
recurrent stochastic set and possibly some degenerate transient states) that
Theorems 3.1 and 3.2 already give an LDP with rate funclign= Jy, = I.

In particular, in this case, the large deviation behavior ufigels independent of
the approactP, — P.

However, in the general situation whéfn> 2, the lower and upper bounds may
be different. In fact, there are nonhomogeneous proc&ssés which the lower
and upper rate function bounds in Theorems 3.1 and 3.2(i) differ and are achieved
so that the result is sharp in a certain sense (e.g., the example in Section 12.2).

Also, we remark that the two lower bounds in Theorem 3.2 may differ when
there is some periodicity in the system and the maximal connection weight
sequence is not regular. In this case, the process may not be allowed to visit
freely various states because certain cyclic patterns may be in force. Therefore,
the asymptotic routing costs in this general case should be larger than under
Assumption B or C when some regularity is imposed on connection probabilities
or when a form of primitivity is present; hence, the userpfinstead of7p in the
lower estimates. See Section 12.3 for an explicit process where lower bounds do
not respectyp.

It is natural now to ask when the lower and upper bounds match in the previous
results so that a large deviation principle holds. FarR?, let

J(2) = T, (2).

Under Assumption A, cost® = Up and so the following is a direct corollary of
Theorems 3.1 and 3.2.

THEOREM 3.3. Suppose P, satisfies Condition SIE and Assumption A, and
also either Assumption B or C. Then, with respect to good rate function J and
Borel setsI" ¢ R9, we have the LDP

1
— inf J(z) <liminf —logP,(Z, € I'°)
zel'o n—-oo n

1 _
<limsup—logP,(Z, €TI')

n—oo N

< —inf J(z).

zel
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Hence, by Proposition 3.1, when all limits exist (LIM; in particular, e.g., in
the time-homogeneous cask, = P) or when Assumption A holds and there
is no periodicity (PRM), the LDP is available. Also note that by takifg) =
(11(x), 12(x), ..., 1:(x)), Theorem 3.3 gives the LDP for the empirical measure
and so is a form of Sanov’s theorem for these nonhomogeneous chains.

We remark that it may be tempting to think Assumption A by itself may
be sufficient for an LDP, but it turns out there are processes which satisfy
Condition SIE and Assumption A but neither B nor C for which the LDP
cannot hold (e.g., the example in Section 12.3). On the other hand, we note that
Assumption A is not even necessary for an LDP, for instance, with respect to
chains whereP, alternates between two alternatives (cf. Section 12.1). So although
Theorem 3.3 is broad in a sense, more work is required to identify necessary and
sufficient conditions for an LDP.

We now comment on the three types of LD behaviors mentioned in the
Introduction which follow from Theorem 3.3. These are (1) homogeneous,
(2) trivial and (3) intermediate behaviors for which easy sufficient (but not
necessary) conditions are given below.

COROLLARY 3.1. Let Condition SIE, and Assumption A and either Assump-
tionB or C hold. Letalso N + M > 2.

1. Suppose v(i, j) = —oo when limsupt(n, (i, j)) = 0 for distinct 1 < i,
J <N+ M. Then J is also the rate function for the time-homogeneous chain
run under P (becausethe routing costs arethe same asif P, = P).

2. Suppose | M| > 2 and Uo(i, j) = Ofor all distinct i, j € M. Then J vanisheson
the convex hull of ;¢ 4 {z:1;(z) =0} and soisin a sensetrivial.

3. Suppose |M| > 2 and Uo(i, j) € (—o0,0) for all distinct i, j € M. Then
J differs from the rate function for the time-homogeneous chain run with P
and also involves nontrivially the convergence speed of P, to P in terms of
routing costs.

We now briefly comment on application to the Metropolis algorithm. Note
1= pali, ) =gG. i)+ Y g, H[1—exp(—Bu(H(j) — HD),)]-
J# J#
Also, as B, — oo, we have lim_g(, j)exp{—B.(H(j) — H(i)+} =
g(i, Nu(j)<Ha)- Therefore, the limit matrix’ is formed in terms of entries
g, DL (jH<H @) if i # j,

i pu, /)= gG, D)+ )8l Dlncp-nan, i i=].
J#
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We now decomposg into component®, & andM. First, note that a statee =
belongs to the “level” set

n—1
C,={x}Uj{y:3dpathx =xq,...,x, =y, where l_[ g(xi,xiy1) >0
i=0

andH(x;))=H(x)forl<i<nyg,

which corresponds to one of three typ&s, NV or M.

In particular, C,, is a stochastic set that corresponds.At exactly when
H(x)=min{H (y):g(x,y) > 0} is a local minimum. AlsoC, is a hondegenerate
transient set exactly wheH (x) is not a local minimum and eithes(x, x) > 0
or g(x,y) > 0, whereH (y) = H(x). Additionally, C, is a degenerate singleton
exactly whenH (x) is not a local minimumg (x, x) = 0, and wherg(x, y) > 0 we
haveH (y) # H (x).

We now discuss the rate of convergenge— P. Observe for distinct k i,

J <N+ M,andx € C; andy € C; that

—(H () — H(x)) limsup(B,/n),  if g(x,y) >0,

1
l I =
im sup-~ 0g pu(x,y) oo, if g(x,y)=0,

with analogous expressions for lim {if ») log p,, (x, y). Hence LIM holds when
B =lim B, /n exists. Also, we remark that wherix, x) > 0 for x € &, there are
no degenerate transient states, saPalubmatrices are primitive and PRM holds.
In addition, given irreducibility og, Condition SIE is satisfied with respect to any
initial distribution .

Therefore, by Corollary 3.1, as routing costs are computed with respect to
different level sets, the three types of LD behavior follow when the |néxists
and there is more than one local minimum. Namely, trivial, intermediate or
homogeneous behaviors occur wheg: 0, 8 € (0, co) or 8 = oo.

Finally, we give a concrete example with respect to a simple geometrically
cooling Metropolis chain wherg = 1. Let H be defined onx = {1,2,...,9}
in terms of its graph (Figure 1) and lgt(x) = H(x), so thatZ, is the average
H value seen by the chain. Typically, for largethese valueg,, will be near an
H-local minimum average.

Let the kernelg be a random walk so that(i,i + 1) =1/2 fori =2,6,7, 8,
gi+1i)=1/2fori=1,2,6,7,andg(1,2) =1, g(9,8) =1, ¢g(3,4) =1/2,
g4,3)=(1-a)/2, g4 4 =a, g45 =(1-a)/2 g54 =(1-b)/2
g(5,5 =b andg(5,6) = (1 — b)/2 with O < a, b < 1. Then state$2}, {6}, {8}
are distinct local minima{4}, {5} are nondegenerate transient singletons and the
remaining states are degenerate transient.
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FIG. 1. Graphof H.
The routing costs satisfy, for distinct sets,
j-1
Y (HO-HI+1D),, fori < j,
N I=i
Uo(i} =1 .,
Y (HU+D)—-HD),., fori > j.
I=j

Also, the rate functions that correspond to local minimé and 8 are degenerate,
and equabo - 12y (y), 00 - 1) andoo - 1y g), respectively. For the nondegen-
erate transient states 4 and 5, we have

1+a
1{4}(y)={_|097’ fory = H(4),

00, otherwise,
and

1+5b
Iisy(y) = [ —IogT, fory=H(5),

00, otherwise.
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When —log(1 + a)/2 = 1/3 and —log(1 + b)/2 = 2/3, we compute, by
analyzing the not-too-large number of possibilities, the nonconvex rate function

00, forz < —1 andz > 3,

47/9+4/9, for—1<z=<-2/11,

-2z, for —2/11<z <0,
J(2) =

z/6, for0<z <2,

5z/3—3, for2 <z <12/5,

—5z/3+5, for12/5<z<3.

Not surprisingly, J vanishes at local minima and is largest near 2"
(excluding infinite costs), with exact valge= 12/5 found from computation. The
J calculation (see Figure 2) also gives optimal scenarios under wiijck z;
these include, for-1 < z < —2/11 that the averagg,, is a convex combination
of rest stays initially on{4} and then a{8}; for —2/11 < z <0, at{8}, then{6};
for 0 <z <2, at{4}, then{6}; for 2 < z <12/5, at{2}, then{4}; for 12/5< 7 < 3,
at {6}, then{2}.

15

0.5

FIG. 2. Graphof J.



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 439

We now discuss the plan of the paper. In the next section, we outline the proof
structure of the main theorems. After supplying proofs of stated results in the
outline in Sections 5-11, we give the three examples in Section 12 commented
on earlier. Finally, in the Appendix some technical proofs are collected.

4. Outline of the proofs of the main theorems. Consider a procesB, €
A(P) and a functionf: ¥ — R“. We first observe thaf,, J7, and J are
all good rate functions from the following proposition, which is proved in the
Appendix.

PROPOSITION4.1. For a nonpositive cost U, the function J is a good rate
function and the domain of finiteness Qj,, C K.

In the following discussion, we say that the pa€h enters or visits a subset
C C X whenX; € C for some 1< i < n. We now outline the proofs of Theorems
3.1and 3.2.

4.1. Upper bounds; proof of Theorem3.1. The proof follows by first aurgery
of paths estimate, then Bomogeneousrest cost comparison, &oar se graining cost
estimate and finally a limit relationship on a perturbed rate functionILetR?
be a Borel set.

Surgery of paths estimate. The first step is to overestimai®, by another
measurgi, ., ., Which allows more movement in terms of parametgrg, > 0.
However, we restrict the process to those paths which make at most one long
sojourn to each of the sef€; : 1 <i < N + M}, but connect among them in short
Visits.

Before getting to the firdbound, the following techoal monotonicity lemma,
proved in the Appendix, is needed.

LEMMA 4.1. Let § € [0,1] and let {z,} C [0,1] be a sequence which
converges to §. Then there exists a sequence {#,} C (0, 1] such that (i) #, < #,,
(i) 7, J 8 monotonically and (iii) the limit lim(1/#n) log#, exists and equals

1 1
lim —logt, =limsup—logz,.
n

n—0o0 n—oo N

Recall now the definition of(n, (i, j)) [cf. (2.7)] and let
{#(n, (i, j))} be the sequence made frdnfn, (i, j))} and Lemma 4.1.

Also, for distinct 1< i, j < N + M, as in the definition oflg(i, j) [cf. (2.8)], let
O<k<N+M-—-2,letlp=i andly1 = j, and letLy = (lp, l1, ..., I, lx+1) be
composed of distinct indices. Then define

k
y(n, G, )= oskgr?v%_z”lﬁxﬂf(” + 5, (s, li11)).
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The termy (n, (i, j)) bounds the largest possible risation probability between
setsC; andC; in at mostN + M — 1 steps.

We now create a certain sequence of positive transition matrices. For gen-
eral P and approaching sequené¢®,}, the submatricesP (i) and P, (i) for
1<i<N+ M need not be positive. It will be helpful, however, to majorize
them as follows. Let > 0, and letP (i, &) = {p(s,t;¢):s,t € C;} and P,(i, &) =
{pn(s,t;¢):s,t € C;}, where

p(s,t;e) =max{p(s,1),e} and p,(s,t;e) =maxp,(s,t),e}.
Define NOWSP, ¢, ¢, = {Pr.ey.e, (s, 1)} by

y(n,(i,j)), fOI’SECi,tECj
anddistinct1<i, j < N+ M,

Pn(s, t; €2), fors,t € C; andi € §,

Pn(s,t; €1), fors,t e C; andi € D,

ﬁn,el,ez (57 t) =

whenn > 2; forn =1, let ﬁl’gl’ez be the unit constant matriy ¢, ¢, (s, 1) = 1.
Form also through CON the measuitg ., ., with respect to initial distributionr
and transition matrice§P, ¢, ¢,}-

PROPOSITION4.2. For ¢1, &2 > 0, the following upper bound holds:;
. 1
limsup—logP,(Z, €T)
n

. 1 R
<lim sup; 109 fix e1,6,(Zn €T, X, enterseach C; at most once).

The proof of this proposition is found in Section 5.

Homogeneous rest cost comparison. Next, we compare measufg; ¢, ., With
ameasureéu; ¢, .,, Which replaces nonhomogeneous transitions within Getsy
limiting homogeneous transition weights.

Define, fore1, £2 > 0, Py ey e, = {Pn.er.e, (5, 1)} by

y(n, @, J)), forseC;i,teC;
anddistinct1<i, j < N + M,

p(s,t; €2), fors,t € C; andi € §,

£1, fors,t € C; andi € D,

ﬁn,el,ez (57 t) =

whenn > 2 and,/sl,gl,g2 = fl’el,gz. Let NOW iy ¢, ¢, be formed from CON and
matrices{ Py ¢,.¢,} andm.
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ProPOSITION4.3. For ¢1, 2 > 0, we have
. 1 .
limsup—109fir ¢ .6,(Z, € T', X, enters each C; at most once)
n

. 1 -
<Ilim sup; 109 fir e1,6,(Zn €T, X, enterseach C; at most once).

