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A DIFFUSION MODEL OF SCHEDULING CONTROL IN
QUEUEING SYSTEMS WITH MANY SERVERS!

By RAMI ATAR
Technion—Israel Institute of Technology

This paper studies a diffusion model that arises as the limit of a queueing
system scheduling problem in the asymptotic heavy traffic regime of Halfin
and Whitt. The queueing system consists of several customer classes and
many servers working in parallel, grouped in several stations. Servers in
different stations offer service to customers of each class at possibly different
rates. The control corresponds to selecting what customer class each server
serves at each time. The diffusion control problem does not seem to have
explicit solutions and therefore a characterization of optimal solutions via
the Hamilton—Jacobi—Bellman equation is addressed. Our main result is the
existence and uniqueness of solutions of the equation. Since the model is
set on an unbounded domain and the cost per unit time is unbounded, the
analysis requires estimates on the state process that are subexponential in
the time variable. In establishing these estimates, a key role is played by an
integral formula that relates queue length and idle time processes, which may
be of independent interest.

1. Introduction. We consider optimal scheduling control for a class of
queueing systems that operate in heavy traffic, in the sense that the load on
the system is nearly equal to its capacity. As often occurs, exact analysis of
the control problem is unavailable and an asymptotic approach is taken, where
a parametrization of the model is introduced and a diffusion control problem
is obtained in the limit. The parametrization that has been more common in
research papers on related problems (referred to here as conventional heavy
traffic) is one where arrival and service rates are both scaled up in a way that
the system operates near full capacity. Recently, several papers have studied a
different parametrization, proposed by Halfin and Whitt [10], where increase of
arrivals is balanced by scaling up themberof (identical) servers in each service
station, while keeping the service time distribution of the individual servers fixed.

In the limit as the parameter grows without bound, conventional heavy traffic
typically gives rise to diffusion processes in the orthant with reflection on the
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boundary, whereas in the Halfin—-Whitt (HW) regime the diffusion takes values in
the Euclidean space. This paper focuses on the diffusion model that corresponds
to the queueing system introduced below, operating in the HW regime.

The queueing system has a fixed number of customer classes and many
exponential servers grouped in a fixed number of stations. Only some stations
can offer service to each class, and the service rates depend on the class and
on the station. Also, customers not being served may abandon the system (see
Figure 1). Scheduling (and routing) of jobs in the queueing system is regarded
as control. As cost one considers an expected discounted cumulative function of
performance criteria such as queue lengths, number of idle servers or number of
customers of each class present at each station. The system is parametrized so that
the arrival rates and the number of servers at each station are nearly proportional
to a large parameter, while service and abandonment rates are nearly constant.
For motivation on the model and on this asymptotic regime, see [4] and [12].

In the scaling limit and under appropriate assumptions, one obtains a diffusion
model whose ingredients are denotedsyy, Z, ¥ andW. Let 4 andg be index
sets for customer classes and service stations, respectively. Assume that a sequence
of systems is given where, in theth system, the number of servers at each station
is proportional ton. For each system, denote byX}, i € {, the number of
customers of classpresent in the system. Then stands for the (formal) weak
limit of the processes—1/2(X" — nx*), wherex* are constants that come from
a corresponding “static fluid model” (see [2] for full details on the fluid model
as well as on the derivation of the diffusion model from the queueing model).
Note that because of the centeririg, assume both positive and negative values.

In an analogous fashion the proces$gsi € {4, andZ;, j € ¢, correspond to
gueue length of classand, respectively, the number of idle servers at stafion
and ¥;; corresponds to the number of classtistomers in service at statign
Finally, W; are Brownian motions that represent the effect of fluctuations in arrival
and service times. Witl; and u;; standing for the abandonment rate of class-
i customers and, respectively, service rate of clasgstomers at statiol, the

l l 4 l

Fic. 1. System with four customer clasgbsfferg and three server typgservice stations
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diffusion model reads

~ 1 t
O XW=x+ W0 =Yy [ wyods—6 [ Yiods, ied,

jed
(2) Z\pij=Xi_Yia ield,
jed
(3) Z\Pij=—Zj, jegl,
ied
(4) Y; >0, Z; >0, ied,jeg.

(5) min[z Yi, Zz{,} =0.

ied Jjed

Denote by7 the graph that has a node per each class and each station, and
an edge that joins the class and the station if and only if customers of the
class can be served at the station. It is assumed in this pape¥ tism@a tree

(see Section 2 for discussion on various aspects of this assumption). It is then
possible to encode equations (1)—(5) in a single equation of the fo¢m =
x+rW() + fé b(X(s),U(s))ds, whereU is a control process that takes values

in a compact space arl is a standard Brownian motion. Also, rescaling the cost
associated with the queueing system appropriately results in a cost of the form
E\ o e Y'L(X;, U;)dt for the diffusion model.

The main result of this paper is characterization of the diffusion control
problem’s value as the unique solution to the associated Hamilton—Jacobi—-Bellman
(HJIB) equation. Such problems for diffusion in an unbounded domain are well
understood when either the “running cogt’is bounded [5, 7] or the drifb is
bounded (as follows from the results of [13], e.g.). The difficulty in the current
model stems from the fact that the domain as well as the functiormsd b
are not necessarily bounded. The question then requires deeper understanding
of the model and, in particular, estimates on moments of the process that are
subexponential in the time variable. Our results apply when either one of the
following conditions holds (further conditions on abandonment rates are assumed
in each case; see Section 2): 1. Service rates are either class- or station-dependent;
2. T satisfies diani™) < 3; 3. Running cosiL(X, U) is comparable td/ X",
somem > 1; 4. L is bounded.

The large time estimates needed for the first three cases of the main result use
three different strategies. One of our basic tools is an integral equation (51) that
expresses a relationship directly betwaenz and W, not involving X and W.

The special form this equation takes whey depend only on' or only on j
makes it possible to get the required estimatestan case 1 of the main result.
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Equation (51) may be of independent interest since it can be seen to express a

relationship between the datd, the control process and theone-dimensional
process ; X; alone (cf. Section 4).

The integral equation is used also in case 2 of the main result, along with a
certain property of the system (1)—(5). This property, which we calhtivadling
property, should be understood as one of the system of equations rather than the
stochastic processes, because it does not réﬁaad a Brownian motion, but as a
generic function:

If the system starts witk; > 0 andz — W; (¢) are strictly increasingthen
Zj(t)=0,jeg,t=0.

For trees of diameter 3 or less we can show that the property holds and that it
implies moment estimates that are polynomial in time. Heuristically this property
expresses that servers do not idle when there is large enough amount of work.
Viewed this way it appears to be a basic question on the model and one would like
to understand in what generality it holds (e.g., for more general trees), irrespective
of the goals of the current work.

In case 3 of the main result we assume that the functida comparable to
a power of the norm of the state proce¥s This assumption is not the most
natural in the context of queueing, since, for example, cost functions that depend
on queue lengths cannot be treated. However, it can be useful if one is interested in
stabilizing the dynamical systn about a nominal model, since the cost penalizes
deviations from the static fluid model. On the technical side, penalizing deviations
from a nominal model simplifies the problem in that moment estimates are required
under one particular control rather than under all controls, and as a result we can
treat the model at full generality, as far as the tree structure and the service rates
are concerned. Finally, in case 4, whéré assumed to be bounded, estimates on
X are not needed.

Apart from their own contribution the results of this paper are a first step toward
identifying scheduling policies for the queueing system that are, in an appropriate
sense, asymptotically optimal [2]. As in [4], such policies can be derived from the
solution to the diffusion control problem. In addition, such asymptotic analysis
justifies the relationship between the queueing system and the diffusion model
studied here.

