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In this paper we investigate the speed of convergence of the fluctuations
of a general class of Feynman—Kac particle approximation models. We design
an original approach based on new Berry—Esseen type estimates for abstract
martingale sequences combined with original exponential concentration
estimates of interacting processes. These results extend the corresponding
statements in the classical theory and apply to a class of branching and
genealogical path-particle models arising in nonlinear filtering literature as
well as in statistical physics and biology.

1. Introduction. Feynman—Kac distribution flows and their particle interpre-
tations arise in the modeling and the numerical solving of a variety of prob-
lems including directed polymer simulations in biology and industrial chemistry,
nonlinear filtering in advanced signal processing and Bayesian statistics methodol-
ogy, rare event estimation in telecommunication and computer systems analysis as
well as physics in the spectral analysis of Schrédinger operators and in the study
of particle absorptions. Their asymptotic behavior as the size of the systems and/or
the time parameter tend to infinity has been the subject of various research articles.
For more details on both the theoretical and applied aspects of the topic we refer
the reader to the review article [5] and references therein.

To better connect this study with existing and related articles in the literature we
give a brief discussion on the fluctuation analysis of these models. The first “local”
central limit theorems were presented in [1]. These fluctuations were restricted
to local sampling errors of an abstract class of genetic type particle model. This
study was extended in [2] in the spirit of Shiga and Tanaka’s celebrated article [9]
to particle and McKean path-measures. This approach to fluctuations in path
space was centered around Girsanov type change of measures techniques and a
theorem of Dynkin and Mandelbaum on symmetric statistics [7]. This strategy
entirely relies on appropriate regularity conditions on the Markov kernels which
are not satisfied for genealogical tree evolution models as the ones described in [1].
Another drawback of this approach is that the description of resulting limiting
variance is not explicit but expressed in term of the inverse ofLanntegral
operator.
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942 P. DEL MORAL AND S. TINDEL

Donsker type theorems and an explicit computation of the limiting variance in
terms of Feynman—Kac semigroups were further developed in [4] in the context
of particle density profile models. These explicit functional formulations were
the starting point of a new approach to central limit theorems based on judicious
martingale decompositions and Feynman—Kac semigroup techniques [3, 5].

The main objective of the current article is to complete and further extend these
studies with the analysis of the speed of convergence of fluctuations.

The article is organized as follows. In Section 1.1 we describe the Feynman—-Kac
and the particle models discussed in this article. In Section 1.2 we present our main
results and specify the set of regularity conditions needed in the sequel. Section 2
is concerned with a precise Berry—Esseen type estimate for abstract martingale
sequences. In Section 3 we show how these martingale fluctuations apply to a
sufficiently regular class of McKean particle interpretations.

We end this section with some rather standard and classical notation that will be
of current use in the article.

By M(E) we denote the set of all bounded and positive measures on a
measurable spadd, &), by £ (E) c M(E) we denote the subset of probability
measures ofE, &) and byB;,(E) the Banach space of all boundéemeasurable
functions f on E equipped with the uniform normf || =sup..g | f (x)|. We also
let OsdE) C B,(E) be the subset of all bounded measurable functions with
oscillations 0s¢f) = sup, y [/ (x) — f(»)I < 1.

We finally recall that a bounded and positive integral operg@tdrom (E, &)
into another measurable spacE’, &') generates two operators, one acting on
functions f € 8B, (E’) and taking values i, (E), the other acting on measures
u € M(E) into M(E’) and defined by

Q(f)(X)=/E,Q(x,dX’)f(x/), MQ(dx/)=fEM(dX)Q(x,dX’)-

To clarify the presentation we shall slightly abuse the notation, and we often write
O(f — Q(f))? for the functionx — Q(f — Q(f)(x))*(x).

Finally, we shall use the letter to denote any nonnegative and universal
constant whose values may vary from line to line but which does not depend on
the time parameter nor on the Feynman—Kac models.

1.1. Description of the models.We consider some collections of measurable
spaceskE,, §,).eN, Oof Markov transitionsW,, 1 1 (x,,, dx, 1) from E,, to E,, 1, and
boundedg,-measurable and strictly positive functiogs on E,,. We assume that
the latter are chosen so that for ang N we have

(1) 'n = sup (Gn(xn)/Gn(yn)) < Q.
(Xn,yn)E€E?

We associate to the paifG,, M,) the Boltzmann-Gibbs transformatiod,,
on #(E,) and the mappingb,1 from £ (E,) into P (E,+1) given for any
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(X, pn) € (Ey, P(Ep)) by
Wy, (n)(dxn) = Gy (Xp) pn(dxn) /i (Gr),
Dp1(un) = Wy (p) My 1.

