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A DIFFUSION MODEL OF SCHEDULING CONTROL IN
QUEUEING SYSTEMS WITH MANY SERVERS1

BY RAMI ATAR

Technion—Israel Institute of Technology

This paper studies a diffusion model that arises as the limit of a queueing
system scheduling problem in the asymptotic heavy traffic regime of Halfin
and Whitt. The queueing system consists of several customer classes and
many servers working in parallel, grouped in several stations. Servers in
different stations offer service to customers of each class at possibly different
rates. The control corresponds to selecting what customer class each server
serves at each time. The diffusion control problem does not seem to have
explicit solutions and therefore a characterization of optimal solutions via
the Hamilton–Jacobi–Bellman equation is addressed. Our main result is the
existence and uniqueness of solutions of the equation. Since the model is
set on an unbounded domain and the cost per unit time is unbounded, the
analysis requires estimates on the state process that are subexponential in
the time variable. In establishing these estimates, a key role is played by an
integral formula that relates queue length and idle time processes, which may
be of independent interest.

1. Introduction. We consider optimal scheduling control for a class of
queueing systems that operate in heavy traffic, in the sense that the load on
the system is nearly equal to its capacity. As often occurs, exact analysis of
the control problem is unavailable and an asymptotic approach is taken, where
a parametrization of the model is introduced and a diffusion control problem
is obtained in the limit. The parametrization that has been more common in
research papers on related problems (referred to here as conventional heavy
traffic) is one where arrival and service rates are both scaled up in a way that
the system operates near full capacity. Recently, several papers have studied a
different parametrization, proposed by Halfin and Whitt [10], where increase of
arrivals is balanced by scaling up thenumberof (identical) servers in each service
station, while keeping the service time distribution of the individual servers fixed.
In the limit as the parameter grows without bound, conventional heavy traffic
typically gives rise to diffusion processes in the orthant with reflection on the
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boundary, whereas in the Halfin–Whitt (HW) regime the diffusion takes values in
the Euclidean space. This paper focuses on the diffusion model that corresponds
to the queueing system introduced below, operating in the HW regime.

The queueing system has a fixed number of customer classes and many
exponential servers grouped in a fixed number of stations. Only some stations
can offer service to each class, and the service rates depend on the class and
on the station. Also, customers not being served may abandon the system (see
Figure 1). Scheduling (and routing) of jobs in the queueing system is regarded
as control. As cost one considers an expected discounted cumulative function of
performance criteria such as queue lengths, number of idle servers or number of
customers of each class present at each station. The system is parametrized so that
the arrival rates and the number of servers at each station are nearly proportional
to a large parametern, while service and abandonment rates are nearly constant.
For motivation on the model and on this asymptotic regime, see [4] and [12].

In the scaling limit and under appropriate assumptions, one obtains a diffusion
model whose ingredients are denoted byX,Y,Z,� andW̃ . Let I andJ be index
sets for customer classes and service stations, respectively. Assume that a sequence
of systems is given where, in thenth system, the number of servers at each station
is proportional ton. For each systemn, denote byXn

i , i ∈ I, the number of
customers of classi present in the system. ThenX stands for the (formal) weak
limit of the processesn−1/2(Xn − nx∗), wherex∗ are constants that come from
a corresponding “static fluid model” (see [2] for full details on the fluid model
as well as on the derivation of the diffusion model from the queueing model).
Note that because of the centering,Xi assume both positive and negative values.
In an analogous fashion the processesYi , i ∈ I, andZj , j ∈ J, correspond to
queue length of classi and, respectively, the number of idle servers at stationj ,
and�ij corresponds to the number of class-i customers in service at stationj .
Finally, W̃i are Brownian motions that represent the effect of fluctuations in arrival
and service times. Withθi andµij standing for the abandonment rate of class-
i customers and, respectively, service rate of class-i customers at stationj , the

FIG. 1. System with four customer classes(buffers) and three server types(service stations).
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diffusion model reads

Xi(t) = xi + W̃i(t) − ∑
j∈J

µij

∫ t

0
�ij (s) ds − θi

∫ t

0
Yi(s) ds, i ∈ I,(1)

∑
j∈J

�ij = Xi − Yi, i ∈ I,(2)

∑
i∈I

�ij = −Zj , j ∈ J,(3)

Yi ≥ 0, Zj ≥ 0, i ∈ I, j ∈ J.(4)

min

[∑
i∈I

Yi,
∑
j∈J

Zj

]
= 0.(5)

Denote byT the graph that has a node per each class and each station, and
an edge that joins the class and the station if and only if customers of the
class can be served at the station. It is assumed in this paper thatT is a tree
(see Section 2 for discussion on various aspects of this assumption). It is then
possible to encode equations (1)–(5) in a single equation of the formX(t) =
x + rW(t) + ∫ t

0 b(X(s),U(s)) ds, whereU is a control process that takes values
in a compact space andW is a standard Brownian motion. Also, rescaling the cost
associated with the queueing system appropriately results in a cost of the form
Ex

∫ ∞
0 e−γ tL(Xt ,Ut ) dt for the diffusion model.

The main result of this paper is characterization of the diffusion control
problem’s value as the unique solution to the associated Hamilton–Jacobi–Bellman
(HJB) equation. Such problems for diffusion in an unbounded domain are well
understood when either the “running cost”L is bounded [5, 7] or the driftb is
bounded (as follows from the results of [13], e.g.). The difficulty in the current
model stems from the fact that the domain as well as the functionsL and b

are not necessarily bounded. The question then requires deeper understanding
of the model and, in particular, estimates on moments of the process that are
subexponential in the time variable. Our results apply when either one of the
following conditions holds (further conditions on abandonment rates are assumed
in each case; see Section 2): 1. Service rates are either class- or station-dependent;
2. T satisfies diam(T ) ≤ 3; 3. Running costL(X,U) is comparable to‖X‖m,
somem ≥ 1; 4.L is bounded.

The large time estimates needed for the first three cases of the main result use
three different strategies. One of our basic tools is an integral equation (51) that
expresses a relationship directly betweenY , Z andW̃ , not involving X and�.
The special form this equation takes whenµij depend only oni or only on j

makes it possible to get the required estimates onX in case 1 of the main result.
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Equation (51) may be of independent interest since it can be seen to express a
relationship between the datãW , the control processU and theone-dimensional
process

∑
i Xi alone (cf. Section 4).

The integral equation is used also in case 2 of the main result, along with a
certain property of the system (1)–(5). This property, which we call thenonidling
property, should be understood as one of the system of equations rather than the
stochastic processes, because it does not regardW̃ as a Brownian motion, but as a
generic function:

If the system starts withxi > 0 andt �→ W̃i(t) are strictly increasing, then
Zj (t) = 0, j ∈ J, t ≥ 0.

For trees of diameter 3 or less we can show that the property holds and that it
implies moment estimates that are polynomial in time. Heuristically this property
expresses that servers do not idle when there is large enough amount of work.
Viewed this way it appears to be a basic question on the model and one would like
to understand in what generality it holds (e.g., for more general trees), irrespective
of the goals of the current work.

In case 3 of the main result we assume that the functionL is comparable to
a power of the norm of the state processX. This assumption is not the most
natural in the context of queueing, since, for example, cost functions that depend
on queue lengths cannot be treated. However, it can be useful if one is interested in
stabilizing the dynamical system about a nominal model, since the cost penalizes
deviations from the static fluid model. On the technical side, penalizing deviations
from a nominal model simplifies the problem in that moment estimates are required
under one particular control rather than under all controls, and as a result we can
treat the model at full generality, as far as the tree structure and the service rates
are concerned. Finally, in case 4, whereL is assumed to be bounded, estimates on
X are not needed.

Apart from their own contribution the results of this paper are a first step toward
identifying scheduling policies for the queueing system that are, in an appropriate
sense, asymptotically optimal [2]. As in [4], such policies can be derived from the
solution to the diffusion control problem. In addition, such asymptotic analysis
justifies the relationship between the queueing system and the diffusion model
studied here.

Recent results on the HW regime include the following. Puhalskii and Reiman
[17] extended the work of Halfin and Whitt to multiple customer classes, priorities
and phase-type service distribution. Mandelbaum, Massey and Reiman [15]
established functional law of large numbers and central limit theorems for a wide
class of Markovian systems in the HW regime. Armony and Maglaras [1] modeled
and analyzed rational customers in equilibrium, and Garnett, Mandelbaum and
Reiman [8] studied models with abandonments from the queue. Papers where a
control theoretic approach was taken to study queueing systems in this regime are
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few. The diffusion control problem associated with scheduling jobs in a system
with multiple customer classes and a single service station was analyzed by
Harrison and Zeevi [12]. In a similar setting, Atar, Mandelbaum and Reiman
[4] established asymptotic optimality of scheduling policies for the queueing
system derived from the diffusion model’s HJB equation. A special case where
explicit, pathwise solutions to the diffusion control problem are available appeared
in [3]. Finally, with regard to the conventional heavy traffic analysis of systems
analogous to the one studied in the current paper, we mention Harrison and López
[11], where the corresponding Brownian control problem is identified and solved,
Williams [18], where a dynamic threshold scheduling policy is proposed for the
queueing system, and Mandelbaum and Stolyar [16], where asymptotic optimality
of a simple scheduling policy is proved for convex delay costs.

The organization of the paper is as follows. Section 2 describes the queueing
system and the diffusion model and states the main result. Section 3 shows how
estimates on‖X‖ reduce to estimates on|∑i Xi |. Section 4 develops the integral
equation (51) and establishes moment estimates in case 1 of the main result.
Section 5 studies the nonidling property for trees of diameter 3 and establishes
case 2 of the main result. Section 6 treats case 3 and summarizes the estimates in
all cases. Based on the estimates of Sections 3–6, the proof of the main result is
similar to an analogous treatment in [4], but for completeness we provide it in the
Appendix.