Recent results on the HW regime include the following. Puhalskii and Reiman
[17] extended the work of Halfin and Whitt to multiple customer classes, priorities
and phase-type service distribution. Mandelbaum, Massey and Reiman [15]
established functional law of large numbers and central limit theorems for a wide
class of Markovian systems in the HW regime. Armony and Maglaras [1] modeled
and analyzed rational customers in equilibrium, and Garnett, Mandelbaum and
Reiman [8] studied models with abandonments from the queue. Papers where a
control theoretic approach was taken to study queueing systems in this regime are
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few. The diffusion control problem associated with scheduling jobs in a system
with multiple customer classes and a single service station was analyzed by
Harrison and Zeevi [12]. In a similar setting, Atar, Mandelbaum and Reiman
[4] established asymptotic optimality of scheduling policies for the queueing
system derived from the diffusion model's HIB equation. A special case where
explicit, pathwise solutions to the diffusion control problem are available appeared
in [3]. Finally, with regard to the conventional heavy traffic analysis of systems
analogous to the one studied in the current paper, we mention Harrison and Lopez
[11], where the corresponding Brownian control problem is identified and solved,
Williams [18], where a dynamic threshold scheduling policy is proposed for the
gueueing system, and Mandelbaum and Stolyar [16], where asymptotic optimality
of a simple scheduling policy is proved for convex delay costs.

The organization of the paper is as follows. Section 2 describes the queueing
system and the diffusion model and states the main result. Section 3 shows how
estimates orj X || reduce to estimates dr}_; X;|. Section 4 develops the integral
equation (51) and establishes moment estimates in case 1 of the main result.
Section 5 studies the nonidling property for trees of diameter 3 and establishes
case 2 of the main result. Section 6 treats case 3 and summarizes the estimates in
all cases. Based on the estimates of Sections 3—6, the proof of the main result is
similar to an analogous treatment in [4], but for completeness we provide it in the
Appendix.

NOTATION. For f:[0,00) — R, let Jf = [5f. For a vectorx, let
x|l =3 |x;|. For two column vectors andu, v - u denotes their scalar prod-
uct. The symbolg; denote the coordinate unit vectors ane: (1,...,1)". The
dimension ofe may change from one expression to another, and, for exam-
ple,e - a = e - b makes sense even df and b are of different dimension. The
symbol C"™¢ (resp.C™) denotes the class of functions @& for which all
derivatives up to ordem are Hélder continuous uniformly on compacts (resp.
continuous),Cpo denotes the class of continuous functigh®n R!, for which
there arer, r such that f (x)| < c(1+ [|x["), x € RL. Let Cgo’f = CpoiNC™* and
Cpol = CpoiNC™, and letCy, , be the class of nonnegative functionglf},. The
symbolC;, denotes the class of bounded continuous functiongghe: C™ N Cy.
LetR, =[O0, 00). If X is a process or a function d, | X ||} = supy,, IX)Il,
and if X takes real values$X|* = sup,-, | X (s)|. The symbolsX (r) and X, are
used interchangeably. The symboisE’ljcz, c5, ... denote deterministic positive
constants that may have different values in the proof of different results.

2. The queueing system and the diffusion. We start with an example that
demonstrates how the HW scaling is performed on a simple queueing system. The
gqueueing system, parametrized/by N, has a single customer class with renewal
arrivals at rate\” andn servers, each having exponential service time distribution
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of rate 1. While a customer is not in service, it abandons the system abt*tate
Let X"(r), Y"(tr) and Z"(t) denote the total humber of customers, the number
of customers not being served and the number of servers that are idle at time
respectively. Clearly

(6) X"+ Z"=n+Y".

Assume that the system operates under work conservation, in the sense that
Y'"AZ" =0.ThenY" = (X" —n)™ andZ" = (X" —n)~. The parameters scale so
thatn2(n=Ia" — 1) — A, n¥2(u" — u) — L andv™ — 6. The systemis assumed

to be critically loaded, in the sense that

(7) A= U.

DenoteX” (1) = n~Y2(X"(t) — n), Y"(t) = n=Y2y"(t) andZ" (1) = n~Y27"(1).
Assuming that the interarrival times have finite second moment and that
X"(0) — x, X" converges weakly to a diffusioki that solves

(8) X(t):x+rW(t)+/ot():—;l+uX(s)_—QX(S)+)ds,

whereW is a standard Brownian motion amds a constant that depends on the
first two moments of the interarrival time and biin the absence of abandonment,
the result is due to [10]; see [8] for a treatment of abandonment). Denotig by
andZ the weak limit ofY” andZ", respectively, note that (8) can be rewritten as

t A
9) X(t):x—{—rW(t)—{—/o (A — [+ unZ(s)—0Y(s))ds,
(10) X=Y-Z,  YAZ=0

We repeat that some nonexponential service distributions were treated in [17];
however, the diffusion limit turns out to be more complicated and that approach is
not taken here.

The diffusion model studied in this paper corresponds to a queueing system
with several classes and stations. The queueing system and the corresponding
diffusion model are introduced below. Since in the current paper we focus on the
diffusion model, we present it here without attempting to justify its relationship to
the queueing system, and we demonstrate only how it is analogous to the simple
model (8)—(10). Full details on this relationship are deferred to [2]. The queueing
system hag customer classes addservice stations (see Figure 1). At each station
there are many independent servers of the same type. Each customer requires
service only once and can be served indifferently by any server at the same station,
but possibly at different rates at different stations. Only some stations can offer
service to each class. Label the classes (and corresponding buffers).ad hnd
the types (and corresponding stationsyasl, ..., I + J, and set

I={1,...,1}, g={I+1,....1+J}.
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The structure of the system can be encoded in a graph. A(paire 4 x g is
called anactivity if customers of class can be served at station It is assumed
that whether(, j) is an activity does not depend an Let 7 denote the graph
with vertex set{1,2,...,1 + J} = 4 U g: A node is associated with each buffer
and each station. Edges®fare between elements £ and; € 4 such thati, ;)

is an activity. Writei ~ j if (i, j) is an activity. Denote the edge set for the graph

by
e={G,j)ed xg:i~j}

For j € 4, let N" be the number of servers at statignLet X! (), Y'(¢+) and
Z”(t) denote the total number of classsustomers in the system, the number
of classi customers in the queue, and the number of idle servers in statain
time 7, respectively. Finally, let}: () denote the number of clagseustomers
in service at stationj at time ¢ (note that\lli”j =0, i # j). In vector—matrix
notation, seX” = (X;l)iel, Y" = (Yin)ielv " = (Z;-l)jeg andv” = (qjl‘nj)iel,ieg-
Straightforward relationships are expressed by the equations

(11) Y/ + ) W =X}, ield,
Jj€d
(12) Zh4 ) Wi =N7, jed.
ied
(13) Yl-"(t),Z’}(t)EO, ied,jed,t>0.

Arrivals of classt customers occur at ratg', abandonment from quedeis at
rate ' and, fori ~ j, service of a class-customer at station is at rateu;?j.
Assume

1

(15) nY?m=1 —v;)—0.

Above, 4;,v; € (0,00), 6; € [0,00), » € R and fori ~ j, u;; € (0,00) and

fi;j € R. Itis convenientto set throughout; = f1;; =0 fori +* j. In analogy with

(7) in the simple example, we invoke a condition that expresses that the system is
critically loaded. The condition involves the “first order” parameters; andu;;,

and certain constants” and lﬁf} that represent a static fluid model (see details

in [2]). The processes are rescaled as

(16) X1(t) =n~Y2(XM(r) — nx¥),
(17) Y0 =n"Y2Y0,  Zj) =n"Y?Z70),
WL () = n VAW (1) — nyr).
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AssumingX”(0) — x and considering, Y, Z and¥ as formal limits ofX", Y",
Z" and®", we expect in analogy with (9),

~ t t
18) X =xi+ W)=Yy [ wyrds—oi [ Yiyds. e
jed

holds, whereW; () =r;W;(t) +£;t, W is a standard Brownian motion, € (0, co)
and¢; € R are constantsy;; =0 fori ¢ j, and, in view of (11)—(13),

(19) Z\pij=Xi_Yia ield,
j€d
(20) Yo =-2;, j€d,
ied
(21) YI'ZO, ijO, iel,jegl.

For reasons explained in [2], the work conservation condition is replaced by the
condition

(22) e-Yrne-Z=0.

The diffusion model is now described by (18)—(22). To view the model in a
control theoretic setting, regandl as a control process anxl as a controlled
diffusion. Then (18) describes the dynamicsigfand (19)—(22) serve to define the
“auxiliary” processe¥ andZ and to set constraints ol. Note that the constraints
on ¥ involve the procesX.