The proof of this proposition is found in Section 7.

Coarsegraining estimate. The next step is to further bound the right-hand side
in Proposition 4.3 through a detailed decompaosition of visit times and locations in
terms of arey, ex-perturbed ratdq ¢ ¢, -

Observe for 1< i < N + M that the submatrixﬁ,,gl,ez)ci = P(i,e1,82) is
independent of and

(e1), fori e D,
P, &), fori e g.

Denote the extended rate functib, ., = Ic, P s1.¢,) @nd associated domain
of finitenessQ; ¢, .., = Qc;, 1. P(i,e1,60)- IN fact, explicitly wheni € D,

P, 61, 62) = {

_I f = i), h C — 1,
(4.1) Hi,sl,gz(x)z{ 0g(e1), or x .f(m,) whereC; = {m;}
00, otherwise,

and]L-’gl’gz (x) = I[i’gz (x) = I[Ci’f’P(i’gz) wheni € 9,
Recall now the objedfy, ;y near (2.6), and define fare Qy 47, X € (RHN+M
0 € Syyyp and matrixU = {u(i, j):1<i, j < N + M}, the function

N+M—-1/ i N+M
CuU,er,e0(0.X)=— Y (Zv,-)u(a(i),o<i+1>)+ > il (iy,e0,60 (%)

i=1 j=1 i=1

whenN +M > 2 andCy, y ¢ ¢, (0, X) =11 ¢,.¢,(x1) WhenN + M = 1. Define also,
forz e RY,

4.2 J z)= inf inf min C o, X).
( ) U,Sl,&‘z() VEQN 11 XED(N+MN,2) 0 €SN 41 V,U,Sl,ez( )

We comment that wheV = 0 and allP(i) > O fori € §, thatJy ¢, ¢, = Jy for
all 1, e2 small, so the following result already gives the desired upper bound.

PrOPOSITION4.4. For g1, &2 > 0, we have
. 1 _ —
limsup—1og iz, (Z, €T, X, enterseach C; at most once)
n—»oo N

< _JUo,Sl,Sz(F N K)

The proof of the proposition is given in Section 8.
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Limit estimate on Jog ;... The last step is to analyzRy, ¢, ., ase1, €2 | 0
in the following propaosition, which is proved in Section 10.

ProPOSITION4.5. Wehave

lim suplim sup—Jug.e1.6, (T NK) < —Jqo(T).
210 e1]0

Now, putting together the results above gives Theorem 3.1.

4.2. Lower bounds: proof of Theorem3.2. The argumentis similar in structure
to the upper bound. To prove part (i), a reduction is first made with respect to initial
ergodicity, which can be skipped if one is willing to assume thatsatisfies the
stronger Condition SIE-1 rather than just Condition SIE. Then a surgery of paths
estimate, a homogeneous rest cost comparison and finally a coarse graining cost
estimate are given. Last, having proved part (i), the second lower bound part (ii) is
argued.

LetI’ c R? be a Borel set. If"° = &, the bound is trivial. Otherwise, lep € I'°
andI'y = B(xg, @) C I'° be an open ball of radius > 0.

SE edtimate. The following estimate shows that under Condition SIE, the
first few transition kernels do not contribute effectively to lower bounds and,
in particular, Condition SIE may be replaced with Condition SIE-1. When
PP, satisfies Condition SIE, |e®, = P,,, for n > 1, and lety(l) =P (X,, =)
for / € X. Let alsolP;, be constructed with respect {&,} and distributions.
Clearly, we haveio({ P,}) = 1 andP, satisfies Condition SIE-1.

PROPOSITION 4.6. Let T'> = B(xg,a/2) and suppose P, satisfies Condi-
tion SIE. Then we have

o1 o1 ,
liminf —logP,(Z, € T'1) > liminf — IogIP’n(Zn ely).
n n

PRoOOE Note that

n—ni_, c1
{Z, € B(xg,a)} D TZ,Z1+1GB xo,a—; ,

wherecy =n1] f]|. Then
Pr(Z, el > ]P)rr(((n - nl)/”)zzlq-l € B(xo,a — Cl/”))

=Y NP4y (((n —n1)/n)Z)y 1 € B(xo,a —c1/n))
lex

=P (Zn—n; € (n/(n —n1)) B(xo,a — c1/n)).
The proposition now follows by simple calculations.]
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In view of the last proposition, with regard to the standard lower bound methods,
we may just as well assume thBf satisfies Condition SIE-1 if Condition SIE
already holds.

Surgery of paths estimate. We underestimat®, by another measur@y ¢, .,
whose connection transitions correspondioSlightly different from the surgery
for the upper bound, the paths focused on here are those which make at most one
long visit to sets{C; :i € §}, but travel between them in short trips through all
{Citl<i<N+ M}

Let E(N,M) = (M — DEo(N,M) and recall the connecting weight
y1(n, (i, j)) for distincti, j € § [cf. (2.10)]. Define

0 .o . 1 ..
y-(n, @, j)) = e D L (n+k, @, ))),
which picks the smallest weight in a traveling frame.

Define alsa®, = {pn(s, 1)} for n > 1 by

7on, G, j)), forallseC;,teC;
and distinct, j € g,

pn(s, 1), fors,t € C; andi € §
orseC;,teCjwheniorjed.

ﬁn(SJ) =

Let /i, be made through CON with?,} and.
In addition, for convenience, let

G, = {X, enters only{C; :i € 4} with at most one visit to each Jet

PrROPOSITION 4.7. Let '3 = B(xg,a/4) and suppose P, satisfies Condi-
tion SIE-1.Then

o1 oo 1 .
liminf —logP~ (Z,(f) € I'2) > liminf = log i, (Z,(f) € T3, G,).
n n
The proof is given in Section 6.

Homogeneous rest cost comparision. As before, we comparg:, with a
measurep , which replaces nonhomogeneous transitions within €etsvith
limiting homogeneous transition weights.

Definef,, = {p, (s.0} forn > 1 by

yO(n, G, j)), forall s € C;, t € C; and distinct, j € §,
p,(s.0)=1 p(s,0), fors,t e C; andi € g,
0, otherwise.
Correspondingly, defingn through CON with{ ,,} and initial distributionrz .
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PROPOSITION4.8. Supposeng({P,}) = 1. Then we have

o1 o1
liminf —log i, (Z, € T3, G,;) > liminf — Iog,un(Z,, el's, Gy).
n n -
The proof is given in Section 7.

Coarsegraining estimate. Again, we bound the right-hand side above through
a decomposition of visit times and locations.

PrROPOSITION4.9. Let 7 be SE-1-positive. Then

o1
liminf ~logp_(Z, € '3, Gy) > —J7;(T'3).
, Q9K

The proof is given in Section 9.
Finally, whereas € I'? is arbitrary, we have that

o1 .
liminf = logP,(Z, € T'?) > — inf J7,(z)
n—oo p zel'e

and so patrt (i) is proved.

PrROOF OF THEOREM 3.2(ii). The following cost bound, proved in Sec-
tion 11, is the key step.

PrRoOPOSITION4.10. We have under Assumptions B or C that 73 > 7o and
S0 J7; < Jp.

Therefore, given the lower bound in part (i), the second part follows directly.
O

5. Path surgery upper bound. The strategy of Proposition 4.2 is to compare
the probability of a path which moves many times between sets with that of a
respective rearranged path with fewer sojourns. To make estimates we need a few
more definitions.
Letz(n) be the largest entry which connects upward with respect to the ordering
of the setqC;} in the canonical decomposition &f:
tn)= max t(n,(,))).
t(n) Ly (n, G, )
Observe that as movement up the tree is impossible in the limit or, more precisely,
asT,(i, j) vanishesfor k j <i < N + M, we havet(n) — 0 asn — oo.
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Define also for1, ¢2 > 0, the matrixlgn,,gl,g2 = {Pn,ep.eo(5, 1)} DY

f(n,(i,j)), fOI’SECi,tECj
anddistinct1<i, j < N+ M,

Dn(s,t; €2), fors,t € C; andi € §,

Pn(s,t; €1), fors,t € C; andi € D,

for n > 1. Form now through CON the measuwrg,, ., with respect to initial
distributionz and transition matrice§P, ¢, ¢,}.

Let alsop = min{e1, e2} and observe thai is less than the minimum transition
probability within subblocks:

ﬁn,sl,sz(& 1) =

p< min min

1<ISN+M s,t€C

We now describe a procedure to cut paths into resting and traveling parts, which
then are rearranged through a rearrangement map,Ll-et(xq, ..., x,) € X" be
a path of length: > 2. We say thak,, possesses a “switch” at time<li <n — 1
if x; € C; andx;;1 € Ci for j # k. For a pathx, which switchegd > 1 times, let
g1 (X,) be the time of theth switch, where X k <. Set alsogp(x,) = 0 and

ﬁn,&‘l,&‘z(sa t)-

81+1(Xy) =n.
Define now, for 1< k < I, the path segments between switch timggx,) =
(Xgp 106)+1s - - -» Xgr(x))» @nd the remaindef;1(X,) = (Xg,x,)+1, - - -» Xn). De-

fine also that/y 2(X,) = (Xg, _1(x)+2> - - - » Xgr (%)) WhENGL(X,) = gk—1(X,) + 2.

In addition, letC;, be the subset in which path lies for 1<k </+ 1 and
let ¢, = Ci(x,) = (Cyy, ..., Ciy,,) be the sequence of subsets visited, given in the
order of visitation. Also, lef G;|| be the number of distinct elements@y. We say
X, has no repeat visits if the sequer@econtains no repetitions.

ForO<k<n-—1land1l<j <N+ M, define the sets

A, (k) = {X, : X, switchesk timeg
and
Al (j) = {Xn : X, switches;j times, with no repeat visiis

When there are at least two set&;+ M > 2, we define the map

min{N+M—1,1}

o1 Ap(l) — U A, ()
j=1

for 1 > 1, in the following steps.

1. Letx, € A,(). Let sy =1+1 and sje-1 = 1. Inductively define, for
k <Cll,

sk=max{j:Cij¢{C Ci5k+2""’ci5|\el\|}}'
In Words,C,-S”e RS Ci, are the|| G || distinct subsets visited in reverse order
1

starting from the last state af,.

lsk+l’
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2. Forl<k < | ¢, let Jofr o o , wherea < ... < oz(’f,k = s¢, be thed;, > 1
k
paths which lie inC;, .
3. Define
oX)=(J1,....J 1,...,.J sy d .
1(Xn) < ol ol aleil !fféi|>

In words, o; rearranges the paths that correspond to distinct subsets so that
the reverse visiting order is preserved. We comment that the last/path is

preserved under; and thatry is the identity map. e

EXAMPLE 1. Suppos&V + M = 8 andx, € A,(25), where
C25=(Cs, Cg, Cg, C7, Cs5, C7, Cp, Cs, Cp, Cy, C2, Cy,
C3,(C1,C3,C1,C2,C1, Cq, C7,Cs, Cy, C2, Cs, C2, Cy).

Here,||C|| =8, 51 = 3,52 =15,53= 18,54 =19, s5 = 20, s = 24, s7 = 25 and
sg =26. Then

(Ciy,» Ciy,» Ci,, Ciy,, Ci . Ci, Ci, Cig ) = (Cg, C3, C1, Cp, C7, C5, Ca, Ca)

isy» Cisy» Ciggs Cigys Cigg s Cigg

and
025(Xn) = {J1, J3, J13, J15, J14, J16, J18, J2, J7, Jo,
J19, Ja, Je, Joo, Js, Jg, J21, JoaJ11, J17J23, J25, J10, J12, S22, Jo6).

Finally, we recall at this point useful versions of the “union of events” bound.

LEMMA 5.1. Let N > 1 and let {aj, :i,n > 1} be an array of nonnegative
numbers. e have then

lim supE Iog%a" = max lim supE loga!
n—oo N i1 " 1<i<N n—oo n "
and

1. Y. 1. 1 .
liminf — IogZa; =liminf max —loga, > max liminf —loga,,.

n—0o00 p -1 1<i<Nn <i<N n—> p
In addition, let « > 1 be an integer and let {8(n)} be a sequence where 8(n) < n®
for n > 1.Then
B(n)

. 1 .
limsup— lo al =limsup max -loga’
n—>oopn g ; n n—>oop1§i§ﬂ(n) n g n

with the same equality when liminf replaceslim sup.
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See [10], Lemma 1.2.15, for the “limsup” proof. The other statements follow
similarly.

