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We consider the behavior of spatial point processes when subjected to a
class of linear transformations indexed by a variablét was shown in Ellis
[Adv. in Appl. Probab18 (1986) 646—659] that, under mild assumptions,
the transformed processes behave approximately like Poisson processes
for large T. In this article, under very similar assumptions, explicit upper
bounds are given for thelr-distance between the corresponding point
process distributions. A number of related results, and applications to kernel
density estimation and long range dependence testing are also presented. The
main results are proved by applying a generalized Stein—Chen method to
discretized versions of the point processes.

1. Introduction. LetD1,D,eN=1{1,2,3,...} andD = D1+ D,. Consider
apoint process onR? = RP1 x RP2, which has expectation measwrand meets
three conditions, namely, absolute continuityvolvith a mild restriction on the
density, an orderliness condition in tR&1-directions and a mixing condition in
the RP2-directions (formal versions of these conditions can be found at the end of
this section). Let; be a Poisson process with the same expectation measure and let
07 :RP — RP be the linear transformation that stretches the firstcoordinates
by a factorw(7)Y/P1 and compresses the laBb coordinates by a factdf /P2,
thatis, forT e R, T > 1, we set

1
Or(s 1) := (w(T)l/Dls, mt) for all (s, t) € RPt x RP2 =RP,

where w(T) — oo and w(T) = O(T) for T — oo. In particular, we usually
write 67 instead oy if our stretch factor i"1/P1,
Most of the time we will restrict our transformed processes® andn6;* to

a bounded cubég :=[—1,1)? and denote by := 0;1(J) the pre-image of/,
but sometimes the bigger cuboids := 67 (J7) = [—(%)1/01, (%)1/131)01 x
[—1, 1)P2 instead of/ are more useful.

A consequence of what Ellis (1986) showed is that, for bounded measur-
able functionsf7:J — R with || frllecc = OG/w(T)/T), the distributions of
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616 D. SCHUHMACHER

[y frdEozY andf, frd(n6;*) get more and more alike & — oo; or, more
precisely, that the difference between their characteristic functions converges uni-
formly to zero on every compact subsetRfas T — oo. Therefore, there is
hope thatd(£(§9;1|,), £L(n6r 1)) can be shown to be small for largeif we
choose fol a probability distance between distributions of point processes which
metrizes a topology that is equal to or not too much finer than the weak topology
(i.e., the topology of convergence in distribution).

Our choice ford will be the d»o-distance [see Barbour, Holst and Janson (1992),
Section 10.2], which, besides meeting the aforementioned requirement, has a
number of other useful properties; it is rather easy to handle, and bounds on
da(L(§1), L(&2)) for point processes, &2 imply bounds onE f(§1) — Ef(&2)|
for a number of desirable function& Thed»-distance can be constructed as two
Wasserstein distances, one on top of the other, in the following way. Consider a
compact se ¢ R? and write.M ,, for the space of point measures &h Letdg
be the usual Euclidean distance BX, but bounded by 1, anéy := {k: X —

R; |k(x1) — k(x2)| < do(x1, x2)}. Define thed;-distance(w.r.t. dp) between point
measurep1, p2 € M, by

if |p1] # |p2l,

di(p1, p2) == 7— Sup if |p1l =lp2 > 1,

|10 | keFy

/kdpl—/kdpz
if [p1] =1p2|/=0

where|p;| := p;(X) < oco. It can be seen thatM ,, d1) is a complete, separable
metric space and tha#; is bounded by 1. Furthermore, the Kantorovich—
Rubinstein theorem [see Dudley (1989), Section 11.8] when= |p2| =:n > 1
yields that

1 n
1.1 d =min| - ) d i )|
(1.1) 1(p1, p2) ne's,,[n; (X1, X2,7( ))}

wheres, is the set of permutations ¢1, 2, ..., n}. Now let %2 :={f: M, — R;

| f(pD) — f(p2)| < di(p1, p2)} and define theds-distance(w.r.t. dg) between
probability measure® and Q on M, (distributions of point processes dX)
da(P, Q) := sup

by
fE}VZ/fdP—/fdQ’.