While relationships (18)—(22) are, in a sense, analogous to (9)-(10) (although
obviously there is no control process in the simple model), we would like also to
have a relationship analogous to (8). More precisely, we seek to describe the model
in the convenient form

(23) X(t):x+rW(t)+/Otb(X(s),U(s))ds

with r = diag(r;);cy, appropriate functiorb and control procesé/, and, in
particular, without having to impose constraints éh that involve X. The
assumption below is useful in this development; however, as discussed at the end
of this section, the prime reason for imposing it is different.

AssuUMPTION1 (Treelike). The graphi is a tree.
Proposition A.2 in the Appadix shows that under Assumption 1, (19) and (20)
are equivalent to

G being a linear map fronf(a, 8) € RIT/ : Y o; = 3 B;} to R/, We proceed
to derive (23) under the treelike assumption. Note first that by (19) and (20),
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e-X=e-Y—e-Z,andthusby (21)and (22);Y =(e-X)T ande-Z =(e- X)".
HenceY can be represented as

(25) Yi(t) = (e- X(0) wi (1),

whereu; (1) > 0 ande - u(t) = 1. Similarly,

(26) Zij(t)=(e- X)) vj),

wherev; () > 0 ande - v(r) = 1. ConsidetU := (u, v) as a control process that
takes values in

U;:{(u,v)eR[+J:ui,vj20, e-u=e-v=1}

By (24),

V=GX,U):=G(X —(e-X) u,—(e- X)"v).
Let
(27) bi(X,U)=—" nijG(X, U)ij — bi(e- X)Tu; + ¢

Jj€d
and writeb = (b;);cz. We see that (18) can be written as (23).

DEFINITION 1 (Admissible systems and controlled processes).
(i) We call
n=(Q,F, (F),P,UW)

an admissible systerand say that/ is a control associated withr if (2, F,
(Fy), P) is a complete filtered probability spac¥, is an (F;) progressively
measurabléJ-valued process an? is a standard -dimensionak F;) Brownian
motion.

(i) We say thatX is acontrolled processissociated with initial data € R/
and an admissible system = (2, F, (F;), P, U, W) if X is a continuous,
(Fy)-adapted process such tffata.s.,fé |b(X(s),U(s))|ds < oo and

(28) X(t):x+rW(t)+/otb(X(s),U(s))ds, 0<t<oo.

As stated in Proposition A.1 in the Appendix, there is a unique controlled
processX associated with any ands. With an abuse of notation we sometimes
denote the dependence orands by writing P in place of P and ET in place
of E. Denote byIT the class of all admissible systems.

Let a constany > 0 and a functiorL be given, and consider the cost

o0
C(x,n):Ejg/ e VL(X(1),U@))dt, xeR' zell
0

Our assumption od is as follows.
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ASSUMPTION2. (i) We haveL(x,U) > 0and(x,U) e R x U.
(i) The mapping(x, U) — L(x, U) is continuous.
(iiiy Thereisg € (0, 1) such that for any compaet c R/,

IL(x,U) = L(y, )| =cllx = y|I°

holds forU € U andx, y € A, wherec depends only om.
(iv) There are constants; > 0 andm; > 1 such thatL(x,U) < ¢ (1 +
x|I™2), U e U, x e RY.

Define the value function a8 (x) = inf, <y C(x, 7). The HIB equation for the
problem is (cf. [7])

(29) Lf+Hx. Df)—yf =0,
whereL = (1/2) ¥;e r70/0x7 and
H(x, p)= inf [b(x,U) - p+ L(x,U)].
UeU

The equation is considered &1 with the growth condition

(30) Je,m,  |f)]<c@4+xI™), xeR.

DEFINITION 2. Letx € R/ be given. We say that a measurable function
h:R! — U is a Markov control policyif there is an admissible system and
a controlled procesX corresponding tac and, such thatUy; = h(Xs), s > 0,
P-a.s. We say that an admissible systens optimalfor x if V(x) = C(x, 7). We
say that a Markov control policy is optimal farif at least one of the admissable
systems corresponding to it is optimal.

Different parts of our main result below require different assumptions on the
abandonment rates:

(31) V@i, j)€E, 0 < Wij,
(32) 33, j) €€, 0 < ij.

These assumptions are rational for the following reason. If (31) does not hold [and
certainly if (32) does not hold], there is a classhere customers leave the system

by abandonment more quickly than they do by getting served at a certain station
j ~ i. Thus under many reasonable performance criteria (e.g., any increasing
functional of the queue lengths) it is preferable to never use actiuity). This
stands in contrast to our work conservation assumptions.

THEOREM 1. Let Assumptiond and 2 hold. In addition, let one of the
following conditions hold
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(i) For (i, j) € &, u;j depends only ow, or for (i, j) € €, u;; depends only
onj.In additiong; =0,i € {.
(i) The treeT is of diamete at most and31) holds
(i) There area1, az > 0 such thatL(x, U) > ap||x||™t for all |x|| > a2 and
all U € U (wherem is as in Assumptiof). In addition, (32) holds
(iv) The functionL is bounded

Then the valué’ is in Cé;)’f and it solveg29) and(30). In caseqi) and(ii) [resp
(iif) and (iv)] this solution is unique irCZ, (resp CZy ,; C7). Moreover there
exists a Markov control policy that is optimal for alle R’

We end this section with a few remarks on the role of the treelike assumption in
this work. Our results strongly depend on estimates on moments of the controlled
process that are subexponential in the time variable [in cases (i) and (ii) of the
main result]. These are obtained by considering a deterministic model in place of
(18)—(22). Usew in place ofx + W [where as in (18) is the initial condition
for X] and usex = x(¢) (resp.y, z, ¥) in place ofX (resp.Y, Z, ¥). Then

t t
(33) 5O =wi) = Yy [ vids =6 [ vwds, el
jeg 70 0
(34) Z Vij = Xi — Vi, ied,
j<d
(35) > i =z, jed,
ied
(36) yi»2; =0, iel jeg,

B7) e-yne-z=0,

wherey;; =0,i % j. The first two cases of Theorem 1 are based on showing that
(33)—(37) imply an estimate of the form

(38) [x @1 < mo(L+1)"(1+ [wll;)™,

wheremg does not depend on w, y, z and . If the treelike assumption is
removed, this estimate does not hold true in general (as shown in the example
below). We leave open the question of whether this implication holds true in
full generality under the treelike assungoti We stress that this is the reason for
imposing the treelike assumption in this paper, rather than the using capability
to rephrase the model equations (18)—(22) as (23): Although (23) is useful, its
absence would not be a serious obstacle to treating the problem, whereas the large
time estimates constitute a key ingredient of the proof.

ExampPLE 1. Consider a system with classes 1 and 2 and statioasd B,
and with w14 = u24 = 1, u1p = puop = 2, and arbitraryd, and 62. Consider
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w=0, Y14 = —Yoa =k, Y15 = —Y2p = —k(1 + e 2)/2, x1=—xp = k(1 —
e=%)/2,y =0 andz = 0. Then (33)—(37) hold for every > 0. Thus (38) cannot
hold.

Finally, there is another central role played by the treelike condition, as
elaborated in [2]. The diffusion model turns out to depend on whether preemption
is allowed in the queueing system under scaling. As explained in [2], preemptive
and nonpreemptive policies give rise to genuinely different diffusion models if
the treelike assumption does not hold, whereas under the treelike assumption the
corresponding diffusion models coincide (as supported by the result in [4] for the
case of a single station and in [2] for cases (i) and (ii) of Theorem 1).

3. Estimatingthestate X intermsof e - X. While the relationshigY (¢)|| +
IZO < clIX (@) ] is immediate from (25) and (26), the following result shows that
in a weaker sensg, Z andx + W dominateX (or in the deterministic notation,

v, z andw dominatex). The result uses only the relationships (33)—(35), and not
the further constraints (36) and (37).

PropPoOsSITION 1. Let (33)—(35) hold. Then there is a constani; not
depending o, w, x, y, z Or ¢, such that
I3y O + llx @l < madlwlly + 1Tyll7 + 13z, t>0.
Note that if, in addition, (36) and (37) are assumed, th&p||* = J(e - x)* (¢)

and||Jz||¥ = J(e- x)~(¢). As a result of Proposition 1, the statés dominated by
w ande - x in the sense

lxl <ma(lwly +Jle - x|(1)).