PROOF OFPROPOSITION4.2. ASP, < f’n,gl’gz elementwise, we have
P (Z, € F) =< Vn,sl,ez(zn € F)

Now consider the casW¥ + M = 1 when P corresponds to one irreducible set
Cy1 = X. Trivially in this caseX,, does not leav&’;, so more than one switch is
impossible. Therefore, the upper bound statement holds immediately.

We now assume tha¥ + M > 2. By Lemma 5.1,

(5.1) Ilim sup} logP,(Z,eT) < max lim sup} l0g Vg 61.62(Zn el).
n n)((.90)>0 n
Hence, it suffices to focus an,, ¢, ¢, for a givenxg € £ such thatr (xg) > 0.

The main idea exploited now is that for a realizat¥gpwhich switches between
sets{C;} many times there will be guaranteed a large number of these switches “up
the tree” between se andC; fori > j whose chance is small, and so such paths
are unlikely. For notational simplicity, we now suppregs&nde, subscripts.

STerp1l. Decompose according to the number of switches:

n—1

(5.2) Vio(Zn €T) =) " vo(Zy €T, An(i)).
i=0

STEP2. Let/>1and letx, € (Z, € T} N A,(). Let alsoy, € o, (01(X,)),
that is, y, is a path with/ switches which rearranges @ (x,). As y, =
(J1Yn), - -, Jix1(Yn)), WhereJi(y,) is a path inC;, for1 <k </ + 1, we have

Vxg Xy =Yn)
(5.3) = v, (X = J1)

1<k<l
8k>8k—112

1
k=1

where g = gk (Y,) and Jix41.2 = Jrky1.2(Y,) (defined above) are shortened for
clarity.
We now bound the right-hand side of (5.3) by

[

(P1(x0, y1) /D) fxg(Xn = 00 (%)) [ | (86 Yn) + L, (i, ix+2))
(5.4) =
ICill—1

x [T v Hee(orxn) + L (i isyy)) - (1/p) N0,
k=1
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The bound (5.4) is explained by first recalling thatdir(x,) there are||C;|| —

1 connections between different sdiS;}. Equation (5.3) is then multiplied
and divided by corresponding connection probabilities with respegt,foto

give the [Ty ~1(---) term. Second, the prefact@pi(xo, y1)/1) < 1 arises in
connectingxo to the first state of;(x,) with respect tofi,, and noting the
constant form of#;. Third, in forming o;(x,) from y,, with respect tov,,,

[ — |Gl + 1 connections between different sets are replaced by corresponding
internal transition probabilities and divided by them. These|| ¢;| + 1 divisors

are then underestimated by the producpt

Step 3. We now bound further the product terms in (5.4). Consider the
subproduct

sr41—1
(5.5) [T (gk(yn) + 1, Gk ix+1)

k=s,

whose factors correspond to transitions between sets in subsequgnce. .,
Cis,~+1> for 1 <r < |G| — 1. From this subsequence, we derive a smaller
subsequence in the following algorithm.

1. Letp] be the smallestindex 4+ 1 < g <s,41 such thaC,-q = Cisr+1'

2. If B > s, + 1, let B; be the smallest index. + 1 < ¢ < g7 — 1 such that
C,=C Otherwise, stop.

iﬂi_ll
3. Continue iteratively: If8, > s, + 1, letg;  , be the smallest index. + 1 <
g < B, —1suchthalC; = Cigr _y- Otherwise, stop. Recalling the definition
of s, there are at mositc, || — r distinct sets in the sequencg;, , ..., C"sr+1>'

The above process finishesir) < |G || — r steps to fincB’(,) =s + 1.

n

EXAMPLE 2. With respect to the patk, in Example 1, we consider the
algorithm forr = 1. We saw that; = 3 ands, = 15, and

(Ci,,.C , Ci,,) = (Cs, C7, Cs, C7, Cs, Cs, C, Ca, C2, Ca, C3, C1, C3).

i_;l ’ i'§l+l’ e

Here, there area (1) = 4 distinct sets aan% =51 + 10 is the smallest index so
thatC;, = C3. Similarly, ﬁzl =51+ 7 is smallest, wher€; = Ci, +9="Cas. Also,
/831:s1+4andﬂi:s1+l.

By construction, the terms
f(gsr (yn) + 17 (iSr7 iﬂg(r)))v

1(gpr,, ) + L, gz vigr, ) on E(8p5(Yn) + 1, (igg. igy))
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all appear as factors in (5.5). Also, by monotonicity 6f, (i, j)),

n(r)—1
f(gsr (yn) + 1’ (isr ’ lﬁ,’;(r))) 1_[ i\(gﬁ1§+]_ (yn) + 1’ (iﬁ]:+]_’ lﬁlz))
(56) . n(r)—1
S f(gsr (yn) + 17 (isra iﬁ;(r))) l_[ f(gsr (yn) + I’l(l") - k + 15 (iﬁ,:+lv lﬁ]’())
k=1

Also, by construction, theth switch time between sets; andClé " in the

rearranged path; (x,) is less than the last time to swﬂch@r in pathy,,

&r (Ul(xn)) < &, (Yn).
So, by monotonicity again, the right-hand side of (5.6) is bounded above by
Y (&r(01(Xn)) + 1, (is,. i5,.,)). Also, in particular, it will be convenient to note the
gross bound, becausé:, (i, j)) < 1 applies to those terms in (5.5) not covered

by (5.6), thatl’["+l 1t(gk(yn) + 1, (ks ik+1) < v(&r(o1(Xp)) + 1, (i, is,.4))
and so

Icil—1
(5.7) l_[l &)+ L (ki) < [ v(r(o1%0)) + 1, (isr isps))-
k=1 k=1

STeEP4. We now consider cases wheis large and small. Suppose first that
[ is small, namely < ||&||(IC;/|| —1)/24+ N + M — 1. Then we have the bound,
noting (5.3), (5.4) and (5.7), that

(5.8) on(xn =Yn) < (1/17) Mxo( n= O'I(Xn))-

Suppose now thatis large, thatis] > |G ||(J|IC;||—1)/2+ N+ M — 1. Whereas
the chain can only make at mast+ M — 1 consecutive downward switches (i.e.,
from setsC; to C; fori < j), ing > N + M — 1 switches there will be at least
[g/(N + M — 1)] upward switches from sets; to C; fori > j.

Whereasn (k) < [|&/]| — k and so X} " n(k) < el — 1)/2, we
see carefully in Step 3 that we take at md& | (||G;|| — 1)/2 factors from
1‘[221 f(gxr(Yn) + 1, (ix,ixy1)) whose product is then dominated by
]‘[,'('i’l”_1 Ye(o1(Xn) + 1, (is., i5,,,)). HENce, remaining in the original product are
at least — |G| (1G]] — 1)/2 uncommitted factors of which at least

L=[{~lcldel—=1/2)/(N+M-1)]
correspond to upward transitions.
Then, using monotonicity af(n), we have
I1Cill—1

l !
[Ti(ekym) + L Groikrn) < [T wrlora) + L (igy i) [T 20D

k=1 k=1 j=1
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Furthermore, noting (5.3) and (5.4), we have,/ftarge,
!

(59) on(Xn =Yu) =< (1/ﬁ)l|: 1_[ E(])i|/1xo(xn = Gl(xn))~

j=1

STEP 5. We now estimate the size of the S(;‘:Tl(al(xn)). Observe that the
ordering of states within the+ 1 subpaths i (x,,) is preserved among the paths
o,‘l(a,(x,,)) with [ switches. Then, to overestimatq‘l(ol(xnm, we need only
to specify the sequence in which the pairwise distinct6gfst Cj, #--- # Cj,,,
are visited and how long each visit takes, since once the ordering of the sets and
switch times are fixed, the arrangement within tRel subpaths is determined.

A simple overcount of this procedure yields that

o7 o1 (%)) | < (’Z) ML
Therefore, from (5.8) and (5.9) we have that

vy (X, € al_l(al(xn)))

<n> M7 (X = 01 (%)), for / small,

(5.10) !

l

(7) M5! [ H;(i)}ﬁxo(xn =o1(x,)),  forllarge.

i=1

STEP6. By Stirling’s formula,

Elog(’;) =o(1) —ilog(i) _n-t Iog(n _l).
n n n n n

With this estimate, we now analyze the fact((}DMl ]‘[fleg(i) in (5.10). We
consider cases whén= o(n) and when < n is otherwise.

Casel. Whenl =1, =o(n), then log(')/n — 0. Also, M = ™ p=ln =
™ and[Ti (i) = e?™,

Case2. Whenl =1, satisfies limsup,/n > ¢ for some O< ¢ <1, letn’ be a
maximal subsequence. Théng (Z:))/n/ = 0(1), (logM"")/n’ <1+ logM and
(logp~")/n’ <1+logp~1, but, ag(»’) | 0and limsug’ /n’ >&/(N +M —1),
we have Iog]"[f"z'lg(i)]/n/ — —oo asn’ — oo.

Therefore, with respect to @, = ¢°?, independent of > 1 and the path, we
have from (5.10) that

on(xn € O'l_l(o'l(xn))) = Cnllxo(xn =0l (Xn))
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STEP 7. Letl>1, and leta, (1) = UT "~ 4 (). Let alsoA, (1) =

o({Z, eT', A,()}) and A = (Z, € T, A,()}. Whereas the averagg, is
independent of the order of observatidig, ..., X, },

A,() C A and {Z, €T, A,(D) =0, Y0y(Zy €T, An(D)).
Then we can write
Vio(Zn €T, Ay(D) = vig(07 H01(Zn €T, An(D))))
= Vxp (Xn € U 01_1(Xn))
Xn €A

=< Z on(xn EO‘l_l(Xn))

Xn €A,
=< eo(n) Z /lxo(xn =Xy)
Xn€An
= eo(n) Z /lxo(xn =Xy)
Xn€Apn

=M1 (Zy €T, Au(D)).

STeEP 8. Wheread J;~1 A, (D) U A,(0) C {X, enters eaclt; at most oncg
we have -
n—1
> vio(Zn €T, A(i))

G 0

<(A+(n- 1)e”(”));1xo(z,, eT, X, enters eacld’; at most oncg
Then, noting (5.1), (5.2) and (5.11), we have

) 1
limsup—logP,(Z, €T)

n

. 1 N
< mag limsup—log i, (Z, €', X, enters eacly’; at most once
Xp€ n
7 (xg)>0

Applying Lemma 5.1 completes the proof.]

6. Path surgery lower bound. The lower bound strategy is informed by the
upper bound result. Namely, given the rearranged paths focused on in the upper
bound surgery, we can more or less restrict to them and gain lower bounds.

PROOF OFPROPOSITION4.7. WhenN + M =1, P is irreducible,C1 =X
anddD =@. Then®, = P, foralln > 1 and sd,(Z, € T") = i (Z, € T"). Also,
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as in the upper boundc,, does not switch in this case. Hence, the lower bound
holds trivially.

We now assume that¥ + M > 2. Consider the subs@&t C X" formed via the

following procedure.

1.

Torl<m <N+ M, letJy, Jo, ..., J, be subpaths that belong, respectively,
to distinct setsC;,, Cy,, ..., C;,,, Whereliy, ..., i,} C §. Let j; = |J;|, J; =
(¥1, - ¥5) andJiz = (yh, ..., y,) whenl|j;| > 2 for 1<i < m. We impose
now that the lengths satisty’” ; jy =n — E(N, M).

. Whenm > 2, we connect subpathis andJ, 1 fors =1, ...,m — 1 as follows.

