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ON STATIONARITY OF LAGRANGIAN OBSERVATIONS OF
PASSIVE TRACER VELOCITY IN A COMPRESSIBLE

ENVIRONMENT1
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We study the transport of a passive tracer particle in a steady strongly
mixing flow with a nonzero mean velocity. We show that there exists a
probability measureunder which the particle Lagrangian velocity process
is stationary. This measure is absolutely continuous with respect to the
underlying probability measure for the Eulerian flow.

1. Introduction. One of the simplest models of the passive tracer motion in a
turbulent flow is given by the Itô stochastic equation

dx(t) = u(x(t)) dt + √
κdw(t), t ≥ 0,

(1.1)
x(0) = 0.

Hereu = (u1, . . . , ud) :Rd × � → R
d is theEulerian velocity field of the flow. It

is assumed to be a stationary,d-dimensional random vector field given over a cer-
tain probability space(�,V,P), andw(·) is a standardd-dimensional Brownian
motion defined over another probability space(�,A,Q). Parameterκ , called the
molecular diffusivity of the medium, is assumed to be nonnegative. The resulting
processx(·) is considered over the product probability space(� × �,V ⊗ A,

P ⊗ Q). A question that generates considerable interest in statistical hydrody-
namics is to provide the description of the long-time, large-scale asymptotics
of x(·). Possible types of the trajectory behavior that may occur in the limit include
Newtonian motions, diffusions, fractional diffusions and possibly Lévy flights;
see [2, 6, 7, 18].

An important insight in understanding the asymptotic behavior of solutions
to (1.1) can be gained if one is able to establish the existence of a probability
measureµ defined overV ⊗ A under which theLagrangian process, that is,
u(x(t)), t ≥ 0, is stationary and ergodic. The above process corresponds to the
observations of the velocity from the vantage point of the moving trajectory. If such
a measure exists, then one can conclude that

v∗ := lim
t↑+∞

x(t)

t
=

∫
u(0) dµ(1.2)
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existsµ-a.s. andv∗ is deterministic.v∗ is sometimes called theStokes drift of the
medium. If, in addition to stationarity and ergodicity,µ is absolutely continuous
w.r.t. the product measureP ⊗ Q and the limit in(1.2) holdsP ⊗ Q-a.s., we shall
call µ a regular, invariant measure for the Lagrangian process.

In the present paper we consider the case of strongly mixing, steady (i.e., time-
independent) velocity fields. The main result we set out to prove can be stated
informally as follows; see Theorem 2.2 for the precise statement.

THEOREM 1.1. Suppose that the molecular diffusivity κ is strictly positive,
and that the velocity field u is stationary with the mean that is larger than the
amplitude of its fluctuations [see condition (A)] and decorrelates at finite distances
[condition (DR)]. Then, assuming also some topological and measure-theoretic
regularity properties of the field [condition (R)], there exists a regular invariant
measure µ for the Lagrangian process u(x(t)), t ≥ 0.

The standard results, for example, those obtained in the framework of the
homogenization theory (see [13]), concern the drifts that are either gradients of
stationary scalar potentials (i.e.,u = ∇xφ, whereφ is a certain stationary scalar
field), or are incompressible (i.e.,∇x · u := ∑d

i=1 ∂xi
ui ≡ 0). The gradient case

corresponds to the motion of a tracer particle in a medium (e.g., gas) that remains
in an equilibrium, while the incompressible fields describe turbulent flows of
fluids. In both of these cases, regular invariant measuresµ can be identified
explicitly. In the gradient caseµ is given byPφ ⊗ Q, wherePφ the is Gibbs
equilibrium measure relative to the potentialφ/κ , while in the incompressible case
the invariant measure is actually equal toP ⊗ Q; see [12–14].

In many interesting situations, however, the motion of a tracer takes place in
a compressible environment that is far from being in equilibrium, for example,
floating of a particle on a fluid surface; see [5]. Due to the infinite-dimensional
character of the problem, the existence of a regular invariant measure is, in
general, hard to prove and very few results concerning the problem are known.
For a review of the existing literature on the subject, a reader is advised to
consult [19]. It is generally believed, however, that strong mixing properties
of the Eulerian flow should guarantee the existence of a regular invariant
measure for Lagrangian observations [5, 19]. Recently, a number of rigorous
results substantiating that point of view have been obtained for nonsteady (time-
dependent) flows; see [8–10]. A generic situation considered in those papers
concerns fields that have strong temporal decorrelation properties; for example,
in [8, 9] the Eulerian velocity field is of finite time dependence range, while in [10]
it is Gaussian, Markovian and sufficiently strongly mixing in the temporal variable.
Under any of these assumptions, it can be shown that there exists then a regular
(w.r.t. P⊗Q) invariant measureµ, provided the molecular diffusivityκ is positive.
It is worthwhile to point out that under some additional assumptions on the spatial
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structure of the velocity field (i.e., the compact support of the spatial power-energy
spectrum), the results of [10] deal also with the case of the vanishing molecular
diffusivity κ = 0.

Let us discuss briefly the principal ideas of the proof of Theorem 1.1. First,
we use the factorization property of theσ -algebra corresponding to the Eulerian
velocity field. More specifically, looking in the direction̂v pointed by the mean
drift of the flow at any given time instant, sayt = 0, we can decompose the future
history of the velocity field into the part that is determined by the tracer particle
history up tot = 0 and, independent of it, the renewal part. This decomposition
forms the base for the definition of the so-calledtransport operator; see Section 4.
Informally speaking, it describes the change of the statistics of the field, as
observed from the moving particle, within the time spanτ needed for the particle
to travel from the initial position att = 0 the spatial distance required for the
complete renewal of the Eulerian velocity. In addition, after this time the particle
does not revisit the half-space containing the initial position of the trajectory and
bounded by the hyperplane orthogonal to the drift passing by the point which is
unit to the left in the direction̂v from the position of the particle atτ . Because
of this property, we callτ the nonretraction time; see Section 3 for its precise
definition. It is obviously a non-Markovian random time. The definition ofτ is
modelled on the notion of the nonretraction times, introduced by Sznitman and
Zerner in [17], in the case of random walks on a random integer lattice with
independent sites. As we show in Section 4, see (4.3), the transport operator acts
on a certain space of density functions with respect toP. An important property of
this operator is the fact that it admits an invariant density; see Proposition 4.7. This
density is subsequently used, see formula (5.33), to define the invariant measureµ;
see Theorem 1.1.

A result, that corresponds to our main theorem has been proved for the nearest-
neighbor random walks on integer latticeZd with i.i.d. transition probabilities
having a uniform local drift property (the so-called nonnestling condition) in [3].

2. Notation and formulation of the main result. To simplify the notation we
assume, throughout the remainder of the paper, thatκ = 1 in (1.1). The proof can
be trivially generalized to the case of an arbitrary positive molecular diffusivity.
The caseκ = 0 is substantially different and we know of no results concerning
the steady fields in that situation. (As mentioned earlier, some results concerning
time-dependent, Gaussian, Markovian fields can be found in [10].)

For anyL > 0, we denoteXL := C([0,L];R
d) and X := C([0,+∞);R

d).
These spaces are equipped with the standard topology of uniform convergence on
compact sets. For anyt ≥ 0, we denote by�(t) :X → R

d the canonical projection
�(t)(π) := π(t), π ∈ X. Let Mt := σ {�(s) : s ≤ t}, t ≥ 0, be the canonical
filtration onX. We letM := ∨

t≥0 Mt . By P andPL we denote the spaces of all
Borel probability measures onX andXL, respectively. ByW andWL we denote
the standard Wiener measure on(X,M) and its restriction toML, respectively. For
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anyh ≥ 0, we define the shift operatorθh :X → X given byθh(π)(t) := π(t + h)

for all t ≥ 0, π ∈ X.
Let (�,d) be a Polish space. We denote byB(�) the σ -algebra of Borel

subsets of�. We suppose thatP is a Borel probability measure andE[·] denotes
the corresponding expectation. LetN be theσ -ring of P-null sets ofB(�),
the P-completion ofB(�). Unless otherwise stated, we will assume that any
sub-σ -algebra ofB(�) under consideration containsN . For brevity we write
Lp := Lp(T1), p ∈ [1,+∞], whereT1 := (�,B(�),P). We assume further the
property of spatial homogeneity of measureP. The above means that there exists
a group of transformationsTx,x ∈ R

d , acting on� such that, for anyx ∈ R
d,

A ∈ B(�), we haveTx(A) ∈ B(�) andP(Tx(A)) = P(A).
We assume thatu :� → R

d is a random vector overT1 satisfying

(A) |v| > ‖ũ‖L∞ , wherev := Eu andũ = u − v.

The spatially homogeneous Eulerian velocity field is defined asu(x;ω) :=
u(Tx(ω)). Assumption (A) guarantees that the mean drift dominates its fluctuations
and therefore there existsδ > 0 such that

u(x) · v̂ ≥ δ > 0, P-a.s.(2.1)

for all x ∈ R
d . Herev̂ := v/|v|. We shall also assume that 1∧ (|v|/4) ≥ δ > 0.