LEmMmA 1. Let w be a measurabldocally bounded function and assume
x=w—u fpx(s)ds. Then

t
(39) x()=w@) — u/ w(s)e =9 g
0
and, in particular, if > 0,then|x(1)| < 2|wl}, t > 0.

PrROOF Uniqueness of solutions is standard and (39) is verified by
substitution. [J

PROOF OFPROPOSITION1. Observe, by replacing; — 6;Jy; with w;, that
without loss we can takg =0, i € {; thereforep; = 0 in the sequel.

A node in a tree is said to be a leaf if there is exactly one edge joining it. Recall
that the treef” hask = I + J nodes andc — 1 edges. Lelr1, 72, ..., Tx1=T
be an increasing sequence of trees as followsnked, ..., k — 2, 7, is obtained
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from 7,.1 by deleting a leaf and the edge joining it. Note tlathas exactly
two nodes: one in{ and one ing. Let V, denote the vertex set df,. Let
Vp+1 = Vnt1 \ V,, denote the node iw, 1 that does not belong t¥,,.

Denoted, =4 NV, andg, =FNV,. We showthatfon =1, ...,k — 1, if

xi=wi— Y wiiIVij, i€ dy,
J€Gn

(40) > Yij=xi+a, iedy,
JEGn

> i =8, J € &n>

ied,
then
(A1) D13l + > Il Scn< > (wilf + [Tl + > Iﬁﬁjli‘)-
ied, ied, icd, JEIn

J€Gn

The implication (40)= (41) is proved by induction on.

Induction baser = 1. 77 has exactly two nodes, say: £ andj € ¢. By (40),
Xi =w; — M,‘jjlﬁ,‘j andjx//,-‘,- = jﬂ/ Hence (41) holds.

Induction stepAssume that (40 (41) holds forn € [1, k — 2]. Let (40) hold
for n 4+ 1. We show that (41) holds far+ 1 in the following two cases.

Casel. The leaf node, 1 is in 4. Denoteig = v,41 and let jo denote the
unique nodg ~ ip in 7,4+1. The validity of (40) forn + 1 implies

Xi = w; — Z//Lijjlﬂij, iEln,

JEGn
> Wi =xi+a, i €dy,
(42) JE3n . .
> i =8, J € Fn \ {Johs
ied,
Z lpijo = ﬂjo - ‘/’iojo’
ied,

regarding € 4, j € 4., and

(43) Xip = Wig — HigjoI Vigjo- Vigjo = Xig T Qip-
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regarding the nodg. By (42) and the induction assumption,

S 13lE+ D Inlf

(44) i€dn, j€Gn icd,
§cn< Yo (wilf + 13l + Y 138517 + |5‘/fiojo|f>-
i€dy JE€Gn
By (43),
(45) Xig = Wiy — MigjoIig = Hig joIXig-
Applying Lemma 1 to (45) and again using (43) shows
(46) |[xio ()] + [Tigjo (D] < ¢’ (Jwio|; + |Teig]7)-

Combining (44) and (46) establishes the validity of (41)#oF 1.

CASE 2. The leaf node, ;1 is in 4. Denotejp = v,+1 and letip denote the
unique node ~ jo in 7, 11. Assuming (40) forn + 1 implies

Xj = w; — Z wijIvij, i €d,\{io},

JEGn
Yo vij=xi+toi,  i€dy\ o,
JEGn
47) Xio = (Wig = MigjoIWVigjo) = D HiojIVigj
€
Y Wioj = ig + (o — Vigjo):
€
> ij = Bj. J € &ns
ied,
and
(48) Vigjo = Bio-

By (47) and the induction assumption, (44) follows. Combining (44) with (48)
gives (41) form + 1.

This completes the proof that (40) implies (41) foe [1, « — 1]. The result
follows on takingn = « — 1 and substituting = —y andg =—z. O

4. Anintegral formulafor Y and Z. Equations (33)—(35) were used in the
previous section as substitutes for (18)—(20). They express a relationship between
the quantitiest, y, z, w and. In this section we extract a relationship between
v, z andw alone. This relationship, in the form of an integral equation, is a key
element in treating Theorem 1(i) and (ii).
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Foro € R denote

Tof =f+adf.

Lemma 1 shows th&, is invertible. It is easy to see that the operatbgsandTg
commute. IfA = (ay, ..., o) is a finite real-valued sequence, denote

Ta=Fy 0 0%

Then¥ 4 does not depend on the order of the element$,djut it depends on the
multiplicity of each element. S&I, corresponding t& = 0 as the identity map.
Equations (33)—(35) imply

(49) Zzuij‘ﬂij =Ww; — Seiyia ield,
Jj€d
(50) > i =—zj, VASKS
ied

THEOREM2. Let(49)and(50)hold.

(i) The quatties y andz solve the integral equation

(51) Yo Tawi— Y Tayvi+ Y Tpizj=0,
ied ied jeg

where A; and B; are finite (possibly emplysequences with values ifu;; :
(i,j)eé&}andforied, Ag is the concatenation of; with 6;.

(i) In the special case wherg;; = u; for (i, j) €e & and9; =0,i € 4,
equation(51) takes the form
(52) Z(wi —yi)+ Z Tu;2j=0.

ied jeg

(i) In the special case wherg;; = u; for (i, j) € & and 9, =0, i € 4,
equation(51) takes the form
(53) > Tm; (wi — yi) +Tum(e-2) =0,

ied

whereM; = (w;i)ireg, ir#i andM = (w;r)ireq.

REMARK 1. (a) WritingJ,, for then-powerJo --- o J of the operatof, it is
useful to note that the integral equation (51) can be written as

e-w—e-yte-z

"

(54) m; m;

0
+ Z Z ai,njnwi - Z Z az{,njnyi + Z Z ay’njan =0.

iedfn=1 iedn=1 jegn=1
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Here,m;, m/, m/]/ Qi n, af,n anda;{n are positive constants that we do not give in
explicit form.

(b) Recall that under (36) and (37) we hawve= (e - x)Tu andz = (e - x) " v.
As aresult, (54) expresses a relationship between theuddtee controls: andv,
and the quantity - x alone.

We need some notation regarding the tre& be used in this and the following
sections. Fix one of the class nodigsas a root. (Analogous notation applies if we
fix a station node, somg as a root.) Fok =0, 1, ..., let levelk, denoted by,
be the set of nodes of at distance from the rootig along the edges df (see
Figure 2). Note thaly = {ip} and thaty is empty for allk large. Let also

Liy=lpUlLU---Ul;
be the set of nodes at distance at niofbm the root and let
Ll=ring,  Ll=Ling.

Note that the elements (ﬁ,{ (resp.Lf) are at even (resp. odd) distance from the
root, not exceeding. Let K be the largest such that, is nonempty. For a node

at levelk let B(v) (B for below) be the set of nodes ~ v at levelk + 1. For a
nodev at levelk € [1, K] leta(v) (a for above) be the unique noaé~ v at level
k—1.

PROOF OFTHEOREM 2. (i) Suppose we prove (51) for the cage=0,i € 4,
that is,

(55) > Ta,(wi —y)+ Y Tz =0.

ied Jjeg
Then, for arbitraryg;, (51) is obtained from (55) on substituting, y; for y;.
Therefore, in the sequel we sgt= 0, i € J, and turn to prove (55).

level O (root). ... o __buffer

level1 o ____ Station
level 2 i=a(j) buffer
level3................ & & ] ....... station
level4 . . &  buffer
1€ B(j)

Fic. 2. Buffer-station tree
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We show that fok > 1, we have

(56) > Tae(wi — yi) + > ‘ZBI;Z]' +> TerViaty) =0,

. 4 . ]
ieLd , JELgkfl i€ly,

where Af, B} and C} are (possibly empty) sequences with values{n; :
(i, j) € &}, and summation over an empty set is regarded as zero. Equation (55)
follows on takingk larger thank .

We prove (56) by induction oh.