Let 0<k <N + M — 2 be the number of sets entered in the connection
and letL; with i =i; and j = i;p1, Qx and Vi = {x*9, ..., x**1} be as
near (2.9). Denote® = (x*0, ..., x***1y andk, = |w*|. Also, denoteb(s) =

Js + Z?;%(ji +k;). Let noww® be such that

b(s)+ks+1 1 1 1
Piois)n) Xpois = W i) =y (o) + 1 y5 ).
Then, in particular, aif;i ki < E(N, M), we have
b(s)+ks+1 , oo
Piosry Xpoprs =W 31™) = y(b(s) + 1, (5. i41)

S
> ?O(Zj,- +1, (is,is+1)>-

i=1

. Form > 2, ast”:‘ll k; < E(N, M), the length of the concatenation satisfies

L = |<Jla Wla J27 e 7Wm_17 Jm)l
m—1

=n—EN,M)+ > ki<n.
i=1

Whenm =1, the lengthl. = |(J1)| =n — E(N, M).
If now L < n, we then augment the last subpdihbyn — L < E(N, M) states

in C;,,. Specifically, define

5 I, if L=n,
O O S A B if L <n,
where(yjmm ,x1', ..., x," ;) isasequence af— L + 1 elements irC;, with positive
weight. Let alsoJ, , = Ju2 when L =n and J;, , = (Ju2, X', ..., X" 1)
otherwise.
Now let

>Ym

. (Jp,wt ooowm= gy whenm > 2,
A RVAY whenm = 1.
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Finally, we defineB as the set of all such sequeneggossible.
Now write
Pn (Zn € FZ)
= ]Pn(zn eIy, Xn € B)

= Y Pa(Xj=J)y(i+1hd)
Xn€{Z,el'2}NB

Jitkitjo
x IED(j1+k1+1,yf) (Xj1+k1+2 = J2,2)
(6.1) L
N xz(b(m — 1)+1,yjm71,y1)
YLk +n—L -
x P(ZTfl(jﬁki)-i-l,yi")( Y Gitky+2 m,2)
> (L) fir (Zn—gN.m) € T2, Xu—E(N.m) ONly enters(C; :i € §}
with at most one visit to each get
where
P (Xpimn=t — (i ")) whenn > L
c(L) = b)),y )\ Apmy+1 = W1 Xy ) n>L,
1, whenn =L,
and

FZ,n

_ n B( a E(N,M)Ilfll)
=——V—Blxo5 - ).

n—E(N,M) 2 n

Inthe last step, we rewroi®, in terms of the measugg, by collapsing together
the subpathgJ;}. At the same time, since the collapsed péath, ..., J,,) is of
lengthn — E(N, M), we correct the sdia to 'z ,,.

We now estimate the prefactofL). With respect to the minimum probabil-
ity pmin [cf. (2.5)] andn > L large, asP, — P, we can certainly bound

b(m)+n—L E(N,M)
]P)(b(m),yyjn)(xb(m)u =<XT""’XZ1—L>)ZPmin /2.

Therefore, linflogc(L))/n =0.
Hence, the proposition follows by taking liminf in (6.1) and simple estimates.
O

7. Homogeneous “rest cost” replacement. We replace certain a priori
nonhomogeneous “resting” weights with homogeneous ones for both upper and
lower bound estimates.

PROOFS OF PROPOSITIONS 4.3 AND 4.8. The proofs follow as direct
corollaries of the more general Proposition 7.1 belofal.
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PROPOSITION7.1. Let {B,} c R’ be a sequenceof Borel sets.
Upper boundFor ¢1, e2 > 0, we have

i 1 . . 1 _
lim sup; 109 fir e1,6,(Xy € By) < lim sup; 109 fir,e,6, (X € By).
Lower bound Suppose no({ P,}) = 1. Then we have

1 1
liminf — Iogun(x € B,) > liminf — Ioggﬂ(xn € B,).

PrROOF We prove the lower bound part, because the upper bound estimate
follows analogously and more simply. L6t={(s, #): p(s,t) > O wheres, t € C;
fori € §4}. As P, — P, the state space is finite and, by assumpiige= 1, there
existse > 0 and a sequenee< m(k) 1+ 1 such thain (k) < pi(s,t)/p(s, t) for all
(s, 1) € G andk > 1. Write now that

fir (Xn € Bp)
Z Z H(XO)HPZ(XZ 1, X;)
X0€EX X, €By
=> Y 7(x0)
X0€EX X, €By
: Pi(xi—1, x;)
< I pGicex ] %p(xi—l,xi)
(xj—1,x;)eG® (xi_1,x1)€G p(-xl—ly Xi
>y ) 7xo)
X0€EX X, €By
pi(xi—1, x;)
x [l picnx) [l =—F—5p, i1, x)
(xi—1,x;)€G® (xi_1.%)€G p(Xi—1,Xx;)
=z [Hm(l)} Y. Y w(xo)
X0€EX X, €By,

x 1 p,icexd 1 PGz

(xi—1,x;)eG® (xj—1,x)€eG

n
= |:Hm(i)i|ﬁn(xn € By).
i=1

Indeed, for the first bound, we note, {f;_1,x;) ¢ G, that p;(x;_1,x;) =
P, (xi-1, %) when (x;_1, x;) connects distinct sets i, and p; (x;—1, x;) > 0=
P; (x, 1, x;) otherwise. The second bound follows by monotonicitymfti)}.

Then the proposition lower bound follows @8} logm (i))/n — 0. O
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8. Upper coarse graining bounds. The plan is to optimize over a coarse
graining of the possible locationg,, visits in K and associated visit times.
Some additional definitions which build on those in Section 5 are required in this
effort.

Define, for 1< H < N+ M andi = (i1, ..., i) composed of distinct indices
in{1,..., N + M}, that

C(i ) = {X, starts inC;, and enters successivdly,, ..., Ci, }.

Also, letko =0, ky =n and, whenH > 2, let1<k; <---<kyg_1<n-—1, and
denoteky = (ko, ..., ky) and

S, (k) = {X, switches at time®1, ko, ..., kg_1}.
Let also

Vky = (k1/n, (ka2 —k1)/n,...,(n —kp_1)/n).

We now specify a certain cube decomposition. Foe Qy and z € R?,
recall the setD(H, v, z) [cf. (2.6)] and letD(H,v, B) = U,cp D(H,V, z) for
setsB c R4,

Let now F1 be the regular partition &€ into 2/ closed cubegAl:1 < s <27},
whose interiors nonintersect afg| A}, =K. Forn > 2, let alsoF;, be the regular
refinement ofF,_1 into 2'71(2%) closed cubesjA”:1 < s < 2"~1(29)}, where
alsoJ, A" = K. Observe also that the@"~1(29))¥ subcubes formed fronf,,
{A(n,9) = A7 x - x AL 11<5; <2'1(29)}, refineK” as well.

ForBc Kandj > 1, define

Di(H,v,B)= U{A(j,s):A(j, SN D(H,V, B) # &}

be the nonempty union of all subcubes with respegtiigartition which intersect
D(H,v, B). Let also

F(H,n,v,B)={s:A(n,s) C D,(H,V, B)}.

Fora > 0, letm,, be the first partition leveh so that, foreach ¥/ < N + M,
|]Il,81,82(-x) - ]Il,sl,ez(y)l <« Whenlx - y| = dlan(A(m7 )) and-xa y e Ql,el,&‘z-

We also need the following technical lemmas, which can be skipped on first
reading.

LEMMA 8.1. For distinct i, j € G, we have

. . 1 .
Uo(i, j) = limsup—logy (n, i, )).
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PROOFE Write the left-hand side as

) 1 ..
limsup=logy (n, (i, j))
n

k
1 .
=limsu max max)y -logt(n+s, (I,
P,_max ma gn 97(n +s, U5, ls+1)

k 1

= max max) lim=logi(n, (,1

O<k<M—2 Ly Z n g( (s H—l))
s=0

k

= max max) wv(,,! = Uo(, j),
pmax  ma go (s Ls41) = Uo . )

where the second and third lines follow since the limit limdog (k,1))/n =
v(k, 1) holds from Lemma 4.1.0

In the next result, let ¥ H < N + M and letI’ C K be a closed set. Let also
17 = min{l; ¢, ¢, 0} for 6 >1and 1< < N + M.

LEMMA 8.2. Let v' € Qy be a convergent sequence, lim,v" =v € Qp.
Then, for any i ;, we have

H
lim suplim suplim sup inf V"0 (x7)
0tc0  mpoo N—>00 XEDm(H,V",F)].X::]_ Jrip\M

H

> inf vl Xi).
_xeD(H,V,F)ﬂ]KjZ:l ilij.er.e2 (%))

PROOF WhereasD,,(H,Vv",T) c K and K” is compact, we can find
a convergent sequenc&”* ¢ D,,(H,v*,T) — x™ ¢ K¥ so that by lower
semicontinuity of{1},

H H
limsu inf V'Y (x:) = lim VRO (X
n—>oopX€Dm(H,v",l")/_2_:1 JE k—>oo/_2_:1 J ’-7( J )

H
0
=3 v 17, ().
j=1

Now, out of {x"} c K¥, let X"/ — x € K¥ be a convergent subsequence

on which limsup, ., Zf’zl vjﬂ?i (x’") is attained. Also observe thaf (x,) —
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I161,6,(x1) fOr 1L<1 < N + M asé 1 oco. Then, again by lower semicontinuity,

lim suplim suplim su inf v"]I‘) x7)
OToop mToop P D, 0k Z s

H
> limsup) " v;1¢ (x))
otoc T3

H
= Z Uj]ll‘jsslsez (x).

j=1

To finish the argument, we show thate D(H,v, ") N K. By construction,
the diameters of the partitioning cubés(m, -) uniformly vanish asm 4 oo.
As D,,(H,Vv",T") is composed of cubes which intersdetH, v+, T"), we have
that any point inD,,(H,Vv",T) is at most a distance digix(m, -)) away from
D(H,Vv'*,T) N K. Hence, there are pointg™" e D(H,v™*,T') N K¥ such
that [x™ " — y™k| < diam(A(m,-)). Let y’”v”fc — y™ e K be a convergent
subsequence We have thptt' — y"| < diam(A(m, -)). Now sincerl is closed

andzj 1v y] ke T for all m, k, we have
H , H H
. . n, m,n .
lim lim Yoty E=lim Yy vy =) vjx; el
andsoxe D(H,v,)NnK”. O

PROOF OFPROPOSITION4.4. WhenN +M = 1, thereis only one irreducible
subsetC; = ¥ and Jf_’k,el,gz = P(1,¢&1) for k > 2. So, modulo a first transition
(with respect to the constant matriR;), the measuréi, is a “homogeneous
nonnegative process” with respectRgl, ¢1). Also, whereas there can no “repeat
visits” andJqg,¢;,6, = I1,64,6, IN this case, the proposition follows from the LDP
in Proposition 2.1.

We now assume thaVv + M > 2. Also, to reduce notation we suppress
subscriptg, andes2 when there is no confusion in the following text.

STepl. Wherea¥, takes only values in the s&t, we have

fir.er.6,(Zn € T, X, €Nters eacks; at most once

= D> D fmerer(Zn €TNK AL (H — 1), C(i ),
1<H<N+M iy

(8.1)

where the sum ony, is over(N M) H! possibilities.
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STEP 2. We first consider the case when “switching” actually occurs. Let
2< H < N+ M and fixindices ;. Write, forn > N + M (larger than the number
of switches), that

fir(Zy eTNK, A (H — 1), C(ip))
= in(Zn eTNK, A(H —1),C(i ), Su(km)),

Kn

(8.2)

where the sum ok compriseq/,_}) possibilities.
For convenience, denofe=T NK and
E, = A;(H -bn C(l_H) NSy(Kp).

Let alsox > 0 and letn > m,. Recall from part Section 2.4 ch;j eKfori <j,
and so we may write the summand in (8.2) equal to

Ar((Z3% ... Z} )€ D(H. v, B)NK" E,)

A

(28 2, )€ Dl k. ). )

({
. ((z’f, oz alelJam,s), E,,)
S

— k
<Y hx(Zy €Al Z] 1 €AD Ey),
S

(8.3)

Il
=i

where the union and sum is ove@e F (H, m, Vi, B)

STep 3. For 1< < N + M, let r; be the uniform distribution orC;
and letP, . . denote the homogeneous nonnegative measur€;oformed
from CON with U, = P(l, e1,&2) and initial distributionz. Let also 6 >
MaXi</<N+M MBXe ., ., 11,e1,60(X) be a number larger than the maxima of the
rate functions on their domains fiiteness (cf. Proposition 2.1).