For anyR > 0, we denote byF i
R, F e

R theσ -algebras generated byu(x), |x| ≤ R,
andu(x), |x| ≥ R, correspondingly. We assume that

(DR) ( finite dependence range) there existsr0 > 0 such that, for anyr > 0, the
σ -algebrasF i

r andF e
r+r0

are independent.

Finally, we suppose that the field possesses certain regularity both in the
topological and the measure-theoretic sense. Namely, we assume that

(R) for anyω ∈ �, the fieldu(·;ω) is of C1 class of regularity and there exists
a deterministic constantU > 0 such that‖ũ(·;ω)‖W 1,∞(Rd ) ≤ U . The norm
taken here is the usual one corresponding to the classical Sobolev space
W1,∞(Rd).

In addition, we suppose that, for anyN ≥ 1 and x1, . . . ,xN ∈ R
d

such thatxi �= xj for i �= j ∈ {1, . . . ,N}, the probability distribution of
(u(x1), . . . ,u(xN)) in the space(Rd)N is absolutely continuous with respect
to theN · d-dimensional Lebesgue measure.

REMARK 2.1. Let us briefly discuss some important, from our point of view,
consequences of assumption (R). Lett ∈ R andVt be the sub-σ -algebra ofB(�)

generated byu(x), x · v̂ ≤ t . We note that obviously

Tx(Vt ) ⊆ Vt+x·v̂ ∀ (t,x) ∈ R × R
d .

Thanks to the assumption (R) (see page 66 of [15], or the Appendix of [9]), the
filtration (Vt )t≥0 admits afactorization with respect toV0, that is, for anyt ≥ 0,
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there exists aσ -algebraRt such thatV0 and Rt are P-independent andVt is
generated byV0 andRt . Let R := ∨

t≥0 Rt .
Note that (Rt )t≥0 form a filtration of σ -algebras. Indeed, any random

variableH(·) that is Rt -measurable isVu-measurable for anyu ≥ t and one
can find (from the factorization property) a random variableG(·, ·) that is
V0 ⊗ Ru-measurable andH(ω) = G(ω,ω). From the fact thatH is independent
of V0, we immediately conclude thatH(·) = ∫

G(ω′, ·)P(dω′), P-a.s., thusH is
Ru-measurable.

The previous argument also shows that, thanks to condition (DR), any random
vectoru(x), with t := x · v̂ ≥ r0 andr0 as in (DR), isRt -measurable.

Let Qx,ω ∈ P be the law of the solution to (1.1) for a fixed realization ofω ∈ �

and subject to the initial conditionx(0) = x. We denoteTx,ω := (X,M,Qx,ω)

and byMx,ω the respective mathematical expectation. In the particular case when
x = 0, we shall suppress the subscriptx.

The process

wω(t;π) := π(t) −
∫ t

0
u
(
π(s);ω

)
ds, t ≥ 0,(2.2)

is a d-dimensional standard Brownian motion starting atx over Tx,ω for any ω.
We denote bypω :R+ × R

d × R
d → R+ the transition probability densities of the

diffusion given by (1.1).
Define a measureP0 on (� × X,B(�) ⊗ M) as the semiproduct

P0(A × B) :=
∫
A

Qω(B)P(dω) ∀A ∈ B(�), B ∈ M,

and a stochastic process

V (t;ω,π) := u
(
π(t);ω

)
, t ≥ 0,(2.3)

over(� × X,B(�) ⊗ M,P0).
Theorem 1.1 can be stated more precisely in the following way.

THEOREM 2.2. Suppose that u is a velocity field satisfying the assumptions
(A), (DR) and (R).Then, there exists a probability measure µ on (�×X,B(�)⊗
M) that is absolutely continuous w.r.t. P0 and such that the process V (·) is
stationary and ergodic w.r.t. µ. In addition, the law of large numbers holds w.r.t.
P0, that is,

lim
t↑+∞

π(t)

t
=

∫
u(0) dµ, P0-a.s.(2.4)

In Theorem 2.2, ergodicity of the relevant measure is understood as the absence
of shift-invariant nontrivial sets. More precisely, any Borelian subsetA ⊆ X such
that ∫ ∣∣1θh(A)(V (·)) − 1A(V (·))∣∣dµ = 0 for all h ≥ 0,
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must beµ-trivial, that is

µ[(ω,π) :V (·;ω,π) ∈ A] = 0 or 1.(2.5)

3. Nonretraction times. In this section we introduce a family of random vari-
ables that, for reasons which become obvious later on, we shall callnonretraction
times. They are not stopping times and describe subsequent times after which no
retraction of the diffusion can occur in the direction pointed by the mean velocity.
This notion is based on a discrete analogue introduced for random walks on a ran-
dom lattice in [17]. Since the results contained in this section are modifications of
the corresponding results of [17], we postpone their proofs to Appendix A.

For anyπ ∈ X, l ∈ [0,+∞), we let

D(l;π) := min[t ≥ 0 : v̂ · π(t) ≤ −1+ l].(3.1)

For brevity sake we writeD := D(v̂ · π(0)). Let

Uu(π) := min[t ≥ 0 : v̂ · π(t) ≥ u],
(3.2)

Ũu(π) := min[t ≥ 0 : v̂ · π(t) ≤ u]
and

M∗(π) := sup
[
v̂ · (

π(t) − π(0)
)
: 0 ≤ t ≤ D(π)

]
.(3.3)

The last random variable is defined for thoseπ , for whichD(π) < +∞.
For anyt ≥ 0, we define also

A(t) :=
[
π : inf

s∈[0,t]
(
π(s) · v̂ − π(0) · v̂

) ≥ −1
]
.(3.4)

We introduce the sequence of(Mt )-stopping times(Sk)k≥0, (Rk)k≥0 and the
sequence of maxima(Mk)k≥0 letting

S0 := 0, R0 := 0, M0 := v̂ · π(0),

S1 := UM0+r0+1 ≤ +∞, R1 := D ◦ θS1 + S1 ≤ +∞,(3.5)

M1 := max[v̂ · π(t),0 ≤ t ≤ R1] ≤ +∞,

wherer0 > 0 is as in (DR).
By induction we set, for anyk ≥ 1,

Sk+1 := UMk+r0+1, Rk+1 := D ◦ θSk+1 + Sk+1,
(3.6)

Mk+1 := max[v̂ · π(t),0≤ t ≤ Rk+1].
The following lemmas hold.
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LEMMA 3.1. There exist deterministic constants γ, γ1, γ2 > 0 such that, for
each x ∈ R

d , we have

Qx,ω[D = +∞] ≥ γ, P-a.s.,(3.7)

Qx,ω[Ũx·v̂−M < Ux·v̂+M ] ≤ exp{−γ1M} ∀M > 0, P-a.s.,(3.8)

Mx,ω[M∗,D < +∞] ≤ γ2, P-a.s.(3.9)

LEMMA 3.2. With the notation of Lemma 3.1,for each x ∈ R
d , we have

lim sup
m↑+∞

Mx,ω

[
Um

m

]
≤ 1

δ
, P-a.s.(3.10)

and

Qx,ω[Rk < +∞] ≤ (1− γ )k ∀ k ≥ 1, P-a.s.(3.11)

Let K := inf[k ≥ 1 :Rk = +∞], or K = +∞ if the set of which we take the
infimum is empty.

COROLLARY 3.3. For each x ∈ R
d , we have:

(i) Qx,ω[K < +∞] = 1, P-a.s. and
(ii) Qx,ω[SK < +∞] = 1, P-a.s.

We define the first nonretraction timeτ1 := SK < +∞, P0-a.s. The subsequent
times of nonretractionτn, n ≥ 2, are defined by induction using the relation

τn+1 := τn + τ1 ◦ θτn for n ≥ 1.(3.12)

Note that the random variablesτn need not be(Mt )-stopping times.

4. The transport operator and its properties. For anya, b ∈ R ∪ {−∞,

+∞}, a ≤ b, we letVa,b be theσ -algebra generated byu(x), wherea < x · v̂ < b.
Consistently with Remark 2.1, we writeVa for V−∞,a . Let T2 := (�,V0,P),

PD(dω) := Qω[D = +∞]
P0[D = +∞] P(dω),

PD(dω,dπ) := 1[D(π)=+∞]
P0[D = +∞]P0(dω,dπ),

andTD := (�,V0,PD). Note that in light of (3.7),PD is equivalent withP. Also,
for any probability tripleT the symbolD(T ) denotes the set of all probability
densities w.r.t. the relevant probability measure, that is, nonnegative elements
of L1(T ) whose integral equals 1.
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In this section we introduce a certain linear operatorQ :L1(TD) → L1(TD)

that preservesD(TD). It is conjugate, in the sense of (4.1), with the spatial shift
by π(τ1), that is, ∫

Mω

[
G

(
Tπ(τ1)(ω)

)
,D = +∞]

F(ω)P(dω)

(4.1)
=

∫
G(ω)QF(ω)Qω[D = +∞]P(dω)

(recall thatQω := Q0,ω, Mω := M0,ω) for anyF andG that are correspondingly
V0 and V0,+∞-measurable; see Proposition 4.6. We will callQ a transport
operator.