NOTATION. For f : [0,∞) → R, let If = ∫ ·
0 f . For a vector x, let

‖x‖ = ∑ |xi|. For two column vectorsv andu, v · u denotes their scalar prod-
uct. The symbolsei denote the coordinate unit vectors ande = (1, . . . ,1)′. The
dimension ofe may change from one expression to another, and, for exam-
ple, e · a = e · b makes sense even ifa and b are of different dimension. The
symbol Cm,ε (resp. Cm) denotes the class of functions onRI for which all
derivatives up to orderm are Hölder continuous uniformly on compacts (resp.
continuous);Cpol denotes the class of continuous functionsf on RI , for which
there arec, r such that|f (x)| ≤ c(1+ ‖x‖r ), x ∈ RI . Let Cm,ε

pol = Cpol ∩Cm,ε and
Cm

pol = Cpol ∩Cm, and letCm
pol,+ be the class of nonnegative functions inCm

pol. The
symbolCb denotes the class of bounded continuous functions andCm

b = Cm ∩Cb.
Let R+ = [0,∞). If X is a process or a function onR+, ‖X‖∗

t = sup0≤s≤t ‖X(s)‖,
and if X takes real values,|X|∗t = sup0≤s≤t |X(s)|. The symbolsX(t) andXt are
used interchangeably. The symbolsc1, c

′
1, c2, c

′
2, . . . denote deterministic positive

constants that may have different values in the proof of different results.

2. The queueing system and the diffusion. We start with an example that
demonstrates how the HW scaling is performed on a simple queueing system. The
queueing system, parametrized byn ∈ N, has a single customer class with renewal
arrivals at rateλn andn servers, each having exponential service time distribution



DIFFUSION MODEL OF SCHEDULING CONTROL 825

of rateµn. While a customer is not in service, it abandons the system at rateθn.
Let Xn(t), Yn(t) and Zn(t) denote the total number of customers, the number
of customers not being served and the number of servers that are idle at timet ,
respectively. Clearly

Xn + Zn = n + Yn.(6)

Assume that the system operates under work conservation, in the sense that
Yn ∧Zn = 0. ThenYn = (Xn −n)+ andZn = (Xn −n)−. The parameters scale so
thatn1/2(n−1λn −λ) → λ̂, n1/2(µn −µ) → µ̂ andθn → θ . The system is assumed
to be critically loaded, in the sense that

λ = µ.(7)

DenoteX̂n(t) = n−1/2(Xn(t) − n), Ŷ n(t) = n−1/2Yn(t) andẐn(t) = n−1/2Zn(t).
Assuming that the interarrival times have finite second moment and that
X̂n(0) → x, Xn converges weakly to a diffusionX that solves

X(t) = x + rW(t) +
∫ t

0

(
λ̂ − µ̂ + µX(s)− − θX(s)+

)
ds,(8)

whereW is a standard Brownian motion andr is a constant that depends on the
first two moments of the interarrival time and onλ (in the absence of abandonment,
the result is due to [10]; see [8] for a treatment of abandonment). Denoting byY

andZ the weak limit ofŶ n andẐn, respectively, note that (8) can be rewritten as

X(t) = x + rW(t) +
∫ t

0

(
λ̂ − µ̂ + µZ(s) − θY (s)

)
ds,(9)

X = Y − Z, Y ∧ Z = 0.(10)

We repeat that some nonexponential service distributions were treated in [17];
however, the diffusion limit turns out to be more complicated and that approach is
not taken here.

The diffusion model studied in this paper corresponds to a queueing system
with several classes and stations. The queueing system and the corresponding
diffusion model are introduced below. Since in the current paper we focus on the
diffusion model, we present it here without attempting to justify its relationship to
the queueing system, and we demonstrate only how it is analogous to the simple
model (8)–(10). Full details on this relationship are deferred to [2]. The queueing
system hasI customer classes andJ service stations (see Figure 1). At each station
there are many independent servers of the same type. Each customer requires
service only once and can be served indifferently by any server at the same station,
but possibly at different rates at different stations. Only some stations can offer
service to each class. Label the classes (and corresponding buffers) as 1, . . . , I and
the types (and corresponding stations) asI + 1, . . . , I + J , and set

I = {1, . . . , I }, J = {I + 1, . . . , I + J }.
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The structure of the system can be encoded in a graph. A pair(i, j) ∈ I × J is
called anactivity if customers of classi can be served at stationj . It is assumed
that whether(i, j) is an activity does not depend onn. Let T denote the graph
with vertex set{1,2, . . . , I + J } = I ∪ J: A node is associated with each buffer
and each station. Edges ofT are between elementsi ∈ I andj ∈ J such that(i, j)

is an activity. Writei ∼ j if (i, j) is an activity. Denote the edge set for the graph
by

E = {(i, j) ∈ I × J : i ∼ j}.
For j ∈ J, let Nn

j be the number of servers at stationj . Let Xn
i (t), Yn

i (t) and
Zn

j (t) denote the total number of class-i customers in the system, the number
of class-i customers in the queue, and the number of idle servers in stationj at
time t , respectively. Finally, let�n

ij (t) denote the number of class-i customers
in service at stationj at time t (note that�n

ij = 0, i �∼ j ). In vector–matrix
notation, setXn = (Xn

i )i∈I, Yn = (Y n
i )i∈I, Zn = (Zn

j )j∈J and�n = (�n
ij )i∈I,i∈J.

Straightforward relationships are expressed by the equations

Yn
i + ∑

j∈J

�n
ij = Xn

i , i ∈ I,(11)

Zn
j + ∑

i∈I

�n
ij = Nn

j , j ∈ J,(12)

Yn
i (t),Zn

j (t) ≥ 0, i ∈ I, j ∈ J, t ≥ 0.(13)

Arrivals of class-i customers occur at rateλn
i , abandonment from queuei is at

rate θn
i and, for i ∼ j , service of a class-i customer at stationj is at rateµn

ij .
Assume

n1/2(n−1λn
i − λi) → λ̂i , n1/2(µn

ij − µij ) → µ̂ij , θn
i → θi,(14)

n1/2(n−1Nn
j − νj ) → 0.(15)

Above, λi, νj ∈ (0,∞), θi ∈ [0,∞), λ̂ ∈ R and for i ∼ j , µij ∈ (0,∞) and
µ̂ij ∈ R. It is convenient to set throughoutµij = µ̂ij = 0 for i �∼ j . In analogy with
(7) in the simple example, we invoke a condition that expresses that the system is
critically loaded. The condition involves the “first order” parametersλi, νi andµij ,
and certain constantsx∗

i andψ∗
ij that represent a static fluid model (see details

in [2]). The processes are rescaled as

X̂n
i (t) = n−1/2(Xn

i (t) − nx∗
i

)
,(16)

Ŷ n
i (t) = n−1/2Yn

i (t), Ẑn
j (t) = n−1/2Zn

j (t),(17)

�̂n
ij (t) = n−1/2(�n

ij (t) − nψ∗
ij

)
.
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AssumingX̂n(0) → x and consideringX, Y , Z and� as formal limits ofX̂n, Ŷ n,
Ẑn and�̂n, we expect in analogy with (9),

Xi(t) = xi + W̃i(t) − ∑
j∈J

µij

∫ t

0
�ij (s) ds − θi

∫ t

0
Yi(s) ds, i ∈ I,(18)

holds, wherẽWi(t) = riWi(t)+�i t , W is a standard Brownian motion,ri ∈ (0,∞)

and�i ∈ R are constants,�ij = 0 for i �∼ j , and, in view of (11)–(13),∑
j∈J

�ij = Xi − Yi, i ∈ I,(19)

∑
i∈I

�ij = −Zj , j ∈ J,(20)

Yi ≥ 0, Zj ≥ 0, i ∈ I, j ∈ J.(21)

For reasons explained in [2], the work conservation condition is replaced by the
condition

e · Y ∧ e · Z = 0.(22)

The diffusion model is now described by (18)–(22). To view the model in a
control theoretic setting, regard� as a control process andX as a controlled
diffusion. Then (18) describes the dynamics ofX, and (19)–(22) serve to define the
“auxiliary” processesY andZ and to set constraints on�. Note that the constraints
on� involve the processX.

While relationships (18)–(22) are, in a sense, analogous to (9)–(10) (although
obviously there is no control process in the simple model), we would like also to
have a relationship analogous to (8). More precisely, we seek to describe the model
in the convenient form

X(t) = x + rW(t) +
∫ t

0
b
(
X(s),U(s)

)
ds(23)

with r = diag(ri)i∈I, appropriate functionb and control processU , and, in
particular, without having to impose constraints onU that involve X. The
assumption below is useful in this development; however, as discussed at the end
of this section, the prime reason for imposing it is different.

ASSUMPTION1 (Treelike). The graphT is a tree.

Proposition A.2 in the Appendix shows that under Assumption 1, (19) and (20)
are equivalent to

� = G(X − Y,−Z),(24)

G being a linear map from{(α,β) ∈ R
I+J :

∑
αi = ∑

βj } to R
IJ . We proceed

to derive (23) under the treelike assumption. Note first that by (19) and (20),
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e ·X = e ·Y −e ·Z, and thus by (21) and (22),e ·Y = (e ·X)+ ande ·Z = (e ·X)−.
HenceY can be represented as

Yi(t) = (
e · X(t)

)+
ui(t),(25)

whereui(t) ≥ 0 ande · u(t) = 1. Similarly,

Zj (t) = (
e · X(t)

)−
vj (t),(26)

wherevj (t) ≥ 0 ande · v(t) = 1. ConsiderU := (u, v) as a control process that
takes values in

U := {(u, v) ∈ R
I+J :ui, vj ≥ 0, e · u = e · v = 1}.