We now use the Markov property (2.2) and simple estimates to further bound

the summand in (8.3) as
Ar(ZeAm . . Z} i €Al E,)

§1°° SH’

_ ok ky ;
<pz(Z7" € Aﬁ, Xitin Cyy)
H-1
x [T 1C 1y (k; +1,Gjsij40)
(8.4) =t
_ ki1 kivq .
X M(nij+l,k_,~+1)(zkjil €AY, Xk;:—l inCi;.,)
H-1
k

H-1 _

. . 1 i

<[] vki+1G.i+0) ] |Ci,»+1|P(§;jl+l,kj+1)(ZkﬁllE A¢ L)
j=1 j=0
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STEP4. Recall the definition off! just before Lemma 8.2. Let
c(kjyr—kjs AY .6, Ci;q)

Sj+1°

iy
= P(;ztjlﬂ,kj-kl)(zk;ill € AP ) expl(kjr1 —k; )H?,H( 6))-

From homogeneous nonnegative large deviation upper bounds (cf. Proposi-
tion 2.1), uniformly overH, kg, the finite number of cubes at levelm, and
iy, we havec(kjiy —kjs A ,6,Cij ) < e

Also by monotonicityy (i + 1,...) < y(i,...). Then we have (8.4) is less than

H-1
(8.5) eo(")|:1_[ y(kj,(ij,ij+1)i|eXp[ >k —kji- 1)1[9 (AT
j=1 j=1

STEP 5. At this point, we now bound the terms that correspond to no
“switching” in (8.1), thatis, wherH = 1. For 1<i; < N + M, we have

(8.6) fix(ZyeT NK, A,(0),C(ip) <e”™ Y exp{—nll (A7)}

s1€F(L,n,1,B)

STEP 6. It is convenient now to defing (0, (/,1")) = 1 for distinct 1<,
I < N + M. We combine (8.5) and (8.6) to bound (8.1) as

i (Z, €T, X, enters each s&t; at most once

13D 993l ) FIURUSEA]

1<H<N+M iz ky S Lj=1

H
X exp{ =Y (kj — kj_l)H?i(A?j) }

j=1

IA

[Note that (8.6) corresponds to indék= 1.]
Since the sum ovese F(H, m, Vk,,, B) contains at mos2”~1(2¢))# terms,
we can apply Lemma 5.1 to obtain

Ilmsup logii, (Z, € T, X, enters each s&; at most once

§I|msup max maxmaxmax
(8.7) 1<H<N+M iy kg S

H

(kj —kj—1) m

= "

STEP 7. Now, by the choice ob, we have]Il@ =[onQ forl<l<
N + M. Also, recall thatl; is uniformly continuous onQ; for 1 <I <N + M
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(Proposition 2.1). Then, f’e F(H, m, Vg, B) such thatA (m, s) N Qi) X -+ %
Qiy # 9, we have

1 H
=D (kj — kDI (AT)
ni

]_

1 H
= (kj—kj- inf T (x;
n /Z::l( j Tk 1)xjeA?}ﬂQj i;(xj)

1H
(8.8) > inf — E ki—ki_DL; (x;)) —«
xeA(m,S)ﬂH,H:lQi,”j:l ! ! 7

1 H
= (k= kDI (x)) —«

= inf
xeA(m,s)ﬂ]‘[,il ;N j=1
H
> inf EZ(lv—k' DI (x)) — e
_xeA(m,S)njzl J J=H T .

On the other hand, if there existsC {1, ..., H} such thatA?j, N Q; = for
all j € G, we have thaﬂfj(A;’;) =infy;ean I;; = 6. Then, combining with (8.8),
E o
we have

1z )
— >k = kj-DT7, (AT)

j=1
! 0 (Am 1 o
(8.9) = D0 Gy — kDI (A7) + = 3k — kDT (AF)
jeGe ferd
1 ,
> inf - ki — ki IF AN
T XeA@m,9 n ]X::]_( J J 1) i (XJ) o

With the estimate (8.9), we have that (8.7) is less than

H-1

: 1 L

lim sup maxmaxmax Y~ =logy (k;, (i, ij+1))
H iH kH ]:0 n E P

(8.10)

1 H
= inf SN ki — kDI (x) + .
X€Dp (H Vi, B) 1 ;_ ! ! Al

STEP 8. Without loss of generality, we may assume that the lim sup sequence
in (8.10) occurs on a subsequence with fixed ¥ < N + M, i ; and vectork’,,
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where
Vi, =V'>v={v1,...,vy)
and

1 0o . .
nll_)moo - logy (K7, (i}, ij+1)) exists for 1< j < H.

Whereas values @f andm above a certain range are arbitrary, by Lemma 8.2 we
have

lim suplimsup lim inf v”JI9 (x)
t00  mtroo "TXxeD, (Hv" B)Z /

> inf v;l; (x7).
xeD(H.v,B)NKH = Z S ELE2 R

STEP9. We now argue that

(8.11) lim — Iogy(k], (ij,ij4+1) < (Z”l) Ilmsup logy (n, (ij,ij+1))-
=1

Indeed, by definitior{j,j:l v =lim k;-’/n forl<j <N+ M. Then, whereas

1 0o 1

;'09V(k‘;,(lj,lj+1)) —k—n|09)/(k,,(l,,l]+1))
inequality (8.11) follows easily wher{j,zlv, >0 or 0> Iimsup(logy(k;?,
(ij,ijy+1)))/n > —oo, but in the exceptional case, (8.11) still holds: Whereas
Iogy(kf}, (ij,ij+1) <0, we have by the convention Q—oc) = 0 that

1 o
lim . logy (K7, (ij,ij+1)) <0=0-(—00)

(Z v1> lim sup- Iogy( (ij,ij+1))-

=1
Therefore, we have

H-1 1
> lim = |Ogy(kj,(l],l,+1))
j=0

H-1/ ]
. 1 -
<1ia>2 Z (Zv,) lim sup; logy (n, (ij,ij4+1)

=1

T

— J
1iH>2) Z (Z vz) Uo(ij,ij+1)

=1
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from Lemma 8.1, where the indicator reflects that the right-hand side vanishes
whenH = 1. So (8.10) is bounded above by

H-1/ ] H
1iH>2) Z (Z Ul)uo(ij, [j+1) — inf Z Villij ep.e0(x)) +

H
=0 \i=1 xeD(H,v,I")NK i=1

H-1/ j

< —minmin min —1 v | Uo(i;, i

< -mpmin, i, ~tur-a 3 Pamyi
H

+ inf_ Z UJ'H,'],,SLSZ(X‘/') + o
xeD(H,v,B)NKH =1 ’

< _JUO,Sl,Sz(E) +oa= _JUO,Sl,Sz(F N K) + .
Whereasx is arbitrary, the proposition follows.[]

9. Lower coarse graining bounds. As with the lower surgery estimate, the
plan is to restrict the process to conveniently chosen events to derive lower bounds.
Recall the notatiom),(/), i i, C(i ), kg and S, (ky) from Sections 5 and 8.
Also, for/ € g, let P! denote the homogeneous nonnegative measur@ avith
transition matrixP (1) and initial distributiony.

PROOF OFPROPOSITION4.9. Whereasr is SIE-1 positive, lek; € C; be
such thatr (¢;) > 0 for € §. Now, whenM =1, § = {¢1}, J5, =1, and on the
setG,, the process never leav€s, . In this case,

1, (Zn €T3, Gn) 2 Pl (Zy €T3)

and the desired lower bound follows from Proposition 2.1.
Suppose thaf > 2.

STEP1. Letnowi, = (i1,...,im), Wherei; € g for 1< j < M, be a given
ordering of the nondegenerate irreducible getket alsoQ}, = {ve Qu:v; >0
for 1 <i < M} be the set of positive measures and Vet Q. Define also
v(0) =0 andv(u) = ijzl vj for 1 <u < M and, in addition, fon large enough
so that|nv(u)| < [nv(u +1)] for 1 <u < M — 1, thatk” = {|nv(D),...,
lnv(M —1)]).

Then, for all largex,

En(zn €3, Gp)
> (Zn €T3, AL(M = 1), Ciyy)
=> " 1_(Zn €T3, AQ(M — 1), C(ipp). Su(Kar))

Km

>pu_(Zy €T3, Ap(M — 1), C(i py), Su(k™)).

9.1)
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STEP 2. Wheread s is open, the seD(M, v, I'3) [cf. (2.6)] is also open.
Then, forx e D(M,v,T'3), let ¢ > 0 be so small so that the open cuhé(x)
aboutx with side lengthe is containedA¢ (x) = ?4:1 A®(xj) C D(M,vy,T'3).
Also, for simplicity, let

E,=A,(M—1)NC(> ) NSy(k"
and
1 nv@)] — [nv@u —1)]
vy n

forl1<u < M. Then (9.1) equals

a,(u,Vv)=

1
02 b w ((an @ ZE™ D (M ZT 1)) 41) € DMV, T3), Ey)
' 1
> p_((an V) Z{ P a (M) ZE g1 1) € AT (X0, En).

STeP 3. To make notation easier, we now get rid of thgu, v) terms at
the cost of a further lower bound. Namely, becad$ec K is bounded for all
1<i<u,anda,(u,v) — 1for1<u < M, we have for alk large enough that

@) , nv(2)] )
Uz Z @ a2 Zhnu—1)42) € A2

C {lan @ ZP™ ™M an (M ZT 1) € A0}
Therefore, dropping the superscriptx) = A?/2(x), we have for large that

1 2
93) 92 =p_(Z{" M. Z D o 2y -1y 42) € A, En).

STEP4. We now decompose (9.3) in terms of resting and routing transitions.
Recall that the transition probability between statesC; andy € C,, at timen
with respect tqu equalsy®(n + 1, (I, m)) and does not depend on atomandy.
Bound (9.3) I below by

[nv(1)] - nv(2)]
”(eil)ﬁeil (<Zl Zan(l)J+2’ sy fnv(M—l)Hz) € A(X),

Xno@-1) = €, aNAX py@u-1)+1=¢€;,,, fOr2<u <M —1,E,)

M—
v j 1
(9.4) H PO(lnv)] + 1, G i) - PE (27" € A, Xpauwy = eis)
u=1

M—
[nv(u)] .
H (an(u—l)]—l—l,eiu)(Zan(u—l)J+2 € Axy), Xinvw) = elu+1)

l
X IP(AL/Inv(M—l)J+1,eiM)(ZrLlnv(M—l)J—i-Z € A(xm)).
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STEP5. Observe, by definition, for distinétj € g, that

L 1 v 0 .o Lo 1 . 1 .o PO
liminf Elogy (k, (i, j)) = liminf E|0905r§n;|(r117,M)Z (k+r, @G, ) =70, j).

Then, because large deviations of finite time-homogeneous irreducible chains are
independent of the first and last observations, we have

liminf E log(9.4)
n

M—-1
> Z <|iminf M)
u=1

n

o 1 v0 .
(9.5) X (Ilm inf oG] 71 logy~(lnvu)]| + 1, (iy, zu+1))>

M

- Z vu]Iiu (A(xu))
u=1

M-1 M

> Y v@) Ty Giyr) — 2 vulli, ().
u=1 u=1

STEP6. Whereay ¢ Qj(l x € D(M,v,TI') and arrangemetit,, composed of
members irg are arbitrary, we have from (9.5) that

1
(9.6) liminf — Iogun(Zn eI'3, G,) > sup maxg(v, o),
g fad

eS
veQ}, TM
where
M-1 M

V,0) = VE , — inf I .
g(v,0) ;v@o 1(%o)» Cout1)) yeD(M’V’FS)Elvu £ )

We now argue that we can repla@& with the larger2,, in (9.6). In
Lemma 9.1 below we show, for eaeh thatg(-, o) is lower semicontinuous as a
function ong2,,. In particular, becaus®y, is a finite set, maxs,, g(-, o) is lower
semicontinuous. Therefore, by taking limits, we improve the bound in (9.6) to

o1
liminf —logu_(Z, €T'3, G,) > sup maxg(,o),
n -7 VEQMUESM

which is identified as- infcr, J7;(z). O

LEMMA 9.1. Let B C R? bean open set, and let M > 2 and o € Sy;. Then
g(,0):Qy — [0, oo] islower semicontinuous.
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PROOF Let {Vv"} Cc Qu be a sequence which converge’$,— v. Recalling
our convention 0 (—oo) = 0, we note that;(v) = Z;”:‘ll V() T1(8o w)» o (u+1))
is lower semicontinuous, so we need only to pravgv) = infycpm,v, By X
zgyle vule, ., (yu) IS UppPEr semicontinuous.

Let noww € D(M, v, B). BecauseB is open and/* converges tw, we must
havew € D(M, V", B) for all largen. Then,

M M
limsuphz(v") <limsup® " vy, ., (we) =Y v, , (wa).
u=1 u=1
However, because € D(M, Vv, B) is arbitrary, we have in fact that

lim suph (V") < yeDg?/va b Z Vullg, oy ) = h2(V).

O

10. Limit estimateon Jqy,¢,,6,- The proof of Proposition 4.5 follows in two
steps (Propositions 10.1 and 10.2). The first step is to4ake0 and estimate in
terms of a quantity independent of degenerate transienisat$roposition 10.1.
The second step is to le | 0 and recovefiy, in the limit in Proposition 10.2.