4.1. Some consequences of the factoring property. Let T3 := (�,R,P) and
let T2 ⊗ T3 := (� × �,V0 ⊗ R,P ⊗ P). Condition (R) implies (see Appendix B)
the existence of an isometric isomorphismZ :Lp(T1) → Lp(T2 ⊗T3), p ∈ [1,∞]
such that:

(Z1) ZF ≥ 0 for F ≥ 0 andZ1 = 1,
(Z2) for anyF1, . . . ,FN ∈ Lp(T1) and� :RN → R bounded and continuous, we

haveZ(�(F1, . . . ,FN)) = �(ZF1, . . . ,ZFN),
(Z3) ZF(ω,ω′) = F(ω) for all F ∈ Lp(T2), ZG(ω,ω′) = G(ω′) for all G ∈

Lp(T3),
(Z4) ZF is V0 ⊗ Rt -measurable ifF is Vt -measurable, for anyt ≥ 0.

REMARK 4.1. From condition (Z2) we conclude immediately the following:

(Z5) ZF has the same law asF for all F ∈ L1(T1).
(Z6) Suppose thatF1,F2 ∈ L∞(T1). ThenZ(F1F2) = Z(F1)Z(F2).

REMARK 4.2. DenoteU(x) := Z(u(x)) ∈ L∞(T2 ⊗T3) for any fixedx ∈ R
d .

One can find a modification ofU defined overT2 ⊗ T3 that is of C1-class of
regularity P ⊗ P-a.s. and such that‖Ũ(·;ω,ω′)‖W 1,∞(Rd) ≤ U [here U is as
in the statement of condition (R)] forP ⊗ P-a.s. (ω,ω′), whereŨ(·;ω,ω′) :=
U(·;ω,ω′) − v.

4.2. The definition of operator Q. We start with some auxiliary notation. Let
TW := (X,M,W), where, as we recall,W is the standard Wiener measure. ByFk

we denote the law inRd of random vectorπ(Sk) overTW. Let

νL(π;ω) := exp
{∫ L

0
u
(
π(s);ω

)
dπ(s) − 1

2

∫ L

0

∣∣u(
π(s);ω

)∣∣2 ds

}
be the Radon–Nikodym derivativedQω,L

dWL
. HereQω,L, WL is the restriction ofQω,

W to ML for a givenL > 0.
∫ t
0 u(π(s);ω)dπ(s), t ≥ 0, is the stochastic integral
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with respect to the Wiener processπ(·) over the probability spaceTW, (see [16],
page 99). Using the properties (Z1), (Z2) and (Z6) of the operatorZ, one can prove
that

Z
(
νL(π)

)
(ω,ω′) = ν̄L(π;ω,ω′),(4.2)

where

ν̄L(π;ω,ω′) := exp
{∫ L

0
U

(
π(s);ω,ω′)dπ(s) − 1

2

∫ L

0

∣∣U(
π(s);ω,ω′)∣∣2 ds

}
∀L > 0.

For x ∈ R
d , we defineWk,L,x ∈ PL and Mk,L,x, the regular conditional

probabilities obtained by conditioning ofWL on the event{π(Sk) = x, Sk ∈
[L − 1,L)} and the respective expectations.

The linear operatorQ satisfying (4.1) will be defined as follows. For anyF that
is bounded andV0-measurable, define

QF(ω′) :=
∫

K(ω,ω′)F (ω)P(dω),(4.3)

where

K(ω,ω′) :=
+∞∑

k,L=1

∫
Rd

Mk,L,x(ω,T−xω
′)Fk(dx)(4.4)

and

Mk,L,x(ω,ω′) := Mk,L,x
[
ν̄Sk

(π;ω,ω′),A(Sk),L − 1 ≤ Sk < L
]
.(4.5)

Let

tk(π) := v̂ · π(Sk).

Note thatν̄Sk
is V0 ⊗ Rtk(π)-measurable forWL-a.s.π . HenceMk,L,x(·, T−x·) is

V0 ⊗ V0-measurable forFk-a.s.x.

REMARK 4.3. The definition of the operatorQ given by (4.3) and (4.4) may
seem to look a bit technical at the moment. To motivate it we remark here that
Q is constructed in such a way that the property expressed by (4.1) holds; see
part (i) of Proposition 4.5 and Proposition 4.6. This property enables us to reduce
the question of the existence of an absolutely continuous modification of measure
P0 under which the sequence(τk+1 − τk,π(τk+1) − π(τk)), k ≥ 1, is stationary
to the problem of the existence of an invariant density forQ; see Theorems
4.7 and 5.1. This result together with integrability of the moments ofτ1 and|π(τ1)|
(see Proposition 5.2) allow us to concludethe assertion of our main Theorem 2.2.
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4.3. Basic properties of the transport operator. The following proposition
holds.

PROPOSITION4.4. For any nonnegative F ∈ L∞(TD),∫
QF dPD =

∫
F dPD.(4.6)

Hence, Q can be extended to a density-preserving operator Q :L1(TD) →
L1(TD).

PROOF. The left-hand side of (4.6) equals

1

P0[D = +∞]
∫ ∫

K(ω,ω′)F (ω)Qω′ [D = +∞]P(dω)P(dω′)

= 1

P0[D = +∞]
(4.7)

×
+∞∑

k,L=1

∫ ∫ ∫
ν̄Sk

(π;ω,ω′)1A(Sk)1[L−1,L)(Sk)

× QTπ(Sk )ω
′ [D = +∞]F(ω)W(dπ)P(dω)P(dω′).

Using properties (Z2) and (Z3) of operatorZ, we conclude that the right-hand side
of (4.7) equals

1

P0[D = +∞]
+∞∑

k,L=1

∫ ∫
νSk

(π;ω)1A(Sk)1[L−1,L)(Sk)

× QTπ(Sk )ω[D = +∞]F(ω)W(dπ)P(dω)

= 1

P0[D = +∞]

×
+∞∑
k=1

∫
Mω

[
QTπ(Sk )ω[D = +∞],A(Sk), Sk < +∞]

F(ω)P(dω)

= 1

P0[D = +∞]
∫

Qω[D = +∞, τ1 < +∞]F(ω)P(dω).

Sinceτ1 < +∞, Qu-a.s. we conclude that the last expression is equal to the right-
hand side of (4.6). �

Suppose thatF : (R × R × R
d)N → R and G :� → R are bounded and,

respectively, Borel andV0-measurable. Letn, N be positive integers, 0≤ t1 ≤
· · · ≤ tn, andF1, . . . ,Fn :Rd → R, H : (R × R × R

d)N → R be arbitrary bounded
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and measurable functions.
Define

ξk :=
∫ τk+1

τk

n∏
p=1

Fp

(
u
(
π(tp + s)

))
ds(4.8)

and

ξ̃k := (
ξk, τk+1 − τk,π(τk+1) − π(τk)

)
.(4.9)

Hereτ0 := 0. Let alsoq be a positive integer andπ(q)(s) = π(s ∧ τq),

ξ
(q)
k :=

∫ τk+1

τk

n∏
p=1

Fp

(
u
(
π(q)(tp + s)

))
ds.(4.10)

and definẽξ (q)
k accordingly.

PROPOSITION4.5. Let n ≥ 1 be an arbitrary integer. Suppose that 0 ≤ t1 ≤
· · · ≤ tn are arbitrary and ξk , ξ̃k, k ≥ 1, are defined by formulas (4.8) and (4.9).
Under the assumptions on F , G specified above, we have:

(i) ∫ ∫
F

(
(ξ̃k+1)k≥1

)
G(ω)PD(dω,dπ)

(4.11)
=

∫ ∫
F

(
(ξ̃k)k≥1

)
QG(ω)PD(dω,dπ).

(ii) In addition, suppose that q ≥ q0 ≥ N are certain integers, function H and
random variables ξ

(q)
k , ξ̃

(q)
k , k ≥ 1, are specified as in the foregoing. Then, there

exists a random variable Y ∈ L∞(TD) such that∫ ∫
F

(
(ξ̃k+q)k≥1

)
H

(
ξ̃

(q0)
1 , . . . , ξ̃

(q0)
N

)
G(ω)PD(dω,dπ)

(4.12)
=

∫ ∫
F

(
(ξ̃k)k≥1

)
Qq−q0Y (ω)PD(dω,dπ).