For anyng € £ (Eg) we denote byE, () the expectation operator with respect
to the distribution of a Markov chalik,, with initial distributionng and elementary
transitionsM,,. We consider the distribution flow, € £ (E,), n € N, also called
Feynman—Kac flovn the sequel, defined for ang, € 8,(E,) by the Feynman—
Kac formulae

(2) M (fn) = ¥ (fu)/ ¥n (D) with Yu(fn) = Eno |:fn(Xn) 1_[ Gp(Xp)i|7

O<p<n

with the conventiori [, = 1. Using the multiplicative structure of the Feynman—
Kac model and the Markov property, one readily checks that theifjosatisfies
the nonlinear equation

(3) NMn+1= 77nKn+1,n,,,

where (K, 41,11, )neN, ue?(E,) 1S @ nonuniquecollection of Markov transitions
satisfying the comatibility condition

(4) VneNVYu, e P(E, MnKn—i—l,p.n =Py 1(n).

These collections of transitions are often called the McKean interpretations of (3).
Notice that the compatibility relation (4) is satisfied if we take

(5) Kn+1,un (Xns ) =0 Gp(xp) My11(xp, ) + (1 - enGn(xn))q>n+1(Mn)

for any nonnegative constast such that, G, (x,) € [0, 1]. We finally notice that
the random variableX, may represent the path of an auxiliary Markov chai)
from the origin up to timen and taking values in some Hausdorff topological
spacest,; that is, we have

(6) Xp=(Xp,..., X)) € Ey=(Eyx --- x Eb).

For eachN > 1 we denote byny the mapping from the product spaée’
into & (E) which associates to each configuratios (x')1<;<y € EV the empir-
ical measureny (x) = % > ;—10,i. The interacting particle system associated to
a given McKean interpretation is defined as a Markov ci&id = (E,EN’i))ls,-SN
taking values in the product spacg§ with initial distribution ngz’N and elemen-
tary transitions

N
) Probg™) e dxulg, ")) = [K, oo (611 dxy).
i=1
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wheredx, = Xlil-ENdle stands for an infinitesimal neighborhood of the point
Xn = (X;)1<i<N € E,I,V

Under appropriate regularity conditions on the McKean transitions kekinels
it is known that in some sense the particle measures

ny =my(EN)

converge aV tends to infinity to the desired distributions.

To illustrate this model we note that the particle interpretation of the Feynman—
Kac flow associated to McKean transitions (5) forms a two-step selection/mutation
genetic algorithm. The particular situation wheype= 0 corresponds to a simple
genetic model with an overlapping mutation/selection transition. In the same
vein the corresponding particle interpretation model of the Feynman—Kac path
measures associated to the chain (6) forms is a genetic type algorithm taking values
in path space. Note that in this situation the path-particles have the form

i N, N,
EN0 = (oh 51, EVD) € B = (B x - x E.

In addition, if the potential functions only depend on terminal values in the sense
that G, (xg, ..., x,) = G, (x,) for some potential functiorG, on E,, then the
resulting path-particle model can be interpreted as a genealogical tree evolution
model.

As traditionally, to clarify the presentation we slightly abuse the nota-
tion, by suppressing the size indeéx, and we write(m(x), &,,£.) instead of

(my (x), &N, £V,

1.2. Statement of some resultstor any sequence of"-adapted random
variablesZ) defined on some filtered probability spac&s”, (F,¥),=0, PV),
we denote byAZY the difference procesazy = zV — zV |, with the

conventionAZ) = z{ forn = 0. If AMY is a givens;," -martingale difference,
then we denote byM,¥ the F,"-martingale defined bym,Y = 3" _,AM)).
We recall that its increasing procegg” ), is given by

n
(M), = > EN[(aM))?FN
p=0
with the convention}‘_]\’1 = {o,QN)} for p =0. It is also convenient to in-
troduce the increasing procesd’ = N(M"), of the normalized martingale
=VNM).
The example we have in mind is the situation Whe’tﬁl\’)po is the natural

filtration associated to the particle model (7) and mé(—martfngale difference
AMYN = AMY (f,), with £, € B,(E,), is given by the particlath sampling error

(8) AMY () =1 (f) = mp_a K,y v (fa)
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with the conventiomflKO pN, =10 for n = 0. In this situation the increasing

processesM™N (f)), andCYN (f) = (LN (f)), of the corresponding martingales
MY (f) andLY (f) = VNMY (f) are connected by the formula

n
N _ N _ N 2
©  eNH=NM(f).= Zonp_le,,,gfl(fp — K, v ()"
p:
Our first main result concerns a Berry—Esseen theorem for an abstract class of
martingale sequences under the following set of conditions:

(H1) Foranyn > 0 there exist some constamtgn) < oo and O< ¢1(n) < 1 such
that for anyn > 0 andi® < ¢1(n) N2 we have PN almost surely,

AN EAMTHGEDACH N ]~ 1 < aa a3/ NV

(H2) For anyn > 0 there exists some finite constantn) < oo such that for any
N=>1,A>0andn >0,

|E[eiAN1/2M,¢’]| < E[e—(xz/zmcj)’]ex%z(n)//vl/{

(H3) There exists a nonnegative and strictly increasing deterministic process
C = (Cp)n>0 as well as some finite constants<uz(n) < oo such that for
anye > 0 we have

B[eV A =0G] < (1 -+ sag(m)er" 5.