By (24),

� = Ĝ(X,U) := G
(
X − (e · X)+u,−(e · X)−v

)
.

Let

bi(X,U) = − ∑
j∈J

µij Ĝ(X,U)ij − θi(e · X)+ui + �i(27)

and writeb = (bi)i∈I. We see that (18) can be written as (23).

DEFINITION 1 (Admissible systems and controlled processes).

(i) We call

π = (
�,F, (Ft),P ,U,W

)
an admissible systemand say thatU is a control associated withπ if (�,F,

(Ft ),P ) is a complete filtered probability space,U is an (Ft ) progressively
measurableU-valued process andW is a standardI -dimensional(Ft ) Brownian
motion.

(ii) We say thatX is a controlled processassociated with initial datax ∈ RI

and an admissible systemπ = (�,F, (Ft),P ,U,W) if X is a continuous,
(Ft )-adapted process such thatP -a.s.,

∫ t
0 |b(X(s),U(s))|ds < ∞ and

X(t) = x + rW(t) +
∫ t

0
b
(
X(s),U(s)

)
ds, 0 ≤ t < ∞.(28)

As stated in Proposition A.1 in the Appendix, there is a unique controlled
processX associated with anyx andπ . With an abuse of notation we sometimes
denote the dependence onx andπ by writing P π

x in place ofP andEπ
x in place

of E. Denote by
 the class of all admissible systems.
Let a constantγ > 0 and a functionL be given, and consider the cost

C(x,π) = Eπ
x

∫ ∞
0

e−γ tL
(
X(t),U(t)

)
dt, x ∈ R

I , π ∈ 
.

Our assumption onL is as follows.
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ASSUMPTION2. (i) We haveL(x,U) ≥ 0 and(x,U) ∈ RI × U.
(ii) The mapping(x,U) �→ L(x,U) is continuous.
(iii) There is� ∈ (0,1) such that for any compactA ⊂ RI ,

|L(x,U) − L(y,U)| ≤ c‖x − y‖�

holds forU ∈ U andx, y ∈ A, wherec depends only onA.
(iv) There are constantscL > 0 and mL ≥ 1 such thatL(x,U) ≤ cL(1 +

‖x‖mL), U ∈ U, x ∈ RI .

Define the value function asV (x) = infπ∈
 C(x,π). The HJB equation for the
problem is (cf. [7])

Lf + H(x,Df ) − γf = 0,(29)

whereL = (1/2)
∑

i∈I r2
i ∂2/∂x2

i and

H(x,p) = inf
U∈U

[b(x,U) · p + L(x,U)].

The equation is considered onRI with the growth condition

∃ c,m, |f (x)| ≤ c(1+ ‖x‖m), x ∈ R
I .(30)

DEFINITION 2. Let x ∈ R
I be given. We say that a measurable function

h :RI → U is a Markov control policyif there is an admissible systemπ and
a controlled processX corresponding tox andπ , such thatUs = h(Xs), s ≥ 0,
P -a.s. We say that an admissible systemπ is optimalfor x if V (x) = C(x,π). We
say that a Markov control policy is optimal forx if at least one of the admissable
systems corresponding to it is optimal.

Different parts of our main result below require different assumptions on the
abandonment rates:

∀ (i, j) ∈ E , θi ≤ µij ,(31)

∃ (i, j) ∈ E , θi ≤ µij .(32)

These assumptions are rational for the following reason. If (31) does not hold [and
certainly if (32) does not hold], there is a classi where customers leave the system
by abandonment more quickly than they do by getting served at a certain station
j ∼ i. Thus under many reasonable performance criteria (e.g., any increasing
functional of the queue lengths) it is preferable to never use activity(i, j). This
stands in contrast to our work conservation assumptions.

THEOREM 1. Let Assumptions1 and 2 hold. In addition, let one of the
following conditions hold.
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(i) For (i, j) ∈ E , µij depends only oni, or for (i, j) ∈ E , µij depends only
on j . In additionθi = 0, i ∈ I.

(ii) The treeT is of diameter3 at most and(31)holds.
(iii) There area1, a2 > 0 such thatL(x,U) ≥ a1‖x‖mL for all ‖x‖ > a2 and

all U ∈ U (wheremL is as in Assumption2). In addition, (32)holds.
(iv) The functionL is bounded.

Then the valueV is in C
2,ρ
pol and it solves(29) and (30). In cases(i) and (ii) [ resp.

(iii) and (iv)] this solution is unique inC2
pol (resp. C2

pol,+; C2
b ). Moreover, there

exists a Markov control policy that is optimal for allx ∈ RI .

We end this section with a few remarks on the role of the treelike assumption in
this work. Our results strongly depend on estimates on moments of the controlled
process that are subexponential in the time variable [in cases (i) and (ii) of the
main result]. These are obtained by considering a deterministic model in place of
(18)–(22). Usew in place ofx + W̃ [where as in (18)x is the initial condition
for X] and usex = x(t) (resp.y, z, ψ) in place ofX (resp.Y , Z, �). Then

xi(t) = wi(t) − ∑
j∈J

µij

∫ t

0
ψij (s) ds − θi

∫ t

0
yi(s) ds, i ∈ I,(33)

∑
j∈J

ψij = xi − yi, i ∈ I,(34)

∑
i∈I

ψij = −zj , j ∈ J,(35)

yi, zj ≥ 0, i ∈ I, j ∈ J,(36)

e · y ∧ e · z = 0,(37)

whereψij = 0, i �∼ j . The first two cases of Theorem 1 are based on showing that
(33)–(37) imply an estimate of the form

‖x(t)‖ ≤ m0(1+ t)m0(1+ ‖w‖∗
t )

m0,(38)

wherem0 does not depend ont , w, y, z and ψ . If the treelike assumption is
removed, this estimate does not hold true in general (as shown in the example
below). We leave open the question of whether this implication holds true in
full generality under the treelike assumption. We stress that this is the reason for
imposing the treelike assumption in this paper, rather than the using capability
to rephrase the model equations (18)–(22) as (23): Although (23) is useful, its
absence would not be a serious obstacle to treating the problem, whereas the large
time estimates constitute a key ingredient of the proof.

EXAMPLE 1. Consider a system with classes 1 and 2 and stationsA andB,
and with µ1A = µ2A = 1, µ1B = µ2B = 2, and arbitraryθ1 and θ2. Consider
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w = 0, ψ1A = −ψ2A = k, ψ1B = −ψ2B = −k(1 + e−2t )/2, x1 = −x2 = k(1 −
e−2t )/2, y = 0 andz = 0. Then (33)–(37) hold for everyk > 0. Thus (38) cannot
hold.

Finally, there is another central role played by the treelike condition, as
elaborated in [2]. The diffusion model turns out to depend on whether preemption
is allowed in the queueing system under scaling. As explained in [2], preemptive
and nonpreemptive policies give rise to genuinely different diffusion models if
the treelike assumption does not hold, whereas under the treelike assumption the
corresponding diffusion models coincide (as supported by the result in [4] for the
case of a single station and in [2] for cases (i) and (ii) of Theorem 1).

3. Estimating the state X in terms of e ·X. While the relationship‖Y (t)‖+
‖Z(t)‖ ≤ c‖X(t)‖ is immediate from (25) and (26), the following result shows that
in a weaker senseY , Z andx + W̃ dominateX (or in the deterministic notation,
y, z andw dominatex). The result uses only the relationships (33)–(35), and not
the further constraints (36) and (37).

PROPOSITION 1. Let (33)–(35) hold. Then there is a constantm1 not
depending onψ,w,x, y, z or t , such that

‖Iψ(t)‖ + ‖x(t)‖ ≤ m1(‖w‖∗
t + ‖Iy‖∗

t + ‖Iz‖∗
t ), t ≥ 0.

Note that if, in addition, (36) and (37) are assumed, then‖Iy‖∗
t = I(e · x)+(t)

and‖Iz‖∗
t = I(e · x)−(t). As a result of Proposition 1, the statex is dominated by

w ande · x in the sense

‖x(t)‖ ≤ m1
(‖w‖∗

t + I|e · x|(t)).
LEMMA 1. Let w be a measurable, locally bounded function and assume

x = w − µ
∫ ·
0 x(s) ds. Then

x(t) = w(t) − µ

∫ t

0
w(s)e−µ(t−s) ds(39)

and, in particular, if µ > 0, then|x(t)| ≤ 2|w|∗t , t ≥ 0.

PROOF. Uniqueness of solutionsx is standard and (39) is verified by
substitution. �

PROOF OFPROPOSITION1. Observe, by replacingwi − θiIyi with wi , that
without loss we can takeθi = 0, i ∈ I; therefore,θi = 0 in the sequel.

A node in a tree is said to be a leaf if there is exactly one edge joining it. Recall
that the treeT hasκ = I + J nodes andκ − 1 edges. LetT1,T2, . . . ,Tκ−1 = T
be an increasing sequence of trees as follows. Forn = 1, . . . , k − 2, Tn is obtained
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from Tn+1 by deleting a leaf and the edge joining it. Note thatT1 has exactly
two nodes: one inI and one inJ. Let Vn denote the vertex set ofTn. Let
vn+1 = Vn+1 \ Vn denote the node inVn+1 that does not belong toVn.

DenoteIn = I ∩ Vn andJn = J ∩ Vn. We show that forn = 1, . . . , κ − 1, if

xi = wi − ∑
j∈Jn

µijIψij , i ∈ In,

∑
j∈Jn

ψij = xi + αi, i ∈ In,(40)

∑
i∈In

ψij = βj , j ∈ Jn,

then

∑
i∈In

j∈Jn

|Iψij |∗t + ∑
i∈In

|xi |∗t ≤ cn

( ∑
i∈In

(|wi |∗t + |Iαi|∗t ) + ∑
j∈Jn

|Iβj |∗t
)
.(41)

The implication (40)⇒ (41) is proved by induction onn.
Induction base: n = 1. T1 has exactly two nodes, sayi ∈ I andj ∈ J. By (40),

xi = wi − µijIψij andIψij = Iβj . Hence (41) holds.
Induction step.Assume that (40)⇒ (41) holds forn ∈ [1, κ − 2]. Let (40) hold

for n + 1. We show that (41) holds forn + 1 in the following two cases.