Y is nonnegative when G, H are nonnegative and∫ ∫
Y (ω)PD(dω,dπ) =

∫ ∫
H

(
ξ̃

(q0)
1 , . . . , ξ̃

(q0)
N

)
G(ω)PD(dω,dπ).(4.13)

PROOF. For any sequencem := (m1, . . . ,mq) ∈ Z
q
+, we define a sequence of

Markovian times

σ m
0 := 0 and σ m

r+1 := σ m
r + Smr+1 ◦ θσm

r
, r = 0, . . . , q − 1.(4.14)
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The sequence is defined on the set of paths satisfying

B(m) :=
[
π : all random times appearing in (4.14) are finite and

inf
t∈[σm

r ,σm
r+1]

(
π(t) · v̂ − π(σ m

r ) · v̂
) ≥ −1,∀ r = 0, . . . , q − 1

]
.

Let

ξ̃m
r :=

(∫ σm
r+1

σm
r

n∏
p=1

Fp

(
u
(
π(tp + s)

))
ds, σ m

r+1 − σ m
r , π(σ m

r+1) − π(σ m
r )

)
,

r = 0, . . . , q − 1,

and

ξ̃m,q0
r :=

(∫ σm
r+1

σm
r

n∏
p=1

Fp

(
u
(
π(q0)(tp + s)

))
ds, σ m

r+1 − σ m
r , π(σ m

r+1) − π(σ m
r )

)
,

r = 0, . . . , q − 1.

We have

1

P0[D = +∞]
∫ ∫

F
(
(ξ̃k+q)k≥1

)
H

(
ξ̃

(q0)
1 , . . . , ξ̃

(q0)
N

)
× G(ω)1[D(π)=+∞]P0(dω,dπ)

= 1

P0[D = +∞](4.15)

×
∞∑

L=1

∑
m

∫
Mω

[
F

((
ξ̃k ◦ θσm

q

)
k≥1

)
H

(
ξ̃

m,q0
1 , . . . , ξ̃

m,q0
N

)
,

D ◦ θσm
q

= +∞,B(m),L − 1≤ σ m
q < L

]
× G(ω)P(dω).

Using the strong Markov property and stationarity of the environment, we can
recast the right-hand side of (4.15) in the form

1

P0[D = +∞]
∫ ∫

F
((

ξ̃k+q−q0

)
k≥1

)
Y (ω)1[D(π)=+∞]P0(dω,dπ),(4.16)

whereY (ω) is a certainV0-measurable random variable. Note thatY can be chosen
so that it is nonnegative whenH andG are nonnegative. ChoosingF ≡ 1 in the
argument above, we conclude also thatY satisfies (4.13).
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In the special case whenq = 1,q0 = 0 andH ≡ 1, we can rewrite the right-hand
side of (4.15) in the form

1

P0[D = +∞]
∞∑

m,L=1

∫
Mω

[
F

((
ξ̃k ◦ θSm

)
k≥1

)
,

D ◦ θSm = +∞,A(Sm),L − 1 ≤ Sm < L
]

× G(ω)P(dω)

(4.17)

= 1

P0[D = +∞]
∞∑

m,L=1

∫
Mω

[
Mπ(Sm),ω

[
F

(
(ξ̃k)k≥1

)
,D = +∞]

,

A(Sm),L − 1 ≤ Sm < L
]

× G(ω)P(dω).

Using Girsanov’s theorem and subsequently conditioning on[π(Sm) = x, Sk ∈
[L − 1,L)], we deduce that the right-hand side of (4.17) equals

1

P0[D = +∞]
∞∑

m,L=1

∫ ∫
Rd

Mm,L,x
[
νSm(π;ω),A(Sm),L − 1 ≤ Sm < L

]

× MTxω

[
F

(
(ξ̃k

)
k≥1

)
,D = +∞]

(4.18)

× G(ω)P(dω)Fm(dx).

Since the second and third factors of the integrand appearing in (4.18) are,
respectively,R andV0-measurable, we can rewrite the entire expression, using
property (Z3) of operatorZ, in the following form [cf. (4.5)]

1

P0[D = +∞]
∞∑

m,L=1

∫ ∫ ∫
Rd

Mm,L,x(ω,ω′)

× MTxω′
[
F

(
(ξ̃k)k≥1

)
,D = +∞]

(4.19)

× G(ω)P(dω)P(dω′)Fm(dx)

=
∫

Mω

[
F

(
(ξ̃k)k≥1

)
,D = +∞]

QG(ω)P(dω).
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We have proved therefore (4.11). To obtain (4.12), thus finishing the proof of the
proposition, it suffices only to apply (4.17) to (4.19)q − q0 times. �

Suppose thatm,n ≥ 1, 0≤ t1 ≤ · · · ≤ tn, 0≤ s1 ≤ · · · ≤ sm andF : (Rd)n → R,

G : (Rd)m → R. Let

Uk := F
(
u
(
π(t1 + τk)

)
, . . . ,u

(
π(tn + τk)

))
and

G(q0) := G
(
u
(
π(q0)(s1)

)
, . . . ,u

(
π(q0)(sm)

))
.

The proof of the proposition formulated below is analogous to the one used to
show Proposition 4.5.

PROPOSITION 4.6. Suppose that we are given q ≥ q0. Then, there exists a
random variable Y such that Y ∈ L∞(TD) and∫ ∫

Uq(ω,π)G(q0)(ω,π)PD(dω,dπ)

(4.20)
=

∫ ∫
U0(ω,π)Qq−q0Y (ω)PD(dω,dπ).

Y is nonnegative when G(q0) is nonnegative and∫ ∫
Y (ω)PD(dω,dπ) =

∫ ∫
G(q0)(ω,π)PD(dω,dπ).(4.21)

4.4. The existence of an invariant density. The following result is of crucial
importance for us in the sequel.

THEOREM 4.7. There exists a unique H∗ ∈ D(TD) such that QH∗ = H∗ and
H∗ > 0, PD-a.s. (thus also P-a.s.). In addition, there exist deterministic constants
γ4 ∈ (0,1), γ5 > 0, such that∫

|QnF − H∗|dPD ≤ γ5γ
n
4 ∀F ∈ D(TD),n ≥ 1.(4.22)

The existence and uniqueness of a positive invariant density is a consequence
of Theorem 5.6.2 of [11] and the following lemma.

LEMMA 4.8. There exists a deterministic constant γ3 > 0 such that QF ≥ γ3,
PD-a.s. for all F ∈ D(TD).
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PROOF. Suppose thatA ∈ V0. We have∫
A

QF dPD = 1

P0[D = ∞]

×
+∞∑
k=1

∫ ∫
Mω,ω′

[
Qπ(Sk),ω

′ [D = +∞]
(4.23)

× 1A

(
Tπ(Sk)ω

′),A(Sk), Sk < +∞]
× F(ω)P(dω)P(dω′).

Here Mω,ω′ is the expectation operator corresponding toQω,ω′—the unique
solution of the martingale problem

dx(t) = U
(
x(t);ω,ω′)dt + dw(t),

(4.24)
x(0) = 0.

Using Lemma 3.1, we can estimateQπ(S1),ω
′ [D = +∞] ≥ γ , while A(S1) [no

backtracking may occur beforeS1; cf. (3.4)] is clearly implied by the event
[S1 ≤ D]. Hence the right-hand side of (4.23) is bound from below by

γ

∫ ∫
Mω,ω′

[
1A

(
Tπ(S1)ω

′), S1 ≤ D,S1 < +∞]
F(ω)P(dω)P(dω′).(4.25)

Let G be a certain bounded subregion of the layer[x ∈ R
d :−1 ≤ x · v̂ ≤ r0 + 1]

containing0, with aC∞-smooth boundary∂G. We assume further that part of∂G

of positive surface measureS is contained in the hyperplaneH := [x ∈ R
d : x · v̂ =

r0 + 1]. The expression in (4.25) can be further estimated from below by

γ

∫ ∫
Mω,ω′

[
ϕ

(
π(τG);ω′)]F(ω)P(dω)P(dω′).(4.26)

Here τG denotes the exit time fromG, ϕ(x;ω′) := 1A(Txω
′) for x ∈ ∂G ∩ H

and ϕ(x;ω′) := 0, if x ∈ ∂G \ H. Using absolute continuity of the harmonic
measure and the standard lower bounds for Green’s function corresponding to the
generator of (4.24) and the regionG (see, e.g., [4], Theorem 3.1, page 616), we
can bound (4.26) from below by

C

∫ ∫ [∫
∂G∩H

1A(Tyω
′)S(dy)

]
F(ω)P(dω)P(dω′)

= C|∂G ∩ H|P[A]
∫

F(ω)P(dω)

(4.27)
≥ CP0[D = +∞]|∂G ∩ H|P[A]

∫
F(ω)PD(dω)

= CP0[D = +∞]|∂G ∩ H|P[A],
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where C > 0 is a certain deterministic, positive constant and|E| denotes the
surface measure of a Lebesgue measurable subsetE ⊂ H. Here we used the fact
thatF ∈ D(TD). �

5. The construction of an invariant measure. Let H∗ be the invariant
density forQ, see Theorem 4.7. We set

PH∗(dω,dπ) := H∗(ω)PD(dω,dπ).