THEOREM 1.1. Let MY = (MY),-o be a sequence of "-martingales
satisfying conditiongH1)-(H3) for some nonnegative and strictly increasing
processC,,. We letFN, respectivelyF,, be the distribution function of the random
variable N1/2M,’,V, respectivelythe one of a centered Gaussian random variable
with varianceC,,. Then for any: > 0 we have

limsupNY2|FN — F,|| < cc.
N—o0

Theorem 1.1 does not apply directly to the particle martingale sequence
introduced in (8). The first two conditions (H1) and (H2) are rather standard.
They can be checked for any kind of any McKean interpretation model using
simple and rather standard asymptotic expansions of characteristic functions. The
third condition is an exponential continuity condition of the increasing processes
introduced in (9). Next we provide a sufficient regularity condition which can
be easily checked in various McKean interpretation models. If we set for any
Mn € P (Ey)

1, 1(0) = {(h € OSAEy) : pa(h) = O},

then this condition reads
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(H) There exists a collection of uniformly bounded positive measurgs
and F,/ZHJ on the setsnn—l(O) and n;jl(O) and indexed by € N and
f € Osd E,+1) and such that

H Kn—l—l,un (f) - Kn—l—l,nn (f) H
< [l @ITs @) + [ 1®022u) 0T, ().

When condition (H) is met we denote Hy the supremum of the total mass
quantitiesl“,’l’ D andl’,, r(1).

Note that (H) is related to some Lipschitz type regularity of the increasing
process and it is clearly met for the McKean transitions given in (5), since we
have in this case

Kn—i—l,un (f) - Kn—i—l,nn (f) =1- enGp)[Prt1(tn) — q>n+1(77n)](f)~

Thus, in this situation, we have that (H) is met with =0 andF,;’f = §;, with
h=1[f — nu41(f)] so thatl’, (1) =0 and F;l,f(l) = 1. When the parameter
en = &, (1) In (5) depends on the index measurg we also find that (H) is met
as soon as we have

e (1) — £ ()] < / it ()| A (d )

for some uniformly bounded positive measurgson n;1(0).

REMARK 1.2. The above considerations show that condition (H3) is in fact
easily verified in most of the classical applications of McKean models, and in
particular in the case of nonlinear filtering, for which we refer to [5], for sake of
conciseness.

To check the exponential estimates stated in condition (H3) we shall use a re-
fined version of Burkholder’s inequality recently presented by the first author with
Miclo and Viens in [6]. Roughly speaking, these shérp-estimates combined
with some judicious error decompositions lead to the desired exponential concen-
trations estimates for the normalized sampling error martings\¢ /) defined
by (9) with the limiting increasing process

n
2
(10) Cu(f) = Z Np—1Kpy, s (fp = Kpmpoa (fp))"
p=0
Observe that, even if this strategy led to the desired Berry—Esseen estimates
on MY (f), we would still need to transfer these rates of fluctuations to the random
field sequence defined byN (nY¥ — 1,). One of the most elegant approaches is
probably to follow the semigroup techniques and the martingale decompositions
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developed in [5]. To describe these decompositions with some precision we let
Qp.» be the linear Feynman—Kac semigroup associated to thefjoo be more
specific, we define the semigrogp, ,, by the relation

Yn =¥pQp.n

and we associate 9, , a “normalized” semigrou@p,n, defined forf, € B,(E,)
by

Qpu(f) _ 7o)
NMp Qp,n D Yn(D)

If we let (Wl’,\fn(f,,))ps,,, fn € Bp(E,), be the random field sequence defined by

(11) Qp,n(fn) = Qp,n(fn)

(12) leyvn(fn) = \/ﬁ(ng - np)(fp,n) with fp,n = épn(fn — M fn),

then we have the Doob type decomposition

lexn(f”) = £1]7V,n(fn) + °Cg,n(fn),

with the predictable and martingale sequences given by
ABY, (f) =VNIL=n) 1(Gp-1)/np-1(Gp-1)]
X [© (1) ) (fp.n) = Ppp-1)(fp.n)],
ALy, (f) = N[0y Fpn) =1y 1K, v Fpn]

The above decompaosition is now more or less standard. For the convenience of the
reader its proof is housed in the Appendix.

Intuitively speaking, we see from the quadratic structure of the predictable
term that it should not influence the fluctuation rate. We will make precise
this observation with a Stein type approximation lemma and we will prove the
following theorem:

THEOREM1.3. Letf, € B,(E,) and Ieth’,\fn be the quantitglefined by(12).
For any McKean interpretation model satisfying condit{gf), we have

u 2 dv
—v</2
7(27[)1/2 < 00,

lim supx/ﬁsule’(W,ﬁYn(fn) <uoy(f)) — /

N—oo uelR —00

forany f,, € B,(E,) andn > 0 with

Unz(f) = Z np—le’np_l(fp’n - Kp’np—l(fp,n))z-
p=0
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2. An estimate for martingale sequences. The central limit theorem for
sequences of random variables is usually obtained by convergence of characteristic
functions. Unsurprisingly, the natural question of determining the speed of
convergence in the CLT can also be handled through characteristic functions
considerations. The formalization of this idea is due to Berry and Esseen, and
can be summarized in the following theorem:

THEOREM 2.1 (Berry—Esseen).Let (F1, Fp) be a pair of distribution func-
tions with characteristic functionéf1, f2). Also assume thak» has a derivative
with || 222 || < co. Then for any: > 0 we have

1f1(x) = fa(o)l fz(X)I 3F2
HH—FH<nA - H

In this section, we will try to apply this theorem to a sequence of martingales
satisfying the general set of hypotheses (H1)—(H3) in order to get a sharp
asymptotic result for its convergence towards a Gaussian martingale. In order to
prepare for the proof of Theorem 1.1 we start with the following key technical
lemma.