It will be helpful to reduce the expressidny, ¢,,, for e1, 2 > 0 [cf. (4.2)].
Wheread]; ., ., is degenerate arounf(i) for i € D [cf. (4.1)], we can evaluate
JUg.e1.e,(B) for BCRY andN + M > 2 as

N+M-1
min inf inf Z Uo(o (i), 0 +1) |:Zvji|

0 €SN+ M VEQN+M XED' (V) =1

- Z v; logey + Z Uila(i),sz(xi)}a

o(i)eD a(i)eg

whereD'(v) ={x € D(N + M,v, B):x; = f(o(i)), foro (i) € D}. WhenN +
M =1, the formula collapses g ¢;,6, = I1,6,-

We describe now am; > 0 “perturbation” ofJq,,, where we replace ratés
with T; ., for i € §. Define, for BorelB ¢ RY andM > 2, that

u (B) = min inf inf
0 o €Sy VeQy xeD(M,V, B)

M-1

i M
— > Uo(6o s ¢g<,-+1>)[2 Uji| + D Vil 0 (1)
j=1 i=1

i=1
WhenM =1, Ietjﬁjo =T1,-
We give now a triangle cost bound useful for the first step.
LEMMA 10.1. For distinct i, j, k € G,
Uo(i, j) + Uo(j, k) < Uo(i, k).
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PROOFR By definition, for somek; and distinct elements® = (13 =i, 11, ...,

l,}l, 1131+1 = j) we havelUo(i, j) = Zflzo vt 1L, ). Similarly, we have for some

kpandL?= (3= j,12,... .12 12 ., = k) that Uo(j, k) = Y2 qu(i2, 12, ). Let
now T be the first index of an element ih! which belongs toL?. Clearly,
1< T <k, + 1. Call alsoT”’ the index of this element in2.

Form nowL?3 = (I, 13, ..., 17,12, ,4. ... 1% | ). From constructionf3 is a list
of distinct elements which we relabel a3 = (3, ..., I3,) for someks.

Now, sincev(a, b) < 0 for all distincta, b, we have

k3 k1 ko
Z U(ls3, ls3+1) = Z U(lslv ls1+l) + Z U(lsz’ ls2+1)'
s=0 s=0 s=0
However,
a & 3,3
Uo(i, k) = 0522"3}3‘_2”2?"2)“““ ls41) = Sgovﬂs Y
> Uo(i, j) + Uo(J, k). O

PrRoOPOSITION10.1. Let B ¢ K be a compact set and fix 2 > 0. Then, we
have

|ig: jgf Jag.e1,62(B) = I3, (B).

PROOF  First, whenN = 0, we inspect thafiy, ¢,.,(B) = ijo(B). There-
fore, we assume tha&{ > 1 in the following procedure.

STEP 1. Lete(k) | 0, v¥®, x*® and o, be sequences so that the limit
inferior is attained:

Ilg:ilgf JUO,Sl,Sz(B)
N+M-1 |: i

(10.1) = lim — > Uo(oew) (), 0er) (i + 1)) Zvj(k)}

k— 00 :

j=1
k k k
— Y v ®oge®+ Y Pl ieao ().
Og(k)(l')ei) og(k)(i)eg

i=1

Because y .y is compact an®y 1y, is finite, a further subsequence may be
found so that, with the same label§®) — v ando, ) = o for all smalle;.

STEP 2. When3}_, ;epvi > 0, we have (10.1) diverges teo, which is
automatically greater than the right-hand side in the proposition. On the other hand,
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if > 5 ep vi =0, we musthave_; ;g vi =1, because is a probability vector.
Now, if (10.1) = oo, the proposition bound again holds.

Suppose therefore that0.1) is finite. Recall that cub& contains the the do-
mains of finiteness of the rate functiofis,, :i € 4} (cf. Proposition 2.1). There-
fore, by taking a subsequence and relabeling, we canxékee D’'(v¢®)) N K
and ensure the sequence is convergéﬂt) — X. Moreoverx e D(N + M, Vv, B)

sincey" MM oF 0 M ¢ B converges ta-¥tM v;x; andB is closed.

l
Then, because > o (i)eD Ui( )Iogs(k) > 0 and the rate function$; ., are
lower semicontinuous, we have that

N+M-1
(101) > IImInf— Z Uo(o (i), 0( + 1)) [Zve(k)}

i=1 Jj=1
(10.2) + Z vf(k)]la(i),ez(xf(k))
o(i)eg
N+M-1
Z UO o (i), U(l+1) |:Zvji|+ Z Villg (i), 65 (Xi)-
i=1 j=1 o(i)eg

STEP 3. WhenM =1 andN > 1, theng = {¢1} is a singleton and;, = 1.
Moreover, whereas-Ug is nonnegative, (10.2) is bounded belowly;, (x;,) >
J%,(B) to finish the proof in this case.

STEP 4. Suppose then tha? > 2 and N > 1. The strategy is to form a
permutation; € Sy, and vectou € 2, for which (10.2) reduces to an expression
that involves only terms that relate . Write 0 =1(4) = {x1. ..., xu}, Where
x; Is ordered as follows:

x1=min{s:o(s) €4} and
xi=min{s > X;_1:0(s)€§}  when2<i<M.
Now, whereas; = 0 for o (i) ¢ ¢ and, in particularpy; =0for 1<i < x; —1
wheny; > 2, we have
N+M-1 |:

Z Uo(o (i), 0 +1)) Zvji|

j=1
N+M-1

Y Uolo@,oi+D) > v

i=x1 X1=J<i
jeo1g)

M—-1xk+1—1

==Y Y Ulo@.oli+1) Y. v;+Ko.

k=1 i=yxx x1<j<i
jea=1(9)
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where
N+M-1
— Z UO(U(i),O‘(i+1))|: Z Uji|, whenyy <N+ M,
Ko= i=xm 1<j<i
jee=t@)
0, whenyy =N + M.
In any case, becaug®) is nonnegative, we have that
N+M-1 i
-y uo(d(l'),a(i—l-l))[Zvj}
i=1 j=1
(10.3)

M-17 xk+1—1
2—2[ > Uo(e@),o(i+1D) Y. v‘,-i|.
k=1

=Xk x1<j<i
jeo=lg)
STEP5. We now bound individually the terms in large brackets in (10.3). For
eachyy <i < yxt1—1,as{v;ixa<j<iandjeo (9} ={v,:1<s <k},
we may write

Xi+1—1
> Uo(oG),oi+1) > v
=Xk x1<j<i

jea=1(9)

=[Uo(o (xx), 0 (xx + 1) + Uo(o (xk + 1), o (xx + 2))

k
+ -+ Uolo (Xk+1 — 1), 0 (xk+1))] |: Z UXX:|
s=1

k

< Uo(o (xx)» o (Xk+1) Z Uxs
s=1

by repeatedly applying the triangle inequality Lemma 10.1.
Hence, pulling together the inequalities, we have

N+M-1

- Y Uo(a(i).oli+1) [ > v]}
j=1

i=1
(10.4)

M-1 k
>— > uO(O'(Xk),U(Xk+1))|:zvx_;i|~

k=1 s=1

STEP6. Define nowu € Qy by uy =v,, for1<k <M. Then

M M
Z Villg i), e, (xi) = Z VLo ()62 (X x) = Z uilo (x0),60 (Xx)-
iec~1(9) k=1 k=1
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Now letn € Sy be the permutation wheig ;) = o (x;) for 1 <i < M. Noting
(10.4), we can then bound (10.2) below by

M-1 k M
— Y Uo(o (), U(Xk+1))|:zus:| + Y w60 ()

(105) k=1 s=1 k=1

M-1 k M
=— Y Uo(Zne)- é“n(k+1))[zus} =D gl 00 ()

k=1 s=1 k=1
STEP 7. By constructiony_ 4" v;x; € B. Then, because; = 0 when
o(j) ¢ 4, we have

N+M

M M
Z VjXj = Z VjXj= Z VjXj = Z UxsXxs = Z"‘Sxxs
j=1 s=1 s=1

jeo~1(4) jeo1(9)

and so{x,,, ..., xy,) € D(M, u, B). Hence, tracing through the argument,

M-1 k M
(105) > inf - Z uo(fn(k)v {n(k+l))|:zus:| - Z Mkl(r;(k),ez(xk)
k=1

xeD(M,u,B) k=1 —1

> I3, (B). O

PROPOSITION10.2. LetI" ¢ R be compact. Then we have

(10.6) iminf I3, (1) = Juo ().

PROOF  When liminf; | o quo(l“) = o0, of course (10.6) is immediate.

STEP 1. Suppose then that lim igfoJ%O(F) < 00. As in Step 2 in Proposi-
tion 10.1, lete(k) | O, o:) = o independent ok, v¢® — v andx*® — x ¢
D(M,v,T) be such that

liminf J§, (T
el0 Juo( )
EH & ew o) (k)
. & & &
=k|LmOO—Z<Zv,~ )U0(€a<i),€a<i+1))+zvi Iy iyet0 ().
i=1 \j=1 i=1
STEP2. We now claim for € § that

(10.7) liminf I; oo (x° %) > T ().
k— 00
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For » € RY, let p; .(x) and p;(A) be the Perron—Frobenius eigenvalues that
correspond to the tilts of P(i, ¢) and P (i) [cf. (2.3)]. From [21], we have that
limg olog ;e (1) =l0gp;(1).

Now, for 2’ € R?, observe that

liminf Li e k) (xf(k)) = liminf Sup<)\7 xf(k)> —log Pi,e(k) (A)
k reRd
> Iimkinf<)J, xf(k)> —log pi.e k) (X))

= <)"/’x> - Iogpl()"/)
Hence, because’ is arbitrary, we have Iimir}fﬂi,e(k)(xf(k)) > sup {(r, x) —
logp; (M)} =1; (x).

STep3. Infact, (10.7) proves the proposition whih= 1. On the other hand,
whenM > 2, we have with (10.7) that

M=1/ i M
|iT¢i51f I (M) = — > ( > Uj) Uo(Lo(i)s Loti+n) + Y ville, ) (i)

i=1 \j=1 i=1

11. Routing cost comparisons. We separate the proof of Proposition 4.10
into two separate results.

PROPOSITION 11.1. Suppose Assumption B holds. Then, for distinct
i,j€g(P),

@, j) = Jo(, j).
PrRooFr Recall the definitions ozl(n, ¥,2) andzl(n, (@i, j)). Itis enough to
prove fory € C; andz € C; that
1
(11.1) liminf =logyt(n, y,z) > 7o, j).
n—oo n —

Then, clearly

- . o1 1 .. -
713, j) = I|nrn)l(£10f - logy (n, (i, j)) = Tol, j),
finishing the proof.
We now show (11.1). Let andLy; = (i =g, 11, ..., Ik, 11 = j) be such that
k

To(i, j) =Y tls. ls41).

s=0
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To connect with the definition ofy1(n, (i, j)), form vectorsx® = (x, ..

0 k+1 _ k41 k+l
X)X = (e

that, for O< s <k,

L)

) with distinct elements inCy, ..., C;,, such

x5 =allslyrn) and x3 ™ = by Uy, L),
1<g; <t+1and 1< qo, gr+1 < t. In addition, becaus¢P (i):i € 4} are
irreducible, we specify that the paths are possible. Namely, for all large
P13 (X O =x0) = (pmin/2)",

1
P(n—&-r(s—l),xi) (Xn+:8) D+1— XZ) = (Pmin/z)t

and

P k+1-1 L ) (Xnr(e+1) =2) = Pmin/2

whengy > 2 and 1< s <k + 1. Here,x} = (xg,...,x;_s) wheng,; > 2, r(s) =
Y y—o0qu andpmin is defined in (2.5).

Since the length of the connecting path fromto z is at mostEq(N, M)
[cf. near (2.10)] we have

liminf = |Ogyl(n ¥,2)

log( pmin/2) EoV- M)
n

> [iminf [

k+1
+ - Z Iog Pn+r(s) (a(ls’ ls—i—l) bn—l—r(s)(ls’ ls+1)):|

s=0
k+1
= Z t(lg, ls+1) = To(, )
s=0

from Assumption B. O

PROPOSITION 11.2. Suppose that Assumption C holds. Then, for distinct
i,jeg,
J1(i, j) = Jol, j)-

PROOF The proof is similar to that of Proposition 11.1. As before, it is
enough to show (11.1). Let and Ly = (i = lp,l1,..., I, lxkr1 = j) be such
that To(, j) = YX_o (s, [;+1). Form the path vector® = (x9,...,x0) with

1 < go < v of distinct elements ir; and statec% € Cy, such that

Y

Pn— 1+(qo+1)( Xgor X ) = t(n + qo, (i, ll))
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and

[ 1 n+qgo—1 0
= q0—1 _
Ilnmlnf " logP -1,y (X}, =X")

= liminf - [Iogpn(y x9) +log p, (x9, x9) + - - - + log p,, (x° Xgo1s X 20)] =0.