Note thatPH∗ is a probability measure on(� × X,B(�) ⊗ M).

THEOREM 5.1. Let n ≥ 1 be an integer and 0 ≤ t1 ≤ · · · ≤ tn be arbitrary.
We suppose that F1, . . . ,Fn :Rd → R are any bounded measurable functions and
the sequence (ξ̃k)k≥0 is given by (4.8) and (4.9). Then (ξ̃k)k≥0 is stationary and
ergodic over the probability space (� × X,B(�) ⊗ M,PH∗).

PROOF. Stationarity is a direct consequence of part (i) of Proposition 4.5 and
the definition ofH∗. To prove ergodicity, we show that any bounded measurable
functionF : (R × R × R

d)N → R, for which

F
(
(ξ̃k+n

)
k≥1

) = F
(
(ξ̃k)k≥1

) ∀n ≥ 1, PH∗-a.s.,(5.1)

satisfiesF((ξ̃k)k≥1) ≡ const,PH∗ -a.s. Letε > 0,N ≥ 1, be arbitrary. We can find
F (N) : (R × R × R

d)N → R bounded, continuous and such that∫ ∫ ∣∣F (
(ξ̃k)k≥1

) − F (N)(ξ̃1, . . . , ξ̃N )
∣∣dPH∗ < ε.

Then, ∫ ∫ ∣∣F (
(ξ̃k)k≥1

)[
F

(
(ξ̃k)k≥1

) − F (N)(ξ̃1, . . . , ξ̃N )
]∣∣dPH∗ < ε sup|F |.(5.2)

On the other hand, for anyq ≥ q0, we have, from (5.1),∫ ∫
F

(
(ξ̃k)k≥1

)
F (N)

(
ξ̃

(q0)
1 , . . . , ξ̃

(q0)
N

)
dPH∗

(5.3)

=
∫ ∫

F
(
(ξ̃k+q)k≥1

)
F (N)

(
ξ̃

(q0)
1 , . . . , ξ̃

(q0)
N

)
dPH∗.

By virtue of Proposition 4.5, we conclude that the right-hand side of (5.3) equals∫ ∫
F

(
(ξ̃k)k≥1

)
Q

q−q0Y dPH∗

for a certainV0-measurableY such that∫ ∫
Y dPH∗ =

∫ ∫
F (N)

(
ξ̃

(q0)
1 , . . . , ξ̃

(q0)
N

)
dPH∗.
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First lettingq ↑ +∞ and thenq0 ↑ +∞, we conclude that∫ ∫
F

(
(ξ̃k)k≥1

)
F (N)(ξ̃1, . . . , ξ̃N ) dPH∗

(5.4)
=

∫ ∫
F

(
(ξ̃k)k≥1

)
dPH∗

∫ ∫
F (N)(ξ̃1, . . . , ξ̃N ) dPH∗,

which, in light of (5.2), yields∣∣∣∣ ∫ ∫ [
F

(
(ξ̃k)k≥1

)]2
dPH∗ −

[∫ ∫
F

(
(ξ̃k)k≥1

)
dPH∗

]2∣∣∣∣ < 2ε sup|F |.

Since ε > 0 was chosen arbitrarily, we conclude thatF((ξ̃k)k≥1) ≡ const,
PH∗-a.s. �

The following proposition holds.

PROPOSITION5.2. We have∫ ∫
τ1dPH∗ < +∞(5.5)

and ∫ ∫
|π(τ1)|dPH∗ < +∞.(5.6)

PROOF. First we show the following.

LEMMA 5.3.

w∗ :=
∫ ∫

v̂ · π(τ1) dPH∗ < +∞.(5.7)

PROOF. We can write that

v̂ · π(τ1) =
K−1∑
k=0

v̂ · (
π(Sk+1) − π(Sk)

)
with random variableK defined before the statement of Corollary 3.3. Hence,

v̂ · π(τ1) ≤ r0 + 1+
K−1∑
k=1

(
r0 + 1+ Mk − v̂ · π(Sk)

)
,(5.8)

and in consequence,∫ ∫
v̂ · π(τ1) dPH∗ ≤ r0 + 1+ ∑

1≤k′<k

∫ ∫ (
r0 + 1+ Mk′ − v̂ · π(Sk′)

)
× 1[Sk<+∞,D◦θSk

=+∞] dPH∗(5.9)
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≤ r0 + 1+ ∑
1≤k′<k

∫ ∫ (
r0 + 1+ Mk′ − v̂ · π(Sk′)

)
× 1[Rk−1<+∞,D◦θSk

=+∞] dPH∗.

SinceRk−1 = D ◦ θSk−1 + Sk−1, we obtain, upon a multiple application of the
strong Markov property forQω and (3.7), that the right-hand side of (5.9) is less
than or equal to

r0 + 1+ ∑
1≤k′<k

(1− γ )k−1−k′

×
∫ ∫ (

r0 + 1+ Mk′ − v̂ · π(Sk′)
)
1[Rk′<+∞] dPH∗

≤ r0 + 1+ 1

P0[D = +∞]
∑

1≤k′<k

(1− γ )k−1−k′
(5.10)

×
∫

H∗(ω)Mω

[
Mπ(Sk′ ),ω[r0 + 1+ M∗,D < +∞],

Sk′ < +∞]
P(dω).

By virtue of (3.9), we conclude that the right-hand side of (5.10) is less than or
equal to

r0 + 1+ r0 + 1+ γ2

P0[D = +∞]
× ∑

1≤k′<k

(1− γ )k−1−k′
∫

H∗(ω)Qω[Sk′ < +∞]P(dω)(5.11)

(3.11)≤ r0 + 1+ C

+∞∑
k=1

k(1− γ )k−1 < +∞,

for some constantC > 0, and (5.7) follows. We have used here the fact that∫
H∗(ω)P(dω)

Lemma 3.1≤ P0[D = +∞]
γ

∫
H∗(ω)PD(dω) < +∞. �

Continuing with the proof of the proposition, we let(km)m≥1 be a random
sequence of integers defined by

τkm ≤ Um < τkm+1.(5.12)

Recall the convention thatτ0 := 0. ThenPH∗-a.s. we have

v̂ · π(
τkm

) ≤ m < v̂ · π(
τkm+1

)
.
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By virtue of Theorem 5.1 and the individual ergodic theorem, we conclude that

lim
k↑+∞

v̂ · π(τk)

k
= w∗

Lemma 5.3
< +∞, PH∗-a.s.

But

v̂ · π(τkm)

km

≤ m

km

<
v̂ · π(τkm+1)

km

,

therefore

lim
m↑+∞

km

m
= 1

w∗
, PH∗-a.s.

Let

t∗ :=
∫ ∫

τ1dPH∗.(5.13)

Trivially, we conclude thatt∗ ∈ (0,+∞]. We also have

Um

m
≥ τkm

km

× km

m
.(5.14)

Inequality (3.10) of Lemma 3.2 implies in particular that

lim inf
m→+∞

Um

m
< +∞, PH∗-a.s.(5.15)

On the other hand, an application of the ergodic theorem to the sequence((τn+1 −
τn))n≥1 implies that the right-hand side of (5.14) tendsPH∗-a.s. tot∗/w∗, which by
virtue of Lemma 5.3 and (5.15) belongs to(0,+∞). Consequently, we conclude
that t∗ < +∞ and (5.5) holds.

Additionally, we have∫ ∫
|π(τ1)|dPH∗ ≤ ‖u‖L∞

∫ ∫
τ1dPH∗ +

∫ ∫
|w(τ1)|dPH∗.(5.16)

Denoting X := sup0≤t≤1 |w(t)|, Y := supt≥1 |w(t)|t−3/4, we can estimate the
second term on the right-hand side of (5.16) by∫ ∫

X1[τ1≤1] dPH∗ +
∫ ∫

Yτ
3/4
1 dPH∗

≤
∫ ∫

X dPH∗ +
(∫ ∫

Y 4dPH∗

)1/4(∫ ∫
τ1dPH∗

)3/4

< +∞.

Here we used the fact thatQω[Y > u] ≤ c1 exp{−c2u
2} for some constants

c1, c2 > 0 independent ofω and all u > 0. This can easily be concluded from,
for example, [1], Theorem 5.2, page 120.�

As a consequence of Proposition 5.2, Theorem5.1 and the individual ergodic
theorem, we obtain the following.
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COROLLARY 5.4. We have

1

N

N−1∑
k=0

ξk →
∫ ∫ [∫ τ1

0

n∏
p=1

Fp

(
u
(
π(tp + s)

))
ds

]
PH∗(dω,dπ)

(5.17)
as N → +∞.

The convergence in (5.17) holds both PH∗-a.s. and in the L1(PH∗)-sense.