CASE 1. The leaf nodevn+1 is in I. Denotei0 = vn+1 and letj0 denote the
unique nodej ∼ i0 in Tn+1. The validity of (40) forn + 1 implies

xi = wi − ∑
j∈Jn

µijIψij , i ∈ In,∑
j∈Jn

ψij = xi + αi, i ∈ In,∑
i∈In

ψij = βj , j ∈ Jn \ {j0},∑
i∈In

ψij0 = βj0 − ψi0j0,

(42)

regardingi ∈ In, j ∈ Jn, and

xi0 = wi0 − µi0j0Iψi0j0, ψi0j0 = xi0 + αi0.(43)
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regarding the nodei0. By (42) and the induction assumption,∑
i∈In,j∈Jn

|Iψij |∗t + ∑
i∈In

|xi|∗t
(44)

≤ cn

( ∑
i∈In

(|wi |∗t + |Iαi |∗t ) + ∑
j∈Jn

|Iβj |∗t + ∣∣Iψi0j0

∣∣∗
t

)
.

By (43),

xi0 = wi0 − µi0j0Iαi0 − µi0j0Ixi0.(45)

Applying Lemma 1 to (45) and again using (43) shows∣∣xi0(t)
∣∣ + ∣∣Iψi0j0(t)

∣∣ ≤ c′(∣∣wi0

∣∣∗
t + ∣∣Iαi0

∣∣∗
t

)
.(46)

Combining (44) and (46) establishes the validity of (41) forn + 1.

CASE 2. The leaf nodevn+1 is in J. Denotej0 = vn+1 and leti0 denote the
unique nodei ∼ j0 in Tn+1. Assuming (40) forn + 1 implies

xi = wi − ∑
j∈Jn

µijIψij , i ∈ In \ {i0},∑
j∈Jn

ψij = xi + αi, i ∈ In \ {i0},

xi0 = (
wi0 − µi0j0Iψi0j0

) − ∑
j∈Jn

µi0jIψi0j ,∑
j∈Jn

ψi0j = xi0 + (
αi0 − ψi0j0

)
,

∑
i∈In

ψij = βj , j ∈ Jn,

(47)

and

ψi0j0 = βj0.(48)

By (47) and the induction assumption, (44) follows. Combining (44) with (48)
gives (41) forn + 1.

This completes the proof that (40) implies (41) forn ∈ [1, κ − 1]. The result
follows on takingn = κ − 1 and substitutingα = −y andβ = −z. �

4. An integral formula for Y and Z. Equations (33)–(35) were used in the
previous section as substitutes for (18)–(20). They express a relationship between
the quantitiesx, y, z, w andψ . In this section we extract a relationship between
y, z andw alone. This relationship, in the form of an integral equation, is a key
element in treating Theorem 1(i) and (ii).
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Forα ∈ R denote

Tαf = f + αIf.

Lemma 1 shows thatTα is invertible. It is easy to see that the operatorsTα andTβ

commute. IfA = (α1, . . . , αk) is a finite real-valued sequence, denote

TA = Tα1 ◦ · · · ◦ Tαk
.

ThenTA does not depend on the order of the elements ofA, but it depends on the
multiplicity of each element. SetT∅ corresponding tok = 0 as the identity map.
Equations (33)–(35) imply∑

j∈J

Tµij
ψij = wi − Tθi

yi, i ∈ I,(49)

∑
i∈I

ψij = −zj , j ∈ J.(50)

THEOREM 2. Let (49)and(50)hold.

(i) The quantitiesy andz solve the integral equation∑
i∈I

TAi
wi − ∑

i∈I

TA′
i
yi + ∑

j∈J

TBj
zj = 0,(51)

where Ai and Bj are finite ( possibly empty) sequences with values in{µij :
(i, j) ∈ E} and, for i ∈ I, A′

i is the concatenation ofAi with θi .
(ii) In the special case whereµij = µj for (i, j) ∈ E and θi = 0, i ∈ I,

equation(51) takes the form∑
i∈I

(wi − yi) + ∑
j∈J

Tµj
zj = 0.(52)

(iii) In the special case whereµij = µi for (i, j) ∈ E and θi = 0, i ∈ I,
equation(51) takes the form∑

i∈I

TMi
(wi − yi) + TM(e · z) = 0,(53)

whereMi = (µi′)i′∈I, i′ �=i andM = (µi′)i′∈I.

REMARK 1. (a) WritingIn for then-powerI ◦ · · · ◦ I of the operatorI, it is
useful to note that the integral equation (51) can be written as

e · w − e · y + e · z
(54)

+ ∑
i∈I

mi∑
n=1

ai,nInwi − ∑
i∈I

m′
i∑

n=1

a′
i,nInyi + ∑

j∈J

m′′
j∑

n=1

a′′
j,nInzj = 0.
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Here,mi,m
′
i ,m

′′
j , ai,n, a′

i,n anda′′
j,n are positive constants that we do not give in

explicit form.
(b) Recall that under (36) and (37) we havey = (e · x)+u andz = (e · x)−v.

As a result, (54) expresses a relationship between the dataw, the controlsu andv,
and the quantitye · x alone.

We need some notation regarding the treeT to be used in this and the following
sections. Fix one of the class nodes,i0, as a root. (Analogous notation applies if we
fix a station node, somej0 as a root.) Fork = 0,1, . . . , let levelk, denoted bylk ,
be the set of nodes ofT at distancek from the rooti0 along the edges ofT (see
Figure 2). Note thatl0 = {i0} and thatlk is empty for allk large. Let also

Lk = l0 ∪ l1 ∪ · · · ∪ lk

be the set of nodes at distance at mostk from the root and let

LI
k = Lk ∩ I, L

J
k = Lk ∩ J.

Note that the elements ofLI
k (resp.LJ

k ) are at even (resp. odd) distance from the
root, not exceedingk. LetK be the largestk such thatlk is nonempty. For a nodev
at levelk let B(v) (B for below) be the set of nodesv′ ∼ v at levelk + 1. For a
nodev at levelk ∈ [1,K] let a(v) (a for above) be the unique nodev′ ∼ v at level
k − 1.

PROOF OFTHEOREM 2. (i) Suppose we prove (51) for the caseθi = 0, i ∈ I,
that is, ∑

i∈I

TAi
(wi − yi) + ∑

j∈J

TBj
zj = 0.(55)

Then, for arbitraryθi , (51) is obtained from (55) on substitutingTθi
yi for yi .

Therefore, in the sequel we setθi = 0, i ∈ I, and turn to prove (55).

FIG. 2. Buffer-station tree.
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We show that fork ≥ 1, we have∑
i∈LI

2k−2

TAk
i
(wi − yi) + ∑

j∈L
J
2k−1

TBk
j
zj + ∑

i∈l2k

TCk
i
ψia(i) = 0,(56)

where Ak
i , Bk

j and Ck
i are ( possibly empty) sequences with values in{µij :

(i, j) ∈ E}, and summation over an empty set is regarded as zero. Equation (55)
follows on takingk larger thanK .

We prove (56) by induction onk.
Induction base: k = 1. By (49),∑

j∈l1

Tµi0j
ψi0j = wi0 − yi0

and by (50),

ψi0j = −zj − ∑
i∈l2

ψij , j ∈ l1.

It follows that

wi0 − yi0 + ∑
j∈l1

Tµi0j
zj + ∑

i∈l2

Tµi0a(i)
ψia(i) = 0

and (56) holds.
Induction step.Assume that (56) holds fork. Using (49) and then (50), for

i ∈ l2k andj = a(i) we have

Tµij
ψij = − ∑

j ′∈B(i)

Tµij ′ψij ′ + wi − yi

= ∑
j ′∈l2k+1

{
Tµij ′ zj ′ + ∑

i′∈l2k+2

Tµij ′ψi′j ′

}
+ wi − yi.

Apply TCk
i

on the above equation [where stilli ∈ l2k andj = a(i)] to get

TCk
i
Tµij

ψij = ∑
j ′∈l2k+1

TCk
i
Tµij ′ zj ′

(57)
+ ∑

i′∈l2k+2

TCk
i
Tµia(i′)ψi′a(i′) + TCk

i
(wi − yi).

Let Dk = (µia(i))i∈l2k
. Apply TDk

to (56) and use (57) to substitute for each
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summand in the third sum in (56) to get

0 = ∑
i∈LI

2k−2

TDk
TAk

i
(wi − yi) + ∑

j∈L
J
2k−1

TDk
TBk

j
zj

+ ∑
i∈l2k

{ ∑
j ′∈l2k+1

TDk\{µij ′ }Tµij ′TCk
i
zj ′

+ ∑
i′∈l2k+2

TDk\{µij }Tµia(i′)TCk
i
ψi′a(i′) + TDk\{µij }TCk

i
(wi − yi)

}
,

whereDk \ {µ} denotes a sequence obtained fromDk by deleting from it one
element of valueµ. This proves that (56) holds fork + 1 and completes the proof
of part (i).

(ii) In the case thatµij = µj andθi = 0, by (49) and (50),∑
j∈J

Tµj
ψij = wi − yi, i ∈ I,

∑
i∈I

Tµj
ψij = −Tµj

zj , j ∈ J,

hence ∑
i∈I

(wi − yi) + ∑
j∈J

Tµj
zj = 0.