LEMMA 2.2. Suppose we are given a sequence of martingales =
(M), 0 with respect to some filtrations," , satisfying the conditiong11)—(H3).
Then for anyn > 0,there exist a finite constantn) < oo, a positive constarii(n)
and someV (n) > 1 such that for anyv > N (n) and0 < A < b(n)NY/2,

2
iANY2MN —(A2/2)Cy —o2/mac, M (L+2)
|E[el "]—e *</2) |§a(n)e (*</4) N2

Since the proof of Theorem 1.1 is a simple consequence of the above lemma we
have chosen to give it first.
PROOF OFTHEOREM1.1. By Theorem 2.1 and Lemma 2.2 we have, for any
N = N(n),
NY2IEY — Fy|

b(n)NY/2
- 2a(n)

—Q¥HACy (14 ) da 24
¢ A+ S Gen3C 172

- 2a(n)

o0
/ e FEIHAC (1 4 ayda + i
0 b(n)Cy

for someN (n) > 1 and some finite positive constank(b(n) < oo. Invoking the
fact thatAC, > 0, this ends the proof of the theoreni]

We now come to the proof of Lemma 2.2.
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PROOF OFLEMMA 2.2. Let/} be the function defined for arly> 0 by
Iriv () = E[eiANl/ZM;VJr(AZ/Z)Cn] —1,
and notice that
iANY2yN —(A2/2)Cp —(A2/2)Cy N
(13) E[e' n ] — e */AC = o= T/AC N (3)
Furthermore, we have the easily verified recursive equations
IO ARY0Y)
_ E[eiANl/ZM;V_lJr(xz/z)c,,,l(E[eile/ZAM;VHAZ/z)Ac,, |F,fv_1] _ 1)]
and hence
V() = LY 100 = A + B,
with
AQ) = E[eiANl/zMﬁl—i—()\z/Z)Cn_l(e(AZ/Z)(ACn—AC,ﬂV) _ 1)]
and
B(.) = E[eile/ZM,{V_ﬁ(AZ/Z)cn,l(e(xz/z)(Acn—Ac,{V))
% (E[eiANl/ZAM,’,V-&-(AZ/Z)AC,’lV|3:«n]\£1] ~1)].
Using this we obtain

IV () — IV L (0] < e®72C-1(A1(0) + Bi(V)),

where
A1V = E[e(kz/z)mc,,—Ac,ﬁ 1]
and
B1(\) =E[|E[e IANYZAMY +G2/2ACY | ¢ FN ] - 1|g()‘2/2)(ACn—AC,IlV)].
Now, under conditions (H1) and (H3) applied to&= 2N1/2, we find that

NG — 1IN ()]

3 2
<e<A2/2>cn1[al(”))\ (1 A “3(”)>e<x4/4zv>a§<n)

N1/2 2N1/2
)»2(13(11) 4 2
& 2V (/AN )ag(n)
+ <1+ SN2 )e 3 1}
3 2
_ ,02/2C, [ A2 A7az(n)\ /4N )a3n)
- N1/2 2N1/2

(0.4/4N)ad(n) _ Aag(n) o4 /4N)aB(n)
T o ’

949
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for any 0< A2 < ¢1(n)NY/2. Since for these pairs of parametgks N) we have
12 < N2 (and therefore. < N), we find that

NY2IN G = 1N 1G)] < d (e /2C-132(1 4 ),

for some finite constant(n), whose value only depends ap(n), i = 1, 3, and
such that

d(n) < ceag(")/‘l(l Vay(n) Vv ag(n))z.

If we set

n

cm)= /\ ci(p) (=D and d*(n)=\/ d(p),
p=0

p=0
then for any O< p < n and any O< A3 < ¢, (n) N¥/2, we have that
NY2IY ) = 1Y 1 (0)] < d*(0)e®1PC-1)2(1 4 0.
It is now easily verified from these estimates that
NYZ LY ()] < (n + Dd*(m)e®/2G-132(1 4 1),

from which we conclude that, for any9i3 < ¢, (n) N2,

2
(14)  [E[e™NVMY] = o~ 02DC| < (g 4 Dy (nye= O /DACE 5\}172%)
On the other hand, we have, for any pair N),

(15) |E[eiAN1/2M,{V] _ e_(AZ/Z)Cn| < |E[eiANl/2M’iV]| . e—(kz/Z)Cn’

and under condition (H2),
|E[eiAN1/2M,{V]| < E[e—(AZ/Z)AC,IlV]e)\3a2(n)N_l/2.
Using again (H3) we also find that
|E[eiAN1/2M,§V]|