Suppose thatQx,ω,t is the probability measure onXt obtained by restricting
Qx,ω to Mt . Let alsoQx,y

ω,t , Mx,y
ω,t denote, respectively, the probability measure and

the respective expectation obtained by conditioningQx,ω,t on the eventπ(t) = y.
Recall(from Section 2) thatpω(·, ·; ·, ·) denotes the transition probability density
of the diffusion given by (1.1). We set

Hm(x, s,ω,π)

:= 1[D(x·v̂)=+∞](π)pω(s,x,0)Qx,0
ω,s[A(s), Sm ≤ s < Sm+1]H∗(Txω).

LEMMA 5.5. Let n ≥ 1, F1, . . . ,Fn ∈ Cb(R
d) and 0≤ t1 ≤ · · · ≤ tn. Then,

+∞∑
m=1

∫ +∞
0

∫
Rd

∫ ∫ n∏
p=1

Fp

(
u(π(tp))

)
Hm(x, s,ω,π)ds dx P0(dω,dπ)

(5.18)

=
∫

Mω

[∫ τ1

0

n∏
p=1

Fp

(
u
(
π(tp + s)

))
ds,D = +∞

]
H∗(ω)P(dω).

REMARK 5.6. Note that in light of Proposition 5.2, the right-hand side of
(5.18) is finite.

PROOF OF LEMMA 5.5. Before proceeding with the proof, we introduce
two additional renewal structures via a slight modification of the times(Sk)k≥1.
These structures allow us to describe momentsSk that occur after certain
deterministically fixed times; see (5.26).

Let l,m ∈ R. Recall thatD(l) is defined as in (3.1). LetM0(l) := max[π(t) ·
v̂ : 0 ≤ t ≤ D(l)]. We define the stopping timeS(1)

1 (l,m) as follows. On the event
D(l) < +∞, we let

S
(1)
1 (l,m) := min

[
t ≥ D(l) :π(t) · v̂ ≥ (

M0(l) ∨ m
) + r0 + 1

]
and

R
(1)
1 (l,m) := D ◦ θ

S
(1)
1 (l,m)

+ S
(1)
1 (l,m),

M
(1)
1 (l,m) := max

[
π(t) · v̂ : 0 ≤ t ≤ R

(1)
1 (l,m)

]
.



1686 T. KOMOROWSKI AND G. KRUPA

We set

S
(1)
1 (l,m) := R

(1)
1 (l,m) := +∞ if D(l) = +∞.

The subsequent timesR(1)
k (l,m),S

(1)
k (l,m) and maximaM(1)

k (l,m) are defined as
follows:

S
(1)
k+1(l,m) := UMk(l,m)+r0+1,(5.19)

R
(1)
k+1(l,m) := S

(1)
k+1(l,m) + D ◦ θ

S
(1)
k+1(l,m)

,(5.20)

M
(1)
k+1(l,m) := max

[
π(t) · v̂ : 0≤ t ≤ R

(1)
k (l,m)

]
.(5.21)

Similarly for l ≥ π(0) · v̂, we define

S
(2)
1 (l) := min[t :π(t) · v̂ ≥ l + r0 + 1]

and

R
(2)
1 (l) := D ◦ θ

S
(2)
1 (l)

+ S
(2)
1 (l),

M
(2)
1 (l) := max

[
π(t) · v̂ : 0≤ t ≤ R

(2)
1 (l)

]
.

The subsequent timesR(2)
k (l), S

(2)
k (l) and maximaM(2)

k (l) are defined by means of
(5.19)–(5.21) with the obvious replacement of superscripts and arguments(l,m)

by l. Let

K(1)(l,m) := min
[
k :S(1)

k (l,m) < +∞,D ◦ θ
S

(1)
k (l,m)

= +∞]
and

K(2)(l) := min
[
k :S(2)

k (l) < +∞,D ◦ θ
S

(2)
k (l)

= +∞]
.

Note that the definitions ofS(1)
k (·, ·), k ≥ 1, differ from the respective definitions

of Sk , k ≥ 1, only through the designation of the first timeS
(1)
1 (·, ·). The same

remark extends also toS(2)
k (·), k ≥ 1. Therefore, a straightforward adaptation of

the argument used to prove Corollary 3.3 allows us to conclude that, for each
l,m ∈ R, x ∈ R

d , we have

Qx,ω

[
K(1)(l,m) < +∞, S

(1)

K(1)(l,m)
(l,m) < +∞] = 1, P-a.s.,(5.22)

Qx,ω

[
K(2)(l) < +∞, S

(2)

K(2)(l)
(l) < +∞] = 1, P-a.s.(5.23)

To explain the meaning ofS(1)
k (·, ·), S

(2)
k (·), k ≥ 1, consider the case whens is a

certain fixed deterministic time,m1 < m2 are two positive integers andπ(·) is a
path that satisfiess ∈ [Sm1,Rm1), Sm2 < +∞. Then, we can write

Sm2(π) = s + S
(1)
m2−m1

(
π

(
Sm1

) · v̂,Nm1(s)
) ◦ θs(π).(5.24)
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Here Nm(s) := max[π(t) · v̂ : t ∈ [Sm ∧ s, s]]. If, on the other hand,s ∈
[Rm1, Sm1+1), Sm2 < +∞, we have

Sm2(π) = s + S
(2)
m2−m1

(
Mm1(π)

) ◦ θs(π).(5.25)

Recall thatMm1 is defined in (3.5) and (3.6).
For brevity let us denote

F(s) :=
n∏

p=1

Fp

(
u
(
θs(π)(tp)

))
andBm := [D ◦ θSm = +∞,D = +∞]. The right-hand side of (5.18) equals

+∞∑
m=1

∫
Mω

[∫ Sm

0
F(s) ds, Sm < +∞,Bm

]
H∗(ω)P(dω)

= ∑
0≤m1≤m2−1

∫ +∞
0

{∫
Mω

[
F(s)1[Sm1,Rm1)(s),

Sm2 < +∞,Bm2

]
H∗(ω)P(dω)

}
ds(5.26)

+ ∑
0≤m1≤m2−1

∫ +∞
0

{∫
Mω

[
F(s)1[Rm1,Sm1+1)(s),

Sm2 < +∞,Bm2

]
H∗(ω)P(dω)

}
ds.

Using the Markov property, the definition of stopping timesS
(1)
k (l,m) and (5.24)

we can recast the first term on the right-hand side of (5.26) as being equal to
[cf. (3.4)] ∑

0≤m1≤m2−1

∫ +∞
0

{∫
Mω

[
1[Sm1,Rm1)(s)

× gm2−m1

(
π(s),π

(
Sm1

) · v̂,Nm1(s)
)
,A(s)

]
(5.27)

× H∗(ω)P(dω)

}
ds,

where

gk(x, l,m) := Mx,ω

[
F(0), S

(1)
k (l,m) < +∞,D ◦ θ

S
(1)
k (l,m)

= +∞,D(0) = +∞]
.

Using (5.22), we conclude that the expression in (5.27) equals
+∞∑

m1=0

∫ +∞
0

{∫
Mω

[
1[Sm1,Rm1)(s)A(s)

]
H∗(ω)

(5.28)

× Mπ(s),ω[F(0),D(0) = +∞]P(dω)

}
ds.
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Conditioning on the eventπ(s) = x, we obtain that the expression in (5.28) equals
+∞∑

m1=0

∫ ∫ +∞
0

∫
Rd

pω(s,0,x)M0,x
ω,s

[
1[Sm1,Rm1)(s),A(s)

]
(5.29)

× Mx,ω[F(0),D(0) = +∞]H∗(ω)P(dω)ds dx.

Using the homogeneity ofP and changing variablesx := −x, we conclude that the
expression in (5.29) equals

+∞∑
m1=0

∫ ∫ ∫ +∞
0

∫
Rd

1[D(x·v̂)=+∞](π)pω(s,x,0)

× Mx,0
ω,s

[
A(s), Sm1 ≤ s < Rm1

]
(5.30)

× H∗(Txω)F (0)P0(dω,dπ)ds dx.

Note that thanks to the definition ofA(s), the integration over variablex extends
only over the region[x : x · v̂ ≤ 1].

Repeating the same type of calculations for the second term on the right-hand
side of (5.26) [using stopping timesS(2)

k (l) instead ofS(1)
k (l,m) and (5.25)], we

conclude that it equals
+∞∑

m1=0

∫ ∫ ∫ +∞
0

∫
Rd

1[D(x·v̂)=+∞](π)pω(s,x,0)

× Mx,0
ω,s[A(s),Rm1 ≤ s < Sm1+1](5.31)

× H∗(Txω)F (0)P0(dω,dπ)ds dx,

and (5.18) follows. �

Applying Lemma 5.5 ton = 1, t1 = 1 andF1 ≡ 1, we conclude immediately the
following.

COROLLARY 5.7.