Induction basek = 1. By (49),

Y Tuigs Vinj = Wig — ig
jeh
and by (50),
Vioj = —2j — Y Vij» Jj €l
i€l
It follows that

Wio = Yio T D Tuig;2j + D Tuigay Wia) = 0

jel i€l

and (56) holds.
Induction stepAssume that (56) holds fak. Using (49) and then (50), for
i €lprandj =a(i) we have

T Vij == ) Sy Wiy + wi = i
J'€B()

= > T2+ > Ly Wiy +wi — Vi
J'€lata i'€lyt2
Apply T« on the above equation [where stile Iz, and j = a(i)] to get

SC}‘KMJ'WU: Z KC{“IM_;'/ZJ/

J'€lokt1

+ 2 Tt T Viraw) + Tk (wi = i),

i€l 2

(57)

Let Dy = (Wia@))iely - APPlY Tp, to (56) and use (57) to substitute for each
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summand in the third sum in (56) to get

0= > T % pe(wi = yi) + > TDk‘ZBI;Zj

o1 d .
lEL2k72 JEL%(,]_

+ Z Z SDk\{Mz‘j’}SM_i’SC{‘Zﬂ

i€l \j'€lort1

+ D T iy TerWirany + Top i Ter (Wi = i) {

i€l 2

where D; \ {u} denotes a sequence obtained fr@m by deleting from it one
element of valuge. This proves that (56) holds féar+ 1 and completes the proof
of part (i).

(ii) In the case that;; = ; andd; =0, by (49) and (50),

> T Vi =wi — yi, i€ld,
j€d
D T =%,z VASKS
ied
hence
> (wi—y)+ Y Tz =0.
ied jeg

(iii) In the case thag,;; = u; andé; =0, by (49) and (50),

(58) Ty Y Yij = wi — i, ield,
j€d

(59) > i =—zj, ASK S
ied

The result follows on applying[;.; <., on (58) and ;¢; <., on (59). O

PrRoPOSITION2. Let(49)and(50)hold. Assume also that

(60) yi >0, zj >0, ied, jed,
(61) e-yt)yne-z(t)=0.

In caseqii) and(iii) of Theoren?® there is a constaniz» such that

(62) Iyl + lz() ] < m2(1+ "2 [wlly, 1=0.
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PROOF.  Inthe case:;; = i, (52) can be written as
e-w—e-y—i-e-z—i-z,uﬂzjzo.
j€d

By (60), z; are positive and therefore- w —e - y + e -z < 0. Thus by (61),
O0<e-z<(—e-w)" and, therefore,

e-w<e-y—e-z<e-w+tle w|;.

Since by (61)]|y]l + Izl =le-y —e - z|, (62) follows.
In the caseu;; = u;, applying‘l;il to (58) and by (59) [or by applyin@i;ll
to (53)], we have

YTt wi—y)+e-z=0;

ied
hence, by Lemma 1 and positivity of,
t
e-w—e-yte-z= Z/M/O (wi(s) = yi(s)) exp(—ui(t —s))ds < cat|wlf
ied
for some constant;. By positivity of z; and (61) we, therefore, have
(63) Iz < c2(L+ D) wll}.

By (54), the positivity of its coefficients and of, and (63), there is a constary
such that

(64) ly®I < c3(L+1)2|wllf.
Combining (63) and (64) establishes (62].]

COROLLARY 1. Under the assumptions of Theordf), for anym > 1, any
initial condition x € R and any admissible systeme 11,
EZIXOI™ <ma(L+ [lxID™3(L+1)"3, 1=0,

wherems do not depend om, 7 andz.

PrROOF By Propositions 1 and 2,
lx@IF < ma(lwlly + 1Tyll7 + 13z17)
< [m1+mamat (L+1)"2]|wll.

ThusET |IX(@)|" <c(A+)ET(Ix|[+cll W||;‘)’” for a constant depending only
onm1, m andm, and the result follows from standard estimates on the Brownian
motion. [
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5. Thenonidling property. This section investigates a relationship between
a property defined below and referred to as the nonidling property, and the uniform
estimate

(65) x@ <ma(l+0" L+ [wly),

wherem4 does not depend on w, y, z and. In particular, using the integral
equation developed in the previous section, it shows that for trees of diameter
not exceeding 3, this property implies the uniform estimate. A relatively simple
argument then shows that the property holds for such trees and the estimate
follows.

Rewrite relationships (33)—(35) as in the previous section and recall relation-
ships (36) and (37):

(66) Z(‘//ij + wijIpij) = wi — yi —60; Ty, ield,
Jjed
(67) > i =—z,, jed.
ied
(68) yi,z2j =0, ied,jed,
(69) e-yne-z=0.

Note thatx [cf. (33)] is not a part of this system of equations, but can be obtained
from it via

xi=wi — Yy wijIvij — 6;3yi.
jed
We say thathe systen(66)—(69)incurs no idleness of0, T') (cf. [18]) if z;(r) =0
fort€[0,T),jeg.

THE NONIDLING PROPERTY For everyT > O, if the system starts with
w;(0) > 0, andw;, i € {4, are strictly increasing and right-continuous @ 7),
then the system incurs no idleness[onT’).

A tree 7 of diameter 3 has the form depicted in Figure 3, where there are only
two nodesp € £ and jp € ¢ that are not leaves.

. buffer

... Station

Jy

Fic. 3. Tree of diameteB.
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THEOREM 3. Let Assumptiod hold and assume the diameter of the tfEe
is 3. Then the nonidling propertyfor the systenf66)—(69)]implies the estimate
(65), wheremy4 does not depend an w, y, z andy.

LEMMA 2. Let the assumptions of TheoreBnhold. Fix 7 > 0 and let
(¥, y,z, w) be given satisfying (66)—(69) on [0, T]. Let bounded measurable
functionsf; > 0,i € 4, be givenThen there is a constants that does not depend

onT, fi,¥,y,z or w, and there existi, 9, 2, w) defined on0, T] that satisfy
(66)—(69),and, moreovey

(70) e-y=>e-y, e-7<e-z
and
(71) Wi =w; + fi +ni,

wheren; are nondecreasing and continuqud 0 < n; <msT Y iy | fir|7 ON
[0, T].

PrROOF It suffices to prove the lemma in the case where all but one of the
functions f; vanish, since the argument can then be repeated. Consider first the
case wheref; vanish for alli # ig (and f;, > 0). Definew; = w;, y; = y; and
Wi; = ¥ij for i # io. Clearly (66) holds fori # io. Define nowy;,; andz; as
follows. Fort € © :={s € [0, T]:e - z(s) = fi,(s)}, let j =1 +1, letA; :=
Zj A figr @nd Setfiy; = ¥i; + A; andz; =z; — A;. Similarly, for j € [I + 2,

I+ T letAj=z; A(fip— Ay — - — Ajp) and iy = ¥igj + Aj, 2; =
zj —Aj. Note that for allj, z; > 0 and that (67) is satisfied by the hat system. It
is elementary to check that

(72) Aj(t) >0, jed; PINIOEN te®.
jed
As a result, withs () =0,
(73) Y Wigi ()= Yigj (1) + fio(t) — 8(0).
j€gd i€d

Fort € ©¢, setz; = 0 andy,; = Vi,; + A, Where nowA; = z;, j € 4. Then
again (67) holds for the hat system. Also (73) holds With = f;,(t) —e - z(?).
Note that

(74) 0<3 < fi
Now thaty is defined or0, 7], let

Wip = wig + Y (Vioj — Vioj + MiojI(Wioj — Vioj)) + 8 + 0iyT8
jed
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and lety;, = yi, + 8. Then (66) holds o0, T'] for i = ig. By (73), w;, =
Wio + fig + Nig» Wherenig = 3 ;g tiojI(Wigj — Vigj) + 6igJ8. By (72), 0=
&ioj — ¥ioj < fi, On © and by construction the same holds 6fi. Combined
with (74), the properties of;, stated in the lemma follow. Inequalities (70) also
hold by construction. Condition (69) holds for the hat system sinc® of = y
and by (72 -z <e-z;and on®¢, e -z =0.