2
—(2/2)AC, ATaz()\ (%a2(m))/@4N) ,(3ap(n)/ N2
<e (l-i- SN1/2 e\ 93 e\ 92

A2az(n) A2 A A

Recall thatAC,, > 0, and observe that for any pair, N) such that

A<t mNY? with ¢*(n) = [2a52(n) A (272AC, (1+ 2a2(n)) Y],
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we have
ﬁ <2a2(n) + a%(n)ﬁ) < #(2@(”) +1)
- ACn.
This yields 2
(16) B[N < (1 v a3—;n)> (1 + N)‘Tz/z)e—AZAcnm’

and hence, by (15), and for any< c¢*(n) N2, we find
N2 N 42 2 A2
(17) |E[e ANTEM, ]—e @ /Z)C"| < e~ W/HAC, (2Vv as(n)) <1+ —N1/2>'
To take the final step we observe that for any
N >c.(n)/c*m? and 3mNYe < i <c*m)NY?,
we have 1= c,(n)/c,(n) < ¢ (n)A3/NY2, and by (17),
)\.2(1 + }\,) e_)tzACn/‘l
N1/2 :

In conjunction with (14) we conclude that for any> N (n) = c,(n)/c*(n)® and
anyx < c*(n)NY2,

PIANY2pN (12 _
(18) |E[e™V MY ] — e=*2C| < ¢ 1 (n)(2 v ag(n))

2
s NL/2 g N 2 A 42
[E[e VY2 ] — o= G2/4Cn | Sa(n)Nl/2(1+k)€ (A2/HAC,

with a(n) = [(n + Dd*(n)] v [c7(n)(2 Vv az(n))]. This ends the proof of the
lemma. O

3. Application to interacting processes. In this section, we prove that
Theorem 1.1 can be applied to our particle approximations. We shall go through a
series of preliminary results leading to the proof of Theorem 1.3.

The first step is of course to provide some exponential estimates for the particle
density profiles. In the next pivotal lemma we describe an original exponential
concentration result in terms of the following pair of parameters:

ﬂ(Pp,n) = sup ”Pp,n(-xp’ ) — Pp,n(yp, IMlv,

(xp,yp)eEg
'pn = sup Qp,n(l)(xp)/Qp,n(l)(yp),
(xp,yp)eElz,

where|lu — vlitv = Supyce I (A) — v(A)| represents the total variation distance
between probabilities an#, , denotes the Markov transition froii, into E,
defined by

(19)

Pp,n(xp, dx,) = Qp,n(x;n dxn)/Qp,n(x;n Ey).
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LEMMA 3.1. For any McKean model we have for every O, f, € Osa(E,)
ande > 0,

E[e V2 ) =m(l] < (14 6272 (1)) eeb™)?/2

for some finite constamt(n) such thatb(n) < 2 ZZ:O FgnB(Pyn).

REMARK 3.2. The quantitiesr, ., (P, ,)) play an important role in the
asymptotic and long time behavior of Feynman—Kac particle approximation
models. The above lemma combined with the semigroups approach developed
in [5] readily yields uniform exponential concentration properties. To be more
specific, let us suppose that=\/, r, < co. Also assume that there exist some
integer parametem > 1 and somep € (0, 1] such that for any(x, y) € E?,

A€ &, andn >0,

Mn,n—i—m(x’ A)> pMn,n—i—m(y’ A),

where M,, y4m = (My41...M,4,,) stands for the composition of the Markov
kernelsM,, from p = (n + 1) to p = (n + m). In this situation, following the
arguments given in [5] one proves that

Fanam <7™/p and B(Pnpim) < (1 — M 1p2)le=p)/ml

Furthermore, the constariiéz) in Lemma 3.1 can be chosen such thatb(n) <
2mr2m—1/p3.

The proof of Lemma 3.1 being rather technical, it is housed in the Appendix (see
Lemma A.3). One consequence of Lemma 3.1 is the following central estimate.

LEMMA 3.3. Suppose the McKean interpretation model satisfies condi-
tion (H) for some finite constarit < oo. In this situation the martingalem? (f)
defined by(8) satisfies conditionéH1)—(H3)for some universal constants

(a1(n), az(n)) = (a1, a2)

with the nonnegative increasing proceé€s(f) defined at(10), as soon as
n — C,(f) is strictly increasingIn addition the constant:i3(n) in (H3) can be
chosen such thafor anyn > 0,

q
0<az(n) <4V2(L+T) sup > rpaB(Ppy).
q:n,n—lpzo
Furthermore when the regularity conditions stated in Rem&tR are met for
some triplet(m, r, p), the constantz(n) can be chosen such th@t< \/, az(n) <
8V2mr2"=1(1+T)/ps.

The second step will be to get rid of the predictable term defined by (12), with
the help of the following lemma:
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LEMMA 3.4. Let Fz be the distribution function associated to a real-valued
random variableZ, and letW be a centered Gaussian random variable with unit
variance For any pair of random variablegX, Y) we have

(20) I Fx+y — Fwl = |Fx — Fwll +4E(IXY]) + 4E(Y ).