By the Kantorovich—Rubinstein theorem, one obtains that

(1.2) d2(P, Q) = Smir;Edl(Sl, §2)

1~

§2~0
[the minimum is attained, becausé(,, d;) is complete, see Rachev (1984)].
Furthermore, because of the bound on éhealistance, thel>-distance can also
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be interpreted as a variant of a bounded Wasserstein distance (see below). Hence,
Theorem 11.3.3 in Dudley (1989) yields th#t metrizes the weak convergence

of point process distributions; or, in other words, for point procegsés &, ...

on X, we have

(1.3) 8B E iff da(L(E), L&)~ O,

where the convergence in distribution for point processes is defined in the usual
sense [see Kallenberg (1986), Section 4.1]. The fact that is crucial here is that,
for dg as defined, the topology generated by the mettion M, is equal to the
vague topology, which is used for the definition of convergence in distribution for
point processes.

d» is the distance that we are mainly interested in, but we will also deal with two
other probability distances; namely, on the one handtdted variation distance
between distributiong; andu, onZ., which is defined as

drv(p, u2) ;= sup |u1(A) — u2(A)l
ACZ+

and can be equivalently written in the form

(1.4) drv(p1, u2) = min P[X1 # Xol;
X1~
Xo~p2

and, on the other hand, thmunded Wasserstein distanisetween distributions
1 andii2 onR, which is defined as

dpw(fi1, ft2) :== Sup
feFw

’

[ rapa- [ rag

where
Faw:={/R->R;|f(x)— fM| < |x —yland|f(x)| < % forx,y e X},

the set of Lipschitz continuous functions with constant 1 that are boundgd by

For equivalent expressions and properties see Barbour, Holst and Janson (1992),
Appendix A.1 for the total variation distance and Dudley (1989), Section 11.3 for
the bounded Wasserstein distance.

It will be the main goal of our endeavors to find upper estimates for
the distancedy(L(£071 ), L(n671],)) (see Section 2.2), but explicit upper
bounds will also be computed fary (£ (67 ())), L(n671(J))) (Section 2.3),
da(LEOT Y 7). Lb7 Y 7,) (Section 2.4) anda(LE0; ;7 ), Pav'| 7)) for an
appropriate -independent measuréonR” (Section 2.5). Throughout the article
we use P@’) to denote the Poisson distribution with parametef v’ is a positive
real number and to denote the distribution of the Poisson process with parameter
measure’ if V' is a boundedly finite measure.
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In Section 3 we present some applications of our results. Most importantly,
we calculate an upper bound for the bounded Wasserstein distance between the
distribution of a kernel estimate of the densityvodit a certain point and the actual
value of the density at that point. Furthermore, we briefly describe an application
to testing for long range dependence.

Apart from the paper of Ellis (1986), which provided the initial motivation
for many of the theorems in this article, stretched point processes have also
been investigated in the context of light traffic analysis for queues and in other,
similar topics: see, for example, Borovkov (1996) and the references therein.
These authors, however, were interested in the quite different question of finding
asymptotic expansions for the expectation of functionals of purely stretched
marked point processes, which vanish in the limit on every compact set; our
procedure, in contrast, leads to point processes with, essentially, a stable or
increasing number of points in every compact set.

We conclude this section by having a detailed look at the three conditions for
the point process.

CoNDITION 1 (Absolute continuity of the expectation measure). et
w1 ® o, wherep := AP1 is the Lebesgue measure B?1, and eithefu, := 102
is the Lebesgue measure @2 or u, = J(’é)z is the counting measure on
ZP? + 31 C RPz,

Then we require that « u with a Radon—Nikodym density, such that
k € R exists with

k7= sup p(st) <« forall T > 1.
(styelJr

In the same way, we choose R with

tr = inf p(st) > forall T > 1.
(styelJr

(For the asymptotic result it is enough, of course, to assume both statements only
for all T bigger than somé&p > 1.)

CoNDITION 2 (Orderliness). There is a continuous funct®nR; — R4
with &(0) = 0, such that for every rectangie:= [a, b) x [c, d) with a, b € RP1,
a<b, andc,d e RP2, c < d, we have

E[(E(C)*1z(0)=2)] < v (v),

where
v:=v(C) = ui(la b))ua(lc, d+1)).

For the third condition, there are different versions that can be considered.
According to the type of mixing we are interested in, we write this conditiorxas 3
wherex € {8, p, ¢}:
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CONDITION 3x (x-mixing property). For every intervah, b) c RP1, a< b,
there is a decreasing functiof := fap:Ry — Ry with the two following
properties:

(@) B(u) = o(=pz7z) for u — oo.