Next consider the case where for somez ig, f; =0 on|[0, T'] for all i # i1.
The argument is similar, but slightly more complicated because; for most;.
We indicate only where the argument changes. The definitidnjoandij differs
as follows. Variables\ ;, § andz; are defined as before, whetds replaced by;.
Recall that in the previous casg,is defined as) = v + A. In the current case,
et iy jo = Viyjo + 225 Ajs Wioj = Wioj + A 10T j # jo, Vigjo = Viojo = 2 jjo A
ands;j, = Vij, for i ¢ {io, i1). Set

Wiy = wiy + 1/A’iljo —Viyjo + “iljoj(‘/}iljo — Viyjo) + 8 +6i, 38,

Wig = wig + Y, WigjI(Wigj — Viej) = Wig + Tlig-
J#ijo

Let 3, = yi; + 6 and lety; = y; for all i # i;. We check that all properties
(66)—(69) are satisfied by the hat system and that the conclusions of the lemma
all hold, except thath;, = w;, + fi, + 7i,, Where there is no guarantee tijgt is
nondecreasing (in fact, we have assumed without lossfthat 0). However, this
is now corrected by applying a further modification as in the previous paragraph,
where now we takef, = 3", . i i I (Wigj — Vig;) ™1, SO that overallfy; + 7, is
nondecreasing angl =0 foralli #£ip. O

PROOF OFTHEOREM 3. Fix T > 0 and let(vy, y, z, w) be given, satisfying
(66)—(69) on0, T + 1). Let f; be defined oni0, T + 1) as

fit)y=1+ max(O, sup wi(s)) —wi®)+t/T =:a;(w,T) —w;(t)+1t/T.
O<s<T+1

Let (¥, 9,2, %) be as in the conclusion of the lemma. Thén= a;(w, T) +
t/T + n;; thusw; (0) > 0 anduw); is strictly increasing o0, T + 1). Therefore, by
the nonidling property;; =0 0on[0, T + 1), j € 4. Applying (54) tow, y, z, and
using the nonnegativity of; and of the constantﬁyn,

Y 5 <@+ ily, =T,
ied ied
wherecs does not depend oid and7 . Using (70) and (71),

e-y(t) <co(1+0)? Y (ai(w, T)+ni(T)) < c3Q+0)3T 1+ lwl[}), t<T.

iel
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Thus on[0, T],
e-y <ca(l+ D)1+ wll7).
Using again (54), now omw, y, z and equipped with the bound on
e-z=<cs(L+T)S(1+ |wl7).
As aresult,
IvI7 + lzl7 < ce(X+T)C L+ lwll7),

where cg does not depend off, w, ¥, y andz. The result now follows from
Proposition 1. [

LEMMA 3. Let the assumptions of Theoréhold. Assumemoreoverthat
0; < wij, for i € 4. Then the nonidling property holds

PROOF Itis more convenient here to work with the equivalent set of equations
(33)—(35). FixT > 0 and considetw; strictly increasing, right-continuous on
[0,T), with w;(0) > 0. Fori # ig, by (34), ¥ij, = x; — yi, hence by (33),

xi = w; + [ol—wijoxi(s) + (uij, — 6:)yi(s)lds. Since the second term in the
integrand is positive, by a standard comparison resut &;, whereg; solvest; =

w; — Kij Jo&i(s)ds. By Lemma 1, and since; (0) > 0 andw; is nondecreasing,
we haveg; > 0. As a result,

(75) x; (1) >0, i#ig, t<T.

Recallthate - z=(e-x)” and lett =inf{r:e-z(t) > 0} =inf{r:e- x(t) < 0}.
Arguing by contradiction, assume thaik T. By right-continuity and (33),
(76) e-x(1)<O.

By (33) and the assumptions an, ¢ > 0. On [0, 1), ¥;y; =z, =0, j # jo.
Applying the argument in the previous paragraph;to

t
o) = wio(0) + [ [=tioihin) + (iojo = Bio)io(®)]ds. 1 <.
Hencex;, > £ on[0, t), where nowt = w;, — iy jo Jo &, @and using Lemma 1,

&) > w,-o(t) exp(—,u,-ol,-ot) > in(O) exp(—,u,-o‘,-oT) >0, r<r.
By (33) and sincev;, is nondecreasing df, 7'), it follows that, in fact,x;,(r) > 0.

Along with (75), this stands in contradiction to (76). Therefarez vanishes on
[0, T) and by (68), soda;,i € 4. O

All results of this section remain valid for trees of diameter 2, as follows on
applying them for trees of diameter 3 and choosing= 0 for appropriatei, ;)
ando; = 0 for appropriateé (in this section we have not used the assumption that
Hij > 0, but onlyuij > 91').

Theorem 3 and Lemma 3 imply the following.
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COROLLARY 2. Under the assumptions of Theoreltii), if (66)—(69)are
satisfied on[0, co) and w is right-continuousthen (65) holds with m4 that is
independentob, ¥, y, z ands. Consequentlfor anym > 1, any initial condition
x € R! and any admissible systeme IT,

EZIXOI™ =me(L+ llxID™8 (14 1)™®, t=0,

wheremg does not depend an, x andz.

6. Case where cost is bounded below and summary of estimates. This
section treats part (i) of Theorem 1. First it is shown that there exists an admissible
systemmg under which the state process satisfies a polynomial growth condition
in time. Then it is shown that we can consider a subsét of admissible systems
that, in a sense, switch tep after some time, without losing optimality. The
estimates forrg then remain valid in the switched systems.

PropPoOsSITION3. Let Assumptior hold and consider the systef®3)—(35).
Fix (io, jo) € & such thatu;,j, > 6;,. Lety = (e - x)"u andz = (e - x) "v, where
u(t) = e, andv(t) =ej, for all . Then the estimatgx (¢)|| < m7(1L+ )" |wll}
holds wherem does not depend am and:.

PROOF Let ig be the root. Thenjy € B(ip). It suffices to show that for
k=0,1,...,if i €ly andj € lxy1, then

[Va(jyi O] |Viai) @)

This claim is proved by backward induction én

Induction baseThe variablek is the smallest number such thatly, 2 = @.
If I541 is not empty, letj € lx41. Then by (35),(j); = —z; =0. Leti € Ix.
FOI’j € B(i), 1//,"/' =0. Letj =a(i). Then by (33),X, =w; — Mijjl//ij! and by (34)
and the assumptiong;; = x; — y; = x;. Thusx; solvesx; = w; — u;;Jx; and by
Lemma 1|x;], || < cjlw;|* for some constant;.

Induction stepAssuming the claim holds fdr + 1 we show that it holds fot.
Let j € lx+1, j # jo- Then by (35) and the assumptiofy,(j); = — > iep(j) Vij-
Thus by the induction assumptidt, ;| < c5(L+ )% lw*. Leti € Ix, i # io.
Then by (33) and (34), the bound @#;, j € B(i), just obtained, and the induction
assumption,

i) < e+ D w7

’

xi (1) = g(t) — WiaG)Ixi (1),

where [g(7)| < c5(1 + t)C/3||w||;" with some constant;. Hence by Lemma 1,
lxi (1) < cy(1+ t)cZIIwII;". By (34) and the induction assumption, a similar bound
then holds foly;4 ;).



844 R. ATAR

Consider now and jo. Write yo, zo andyrg for y;,, z;, andi, ,, respectively,
with a similar convention forxg, 1o and 6y. By (33)—(35) and the induction
assumption, we have

X0 = g1 — HoJ¥o — BoJyo,
Yo+ g2 = x0 — Yo,
Yo+ g3 = —=zo0,

where g; (1) < c;(1 + t)°‘11||w||§‘ andcj is independent of andw. Thenxg =
g1+ I[—nog2 — moxo + (o — o) yol. Since by assumption the last term in the
integral is nonnegativexg > &, whereé = g1 — uoJ(g2 + §). By Lemma 1,
E@)| < g4 =c5(1 + t)dsllwll}k for all 7. This establishes an appropriate lower
bound onxg. Moreover, if yo(r) = 0, theny(#) > xo(t) — g2(t) > —ga(t) —
g2(t), and if yo(r) > 0, thenyo(t) <e - y() =e - x(¢t) andyo(t) > xo(t) — e -
x(t) — g2(t) = — X i1, xi (1) — g2(7). Thus, by the induction assumptiofig(t) >
—cg(1+ t)“é||w||§‘ holds for allz. Sinceyg < —gs, a similar upper bound offg
holds. Finally,xo(t) < |g1(t)| + wot|¥ol; and, therefore, a similar bound holds
for xg as well. This completes the proof by inductior.]

Throughout the rest of this section lgtand jo be as in Proposition 3. The
following result shows that it suffices to consider only a certain subset of the set of
admissible systems that have the following property: There is a stoppingtone
the filtration associated with, such that or{¥ < oo}, u(t) =e;, andv(r) =e¢j,
forall r > ¥.