Lemma 3.4 can be proved using the Stein approach to fluctuations and it can
be found, for instance, as Lemma 1.3, Chapter 11 in [8]. Since the proof of
Theorem 1.3 is now a simple consequence of Lemmas 3.3 and 3.4, we postpone
the proof of Lemma 3.3 and start with the

PROOF OF THEOREM 1.3. Throughout this proof[Q(n) will stand for
a positive constant that can change from line to line. We first notice that

W, =vN@mY — ),

and by (12) we hav@V,ﬁYn(fn) = £f,\fn(fn) + £ﬁn(fn). Let us show now that the

main term in the fluctuations of the c.d.f. ﬁ/fl’,\fn(f,,) is due toolig’n(fn). Indeed,
it is easily checked that

b(n)(Cu ()2
21 EY2(18N (f)12) VE(BY (f))]) < ——22 77
By definition of the martingale term, it is also easily seen that
(22) EY2(1LN , (f)1?) < bm)(Ca ()Y,
Set how

1/2

X =L, (f/(Ca(H)Y? and ¥ =BY,(f)/(Cu(f))
The estimates (21) and (22) yield

b(n)

1
E(XY]) < o = EY21LY, (PIEY28,, (2] < 75

Cu(f) "

andE(]Y|) < E(n)/Nl/Z. Hence, applying Lemma 3.4, the proof of Theorem 1.3
can be reduced to show that

1 e b(n)
5551@(065 (o) 2u(Cn(N)™) = 5572 [ 2"”‘ < N1

This last estimate is now a direct consequence of Lemma 3.3 and Theorem 1.1.
O

We now come to:
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ProOF OFLEMMA 3.3. Let us first check that the regularity condition (H3)
is satisfied. Since we have

AC,(f) = nn—l[Kn,nn_l((fn - Kn,r]n_lfn)z)]
= Dy (10D (f2) = n-1((Kn.ny_1 f)?),
we easily prove that

IACY (f) — ACL(H] < 2(1Pn () (h)| + )1 (h,_ I
+ ” K",n,iv,l(f") - Kn,r]n_l(fn)

),
with the pair of functiongh,, h),_;) € (OsqE,) x Osd E,_1)) defined by
hn = (fZ = (£2)/2,

he1= (Knos f)* = tn-1(Knnys f) ) /2.

On the other hand, under condition (H), we have that

” Kn,n,iv,l(f") - Kn,nn_l(fn) ”

< / Iy 1 (W T_1, s, (dh) + / Iq>n(n,]l\’_1)(h)lrﬁl_1,fn (dh),
from which we find that
1ACY (f) = ACL(/)]
<2( [ Ina0Foatam + B( [ 10} 1T, @mi£Y4)).
with
Tpo1=Tp1y + 8, and L) =T} 1+,
Applying Jensen’s inequality, we get that for any 0O,
E[eNVIAGT (N=AC(DI

< E[ezml/z{f Iy (W Ta—a @)+ ) (h)|F,;,l<dh)}].

Now, applying the Cauchy—Schwarz inequality, we obtain

E[eeNl/Z\AC,iV(f)—ACn(f)\]

< BY2[A4eN Y2 Iy Is @) (g 1/27 AeNY2 [in (IT_y (@)
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If we setl’ =T + 1, then using again Jensen’s inequality, we find

E[etNV2I8E) (N=AC (N2 < / R[NV i Lnt(@h)
- Fn—l(l)
~ T/ _(dh
x/E[e“le/zF"’fwv(h)‘] an—l( )’
l_‘n—l(]‘)
from which we get
E[esN1/2|A@,{V(f)—A@n(f)\] < sup E(e4gNl/2f‘\r]g(h)|).

heOsdE)),p=n,n—1

Using Lemma A.3, we conclude that
E[eeNl/zwAe,i"(f)—A@n(f)l] <1+ SaB(n))egzaé(n)
for some finite constaniz(n) such that
q
az(n) <4V2T sup Y 1, B(Ppy).
q:n,n—lp:o
To prove that (H2) is met, we first recall that

(23) |E[eixN1/2M,gV(f)]| < EHE[eiANl/ZAM,/,V(f)|Fr{\/_1]|]'

Then we use a standard symmetrization technique: given the particle gpoael
to time p <n — 1, we leti;"¥ be an auxiliary independent copy gf'. In other
words, 7Y is the empirical measure associated to an independent&gopf/the
configuration of the systetf, at timen. With some obvious abuse of notation, we
readily check that

|E[eiANl/2AM,1,V(f)|FN 1]|2 _ E[eile/z[AMgV(f)—AﬂgV(f)]|FN N
n— n—11
whereAMY (f) = (7Y (f.) — @2 (Y_D(f1)]. We deduce from this that

N . .
E[e N2 AMY (| FN 12 = I1 E[e! /NYOUED = ED) £ N ]
n— n—11-
j=1

Since the random variablés, (1) — (D] and—[ £, (&) — f.(ED] have the
same law, their characteristic functions are real, and we have