(iii) In the case thatµij = µi andθi = 0, by (49) and (50),

Tµi

∑
j∈J

ψij = wi − yi, i ∈ I,(58)

∑
i∈I

ψij = −zj , j ∈ J.(59)

The result follows on applying
∏

i′ �=i Tµi′ on (58) and
∏

i′∈I Tµi′ on (59). �

PROPOSITION2. Let (49)and (50)hold. Assume also that

yi ≥ 0, zj ≥ 0, i ∈ I, j ∈ J,(60)

e · y(t) ∧ e · z(t) = 0.(61)

In cases(ii) and(iii) of Theorem2 there is a constantm2 such that

‖y(t)‖ + ‖z(t)‖ ≤ m2(1+ t)m2‖w‖∗
t , t ≥ 0.(62)
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PROOF. In the caseµij = µj , (52) can be written as

e · w − e · y + e · z + ∑
j∈J

µjIzj = 0.

By (60), zj are positive and thereforee · w − e · y + e · z ≤ 0. Thus by (61),
0 ≤ e · z ≤ (−e · w)+ and, therefore,

e · w ≤ e · y − e · z ≤ e · w + t|e · w|∗t .
Since by (61),‖y‖ + ‖z‖ = |e · y − e · z|, (62) follows.

In the caseµij = µi , applyingT−1
µi

to (58) and by (59) [or by applyingT−1
M

to (53)], we have ∑
i∈I

T−1
µi

(wi − yi) + e · z = 0;

hence, by Lemma 1 and positivity ofyi ,

e · w − e · y + e · z = ∑
i∈I

µi

∫ t

0

(
wi(s) − yi(s)

)
exp

(−µi(t − s)
)
ds ≤ c1t‖w‖∗

t

for some constantc1. By positivity of zj and (61) we, therefore, have

‖z(t)‖ ≤ c2(1+ t)‖w‖∗
t .(63)

By (54), the positivity of its coefficients and ofyi , and (63), there is a constantc3
such that

‖y(t)‖ ≤ c3(1+ t)c3‖w‖∗
t .(64)

Combining (63) and (64) establishes (62).�

COROLLARY 1. Under the assumptions of Theorem1(i), for anym ≥ 1, any
initial conditionx ∈ RI and any admissible systemπ ∈ 
,

Eπ
x ‖X(t)‖m ≤ m3(1+ ‖x‖)m3(1+ t)m3, t ≥ 0,

wherem3 do not depend onx, π andt .

PROOF. By Propositions 1 and 2,

‖x(t)‖ ≤ m1(‖w‖∗
t + ‖Iy‖∗

t + ‖Iz‖∗
t )

≤ [m1 + m1m2t (1+ t)m2]‖w‖∗
t .

ThusEπ
x ‖X(t)‖m ≤ c(1+ t)cEπ

x (‖x‖+c‖W̃‖∗
t )

m for a constantc depending only
onm1, m2 andm, and the result follows from standard estimates on the Brownian
motion. �
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5. The nonidling property. This section investigates a relationship between
a property defined below and referred to as the nonidling property, and the uniform
estimate

‖x(t)‖ ≤ m4(1+ t)m4(1+ ‖w‖∗
t ),(65)

wherem4 does not depend ont , w, y, z andψ . In particular, using the integral
equation developed in the previous section, it shows that for trees of diameter
not exceeding 3, this property implies the uniform estimate. A relatively simple
argument then shows that the property holds for such trees and the estimate
follows.

Rewrite relationships (33)–(35) as in the previous section and recall relation-
ships (36) and (37):∑

j∈J

(ψij + µijIψij ) = wi − yi − θiIyi, i ∈ I,(66)

∑
i∈I

ψij = −zj , j ∈ J,(67)

yi, zj ≥ 0, i ∈ I, j ∈ J,(68)

e · y ∧ e · z = 0.(69)

Note thatx [cf. (33)] is not a part of this system of equations, but can be obtained
from it via

xi = wi − ∑
j∈J

µijIψij − θiIyi.

We say thatthe system(66)–(69)incurs no idleness on[0, T ) (cf. [18]) if zj (t) = 0
for t ∈ [0, T ), j ∈ J.

THE NONIDLING PROPERTY. For everyT > 0, if the system starts with
wi(0) > 0, andwi, i ∈ I, are strictly increasing and right-continuous on[0, T ),

then the system incurs no idleness on[0, T ).

A treeT of diameter 3 has the form depicted in Figure 3, where there are only
two nodesi0 ∈ I andj0 ∈ J that are not leaves.

FIG. 3. Tree of diameter3.
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THEOREM 3. Let Assumption1 hold and assume the diameter of the treeT
is 3. Then the nonidling property[ for the system(66)–(69)] implies the estimate
(65),wherem4 does not depend ont , w, y, z andψ .

LEMMA 2. Let the assumptions of Theorem3 hold. Fix T > 0 and let
(ψ,y, z,w) be given, satisfying (66)–(69) on [0, T ]. Let bounded measurable
functionsfi ≥ 0, i ∈ I, be given. Then there is a constantm5 that does not depend
on T,fi,ψ, y, z or w, and there exist(ψ̂, ŷ, ẑ, ŵ) defined on[0, T ] that satisfy
(66)–(69),and, moreover,

e · ŷ ≥ e · y, e · ẑ ≤ e · z(70)

and

ŵi = wi + fi + ηi,(71)

whereηi are nondecreasing and continuous, and 0 ≤ ηi ≤ m5T
∑

i′∈I |fi′ |∗T on
[0, T ].

PROOF. It suffices to prove the lemma in the case where all but one of the
functionsfi vanish, since the argument can then be repeated. Consider first the
case wherefi vanish for alli �= i0 (andfi0 ≥ 0). Defineŵi = wi , ŷi = yi and
ψ̂ij = ψij for i �= i0. Clearly (66) holds fori �= i0. Define nowψ̂i0j and ẑj as
follows. For t ∈ � := {s ∈ [0, T ] : e · z(s) ≥ fi0(s)}, let j = I + 1, let �j :=
zj ∧ fi0, and setψ̂i0j = ψi0j + �j and ẑj = zj − �j . Similarly, for j ∈ [I + 2,

I + J ], let �j = zj ∧ (fi0 − �I+1 − · · · − �j−1) and ψ̂i0j = ψi0j + �j , ẑj =
zj − �j . Note that for allj , ẑj ≥ 0 and that (67) is satisfied by the hat system. It
is elementary to check that

�j(t) ≥ 0, j ∈ J; ∑
j∈J

�j(t) = fi0, t ∈ �.(72)

As a result, withδ(t) = 0,∑
j∈J

ψ̂i0j (t) = ∑
j∈J

ψi0j (t) + fi0(t) − δ(t).(73)

For t ∈ �c, setẑj = 0 andψ̂i0j = ψi0j + �j , where now�j = zj , j ∈ J. Then
again (67) holds for the hat system. Also (73) holds withδ(t) = fi0(t) − e · z(t).
Note that

0 ≤ δ ≤ fi0.(74)

Now thatψ̂ is defined on[0, T ], let

ŵi0 = wi0 + ∑
j∈J

(
ψ̂i0j − ψi0j + µi0jI

(
ψ̂i0j − ψi0j

)) + δ + θi0Iδ



DIFFUSION MODEL OF SCHEDULING CONTROL 841

and let ŷi0 = yi0 + δ. Then (66) holds on[0, T ] for i = i0. By (73), ŵi0 =
wi0 + fi0 + ηi0, whereηi0 = ∑

j∈J µi0jI(ψ̂i0j − ψi0j ) + θi0Iδ. By (72), 0≤
ψ̂i0j − ψi0j ≤ fi0 on � and by construction the same holds on�c. Combined
with (74), the properties ofηi0 stated in the lemma follow. Inequalities (70) also
hold by construction. Condition (69) holds for the hat system since on�, ŷ = y

and by (72)e · ẑ ≤ e · z; and on�c, e · ẑ = 0.
Next consider the case where for somei1 �= i0, fi = 0 on [0, T ] for all i �= i1.

The argument is similar, but slightly more complicated becausei1 �∼ j for mostj .
We indicate only where the argument changes. The definition ofψ̂ij andẑj differs
as follows. Variables�j , δ andẑj are defined as before, wherei0 is replaced byi1.
Recall that in the previous case,ψ̂ is defined asψ̂ = ψ + �. In the current case,
let ψ̂i1j0 = ψi1j0 +∑

j �j , ψ̂i0j = ψi0j +�j for j �= j0, ψ̂i0j0 = ψi0j0 −∑
j �=j0

�j

andψ̂ij0 = ψij0 for i /∈ {i0, i1}. Set

ŵi1 = wi1 + ψ̂i1j0 − ψi1j0 + µi1j0I
(
ψ̂i1j0 − ψi1j0

) + δ + θi1Iδ,

ŵi0 = wi0 + ∑
j �=j0

µi0jI
(
ψ̂i0j − ψi0j

) =: wi0 + η̃i0.

Let ŷi1 = yi1 + δ and let ŷi = yi for all i �= i1. We check that all properties
(66)–(69) are satisfied by the hat system and that the conclusions of the lemma
all hold, except that̂wi0 = wi0 + fi0 + η̃i0, where there is no guarantee thatη̃i0 is
nondecreasing (in fact, we have assumed without loss thatfi0 = 0). However, this
is now corrected by applying a further modification as in the previous paragraph,
where now we takefi0 = ∑

j �=j0
µi0jI[(ψ̂i0j − ψi0j )

−], so that overallfi0 + η̃i0 is
nondecreasing andfi = 0 for all i �= i0. �

PROOF OFTHEOREM 3. Fix T > 0 and let(ψ,y, z,w) be given, satisfying
(66)–(69) on[0, T + 1). Let fi be defined on[0, T + 1) as

fi(t) = 1+ max
(

0, sup
0≤s<T +1

wi(s)

)
− wi(t) + t/T =: āi(w,T ) − wi(t) + t/T .