Recall that on a given admissible systeamfor every initial datax there is a
corresponding controlled process (by Proposition A.1).

PROPOSITION4. Let the assumptions of Theoreitiii) hold. Letx € R! be
given Then there is a set of admissible systdms IT such that the following
statements are valid

(i) Foreverym > 1,
ETIXOI" <mg(l+1)"8,  well,
wheremg depends o, & andm, but not ons.

(i) We haveV (x) = V (x), whereV (x) = inf__ C(x, ).

PROOF For anyx € IT and any stopping timey on =, let ¥ be the
admissible system obtained framby settingu(¢) = e;, andv(t) =ej, for t > v.
Givenx andx e IT such thatC(x, w) < oo and fore > 0, let

(77) crs:inf{t:E?/ooe_ysL(X(s),U(s))ds58}
'
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and define the stopping time
(78) D =inf{t = o 1| X ()] = &1,
Note thato, and®, depend onx andx . Note also that
(79) Ve > 0, —> 00 ase — 0.
For short, writer? for 7. Define

M={x°:7w eI, ec(01).

For part (i), letr € IT ande be given. Then omr® and on the evenfty, = oo},
SUR ¢[0.00) I X ()1 < elv ||X||j;£. Moreover, by Propason 3, on the event
{¥: < o0}, fort > oy,

IX (0| <m7(d+1— as>"“(||X||; + SEUp] W (u) — W(%)M).
uelog,t

Recall thatW is a Brownian motion with drift. Hencé&T (sup,¢o, 1] W () —
W@ < c1(l+ 1 — op)“t for somecy independent ot andt, and the same
holds for expectation undeEjf. Hence it suffices to prove thmj}g[(nxnj;g)m] =
ET[(IX]l5,)™] < co. This follows from an easy application of Gronwall's lemma,
using the fact that — b(x, U) is Lipschitz uniformly in(x, U). Part (i) follows.

By Assumption 2(iv) and Propaosition 3,

E™ |:]l§£<oo /;o e V'L(X (1), U(1)) dz]

& 0 o
= CZE;T |:]lz9£<oo/ e_yt(1+t — )

&

< (L IX @Dl + | T = o, )"t |
(80)

0 &
563/0 e " (L4+1)2dt ET [Ly, <ooe 7" (14 IX @)[)""]

e o0 —~ ~
+ c3E7 |:]lﬁg<oo/ eV (A41—9)2 W, — Wy, | dt]
Ve

1= C4ET[Ly, <00 (L4 X @) )™ €777 ] + aa(e)
=a1(e) +az(e),

wherecy, c3 ande4 do not depend on. Conditioning onFy, , using strong Markov
and stationary increments propertiesf and using the fact. > 0., we have

& & oo " -~
wa(e) < c3E™ exp(—yop) ET fo VS (L1 )| W | ds

S C5 exrx_yo's),
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wherecs < oo by properties of Brownian motion. Therefore, by (7@) converges
to zero ag — 0.

Next we show thatv1(¢) — 0 ase — 0. Below, we sometimes writé for .
By definition ofb [see (27)],||b(x, U)|| < ce(1+ ||x])) and||b(x, U) —b(y, U)|| <
cellx — yl|l, wherece does not depend on y andU. Thus by (28), for any > ¢,
we have on the evenltt < oo},

[X(@) = X @)
=c7|W@) = W@l

t
+ C7/ﬂ [6(X(®),U(s)) + (b(X(s),U(s)) —b(X (), U(s)))]ds

t
<cgllWt) = W)l + cgt =) (L+ IX D)) +C8/19 X (s) = X (@) ds,

wherec7 andcg not depend om. Hence by Gronwall’s lemma,
X (@) — X@)|
(81)
< cs( S[L;p] [W(s) = W)+ @ — N (L+ IIX(ﬁ‘)II)) exp(cs(t — 9)).
selv,t

Lett =inf{r > 9| X®)| < |1X(®)|/2} (andt = 00 on {¥ = oo}). By (78),
| X ()| > e~1. Hence by (81), assumingis small enough, we have dgt < oo}

P(t — 9 < &Y?|Fy)

=P sup X - X)) = 1+ IX@) /3P
te[v,9+e1/2]

gP( sup  callW(t) — W)
te[d,9+e1/2]
(82)

> (L IX @) )3 - coexpicas'/2)e¥2) )
=P( swpaalWe) - Wl = 67 F )
selv,0+e1/2]
< coexp(—s ).
DenoteB; = 7, A [0, + ¢/2]. Then by (77), (78) and (82), and using the lower

bound onL (x, U), for all ¢ small,

e>ET [11195@ /OO e SL(X(s), U(s))ds}
Ve

Be
- croFT [nﬁg@o [ erasixon ds}

&
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> c10eXp(—y YA E] [1s, <oo(1+ (1/D 1 X @) 1) eXp(—y D) (Be — )]
> cL1ET {1, <00 (14 1/ IX @) )™

X exp(—yﬁ‘g)el/sz[rg — 9 > 81/2|F,9£]}
> c126 P E7 {1, coo(1+ | X @) II)" 77 %),

where the constantgg, c11, c12 > 0 do not depend obn. As a resylt,oel(e) -0
ase — 0. Thus by (80), for every € IT ande small enoughz® € IT satisfies

(83) C(x,7) <C(x,m) +a(e),
anda(s) = a1(g) + aa(s) — 0 ase — 0. HenceV (x) < V(x) and part (ii) of the
result follows. O

The following proposition summarizes our estimates in cases (i)—(iii) of
Theorem 1.

PROPOSITIONS. In caseqi)—(iii) of Theoremnil, we have
(i) Foranyx, any admissible systeme I [ € IT in case(iii)] andm > 1,
EXIXOI" <mg(L+n™,  1>0,

where the constamntg does not depend an(but may depend om, 7 andm).
(i) There is a constanti1g, Nnot depending onr, such thatV (x) < m1o(1 +
llx[)™20.

Proor Item (i) follows from Corollaries 1 and 2 and Proposition 4,
respectively. Item (ii) follows from Proposition 3 [in cases (i) and (ii) alternatively
from Corollaries 1 and 2]. [

APPENDIX

PROPOSITIONA.1. Let initial datax € R/ and an admissible systeme IT
be given Then there exists a controlled proceX¥sassociated withx and .
Moreover if X and X are controlled processes associated withand r, then
Xt)=X@),t>0, P-as.

PrROOFE Note that(x,U) — b(x,U) is continuous andc — b(x,U) is
Lipschitz uniformly in U. Considerb,,, a function that agrees with on the
ball B(0, m), and is uniformly Lipschitz and bounded. Then strong existence and
uniqueness for

Xm(t):x+rW(t)+/Otbm(Xm(s),U(s))ds, 0<t < oo,
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holds by Theorem 1.1.1 of [5]. SindeX,,, )| < llx||+cl|W @) | +c¢ fé | Xm(s)| ds,
we have|| X, 0| < (llx]l + c|W[F) (1 + ) by Gronwall's lemma. Thus letting
T, = inf{z: || X,,®)| > m}, we haver,, — oo a.s. ThereforeX (¢) =Ilim,, X,,,(¢)
for all r defines a process that solves the equation (a strong solutiot)ad X
are both strong solutions, then for eveny they both agree wittk,,, on [0, z,,].
Therefore, they agree df, co) a.s. [

PROPOSITIONA.2. Let Assumptiorl hold. Then givenoy;, 8; e R, i € J,
Jj € g, satisfying) «; = ) B, there exists a unique solutiog;; to the set of
equations

(84) Zlﬂij=ai, ied,
j€d

(85) Y vij=8j.  Jj€g.
ied

wherey; ; =0fori # j.

PrROOF We use notation from Section 4. L&t € £ be the root. We show
the following claim by backward induction ok: For k € [1, K] even (resp.
odd), ifi € Iy (resp.j € Ix), theny;q) (resp.vjq(j) is uniquely determined by
(84) and (85).

Induction baseThe variablek is the largesi: such that, is nonempty. Ik is
even, let € [y. ThenB(i) is empty and (84) implieg;, ) = «;. The casé odd is
similar.