Sucha vectox0 exists from the primitivity ofP* (7).
Similarly, form vectorsx® = (xi,...,xgs) in C;,, where 1< g, <t + 1 for
1<s <kand1l<gr41 <rt. Also specify that

Pn—l—‘rr(s)—‘rl(xs H_l) = t(” —14r(s)+1, U, lH—l))
for 1 <s < k. In addition, the paths are chosen so
1
o (5)—1
liminf ; |°9]P)(n—l+r(s—l)+1,xi)(XZ+:(§ D41=X%3) =0
and
liminf = IogIP(n+r(k+1) Lkt y(Xntrer) =2) =0

whenls € § andg, > 2, andx;, andr(s) are as before. Then

k+1

1
liminf - Iogy (n,y,z) > liminf = > "logt(n — 1+ r(s), Uy, li+1))
n s=0
k+1
> Y 1y, ls+1) = Tol, j).
s=0 O

12. Examples. In this section, we present three examples that concern

possible LD behaviors ofZ,(f)} underP, € A(P). The first shows that even

if Assumption A is violated, an LDP may still hold with respect to some processes
and functions f. The second example shows that the bounds in Theorems
3.1 and 3.2(ii) may be achieved. The third example shows that it is possible
that an LDP is nonexistent under Assumption A when one of the submatrices

{P(i):i € 4} is periodic and Assumptions B and C do not hold.

12.1. Assumption A is not necessary for LDP. The point is that if the

connecting transition probabilities oscillate so that Assumption A fails, but not

too wildly, then the process on the large deviation scale can wait/antime to
select optimal connections. L& = {0, 1} and initial distributionr = (1/2,1/2).
Let alsof: X — R be given byf(0) =1 and f(1) = 0, and fork > 1, define
transition matrices
_[1-3r e _[1-3r
Ap = [ 0¥ 1 and By = 0¥ 1 )
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Then, forn > 1, let
P _{An, for n even,
"7\ B,, for n odd.

The limit matrix P is the 2x 2 identity matrix I, with two irreducible sets,
Co = {0} and C1 = {1}. Both sets correspond to degenerate rate functions, for
i =01, I;x) =0 for x =1 — i and = oo otherwise. Also, one sees that
7(0,1) = —log3 < —log2=v(0, 1), so Assumption A is not satisfied here. Of
courser (1, 0) = v(1, 0) = —o0. Also, the process satisfies Condition SIE-1.

To identify the large deviations ofZ, (f)} underIP’j{,P"}, we focus on sets
I' =(a,b]for 0 <a < b < 1, because the analysis on other types of sets is similar.

As before,A(0) and A(1) are the events tha{,, does not switch and switches
exactly once between sefy andC;. Sincer is such that?,(Z, € T", A(0)) =0
and also since the chain cannot switch from state 1 to 0, we have

Pr(Zy €T) =Py (Zy €T, A(1)) =P, (Z, €T, A1), X1 =0, X, = 1).

The even{A(l1), X1 =0, X,, =1} C X" consists exactly ot — 1 pathsx, ; that
start at O but switch to 1 attime<di <n — 1. Now compute that

i . n
Py (Xp =Xa,1) = 7(0) [(1 = a0)F) (@l + D) [T @ -a®))
k=1 I=i+2
= ¢’ (a(i + 1)),
wherew (k) = 1/2 for k even and= 1/3 for k odd. Also, on the patk, ;, we have
thatZ, =i/n.
LetGY={1<i<n:i/nel’. Then, by Lemma5.1, we have
1
liminf =logP,(Z, € '’, A(1), X1=0,X,=1)
n
o 1
= liminfmax—logP, (X, = X,.i)
ieG%n

[an]

=1lim infmax{T log(e([an)), %ﬂ log(

a([an] + 1))}

=a Iog(%) = —alog(2).

Similarly, limsup1/n)logP,(Z, €T, A(1), X1 =0, X, = 1) = —alog(2).
A related analysis works for more genefaind we have thdtZ,, (f)} satisfies
an LDP with rate function

zlog2, z€[0,1),
I(z)=140, z=1,
00, otherwise.
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12.2. Boundsmay be sharpin Theorems3.1and 3.2 The key in this example
is that the connection probabilities a#ate “unboundedly,” e picking out the
optimal strategy is time-dependent. As beforeMet {0, 1}, = = (1/2,1/2) and
let f:X — R be given byf(0) =1 andf (1) = 0. Let{g(n)} be a fast divergent
sequence of integerg(n) 1 oo, g(n) < g(n + 1) andg(n —1)/g(n) — 0. Also,
fork>1, let

b, forl<i<g(2),
P, = A,‘, fOI’g(Zk)<i§g(2k+l),
B;, forg(2k+1) <i < g(2k + 2),
whereA; and B; are defined in Section 12.1.

To compute the large deviations{,, ()}, we focus now on sefS = (a, b) C
[0, 1], where O< a < b < 1. Calculations for other sets are analogous. Then, in the
notation of the previous example,

o1 o1
liminf =logP;(Z, € T') =liminf = logP,(Z, €T, A(1), X1 =0, X, = 1).
n n

Letnowny = g(2k+2) for k > 1. Theni/n; € T exactly wheg(2k + 2)a] <
i <|gk+2)b]. Also, whereas
n g(2k+2) g2k +2)
we have for all largek that g(2k + 1) + 1 < [g(2k + 2)a] < |g(2k + 2)b] <
g(2k + 2). Note also thalP; = B; for g(2k + 1) + 1 <i < g(2k + 2). Hence,

1
lim —logPy (Z,, €T, A(1), X1=0, X, =1)
ng

1
=liminf max —IlogP; (X, = Xn,.i)

iti/ngel’ ng
o [8(@n+2)a] 1 _
=Ilim 7g(2n 2 Iog(s) = —alog(3).

Moreover, in fact liminfl/n)logP, (Z, € I') = —alog(3).
Similarly, by considering subsequenge= g(2k + 1), we get

1 _
limsup=1logP,(Z, €T, A(1), X1 =0, X, =1) = —alog(2).
n
These calculations, and analogous ideas give, folartlgat
1 _ _
limsup—logu,(Z, el')=—inf J(z)
n zell
and

1
liminf —logu,(Z, €% =— inf J(z),
n zel'o—
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where
zlog 2, forz €[0, 1),
J@ =10, z=1,
00, otherwise,
and
zlog 3, forz €[0, 1),
J(@) =10, z=1,
0, otherwise.

On the other hand, these lower and upper rate functions match those in
Theorems 3.1 and 3.2(i). Where&g(0,1) = —log 3, Up(0,1) = —log2 and
t(k,(1,0) =0forallk > 1, we have

Jn@ == 08 epd s M), 8109(3) +8lo() + (1 = Hi ()}

=J(z)
and analogously, = J.

12.3. Periodicity and nonexistence of LDP. We consider a process which
satisfies Assumptions A but not Assumptions B or C for which an LDP cannot
hold through an explicit contradiction. Also, we show that the lower bound with
respect td7p in Theorem 3.2 does not work for this example.

LetX ={1,...,9} and letr be the uniform distribution oX. Forn of the form

n=1+4 3j for j >0, except whem —3? +1forj>5,let

rl/3 13 13 0 0 0 0 o0 0 T
/3 1/3 13 0 0 t(n,(1,2) O O 0
/3 13 13 0 0 0 0 o0 0
0 0 0 01 0 0 0 t(n(23)
P,=| 0 0 0 00O 1 0 0 0
0 0 0 10 0 0 0 t(n(23)
0 0 0 00O 0 ¥3 1/3 1/3
0 0 0 00O 0 ¥3 1/3 1/3
Lo 0 0 00 0 ¥3 1/3 /3
r1/3 13 1/3 0 00 0 0 07
1/3 13 1/3 0 00 0 0 o0
/3 13 13 t(n+1(12) 0 0 0 0 o0
0 0 O 0 1 0r+1,23) 0 O
Poi1=| 0 0 O 0 0 1tmr+1,(23) 0 O
0 0 O 1 00 0 0 o0
0 0 O 0 00 ¥3 /3 1/3
0 0 O 0 00 ¥3 /3 1/3
Lo 0 o© 0 00 ¥3 1/3 1/3.
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r1/3 1/3 1/3 0 t(n+2,(L,2) 0 O 0 0
1/3 1/3 1/3 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 O 0
0 0 0 O 1 0 O 0 0
Po2=| 0 0 0 O 0 1 0 th+2,(2,3) O
0 0 o0 1 0 0 0 tr+2(23) O
0 0 0 O 0 0 13 1/3 1/3
0 0 0 O 0 0 13 1/3 1/3
LO 0 0 O 0 0 13 1/3 1/3

Forn =32 +1for j>5, let P,.1 and P> be defined as before, but now let

r1/3 13 1/3 0 0 0 0 o0 0
/3 13 1/3 0 0 #(n,(1,2) O O 0
/3 1/3 /3 0 0 0 0 o0 0
0 0 0 01 0 0 0 t(n23)
P,=|0 0 0 00 1 0 0 t(n(23)
0 0 0 10 0 0 o0 0
0 0 0 00 0 13 13 13
0 0 0 00 0 3 13 13
0 0 0 00 0 3 13 13

Suppose now that(n, (1, 2)), t(n, (2, 3)) and¢(n, (2, 3)) vanish as: tends to
infinity and limits

1 1 1
lim =logz(n(1, 2)), lim =logz(n, (2,3)) and lim=logt(n, (2,3))
n n n
exist and equal, respectively,

v(1,2)=1(1,2) =0, v(2,3)=1(2,3)=A
and

1
lim = logz(n, (2,3)) =2A + &,
n

whereA < 0 ande > 0 is chosen small enough sothat 2 ¢ < A.

Define the diagonal matrin, = diagix;%, ..., g%}, wherex; is theith row
sum of P,. Then limA, = Io. Let P, = A, P, for n > 1. The limit matrix
P =Ilim P, =lim P, corresponds to three sets; = {1, 2, 3}, C» = {4, 5, 6} and
C3=1{7,8,9}.

Let also f be a one-dimensional function on the state space suchyitiat=
f@Q=fQ=1f@A=fB=f6)=2andf(7) = f(8) = f(9 =3. We now
concentrate the sequenig, (f)} with respect to the proceﬁ’ép"}.

Assumptions. By inspection, it is clear that Condition SIE-1 and Assump-
tion A hold, but Assumptions B and C do not hold.
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Nonexistence of LDP. First, leti, be the measure constructed fr¢®,} and
7 through CON. It is not difficult to see that the large deviatiorZgfunderP, is
the same as with respect g, that is, for Borell’ C RY,

. 1 — _ 1 _
limsup—logP,(Z, €T) =limsup—logu,(Z, €T)
n n
and
o1 o1
liminf —logP, (Z, € I'°) =liminf - logu,(Z, € I'?)
n n
(cf. Proposition 7.1). Second, the rate functions on the three sets are degenerate:
0, if z=1,
]L-(z)={ “Th fori=1,2,3
o0,

otherwise,
Consider now the following two lemmas, which are proved later.

LEMMA 12.1. ForO<e<1/2,letT" =[2+ ¢, 2+ 2¢]. Then

lim supE logux(Z, €T) > (1—2¢)A.
n

LEMMA 12.2. ForO<e<1l/2andfd > 0,letI"(0) = (2+¢e—0,2+ 2 +0).
Then

T |
|Ir(191¢I(I)’]f Ilnrr_yorlf - logur(Z, € T(0)) < (1—2¢)A.

These results show that no LDP is possible. If an LDP were to hold with rate
function I, say, then

P
(1-2e)A > Ilryilgf Ilnrr_yorlf - logur (Z, € T(0))

>liminf — inf I(x)>—inf I(x)
640 xel'(6) xel

1 —
>limsup—logu;(Z,el') > (1—2e)A,
n—oo N

leading to a contradiction.

Lower bound in Theorem 3.2(ii) doesnot hold. Consider the following lemma
proved at this end of this section.

LEMMA 12.3. Wthrespectto I'(9) asin Lemma 12.2,we have

A
— inf Jrn(2)=1—2e—0)=.
ZEIP(Q)JJO(Z) ( € )2
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Then a clear contradiction with Lemma 12.2 would arise if the lower bound in
Theorem 3.2(ii) were valid.

PROOF OFLEMMA 12.1. Non-wordx, that remains solely in a single closed
set can have an averagdinAlso, by construction, ne-word can pass frond; to
C; fori > j, orin one step fronC; to C3. Therefore, the only-words such that
(1/n) 374 f(xi) € [2+¢, 2+ 2¢] are those which visit succesively(, C> andC3
or those which visit firsC» and thenCs.