Let (ψ̂, ŷ, ẑ, ŵ) be as in the conclusion of the lemma. Thenŵi = āi (w,T ) +
t/T + ηi ; thusŵi(0) > 0 andŵi is strictly increasing on[0, T + 1). Therefore, by
the nonidling property,̂zj = 0 on[0, T + 1), j ∈ J. Applying (54) toŵ, ŷ, ẑ, and
using the nonnegativity ofyi and of the constantsa′

i,n,∑
i∈I

ŷi(t) ≤ c1(1+ t)c1
∑
i∈I

|ŵi |∗T , t ≤ T,

wherec1 does not depend on̂w andT . Using (70) and (71),

e ·y(t) ≤ c2(1+ t)c2
∑
i∈I

(
āi(w,T )+ηi(T )

) ≤ c3(1+ t)c3T (1+‖w‖∗
T ), t ≤ T .
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Thus on[0, T ],
e · y ≤ c4(1+ T )c4(1+ ‖w‖∗

T ).

Using again (54), now onw,y, z and equipped with the bound ony,

e · z ≤ c5(1+ T )c5(1+ ‖w‖∗
T ).

As a result,

‖y‖∗
T + ‖z‖∗

T ≤ c6(1+ T )c6(1+ ‖w‖∗
T ),

wherec6 does not depend onT , w, ψ , y and z. The result now follows from
Proposition 1. �

LEMMA 3. Let the assumptions of Theorem3 hold. Assume, moreover, that
θi ≤ µij0 for i ∈ I. Then the nonidling property holds.

PROOF. It is more convenient here to work with the equivalent set of equations
(33)–(35). FixT > 0 and considerwi strictly increasing, right-continuous on
[0, T ), with wi(0) > 0. For i �= i0, by (34), ψij0 = xi − yi , hence by (33),
xi = wi + ∫ ·

0[−µij0xi(s) + (µij0 − θi)yi(s)]ds. Since the second term in the
integrand is positive, by a standard comparison resultxi ≥ ξi , whereξi solvesξi =
wi − µij0

∫ ·
0 ξi(s) ds. By Lemma 1, and sincewi(0) ≥ 0 andwi is nondecreasing,

we haveξi ≥ 0. As a result,

xi(t) ≥ 0, i �= i0, t < T .(75)

Recall thate · z = (e · x)− and letτ = inf{t : e · z(t) > 0} = inf{t : e · x(t) < 0}.
Arguing by contradiction, assume thatτ < T . By right-continuity and (33),

e · x(τ ) ≤ 0.(76)

By (33) and the assumptions onw, τ > 0. On [0, τ ), ψi0j = zj = 0, j �= j0.
Applying the argument in the previous paragraph toxi0,

xi0(t) = wi0(t) +
∫ t

0

[−µi0j0xi0(s) + (
µi0j0 − θi0

)
yi0(s)

]
ds, t < τ.

Hencexi0 ≥ ξ on [0, τ ), where nowξ = wi0 − µi0j0

∫ ·
0 ξ , and using Lemma 1,

ξ(t) ≥ wi0(t)exp
(−µi0j0t

) ≥ wi0(0)exp
(−µi0j0T

)
> 0, t < τ.

By (33) and sincewi0 is nondecreasing on[0, T ), it follows that, in fact,xi0(τ ) > 0.
Along with (75), this stands in contradiction to (76). Therefore,e · z vanishes on
[0, T ) and by (68), so dozi , i ∈ I. �

All results of this section remain valid for trees of diameter 2, as follows on
applying them for trees of diameter 3 and choosingµij = 0 for appropriate(i, j)

andθi = 0 for appropriatei (in this section we have not used the assumption that
µij > 0, but onlyµij ≥ θi ).

Theorem 3 and Lemma 3 imply the following.
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COROLLARY 2. Under the assumptions of Theorem1(ii), if (66)–(69)are
satisfied on[0,∞) and w is right-continuous, then (65) holds, with m4 that is
independent ofw, ψ , y, z andt . Consequently, for anym ≥ 1,any initial condition
x ∈ RI and any admissible systemπ ∈ 
,

Eπ
x ‖X(t)‖m ≤ m6(1+ ‖x‖)m6(1+ t)m6, t ≥ 0,

wherem6 does not depend onπ , x andt .

6. Case where cost is bounded below and summary of estimates. This
section treats part (iii) of Theorem 1. First it is shown that there exists an admissible
systemπ0 under which the state process satisfies a polynomial growth condition
in time. Then it is shown that we can consider a subset of
 of admissible systems
that, in a sense, switch toπ0 after some time, without losing optimality. The
estimates forπ0 then remain valid in the switched systems.

PROPOSITION 3. Let Assumption1 hold and consider the system(33)–(35).
Fix (i0, j0) ∈ E such thatµi0j0 ≥ θi0. Let y = (e · x)+u andz = (e · x)−v, where
u(t) = ei0 andv(t) = ej0 for all t . Then the estimate‖x(t)‖ ≤ m7(1 + t)m7‖w‖∗

t

holds, wherem7 does not depend onw andt .

PROOF. Let i0 be the root. Thenj0 ∈ B(i0). It suffices to show that for
k = 0,1, . . . , if i ∈ l2k andj ∈ l2k+1, then∣∣ψa(j)j (t)

∣∣, ∣∣ψia(i)(t)
∣∣, |xi(t)| ≤ ck(1+ t)ck‖w‖∗

t .

This claim is proved by backward induction onk.
Induction base.The variablek is the smallest numbern such thatl2n+2 = ∅.

If l2k+1 is not empty, letj ∈ l2k+1. Then by (35),ψa(j)j = −zj = 0. Let i ∈ l2k .
Forj ∈ B(i), ψij = 0. Letj = a(i). Then by (33),xi = wi −µijIψij , and by (34)
and the assumptions,ψij = xi − yi = xi . Thusxi solvesxi = wi − µijIxi and by
Lemma 1,|xi|, |ψij | ≤ c′

1|wi|∗ for some constantc′
1.

Induction step.Assuming the claim holds fork + 1 we show that it holds fork.
Let j ∈ l2k+1, j �= j0. Then by (35) and the assumption,ψa(j)j = −∑

i∈B(j) ψij .
Thus by the induction assumption|ψa(j)j | ≤ c′

2(1 + t)ck‖w‖∗. Let i ∈ l2k , i �= i0.
Then by (33) and (34), the bound onψij , j ∈ B(i), just obtained, and the induction
assumption,

xi(t) = g(t) − µia(i)Ixi(t),

where |g(t)| ≤ c′
3(1 + t)c

′
3‖w‖∗

t with some constantc′
3. Hence by Lemma 1,

|xi(t)| ≤ c′
4(1+ t)c

′
4‖w‖∗

t . By (34) and the induction assumption, a similar bound
then holds for|ψia(i)|.
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Consider nowi0 andj0. Write y0, z0 andψ0 for yi0, zj0 andψi0j0, respectively,
with a similar convention forx0, µ0 and θ0. By (33)–(35) and the induction
assumption, we have

x0 = g1 − µ0Iψ0 − θ0Iy0,

ψ0 + g2 = x0 − y0,

ψ0 + g3 = −z0,

where |gi(t)| ≤ c′
4(1 + t)c

′
4‖w‖∗

t and c′
4 is independent oft andw. Thenx0 =

g1 + I[−µ0g2 − µ0x0 + (µ0 − θ0)y0]. Since by assumption the last term in the
integral is nonnegative,x0 ≥ ξ , where ξ = g1 − µ0I(g2 + ξ). By Lemma 1,
|ξ(t)| ≤ g4 = c′

5(1 + t)c
′
5‖w‖∗

t for all t . This establishes an appropriate lower
bound onx0. Moreover, if y0(t) = 0, thenψ0(t) ≥ x0(t) − g2(t) ≥ −g4(t) −
g2(t), and if y0(t) > 0, theny0(t) ≤ e · y(t) = e · x(t) andψ0(t) ≥ x0(t) − e ·
x(t) − g2(t) = −∑

i �=i0
xi(t) − g2(t). Thus, by the induction assumption,ψ0(t) ≥

−c′
6(1 + t)c

′
6‖w‖∗

t holds for allt . Sinceψ0 ≤ −g3, a similar upper bound onψ0
holds. Finally,x0(t) ≤ |g1(t)| + µ0t|ψ0|∗t and, therefore, a similar bound holds
for x0 as well. This completes the proof by induction.�

Throughout the rest of this section leti0 and j0 be as in Proposition 3. The
following result shows that it suffices to consider only a certain subset of the set of
admissible systems that have the following property: There is a stopping timeϑ on
the filtration associated withπ , such that on{ϑ < ∞}, u(t) = ei0 andv(t) = ej0

for all t ≥ ϑ .
Recall that on a given admissible systemπ , for every initial datax there is a

corresponding controlled process (by Proposition A.1).

PROPOSITION 4. Let the assumptions of Theorem1(iii) hold. Let x ∈ RI be
given. Then there is a set of admissible systems
̃ ⊂ 
 such that the following
statements are valid.

(i) For everym ≥ 1,

Eπ
x ‖X(t)‖m ≤ m8(1+ t)m8, π ∈ 
̃,

wherem8 depends onx, π andm, but not ont .
(ii) We haveV (x) = Ṽ (x), whereṼ (x) = infπ∈
̃ C(x,π).