P0[D = +∞]
∫ ∫

τ1PH∗(dω,dπ)

(5.32)

=
+∞∑
m=1

∫ +∞
0

∫
Rd

∫ ∫
Hm(x, s,ω,π)ds dx P0(dω,dπ).
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Let

µ(dω,dπ) := 1

Z

+∞∑
m=1

[∫ +∞
0

∫
Rd

Hm(x, s,ω,π)ds dx
]
P0(dω,dπ),(5.33)

where the constantZ, by definition, equals the right-hand side of (5.32). Thanks
to (5.5), we haveZ < +∞. By virtue of Corollary 5.7µ is a probability measure.

PROPOSITION5.8. The process V (·) given over (� × X,B(�) ⊗ M,µ) by
formula (2.3) is stationary and ergodic.

PROOF. The proof of stationarity. Let n ≥ 1, F1, . . . ,Fn ∈ Cb(R
d) and 0≤

t1 ≤ · · · ≤ tn. Then, for anyh ≥ 0, we can write∫ ∫ n∏
p=1

Fp

(
u
(
π(tp + h)

))
µ(dω,dπ)

Lemma 5.5= P0[D = +∞]
Z

∫ ∫ [∫ τ1

0

n∏
p=1

Fp

(
u
(
π(tp + h + s)

))
ds

]

× PH∗(dω,dπ)

(5.34)
Corollary 5.4= P0[D = +∞]

Z

× lim
N↑+∞

1

N

∫ ∫ [∫ τN

0

n∏
p=1

Fp

(
u
(
π(tp + h + s)

))
ds

]

× PH∗(dω,dπ).

Since the integration over an interval of lengthh does not influence the value of
the expression on the utmost right-hand side of (5.34), we conclude that it is in fact
equal to

P0[D = +∞]
Z

lim
N↑+∞

1

N

∫ ∫ [∫ τN

0

n∏
p=1

Fp

(
u
(
π(tp + s)

))
ds

]
PH∗(dω,dπ)

=
∫ ∫ n∏

p=1

Fp

(
u
(
π(tp)

))
µ(dω,dπ).

Proof of ergodicity. Proving ergodicity is tantamount to showing that, for any
bounded and Borel measurableF :X → R that satisfies

F ◦ θt (V (·)) = F(V (·)) ∀ t ≥ 0,µ-a.s.,(5.35)



1690 T. KOMOROWSKI AND G. KRUPA

we haveF(V (·)) = const,µ-a.s. Similarly to what we have done in the proof
of Theorem 5.1, for anyε > 0, we can findN ≥ 1, 0 ≤ t1 ≤ · · · ≤ tN and
F (N) : (Rd)N → R bounded, continuous such that∫ ∫ ∣∣∣∣F(V (·)) − F (N)

(
V (t1), . . . , V (tN)

)∣∣dµ < ε.(5.36)

Let q ≥ q0 be arbitrary andV (q0)(t) := V (t ∧ τq0), t ≥ 0. Using (5.35), we
conclude that∫ ∫

F(V (·))F (N)
(
V (q0)(t1), . . . , V

(q0)(tN)
)
dµ

(5.37)
=

∫ ∫
F

(
θτq (V (·)))F (N)(V (q0)(t1), . . . , V

(q0)(tN)
)
dµ.

Using Proposition 4.6 and an argument analogous to the one applied in the proof
of Theorem 5.1 [see in particular the argument leading up to (5.4)], we conclude,
upon the subsequent passages to the limit in (5.37), first asq → +∞, then as
q0 → +∞, that∫ ∫

F(V (·))F (N)
(
V (t1), . . . , V (tN )

)
dµ

(5.38)
=

∫ ∫
F(V (·)) dµ ×

∫ ∫
F (N)

(
V (t1), . . . , V (tN )

)
dµ.

From (5.36) and (5.38), we conclude that∣∣∣∣ ∫ ∫
[F(V (·))]2 dµ −

[∫ ∫
F(V (·)) dµ

]2∣∣∣∣ < 2ε sup|F |.
Hence, upon the application of the fact thatε > 0 has been chosen arbitrarily,
we get ∫ ∫

[F(V (·))]2 dµ =
[∫ ∫

F(V (·)) dµ

]2

soF(V (·)) ≡ const,µ-a.s. �

6. The proof of the law of large numbers. From (2.2) andProposition 5.8,
we immediately conclude that

lim
t→+∞

π(t)

t
= lim

t→+∞
1

t

∫ t

0
V (s) ds = v∗, µ-a.s.,(6.1)

with v∗ given by (1.2).
We show that the limit in (6.1) holdsP0-a.s. To demonstrate this fact, it suffices

only to show thatπ(t)/t convergesP0-a.s., ast → +∞, to a deterministic limit,
which, as a consequence of the absolute continuity ofµ w.r.t. P0, must be equal
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to v∗. In fact it suffices only to show theP0-a.s. convergence of the sequence
(π(n)/n)n≥1. Indeed, we have

lim
n→+∞ sup

n≤t≤n+1

∣∣∣∣π(t)

t
− π(n)

n

∣∣∣∣ = 0.(6.2)

The latter is a consequence of the following estimate, that is an immediate
consequence of (1.1):

P0

[
sup
n≥N

sup
n≤t≤n+1

|π(t) − π(n)|
n

≥ ε

]
≤ W

[
sup
t≥N

|π(t)|
[t] ≥ ε

2

]
.(6.3)

Inequality (6.3) holds for anyε > 0 andN ≥ 2(U + |v|)/ε, with U the constant
from condition (R). The right-hand side of (6.3) is as small as we wish, provided
thatN is chosen sufficiently large.

Let t∗ be defined by (5.13). We also denote

w∗ :=
∫ ∫

π(τ1) dPH∗.

Note that, in consequence of Corollary 5.4 and Lemma 5.5 we have the following.

lim
n→+∞

τn

n
= t∗, lim

n→+∞
π(τn)

n
= w∗, PH∗-a.s.(6.4)

Let us consider a nondecreasing sequence(ln)n≥1, that tends to infinityPH∗-a.s.,
defined by

τln ≤ n < τln+1.(6.5)

We have

lim
n↑+∞

n

ln
= t∗, PH∗-a.s.(6.6)

Writing

π(n)

n
= π(τln)

ln
· ln

n
+ π(n) − π(τln)

n
(6.7)

we conclude, by virtue of the individual ergodic theorem, that

lim
n↑+∞

π(n)

n
= w∗

t∗
, PH∗-a.s.(6.8)

Let

E :=
[
(xn, tn)n≥1 ∈ (Rd × R)N :

∑n
m=1 xm∑n
m=1 tm

�→ w∗
t∗

,

or

∑n
m=1 tm

n
�→ t∗ asn ↑ +∞

]
.
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From (6.4), it follows that∫
1E

((
π(τn+1) − π(τn), τn+1 − τn

)
n≥1

)
dPH∗ = 0,(6.9)

hence∫
Mω

[
1E

((
π(τn+1) − π(τn), τn+1 − τn

)
n≥1

)
,D = +∞]

H∗(ω)P(dω) = 0.

SinceH∗ > 0, P-a.s., we conclude that

Mω

[
1E

((
π(τn+1) − π(τn), τn+1 − τn

)
n≥1

)
,D = +∞] = 0, P-a.s.(6.10)

However, repeating the calculation made in (4.15) through (4.19), we obtain∫
1E

((
π(τn+2) − π(τn+1), τn+2 − τn+1

)
n≥1

)
dP0

=
∫

H(ω′)Mω′
[
1E

((
π(τn+1) − π(τn), τn+1 − τn

)
n≥1

)
,

(6.11)
D = +∞]

P(dω′)
(6.10)= 0,

with

H(ω′) :=
+∞∑

k,L=1

∫
Rd

∫
Mk,L,x(ω,T−xω

′)Fk(dx)dP(ω).

From the definition of the setE, we conclude therefore

lim
n↑+∞

π(τn)

τn

= w∗
t∗

and lim
n↑+∞

τn

n
= t∗, P0-a.s.

Repeating the argument used in (6.5)–(6.6), this time with measureP0 in place
of PH∗ , we conclude that the limit in (6.8) holdsP0-a.s. �

APPENDIX A

Proofs of Lemmas 3.1, 3.2 and Corollary 3.3. Recall our standing assump-
tion thatκ = 1. Additionally, since all the estimates obtained below, as it becomes
apparent in the course of the proofs, are independent of the choice of the starting
point of the diffusion, we shall setx = 0 throughout this section.