Induction stepAssume the claim holds fat. Consider the case wherkeis
odd (the casé even is treated similarly). Fare ly_1, (84) showsyi,i) = o; —
>_jeBq) Yij, and since by the induction assumptign; are uniquely determined
for j € B(i), so isvj.q. This completes the proof by induction and the result
follows. O

PROOF OFTHEOREM 1. Based on Proposition 5, the proof of Theorem 1 is
similar to the proof of Theorem 2 of [4]. Since this is the main result of this paper,
we repeat it here with modifications, mainly to accommodate case (iii).

We first consider (29) on a smooth open bounded connected domain
satisfying an exterior sphere condition, with boundary conditions

(86) fx)=Vk), xedl.

The key is a result from [9] regarding existence of classical solutions in bounded
domains with merely continuous boundary conditions. To use this result, we verify
the following two conditions.

(i) We have|H (x, p)| <c(1+ | p|) for x € ", wherec does not depend on
x or p.
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(i) We haveH (x, p) € C¢(T x R') for somes € (0, 1).

Item (i) is immediate from the local boundednessbok, U) and L(x, U).
Next we show that item (ii) holds. Fat > 0, let V be such thatd (y, ¢) >
b(y,V)-q+L(y, V) — 8. Write

Hx,p)—H(y,q) <b(x,V)-p+L(x,V)—=b(y,V)-g—L(y,V)+38é.

Using the Holder property df in x uniformly for (x, V) € T’ x U and the Lipschitz
property ofb in x uniformly in (x, V),

H(x,p)—H(y,q) <cllp—qll+clplllx — yll +cllx —ylI” +38.

Sinces > 0 is arbitrary, it can be dropped. This shows tHais Hélder continuous
with exponentp, uniformly over compact subsets Bfx R’. Hence (i) holds.

Defining for (x,z, p) e I' x R x R!, A(x, z, p) = (1/2)r2p andB(x, z, p) =
H(x, p) — yz, we can write (29) in divergence form as

divA(x, f, Df) + B(x, f, Df) = 0.

The hypotheses of Theorem 15.19 of [9] regarding the coefficikérgad B hold
in view of (i) and (ii). Indeed,B is Holder continuous of exponept uniformly
on compact subsets of x R x R’. Moreover, witht = 0, v(z) = (1/2) min; rl.z,
wi@ =c@+ |zl), « =2, b = 0 anda; = 0, we check that the conditions
(15.59), (15.64), (15.66) and (10.23) of [9] are satisfied. Theorem 15.19 of [9]
therefore applies [with condition (15.59) instead of (15.60)]. It states that there
exists a solution to (29) i€2#(I") N C(T), satisfying the continuous boundary
condition (86). We denote this solution Ky

Let x e I'. Let # be any admissible system i and letX be the controlled
process associated withand . Let t denote the first timeX hits aI". Using
Itd’s formula for theC12(R,. x T') function e’ f(x), in conjunction with the
inequality

Lf(y)+b(y,U)-Df(y)+L(y,U)—yf(y) =0, yelLUeU,
satisfied byf, we obtain
INT
F@) < / eV L(X,, Uy ds + e f(Xy00)
0

(87) At
_/0 e 7 Df(Xg) - rdWs.

Taking expectation and then sending> co, using monotone convergence for the
first term and bounded convergence for the second term, we have (wjth) =
e V'V (x),

fx) <E? [/OT e VS L(Xs,us)ds +e_VTV(X,)] =Cr,4(x, 7).
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Taking the infimum overr € I1, we havef(x) < Vr,(x) = V(x), x € ', by
Proposition 5(iv).

To obtain the equalityf = V onT', we next show there exist optimal Markov
control policies for the control problem dn Let

(88) ox,U)=b(x,U)-Df(x)+ L(x,U), xelUeU.

Note thaty is continuous oi” x S. For eachy, consider the séfl, # @ of U € U
for which

px,U)= J%(P(x, V).

We show that there exists a measurable selectiotJgf namely there is a
measurable functioh from (I, 8(I')) to (U, 8(U)) with h(x) e U,, x €T.

Let x, € I" and assume ligw, = x € I". Let U,, be any sequence such that
U, € U,,. We claim that any accumulation point of, is in U,. For example, if
this is not true, then by continuity of, there is a converging subsequertég,
converging toU/, and there is &/ such thats := ¢(x, U) o(x, U) > 0. Hence
for all m large, 9(xm, Upn) > ¢(x,U) + 8/2 > @(xm, U) + 8/4, contradicting
UneUy,.

As a consequence, the assumptions of Corollary 10.3 in the Appendix of [6]
are satisfied and it follows that there exists a measurable seldctiorn> U of
(Uyp,x el).

We extends to R/ in a measurable way so that it takes valueslUn
(but otherwise arbitrary). Clearly — b(x, h(x)) is measurable. Consider the
autonomous stochastic differential equation

(89) X() =x+rW(t)+/otl;(Xs)ds,

where b(y) agrees withb(y, i(y)) on T and is set to zero off’. Thenb is
measurable and bounded Bh. By Proposition 5.3.6 of [14], there exists a weak
solution to this equation. That is, there exists a complete filtered probability space
onwhichX is adapted an® is an/-dimensional Brownian motion, such that (89)
holds fort > 0 a.s. On this probability space, consider the prodéss h(Xy).
SinceX has continuous sample paths and is adapted, it is progressively measurable
(see Proposition 1.13 of [14]) and by measurability /of so is U. Denote

by = the admissible system thus constructed. Thensfer r, U; € Uy, and
b(Xs,Us) - Df(X5) + L(X;,Uy) = H(Xs, Df(X5)). Hence

(90) Lf(X)+b(Xs,Us)- Df(X) + L(X5, Us) — vy f(X5) =0, §<T.

A use of Itd’s formula and the convergence theorems just as before now shows that
(87) holds with equality, and

T
fx)=E7 |:/O e V'L(Xs,Us)ds +e_VTV(Xr)] =Cr(x,m), xerl,
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with g as above. This, together with Proposition 5(iv) shows that Vr , =V

on I'. Summarizing,f = V onT. In particular,V € C2#(I') and is a classical
solution to the HIB equation. Now can be taken arbitrarily large, and this
shows thaty € C%?(R’) and that it satisfies the HIB equation&h. In view of
Proposition 5(ii), it also satisfies the polynomial growth condition in cases (i)—(iii)
of the main result; in case (iv) it is trivially a bounded function. As a result, there
exists a classical solution to (29) @%*(R!), again denoted by, satisfying (30)
and, moreovery = f.

It remains to show uniqueness in the appropriate class and existence of optimal
Markov control policies for the problem dR’. In cases (i)—(iii) [resp. (iv)], let
fecC OI(R’) [resp.Cf(R’)] be a solution to (29). Then analogously to (87), we
obtaln

(91) f(x)5/Ote_”sL(Xs,Us)ds+e_ytf(X,)—/Ote_”st(Xs)-rdWs.

Consider first cases (i)—(iii). Taking expectation, sending oo, using the poly-
nomial growth of f and the moment bounds d¢X, || asserted in Proposition 5(i),
we have thatf (x) < C(x, ), wherer e IT [ e IT in case (iii)] is arbitrary. In
cased(lv) the same conclusion holds sintés bounded. Consequently, < V
onR<.

In cases (i) and (i), the proof of existence of optimal Markov policies as well
as the inequalityy < f on R’ is completely analogous to that dh where we
replacel” with R’. The weak existence of solutions to (89) follows on noting that
b satisfies a linear growth condition of the forta(y)|| < x(1 + [|y]), y € R?,
and using again Proposition 5.3.6 of [14]. Then as before, (91) is satisfied with
equality, and taking expectation and using the polynomial growth conditigh of
and the moment estimates (& || shows that/ = f onR!. We conclude thaf is
the unique solution nﬁfpol(R’) thatV = f, and that there exists a Markov control

policy that is optimal for allk € R’. In case (iv) an analogous result is obtained
[with unigueness irCf(R’)] using the boundedness gt

Finally, in case (iii) there is no guarantee that the admissible system
constructed using (89) is iil and, therefore, the teraT "' ET f(X,) in (91) (that
is satisfied with equality) may not tend to zeraas oo. However, in this case we
claim only uniqueness among nonnegative functigrend, therefore, using Itd’s
formula and (90) gives

_ 1 _ 1
For= 1| [ e vods +e 7 ot | 2 7| [ e Lo vods|
0 0
andf(x) > C(x,m)>V(x). O
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