PROOF. For any π ∈ 
 and any stopping timeϑ on π , let πϑ be the
admissible system obtained fromπ by settingu(t) = ei0 andv(t) = ej0 for t ≥ ϑ .
Givenx andπ ∈ 
 such thatC(x,π) < ∞ and forε > 0, let

σε = inf
{
t :Eπ

x

∫ ∞
t

e−γ sL
(
X(s),U(s)

)
ds ≤ ε

}
(77)
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and define the stopping time

ϑε = inf{t ≥ σε :‖X(t)‖ ≥ ε−1}.(78)

Note thatσε andϑε depend onx andπ . Note also that

ϑε ≥ σε → ∞ asε → 0.(79)

For short, writeπε for πϑε . Define


̃ = {πε :π ∈ 
,ε ∈ (0,1)}.
For part (i), letπ ∈ 
 andε be given. Then onπε and on the event{ϑε = ∞},
sups∈[0,∞) ‖X(s)‖ ≤ ε−1 ∨ ‖X‖∗

σε
. Moreover, by Proposition 3, on the event

{ϑε < ∞}, for t ≥ σε,

‖X(t)‖ ≤ m7(1+ t − σε)
m7

(
‖X‖∗

σε
+ sup

u∈[σε,t]
‖W̃ (u) − W̃ (σε)‖

)
.

Recall thatW̃ is a Brownian motion with drift. HenceEπ
x (supu∈[σε,t] ‖W̃ (u) −

W̃ (ϑε)‖) ≤ c1(1 + t − σε)
c1 for somec1 independent ofε and t , and the same

holds for expectation underEπε

x . Hence it suffices to prove thatEπε

x [(‖X‖∗
σε

)m] =
Eπ

x [(‖X‖∗
σε

)m] < ∞. This follows from an easy application of Gronwall’s lemma,
using the fact thatx �→ b(x,U) is Lipschitz uniformly in(x,U). Part (i) follows.

By Assumption 2(iv) and Proposition 3,

Eπε

x

[
1ϑε<∞

∫ ∞
ϑε

e−γ tL
(
X(t),U(t)

)
dt

]

≤ c2E
πε

x

[
1ϑε<∞

∫ ∞
ϑε

e−γ t (1+ t − ϑε)
c2

× (
1+ ‖X(ϑε)‖ + ∥∥W̃t − W̃ϑε

∥∥)mL dt

]
(80)

≤ c3

∫ ∞
0

e−γ t (1+ t)c2 dt Eπε

x

[
1ϑε<∞e−γϑε

(
1+ ‖X(ϑε)‖)mL

]
+ c3E

πε

x

[
1ϑε<∞

∫ ∞
ϑε

e−γ t (1+ t − ϑε)
c2

∥∥W̃t − W̃ϑε

∥∥mL dt

]
:= c4E

π
x

[
1ϑε<∞

(
1+ ‖X(ϑε)‖)mLe−γϑε

] + α2(ε)

:= α1(ε) + α2(ε),

wherec2, c3 andc4 do not depend onε. Conditioning onFϑε , using strong Markov
and stationary increments properties ofW̃ , and using the factϑε ≥ σε , we have

α2(ε) ≤ c3E
πε

x exp(−γ σε)E
πε

x

∫ ∞
0

e−γ s(1+ s)c2‖W̃s‖mL ds

≤ c5 exp(−γ σε),
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wherec5 < ∞ by properties of Brownian motion. Therefore, by (79),α2 converges
to zero asε → 0.

Next we show thatα1(ε) → 0 asε → 0. Below, we sometimes writeϑ for ϑε.
By definition ofb [see (27)],‖b(x,U)‖ ≤ c6(1+‖x‖) and‖b(x,U)−b(y,U)‖ ≤
c6‖x − y‖, wherec6 does not depend onx, y andU . Thus by (28), for anyt ≥ ϑ ,
we have on the event{ϑ < ∞},
‖X(t) − X(ϑ)‖

≤ c7‖W(t) − W(ϑ)‖
+ c7

∫ t

ϑ

[
b
(
X(ϑ),U(s)

) + (
b
(
X(s),U(s)

) − b
(
X(ϑ),U(s)

))]
ds

≤ c8‖W(t) − W(ϑ)‖ + c8(t − ϑ)
(
1+ ‖X(ϑ)‖) + c8

∫ t

ϑ
‖X(s) − X(ϑ)‖ds,

wherec7 andc8 not depend ont . Hence by Gronwall’s lemma,

‖X(t) − X(ϑ)‖
(81) ≤ c8

(
sup

s∈[ϑ,t]
‖W(s) − W(ϑ)‖ + (t − ϑ)

(
1+ ‖X(ϑ)‖))

exp
(
c8(t − ϑ)

)
.

Let τ = inf{t > ϑ :‖X(t)‖ ≤ ‖X(ϑ)‖/2} (and τ = ∞ on {ϑ = ∞}). By (78),
‖X(ϑ)‖ ≥ ε−1. Hence by (81), assumingε is small enough, we have on{ϑ < ∞}

P (τ − ϑ < ε1/2|Fϑ)

≤ P

(
sup

t∈[ϑ,ϑ+ε1/2]
‖X(t) − X(ϑ)‖ ≥ (

1+ ‖X(ϑ)‖)
/3

∣∣∣Fϑ

)

≤ P

(
sup

t∈[ϑ,ϑ+ε1/2]
c8‖W(t) − W(ϑ)‖

(82)

≥ (
1+ ‖X(ϑ)‖)(

3−1 − c8 exp(c8ε
1/2)ε1/2)∣∣∣Fϑ

)
≤ P

(
sup

s∈[ϑ,ϑ+ε1/2]
c8‖W(s) − W(ϑ)‖ ≥ (6ε)−1

∣∣∣Fϑ

)
≤ c9 exp(−ε−1).

Denoteβε = τε ∧ [ϑε + ε1/2]. Then by (77), (78) and (82), and using the lower
bound onL(x,U), for all ε small,

ε ≥ Eπ
x

[
1ϑε<∞

∫ ∞
ϑε

e−γ sL
(
X(s),U(s)

)
ds

]

≥ c10E
π
x

[
1ϑε<∞

∫ βε

ϑε

e−γ s(1+ ‖X(s)‖)mL ds

]
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≥ c10exp(−γ ε1/2)Eπ
x

[
1ϑε<∞

(
1+ (1/2)‖X(ϑε)‖)mL exp(−γ ϑε)(βε − ϑε)

]
≥ c11E

π
x

{
1ϑε<∞

(
1+ (1/2)‖X(ϑε)‖)mL

× exp(−γ ϑε)ε
1/2P π

x

[
τε − ϑε ≥ ε1/2|Fϑε

]}
≥ c12ε

1/2Eπ
x

{
1ϑε<∞

(
1+ ‖X(ϑε)‖)mLe−γϑε

}
,

where the constantsc10, c11, c12 > 0 do not depend onε. As a result,α1(ε) → 0
asε → 0. Thus by (80), for everyπ ∈ 
 andε small enough,πε ∈ 
̃ satisfies

C(x,πε) ≤ C(x,π) + α(ε),(83)

andα(ε) = α1(ε) + α2(ε) → 0 asε → 0. HenceṼ (x) ≤ V (x) and part (ii) of the
result follows. �

The following proposition summarizes our estimates in cases (i)–(iii) of
Theorem 1.

PROPOSITION5. In cases(i)–(iii) of Theorem1, we have:

(i) For anyx, any admissible systemπ ∈ 
 [π ∈ 
̃ in case(iii)] andm ≥ 1,

Eπ
x ‖X(t)‖m ≤ m9(1+ t)m9, t ≥ 0,

where the constantm9 does not depend ont (but may depend onx, π andm).
(ii) There is a constantm10, not depending onx, such thatV (x) ≤ m10(1 +

‖x‖)m10.

PROOF. Item (i) follows from Corollaries 1 and 2 and Proposition 4,
respectively. Item (ii) follows from Proposition 3 [in cases (i) and (ii) alternatively
from Corollaries 1 and 2]. �

APPENDIX

PROPOSITIONA.1. Let initial datax ∈ RI and an admissible systemπ ∈ 


be given. Then there exists a controlled processX associated withx and π .
Moreover, if X and �X are controlled processes associated withx and π , then
X(t) = �X(t), t ≥ 0, P -a.s.

PROOF. Note that (x,U) �→ b(x,U) is continuous andx �→ b(x,U) is
Lipschitz uniformly in U . Considerbm, a function that agrees withb on the
ball B(0,m), and is uniformly Lipschitz and bounded. Then strong existence and
uniqueness for

Xm(t) = x + rW(t) +
∫ t

0
bm

(
Xm(s),U(s)

)
ds, 0≤ t < ∞,
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holds by Theorem I.1.1 of [5]. Since‖Xm(t)‖ ≤ ‖x‖+c‖W(t)‖+c
∫ t
0 ‖Xm(s)‖ds,

we have‖Xm(t)‖ ≤ (‖x‖ + c‖W‖∗
t )(1 + ect ) by Gronwall’s lemma. Thus letting

τm = inf{t :‖Xm(t)‖ ≥ m}, we haveτm → ∞ a.s. Therefore,X(t) = limm Xm(t)

for all t defines a process that solves the equation (a strong solution). IfX and�X
are both strong solutions, then for everym, they both agree withXm on [0, τm].
Therefore, they agree on[0,∞) a.s. �

PROPOSITION A.2. Let Assumption1 hold. Then givenαi, βj ∈ R, i ∈ I,

j ∈ J, satisfying
∑

αi = ∑
βj , there exists a unique solutionψij to the set of

equations ∑
j∈J

ψij = αi, i ∈ I,(84)

∑
i∈I

ψij = βj , j ∈ J,(85)

whereψi,j = 0 for i �∼ j .

PROOF. We use notation from Section 4. Leti0 ∈ I be the root. We show
the following claim by backward induction onk: For k ∈ [1,K] even (resp.
odd), if i ∈ lk (resp.j ∈ lk), thenψia(i) (resp.ψja(j)) is uniquely determined by
(84) and (85).

Induction base.The variablek is the largestn such thatln is nonempty. Ifk is
even, leti ∈ lk . ThenB(i) is empty and (84) impliesψia(i) = αi . The casek odd is
similar.