A.1. Proof of (3.7). For anyM > 0, we denote

S+
M := [x ∈ R

d :−1 ≤ v̂ · x ≤ M](A.1)

andTS+
M

the exit time from the strip. Since

Qω[D = +∞] = lim
M↑+∞Qω

[
TS+

M
< +∞, v̂ · π(

TS+
M

) = M
]
,(A.2)



INVARIANT MEASURES FOR RANDOM DIFFUSIONS 1693

inequality (3.7) will be proven once we show that there exists a constantc > 0,
which bounds the right-hand side of (A.2). Recall that, for anyω ∈ �, the process
wω(·), given by (2.2), is an(Mt ) nonanticipative standard Brownian motion,
underQω. Take any connected and bounded set0 ∈ V ⊆ S+

M . A simple argument
involving the optional stopping theorem for martingales implies that

Mω[π(n ∧ TV ) · v̂] − Mω

[∫ n∧TV

0
u(π(s)) · v̂ds

]
= 0 ∀n ≥ 1.(A.3)

Note that−1 ≤ π(n ∧ TV ) · v̂ ≤ M . On the other hand, with the choice ofδ

as in (2.1) we can writeMωTV ≤ (M + 1)/δ and in consequenceMωTS+
M

≤
(M + 1)/δ, hence in particular

Qω

[
TS+

M
< +∞] = 1.(A.4)

To finish the proof of (A.2), we chooseθ0 > 0 so thatθ0 ≤ δ/2 and let
θ ∈ (0, θ0]. Then, using the Markov property ofQω[·] we get

Mω[exp{−θ v̂ · π(t)}|Ms]
= exp{−θ v̂ · π(s)}

(A.5)

+
∫ t

s
Mω

{
exp{−θ v̂ · π(u)}[−θ v̂ · u(π(u)) + θ2]|Ms

}
du

≤ exp{−θ v̂ · π(s)}
for t ≥ s. The above calculation shows that exp{−θ v̂ · π(·)} is an (Mt )-super-
martingale. The optional sampling theorem for supermartingales and (A.4) yield

Mω

[
exp{−θ v̂ · π(S+

M)}] ≤ 1.

Thus, in consequence of the above estimate, we conclude that

eθQω

[
v̂ · π(

TS+
M

) = −1
] ≤ 1,

therefore

Qω

[
v̂ · π(

TS+
M

) = M
] ≥ 1− e−θ ∀M > 0,

and (3.7) is proven.

A.2. Proof of (3.8). We can write that the left hand-side of (3.8) is less than
or equal to

Qω

[
TSM

> tM
] + Qω

[
TSM

≤ tM, v̂ · π(
TSM

) = −M
]
.(A.6)

Here tM := 2Mδ−1, SM := [x ∈ R
d :−M ≤ v̂ · x ≤ M] andTSM

denotes the exit
time from the stripSM . δ is defined in (2.1). Using the notation of (2.2), we can
write that, on the event[TSM

> tM ],
|wω(tM)| =

∣∣∣∣π(tM) −
∫ tM

0
u(π(s)) ds

∣∣∣∣ ≥ M.



1694 T. KOMOROWSKI AND G. KRUPA

Hence,

Qω

[
TSM

> tM
] ≤ Qω[|wω(tM)| ≥ M] ≤ exp

{
−δM

4

}
.

On the other hand,

Qω

[
TSM

≤ tM, v̂ · π(
TSM

) = −M
] ≤ Qω

[
sup

0≤t≤tM

|wω(t)| ≥ M

]
.(A.7)

Using elementary estimates on the law of the maximum of a Brownian motion,
we bound the right-hand side of (A.7) from above by exp{− δM

4d
} and (3.8) follows.

A.3. Proof of (3.9). For any integerm ≥ 1, we have

Qω[2m ≤ M∗ < 2m+1,D < +∞]

≤ Qω

[
|π(U2m) − 2mv̂| ≥ 2m+1|v|

δ

]
(A.8)

+ Qω

[
|π(U2m) − 2mv̂| < 2m+1|v|

δ
, Ũ0 ◦ θU2m < U2m+1 ◦ θU2m

]
.

Let

C :=
[
x ∈ R

d : |x − (v̂ · x)v̂| ≤ v · x
δ

]
.

C is a cone containing the support of the law ofu(x), x ∈ R
d . Therefore∫ t

0 u(π(s)) ds ∈ C, for all t ≥ 0. On the other hand, there existsc1 > 0 such that,
for anym ≥ 1, if

|x − 2mv̂| ≥ 2m+1|v|
δ

and v̂ · x ≤ 2m,

then dist(x,C) > c12m. The first term on the right-hand side of (A.8) can be
therefore estimated by [sincev̂ · π(U2m) = 2m]

Qω

[
|π(U2m) − 2mv̂| ≥ 2m+1|v|

δ
,U2m ≤ 2m+1

δ

]
+ Qω

[
U2m >

2m+1

δ

]
.(A.9)

The expression in (A.9) can be therefore estimated by

Qω

[
|wω(U2m)| ≥ c12m,U2m ≤ 2m+1

δ

]
+ Qω

[
sup

t∈[0,2m+1/δ]
|wω(t)| ≥ 2m

]

≤ Qω

[
sup

t∈[0,2m+1/δ]
|wω(t)| ≥ c12m,U2m ≤ 2m+1

δ

]
(A.10)

+ Qω

[
sup

t∈[0,2m+1/δ]
|wω(t)| ≥ 2m

]
.
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Using once more the estimates on the law of the supremum of the Brownian
motion, we bound the right-hand side of (A.10) from above byc2 exp{−c32m}
for some deterministic constantsc2, c3 > 0 independent ofm.

The second term on the right-hand side of (A.8) equals

Mω

[
Qπ(U2m),ω[Ũ0 < U2m+1], |π(U2m) − 2mv̂| < 2m+1|v|

δ

]
≤ exp{−γ12m},

by virtue of (the already proven) (3.8). We have therefore shown that

Qω[2m ≤ M∗ < 2m+1,D < +∞] ≤ c4 exp{−c52m}(A.11)

for some deterministic constantsc4, c5 > 0 independent ofm, and (3.9) follows.

A.4. Proof of Lemma 3.2. For anyn ≥ 1, we obtain

0 = Mω[v̂ · wω(n ∧ Um)] ≤ m − δMω(n ∧ Um),(A.12)

and (3.10) follows.
On the other hand,

Qω[Rk < +∞] = Qω

[
Sk + D ◦ θSk

< +∞]
strong Markov prop.= Mω

[
Qπ(Sk),ω[D < +∞], Sk < +∞]

Lemma 3.1≤ (1− γ )Qω[Sk < +∞] ≤ (1− γ )Qω[Rk−1 < +∞]
and (3.11) follows by induction.

A.5. Proof of Corollary 3.3. Part (i) is an immediate conclusion from (3.11)
and the Borel–Cantelli lemma. To show part (ii), note that

Qx,ω[SK < +∞]

=
+∞∑
k=1

Qx,ω

[
Rk−1 < +∞,UMk−1+r0+1 ◦ θRk−1 < +∞,K ◦ θRk−1 = 1

]
(A.13)

=
+∞∑
k=1

∫
R

Mx,ω

[
Qπ(Rk−1),ω[Um+r0+1 < +∞,K = 1],

Rk−1 < +∞,Mk−1 ∈ [m,m + dm)
]
.

However, using (A.12), we can easily conclude thatQy,ω[Um < +∞] = 1 for all
y ∈ R

d , m ∈ R, P-a.s.; hence the utmost right-hand side of (A.13) equals

+∞∑
k=1

∫
R

Mx,ω

[
Qπ(Rk−1),ω[K = 1],Rk−1 < +∞,Mk−1 ∈ [m,m + dm)

]
= Qx,ω[K < +∞] = 1.
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APPENDIX B

The existence of the isometric isomorphism Z. Suppose thatn ≥ 1
is a positive integer,A1, . . . ,An ∈ V0, B1, . . . ,Bn ∈ R are such thatA1 ×
B1, . . . ,An × Bn are pairwise disjoint andc1, . . . , cn ∈ R. We let

U

(
n∑

p=1

cp1Ap×Bp

)
:=

n∑
p=1

cp1Ap1Bp .

Sinceσ -algebrasV0 andR areP-independent, the mappingU is well defined and
extends to a positivity-preserving isometry of anyLp(T2 ⊗ T3) into Lp(T1) for
anyp ∈ [1,+∞]. Thanks to the factorization property stated in the remark after
condition (R), we conclude thatU is in fact an isometric isomorphism between
the relevant spaces. DefineZ := U−1. It is clear from the definition that properties
(Z1) and (Z3) hold. SinceVt is generated byP-independentσ -algebrasV0 andRt ,
we can also immediately conclude (Z4). To prove condition (Z2,) we assume
first that allG1, . . . ,GN ∈ L∞(T2 ⊗ T3). From the definition ofU, we conclude
that U(G

m1
1 · · ·GmN

N ) = [U(G1)]m1 · · · [U(GN)]mN for any nonnegative integers
m1, . . . ,mN ≥ 0. Hence, using, for example, the Weierstrass approximation
theorem, we conclude thatU�(G1, . . . ,GN) = �(U(G1), . . . ,U(GN)) for any
� ∈ Cb(R

N). We can remove the restriction on boundedness ofGi ’s by using a
standard truncation argument.
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