We now examingl/n)logu, (Z, € I') along the sequence

el /02)]

for k > 1. Let now A(ni) be the set ofix-words x,, which stays inCy until

time 32k, spends one time unit i@f; and then switches t@'3. By definition, for
Xn, € A(ny) andk large enough, we have

1 % ) 32 41
—Zf(xi)=—+—+(1— + )3e[2+s,2+2g].
ng . — ng ng ng

Then, With8(8) =(1-2¢)/2, we have

Ilmsup logu(Z, eT')

n—oo
1 —
> liminf — logul*(Z,, €T, A(nk))
k—oo ng

> — inf B
(x,y)€D(2,(8(¢),1-8(¢)).T")

— 8(5){ liminf — Iogt(k (1,2)) + liminf = Iogt(k (2, 3))}
+ 8(e)l1(x) + (1 —8(¢))I3(y)
= 8(5){ lim %Iogt(k, (1,2)) +lim %Iog;(k, (2, 3))}

—8(e)I1(D) — (1 —8(2))13(3)
1 25

(2A+¢)> (1—29)A. O

PROOF OFLEMMA 12.2. Let nowny = 32 for k > 1. We first show thax,,
cannot visitC1, C2 and C3 in succession and satisf;§L Z?ilf(x,-) eI'() for
all small6. Indeed, by construction, a path, which visitsCy, C> andC3 must
switch fromC> to C3 at a time less than or equal tékél. However, then, because
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f()>=1and §H/nk — 0, we have for largé andé sufficiently small that

A |
ng

2k—l

13 3
—Zf(xi)z—+<1—
ki Mk

Thus, ifx,, € I'(9), we deduce,, begins inC, and then switches t63. Now let
7(¢) =1 — 2¢. We have

)3>2+2€+0.

PR |
Ilrpilgf lim inf - log Pr(Z, € T(9))

<liminf liminf ! log P (Z,, €T(6))
— €
=010 koo ny 9 frlZm
. . 1
= liminf sup sup slimsup=logz(k, (2, 3))
610 0<s<1(x,y)eD(2,(5,1-8),T'(9)) k

—8I2(x) — (1 —8)I3(y)
=1(¢)lim sup% logt(k, (2,3)) = (1—2¢)A,

because (¢) is the smalless such that(2,3) € D(2, (§,1—§6),[2— &, 2+ 2¢]).
O

PROOF OFLEMMA 12.3. Since motion is possible only frof to C to Cs,

and the corresponding rate functions are degenerate=atl, xo = 2 andxz = 3,
we have

3
J7p(T(@) =  sup sup v1t(1,2) 4+ (v1+v2)T(2,3) = > _vili(xi)
v1tvot+v3=1 xeD(3,v,I'(0)) i=1
0<vi,vp,v3<1
= sup (v1+v2)A
v1+2v2+3(1—v1—v2)el'(0)
O<wvp,v2<1
—(1—2¢—0)(A/2). 0
APPENDIX

A.l. Proof of Lemma4.l We consider separately the situations whend< 1
andé =0.

CAses >0. Leti, =sup.,?. Thens, <7,, 0<7, <1andi, | 3. Also
o1 . 1
lim —logt, — 0= Ilimsup—log¢,.
n n

CAsSeé =0. The proofis split into two subcases.
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Subcasel. limsupl/n)logs, =t < 0. If t, vanishes eventually, that ig,= 0
for n > Np, someNg > 1, then we may take
. 1, forl<n < Np,

, = 2
e for n > Np.

Otherwise, leta, = sup;.,(1/;j)logz; and f, = exp{sup, la;}. Notea, | ¢
andf, > exp{na,} > expin(1/n)logt,} = t,, and also that & 7, > 0. In addition,
(1/n)logt, > a, — t.

Letnow 1> ¢ > 0 and letN1 be such that,, < (1 — &)t forn > N;. Then

! suplt(l—e)=t(1—¢)

A
—logr, < -
n n lzn

for n > N1. Whereas is arbitrary, we then havel/») log?, — ¢.
Subcase2. limsupl/n)logs, =t =0. Ast, — 0,we have,, < 1forn > N>,
say. Leth; = maxy,<;<;(1/1)logy for j > N, and let

1, forn < No,

tn = exp{supjbj}, forn > N».

jzn

Note thatt, <1, and 1> 17, > 0, and as sup., jb; decreases with, thatz, is a
decreasing sequence.

We now identify the limit. Note thak; < O for all j > N> and(1//) logs; — O.
Then, for eactK > Ny, there is an indedx > K such that

b; = max (1/1)logy for j > Jk.
K<I<j
Hence, for large: and givenkK > No,

tn = exp{supj Krgla<>§(l/l) Iogtl} < exp{sup max Iogt,} = Sup max .

j>n j=n K=I<j j>n K=I<j

WhereasK is arbitrary, we have thay | O.
Finally, asb; — 0, we have foe > 0 and large: that

0> (1/n)logi, = (1/n)supjb; > (1/n)supj(—e) = —e.

j=n j=n

Whereas: is arbitrary, we hav¢l/n)logs, — 0. O
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A.2. An extended Gértner—Ellis theorem. We give here a minor extension
of the Gartner—Ellis theorem and state some general conditions under which a
sequence of bounded nonnegative measirgson R¢ satisfies an LDP.

For A € R, define the extended real sequencgr) = 09 fra e d i, (x)
and alsoA(A) = lim,, . (1/n) A, (nl), provided the extended limit exists. We
now recall whem is essential smoothness (cf. [10]).

ASSUMPTIONE.

For allx € R4, A()) exists as an extended real numbe¢o, 0o].

LetDj = {A:—00 < A(X) < oo}. Suppose @ DY, .

The functionA (-) is differentiable throughoub .

When {A,} C D} converges to a boundary point oD,, we have
IVA(L,)| — 0.

5. The functionA (1) is a lower semicontinuous function.

PownE

We now state the standard Gartner—Ellis theorem (cf. [10]).

PROPOSITIONA.1. Let {v,} be a sequence of probability measures which
satisfy Assumption E. Let I be the Legendre transform of A. Then I is a rate
function and {v,,} satisfiesLDP (2.1).

The main result of this section is the following proposition.

PROPOSITIONA.2. Let{u,} beasequenceof bounded nonnegative measures
on R? that satisfy Assumption E. Let I be the Legendretransformof A. ThenIisan
extended rate function and the LDP (2.1) holds. Moreover, T can be decomposed
as the difference of a rate function of a probability sequence and a constant,
I=T1'— A(0).

PROOF By Assumption E, withx = 0, we have tha(1/n)logu,(R%) —
A(0) € R. Consider now the probability measurgs(-) = w,(-)/ i, (R%). The
pressure of the sequenfe,} is calculated as\(-) — A(0). Since Assumption E
holds for A(-), it also holds for the shifted function(-) — A(0). Therefore, by
Proposition A.1, we have théat,} satisfies (2.1) with rate functiait given by

x) = S;Jp{(k, x) — (AW — A(0))}

=Sup{A,x) — AA)}+ A(0).
A
Let nowl(x) =sup {(A,x) — A(A)}, so thatl = I — A(0). Whereasu, (-) =
wn (R, (), by translating we obtain that (2.1) holds for the,} sequence with
rate functionl. [
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A.3. Proof of Proposition 2.1.

Extended pressure A. We follow the method in [10] to identify the extended
pressure of the sequenge, }:

1
A =Ilim o log A, (ni)

= lim }Iog exp((k, Zf(Xi)» dU,

n X,eCcn
H 1 t n
=lim = log(n' (IT¢ 3)"1).
n

SinceIlc, is an irreducible matrix, the Perron—Frobenius eigenvalug, i)
possesses a right Perron—Frobenius eigenveciorwith positive entries. Let:
andb be the smallest and largest entries. Then

1 1
log(n' (¢ .1)"1) <log((1/a)m'(TMc,;)"V) == IOg(—ntV) +logp(C, 1)
n a
and, similarly, logrz’(IT¢ ;)" 1) >logp(C, 1) + o(1). Hence,

A =Ilim } logA,(nA) =logp(C, A).
n

Analyticity, convexity and essential smoothness of A. Perron—Frobenius the-
ory guarantees that(x) has multiplicity 1 and is positive for all € R?. Then,
by Theorem 7.7.1 in [21]p(-) is analytic and sa\ (-) is analytic. Now, because
A (1) is the limit of a sequence of convex functions, it is convex. Finally, by the
comments of Section 3.1 in [10], we have tiats essentially smooth.

I is an extended rate function and {u,,} satisfiesan LDP. Recall now thatl =
Ic is the Legendre transforf(x) = sup cga« (A, x) — A(X). By Proposition A.2,
we have thal is an extended rate function afid, } satisfies an LDP with respect
tol.

I is arate function when U¢ is substochastic. WhenU¢ is substochastic, we
have A(0) < 0. Hence, by Proposition A.2,= I — A(0) >0 and so is a rate
function.

Tisnotidentically co. Letx = VA(0). Then, by Theorem 23.5 in [25],

I(x) = sup{r, VA(Q)) — A(L) = (0, VA(0)) — A(0) = —A(0) < o0.
reRd
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Convexity of T and strict convexity on the relative interior of Q. Whereas
A is convex, the Legendre transforinis convex. Also, becausa(-) is real-
valued and lower semicontinuous, by Lemma 4.5.8 of [X0Jis the conjugate
of I. Whereadl is not identicallyoco, it is a proper convex function. Moreover,
sincel is lower semicontinuous, it is a closed convex function as well (cf. [25],
page 52). Then, sinc& is essentially smooth, we have from Theorem 26.3 of [25]
thatl is strictly convex on the relative interior of its domain of finitengks.

Qc isconvexand Q¢ C K. Letx,y e Q¢. The convexity ofl implies that
I((x +y)/2) < (I(x) + I(y))/2 < c0. Hence,Q¢ iS convex.
ForieRY, leth = (|A1l,..., |Aq]). Then

exp(-?\, (miaxlf(i)|)1d>Pc <Tlc, < exp<}\, (miaxlf(i)|)1d>Pc.

Whereas the Perron—Frobenius valuePpfis 1, we have
exp<—i, <max|f(i)|)ld> <p) < exp(?\, <max|f(i)|)ld>.

Now letx be such thak; > max | f(i)| for some 1< j <d. Then, fora € R,
let A/* € R? be such that!® = 0 fori # j and:}® = a. We have then

I(x) > sup(r,x) — <}\, <ml_ax|f,-|>ld>

reR4
> ()J*"‘, x) — <)Jva, (m_ax|f,-|>1d> > ax; — |a|max| f;|.
1 1

By taking a 1 oo, we have thafl(x) = oo. Similarly, if x; < —max | f;|, then
I(x) = oo. Thus,I(x) < oo implies max |x;| < max | f;| and soQ¢ C K.

Q¢ iscompact. If T can be shown to be uniformly bounded @, then the
lower semicontinuity ofl will imply that Q¢ is closed. Also, since it was shown
above thatQ ¢ is boundedQ ¢ will then be compact.

Let p be the smallest positive entry i and letG = {x:I(x) < —log p}.
By the lower semicontinuity of, G is a closed set. Letg € G°. We show that
I(xg) = oo and henc&)¢ C G.

Since G¢ is open, letB = B(xg;8) C G¢ be a closed ball aroungy with
some radiug > 0. If now limsup1/n)logu,(Z, € B) > —oo, then there exists a
sequencéx,, } such thaEl’.’il f(xi)/nx € Bandu, (X, =X,,) > 0. However, we
havepu, (X, = X,,) > p"*, and so limsufl/n;) logu,(Z,, € B) >log p. Hence,
using the LD upper bound, B

1
—I(B) > limsup—logu,(Z, € B) > logp.
N P
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However, sincd is lower semicontinuoudy(B) = [(x1) on some poink; in the
compact seB C G°. Hence[(B) > —log p, giving a contradiction.
Therefore, we must havéxp) = oo because

1
—o0 = limsup—logu,(Z, € B)
n
1
> liminf = logw,(Z, € B) > —1(B°) > —I(xp).
n

I is uniformly continuous on Q. Whereadl is convex,l restricted toQ¢ is
continuous. Sinc® ¢ is compact] is in fact uniformly continuous o ¢.

I is a good rate function. Whereadl is lower semicontinuous, the level set
{x:I(x) <a}foraeRisaclosed subset @+ and hence compact.

A.4. Proof of Proposition4.1. WhenM =1, P(¢1) is stochastic anfly =1, ,
and the proof follows from Proposition 2.1. Suppose now Mat 2. Consider
that Jy < min{l; :i € §} and soQy, D Ujeq Qi is nonempty. AlsoQy, C Kt
Indeed, forz ¢ K, andv € Qj; andx € D(M, v, z) we must have that; > 0 and
x; ¢ Kforsome 1<i < M. ThenCy y (o, X) = oo and saJly (z) = oo.

In addition, Jy is lower semicontinuous and nonnegative becafligethat
correspond to substochastic matri¢®si) :i € ¢} are rate functions with compact
domains of finiteness. Finally;; is a good rate function from the same argument
given for Proposition 2.1.
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