- 12 Iy EIV] e A ; — -
E[e!¢/NTOMED RGN F L] =E[cos(m[fn<s,{> - fn@,{)])\fn’!l]-
Using now the elementary inequalities

cosu <1—u?/24ul?/3,  1+u<e,  |ju—v]®<a(ul+ )3,
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we get that
E[ e O/NYALu €= fa G, FN]

22 cx3
- = ED+—55
<1 K,y (o= Ky ()P ~37

3
—(A2/N cA
<e IR, v (o= Ky (F0))ED + 13

Multiplying over j, we obtain

-5 a7l/2 N 2 12 N 3/,n1/2
|E[61AN AM,) (f)lfvnlzle <e ACAC) (f)+cA®/N ,

and by (23) we conclude that condition (H2) is met witlin) = ¢/2.
We now come to the proof of (H1). By definition of the particle model associated
to a given collection of transitionk, , we have

: 1/2 N 2 N

N ,
A/ NY2y I 2/ 2NyAcy J
1_[ " 71,1, t( / ) fu +(A°/(2N))AC, (f))](gr{—l)’

with the random functiory‘;{' =(fn — Kn,nN_l(fn))(s,{_l). Using the elementary

inequality
I3
1 Pi{Ehil
( +z+ 2)’ 3

it is easily seen that, for any< N1/2, we have

SN F+02 /@) ac ()
N S TEN SPY FiN21 o N
= 1‘“an + E[AG" ()= DT +r, 100,
with |r,11\fl(f)| < ¢A3N~3/2 This clearly implies that, for any < N1/2,

. 1/2\ fJ 2 N i
[K N (et(A/N )i +(A5/(2N))AC, (f))]@;{_l)

1
22

—1+ ﬁ[AGN(f) w2 G D]+ 721,

with |, ()| < cA3N~3/2. It is now convenient to notice that for any< N*/2,

22 ch
2N[A@N(f) v (fn]) (G ERAROI N2
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On the other hand, for any| < 1/2 and with the principal value of the logarithm
we recall that

log (1 + 2) fz “ 4 2/1 "
l)=2— Uu=2—2I
g 0o 1+u 0 1+1z

Since for any|z| < 1/2 andt € [0, 1] we have|l + rz| > 1/2, we find that for
any |z| < 1/2 we havellog(1+ z) — z| < |z2|. The previous computations show
that there exists some universal constant (0, 1) such that for any. < coN1/2
we have

. 1/2\ 7J 2 N i
log K et AINT [+ /(2N))AC, (f))(‘i:r{—l)

o (
A2 v o .
= o [ACY () =K, v (FDAE_D]+rla(h).

with [rN3(f)| < cA3/N3/2. Summing overj, we see that for any < coN*/2,
N . 1/2\ FJ 2 N i
Z log Knvn,ﬂv_l(el(k/N ) i +(A2/2N)AC, (f))(gr{_l) < ck3/N1/2.
=1

Finally, using the elementary inequalily* — 1| < |z|e/*/, we conclude that, for
anyi < coN/2,

3
INYZAMY (F)+(2/2)ACN (f)| &N AN
|E[€l (H+(A</2) (f)lfn_l]_]_|§CWeC / .

This readily implies that there exists some universal positive constanuich that,
for any A3 < ¢ N2, we have

)\3

IANYZAMY (F)+(W2/2ACY (f)) =N
|E[el (NH+1/2) (f)lfn—l]_1|fcm’

which proves that condition (H1) is met with (n) = ¢ andc1(n) = 1. O
APPENDIX
A.1. Doob type decompositions.

ProPOSITIONA.1 ([5]). Let (Qp,n)pin_be the semigroup defined ét1).
For f, € 8,(E,) and p <n we setf, , = Qp .(fu — na fn).- Then we have the
following decompositian

NN (fpn) = AN (o) + MY (fa),
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with the predictable and martingale sequeneﬁ}:n(fn) and Mﬁn(fn) given by

p

(A1) AN ()= 1=} 1(Qg-1.4D1®, () ) (fy.0).
g=1

p
(A-2) My () = Y [0y (Fgn) = @) 1) fyn),
q=0

with the usual conventio®o(n”;) = no.

PrROOF Note that for any, € 8,(E,) we have the decomposition
p
N (Qpnn) — 10 (Qon@n) = Y_ 8.
g=1
with Sq = név(gq,nfpn) - név_l(éq—l,nfpn)- Choose nowp, = f, — n, fu. For
g < p, we have, by definition of, ,,
Sq = n;v(fqn) - név_l(éq—l,n@n) =Uy+ Uy,
with
Ur=n) (fg.n) = [@gn)_DI(fg.n),
U= [(Dq(név_l)](fq,n) - név_l(éq—l,n@n)~
In order to show (12), it is thus enough to verify that