Induction step.Assume the claim holds fork. Consider the case wherek is
odd (the casek even is treated similarly). Fori ∈ lk−1, (84) showsψia(i) = αi −∑

j∈B(i) ψij , and since by the induction assumption,ψij are uniquely determined
for j ∈ B(i), so isψia(i). This completes the proof by induction and the result
follows. �

PROOF OFTHEOREM 1. Based on Proposition 5, the proof of Theorem 1 is
similar to the proof of Theorem 2 of [4]. Since this is the main result of this paper,
we repeat it here with modifications, mainly to accommodate case (iii).

We first consider (29) on a smooth open bounded connected domain�,
satisfying an exterior sphere condition, with boundary conditions

f (x) = V (x), x ∈ ∂�.(86)

The key is a result from [9] regarding existence of classical solutions in bounded
domains with merely continuous boundary conditions. To use this result, we verify
the following two conditions.

(i) We have|H(x,p)| ≤ c(1 + ‖p‖) for x ∈ �, wherec does not depend on
x or p.
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(ii) We haveH(x,p) ∈ Cε(�� × RI ) for someε ∈ (0,1).

Item (i) is immediate from the local boundedness ofb(x,U) and L(x,U).
Next we show that item (ii) holds. Forδ > 0, let V be such thatH(y,q) ≥
b(y,V ) · q + L(y,V ) − δ. Write

H(x,p) − H(y,q) ≤ b(x,V ) · p + L(x,V ) − b(y,V ) · q − L(y,V ) + δ.

Using the Hölder property ofL in x uniformly for (x,V ) ∈ ��×U and the Lipschitz
property ofb in x uniformly in (x,V ),

H(x,p) − H(y,q) ≤ c‖p − q‖ + c‖p‖‖x − y‖ + c‖x − y‖ρ + δ.

Sinceδ > 0 is arbitrary, it can be dropped. This shows thatH is Hölder continuous
with exponentρ, uniformly over compact subsets of�� × RI . Hence (ii) holds.

Defining for (x, z,p) ∈ � × R × RI , A(x, z,p) = (1/2)r2p andB(x, z,p) =
H(x,p) − γ z, we can write (29) in divergence form as

divA(x,f,Df ) + B(x,f,Df ) = 0.

The hypotheses of Theorem 15.19 of [9] regarding the coefficientsA andB hold
in view of (i) and (ii). Indeed,B is Hölder continuous of exponentρ, uniformly
on compact subsets of� × R × RI . Moreover, withτ = 0, ν(z) = (1/2)mini r

2
i ,

µ(z) = c(1 + ‖z‖), α = 2, b1 = 0 and a1 = 0, we check that the conditions
(15.59), (15.64), (15.66) and (10.23) of [9] are satisfied. Theorem 15.19 of [9]
therefore applies [with condition (15.59) instead of (15.60)]. It states that there
exists a solution to (29) inC2,ρ(�) ∩ C(�� ), satisfying the continuous boundary
condition (86). We denote this solution byf .

Let x ∈ �. Let π be any admissible system in
 and letX be the controlled
process associated withx andπ . Let τ denote the first timeX hits ∂�. Using
Itô’s formula for theC1,2(R+ × �) function e−γ tf (x), in conjunction with the
inequality

Lf (y) + b(y,U) · Df (y) + L(y,U) − γf (y) ≥ 0, y ∈ �,U ∈ U,

satisfied byf , we obtain

f (x) ≤
∫ t∧τ

0
e−γ sL(Xs,Us) ds + e−γ (t∧τ)f (Xt∧τ )

(87)

−
∫ t∧τ

0
e−γ sDf (Xs) · r dWs.

Taking expectation and then sendingt → ∞, using monotone convergence for the
first term and bounded convergence for the second term, we have withg(t, x) =
e−γ tV (x),

f (x) ≤ Eπ
x

[∫ τ

0
e−γ sL(Xs,us) ds + e−γ τV (Xτ )

]
= C�,g(x,π).
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Taking the infimum overπ ∈ 
, we havef (x) ≤ V�,g(x) = V (x), x ∈ �, by
Proposition 5(iv).

To obtain the equalityf = V on �, we next show there exist optimal Markov
control policies for the control problem on�. Let

ϕ(x,U) = b(x,U) · Df (x) + L(x,U), x ∈ �,U ∈ U.(88)

Note thatϕ is continuous on� ×Sk. For eachx, consider the setUx �= ∅ of U ∈ U

for which

ϕ(x,U) = inf
V ∈U

ϕ(x,V ).

We show that there exists a measurable selection ofUx , namely there is a
measurable functionh from (�,B(�)) to (U,B(U)) with h(x) ∈ Ux , x ∈ �.

Let xn ∈ � and assume limn xn = x ∈ �. Let Un be any sequence such that
Un ∈ Uxn . We claim that any accumulation point ofUn is in Ux . For example, if
this is not true, then by continuity ofϕ, there is a converging subsequenceUm,
converging toŨ , and there is âU such thatδ := ϕ(x, Ũ) − ϕ(x, Û) > 0. Hence
for all m large, ϕ(xm,Um) ≥ ϕ(x, Û) + δ/2 ≥ ϕ(xm, Û) + δ/4, contradicting
Um ∈ Uxm .

As a consequence, the assumptions of Corollary 10.3 in the Appendix of [6]
are satisfied and it follows that there exists a measurable selectionh :� → U of
(Ux, x ∈ �).

We extendh to RI in a measurable way so that it takes values inU

(but otherwise arbitrary). Clearly,x �→ b(x,h(x)) is measurable. Consider the
autonomous stochastic differential equation

X(t) = x + rW(t) +
∫ t

0
b̂(Xs) ds,(89)

where b̂(y) agrees withb(y,h(y)) on � and is set to zero off�. Then b̂ is
measurable and bounded onRI . By Proposition 5.3.6 of [14], there exists a weak
solution to this equation. That is, there exists a complete filtered probability space
on whichX is adapted andW is anI -dimensional Brownian motion, such that (89)
holds for t ≥ 0 a.s. On this probability space, consider the processUs = h(Xs).
SinceX has continuous sample paths and is adapted, it is progressively measurable
(see Proposition 1.13 of [14]) and by measurability ofh, so is U . Denote
by π the admissible system thus constructed. Then fors < τ , Us ∈ UXs and
b(Xs,Us) · Df (Xs) + L(Xs,Us) = H(Xs,Df (Xs)). Hence

Lf (X) + b(Xs,Us) · Df (Xs) + L(Xs,Us) − γf (Xs) = 0, s < τ.(90)

A use of Itô’s formula and the convergence theorems just as before now shows that
(87) holds with equality, and

f (x) = Eπ
x

[∫ τ

0
e−γ sL(Xs,Us) ds + e−γ τV (Xτ )

]
= C�,g(x,π), x ∈ �,
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with g as above. This, together with Proposition 5(iv) shows thatf ≥ V�,g = V

on �. Summarizing,f = V on �. In particular,V ∈ C2,ρ(�) and is a classical
solution to the HJB equation. Now� can be taken arbitrarily large, and this
shows thatV ∈ C2,ρ(RI ) and that it satisfies the HJB equation onR

I . In view of
Proposition 5(ii), it also satisfies the polynomial growth condition in cases (i)–(iii)
of the main result; in case (iv) it is trivially a bounded function. As a result, there
exists a classical solution to (29) inC2,ρ(RI ), again denoted byf , satisfying (30)
and, moreover,V = f .

It remains to show uniqueness in the appropriate class and existence of optimal
Markov control policies for the problem onRI . In cases (i)–(iii) [resp. (iv)], let
f̄ ∈ C2

pol(R
I ) [resp.C2

b(RI )] be a solution to (29). Then analogously to (87), we
obtain

f̄ (x) ≤
∫ t

0
e−γ sL(Xs,Us) ds + e−γ t f̄ (Xt ) −

∫ t

0
e−γ sDf̄ (Xs) · r dWs.(91)

Consider first cases (i)–(iii). Taking expectation, sendingt → ∞, using the poly-
nomial growth off̄ and the moment bounds on‖Xt‖ asserted in Proposition 5(i),
we have thatf̄ (x) ≤ C(x,π), whereπ ∈ 
 [π ∈ 
̃ in case (iii)] is arbitrary. In
case (iv), the same conclusion holds sincef̄ is bounded. Consequently,̄f ≤ V

onRd .
In cases (i) and (ii), the proof of existence of optimal Markov policies as well

as the inequalityV ≤ f̄ on RI is completely analogous to that on�, where we
replace� with RI . The weak existence of solutions to (89) follows on noting that
b̂ satisfies a linear growth condition of the form‖b̂(y)‖ ≤ x(1 + ‖y‖), y ∈ RI ,
and using again Proposition 5.3.6 of [14]. Then as before, (91) is satisfied with
equality, and taking expectation and using the polynomial growth condition off̄

and the moment estimates on‖X‖ shows thatV = f̄ onR
I . We conclude thatf is

the unique solution inC2
pol(R

I ) thatV = f , and that there exists a Markov control

policy that is optimal for allx ∈ RI . In case (iv) an analogous result is obtained
[with uniqueness inC2

b(RI )] using the boundedness of̄f .
Finally, in case (iii) there is no guarantee that the admissible systemπ

constructed using (89) is iñ
 and, therefore, the terme−γ tEπ
x f̄ (Xt ) in (91) (that

is satisfied with equality) may not tend to zero ast → ∞. However, in this case we
claim only uniqueness among nonnegative functionsf̄ and, therefore, using Itô’s
formula and (90) gives

f̄ (x) = Eπ
x

[∫ t

0
e−γ sL(Xs,Us) ds + e−γ sf̄ (Xt )

]
≥ Eπ

x

[∫ t

0
e−γ sL(Xs,Us) ds

]
andf̄ (x) ≥ C(x,π) ≥ V (x). �
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