(A.3) Ny 1(Qg—1.a0n) =) 1(Qg-1.4 DIy () DI(fy.n)-
However, we have

= _ Yq—1(1) i Yq—1(1)
Qg-1.n0n = e Qg—1.0%n = REN Qq(Qg.nPn)
. Vq—l(l) — . Vq—l(l)
= Ve 1) Qq(Qg.nPn) = _Vq 1) Qq(fq,n),
and hence
N A~ _ Ya-1(D
nq_l(Qq—l,n@n) = nq_l(Qq (fqn))
Yq(D
A W0 1(Gg-1)
_ Vq-1\ D1y _1(Gg-1 N
= )’q(l) [q)q(nq_l)](fq,n)-
On the other hand, fay > 1 andx,_1 € E,_1,
Vq—l(l)

[Qg—14(D]1(xg-1) = [Qg—1,4(D](xg-1),

Ye(D
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and
[0g-14(D](y-1) = /E G g1 DMy (xg—1. dxg) = Gg-1(xg1).
q
which yields
Vq—l(l)Gq—l —~
= - 7 - — _ 1).
)/q(l) Qq l,q( )

Plugging this last equality into (A.4), we get (A.3), and hence (12). The martingale
property ofMl’Xn(fn) is readily checked. [J

A.2. Someasymptotic estimates. The nextlemma provides a refined version
of Burkholder type inequdies for indgpendent sequences of random variables.

LEMMA A.2 ([6]). Letm(X)= % >N |8y be theN-empirical measure as-
sociated to a collection of independent random varialléswith respective distri-
butionsu; on some measurable spacg, &). For any sequence &-measurable
functionsh; such thatw; (h;) = 0ando?(h) = & S, 0s€(h;) < 0o, we have for
any integerp > 1

(A.5) VNE(m(X) ()PP < d(p)MPo (h),
with the sequence of finite constarii&n)),>o defined for any: > 1 by the

formulae

_ —n i @ =D o1y
(A8  d@n=@n,2" and d@n—1) =52 :

The extension of Lemma A.2 to the interacting particle measgfeand the
Feynman-Kac flow, is the following

LEMMA A.3. Let(d(p)),>1 be the sequence introduced (A.6). For any
McKean interpretation model and for amy> 0, p > 1, f, € OsqE,) ande > 0,
we have

E([nY — na1(f01P)"? < d(p)YPb(n) /V/N,
E[esNY2m) U =m(il] < (14 £272p(n))eleb@)?/2,

for some finite constarit(n) such thatb(n) < 22220 rgnB(Py.n).

PROOF The proof is based on the following decomposition:

n

(A.7) Y == 3 [Pgn(m)) — ©gn(®g(nl )],
q=0
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We introduce the random potential functions

G
GYN ix,eE; — GY (x,)= 1.7 € (0, 00)
an T o, (Y 1)(Gy )

and the random bounded operatﬁﬁ, from B, (E,) into 8, (E,) defined for any
(fns Xq) € (Bp(En) x Eg) by

P (f)(xq) = Pyn(fa — Pyn(Pq (1)) (fi) (xg)
= [ (Prnf c0) = Punf G) Gl (3 @y ) yy).

We associate to the pa{Gﬁj\’n, PN) the random bounded and integral opera-

tor Qﬁj\fn from B, (E,) into 8, (E,) defined for any(f,,, x,) € (By(E,) x Ey)
by

O () (xg) = GY (xg) x P (fu)(xq).

Each “local” term in (A.7) can be expressed in termst;fn as follows. For any
g <nandf, € B,(E,) with osd f,) < 1 we have

q n(nq )([fn - q n(qu(név_l))(fn)])

= m’?év (GgnPyn fr = g n(®g(0)-D)(f)])

ny oY, (D)
By construction we also observe that
() DG, )=1 and o, )(Q),(f»)=0.

The above considerations easily yield the decomposition

Dy (1)) — Pgn(Pg(n) p) = ) —o,m) 10y,

1
N(G n)
Using the properties of the Dobrushin contraction coefficient, we also have

1P, (f)ll < 0SAPyuf) < B(Pyn),

107, (S < NG NP ()l S UG 1B (P ),
and from these estimates, we readily prove the inequality

|[q)q,n(n(jiv) - q)q,n(q)q(nf]v_l))](fn”
< rgaBPe)ln) — @, D10Y (£,
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with Qg{n(fn) = Qé\fn(fn)/||Q£’Xn(fn)||. Now, using Lemma A.2, we check that
forany p > 1 we have

INE(IY — @, D10V, (P IEN )P < 2d(p)Y/?,

with the sequence of finite constanltig) introduced in (A.6). This ends the proof
of the first assertion. Thie,,-inequalities stated in Lemma A.2 clearly implies that,
foranye > 0,

E(e el (f)— Ml = Z E(1nY (fu) = ma (f)1?)

n>o<2n>'
+ ﬂm N(f) = m(fi) 12D
= (2n+1)! Nu fn Nn fn
zb(l’l) zb(l’l) n+1/2
=S ) Salm)

from which we conclude that

el () =mn ()l — 8”(")> i(ezb(n)z)"
e )= (1+ V2N 2oy

n>0

8b(n)>(22Nb 2
(14 o (E2/2N)b(n)2.
(T

We end the proof of the lemma by replacingy e+/N. O
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