(b) If c,d e RP2 with ¢ < d, t € R, and theo -fields Fin; and Fey are defined
as Fint := 0 (§|[a,b) x[c.d)) @NdFext:= 0 (§ |[a,b)x[c—r1,d+r1)c), then

x(Fint, Fext) < B(0),
wherex is one of the three mixing coefficiengs p or ¢ with

B(Fint, Fext) := EeSSSUW(BHFint) —P(B)
BeFext

p(Fint, Fext) := Sup [corr(X, Y)|,

XeLa(Fint)
YeLo(Fext)

@ (Fint, Fext) := SuUp |]P)(B|A) — ]P)(B)|-
A€ Fint
BeFext

’

In the following we suppress the indication of the interyalb) and write
simply 8. The corner pointa andb are to be chosen appropriately; for example,
a=—supr.1 (5Pt - 1, b = supq(55)Y/PL - Lis always an appropriate
choice.

No further explanation is needed for the first condition. It simply states the
absolute continuity of the expectation measure with respect to what is basically
Lebesgue measure, with a mild condition on the density. The fact that we admit
the counting measure for thB,-part of the reference measugeallows us to
apply our future estimates to (mixing) sequences of cerfth-valued point
processes. In order to simplify certain formulas, we will always tacitly assume
thatT e {nP2; n € N} if u» is the counting measure.

The second condition is a form of orderliness in thé&-directions. For a
detailed account of orderliness, see Daley (1974). For what we are interested in
here, it is enough to understand that the upper bOUﬂdEt()S‘(C))Z]l{g(C)zz}]
implies that

4P[E(C) = 2] < va(v),

and that Condition 2 implies the simplicity 6f(i.e., P[£({x}) < 1Vx e RP]1=1).
The latter implication is due to Theorem 2.6 in Kallenberg (1986).
The various versions of the third condition are mixing conditions of different
strength. It can be seen [Doukhan (1994)] that
B(B, C) < (B, C),

p(B, C) <2048, C)pY?(C, B)
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for arbitrary o -fields 8, ¢ ¢ ¥ on some common probability space, ¥, P).
Thus, the concept op-mixing is the strongest of the three, followed by the
B-mixing and p-mixing concepts, which are not generally comparable with each
other, although from an empirical point of viegsmixing often turns out to be the
stronger of the two. Two mixing concepts that are not treated here-arxing,
which would be weaker, angr-mixing, which would be stronger than any of
the three mentioned concepts [see Doukhan (1994)]. The kind of mixing used
in Ellis (1986) is p-mixing. However, it is important to notice that we need a
stronger mixing condition, in the sense that the set underlying tfield Fex; may
enclose the set underlying thefield %, from all of the 2D, possible directions

of theRP2. As partial compensation, the order we need for the convergence of our
mixing coefficient to zero is only half the order that was needed for Ellis’ result,
and what is more, we could actually manage with a mixing condition where the
o -fields Fext and Fint are quite a bit smaller (namely, generated by the numbers of
points of& in the corresponding discretization cuboids that we will need for the

proof).

2. The main results. The results given within this section have somewhat
similar flavor, and their proofs all follow the same path; first discretizing the point
processes and then applying a local Stein theorem. An outline of this method can
be found in Section 2.1; thereafter, in Sections 2.2—-2.5 the different results are
presented. A detailed, self-contained proof is given only for Theorem 2.A; for the
other statements the necessary adaptations are given.

2.1. The approach. All statements in Section 2 are about upper bounds for
distances between the distribution of a transforghgaocess and the distribution
of a transformed Poisson process (or a function of the respective process, as in
Section 2.3). For the sake of clarity of presentation, we formulate the ideas of
the proof only ford2(£(§9;1|,), °C(’797_1|J))- However, except for the obvious
changes in notation (like writingéT_lUT instead ofg@;ﬂ, in Section 2.4), the
arguments presented here can be apgitedally (or almost literally in the case
of Section 2.3) to calculate the presented upper bounds for any of the distances
appearing in this section.

As mentioned before, our basic strategy of proof is to discreﬁg:é andn@T_1
(in general, the point processes involved) and then apply an estimate, obtained by
a generalized version of the Stein—Chen method, to the discretized point processes
(in fact, the classic Stein—Chen method will be enough for Section 2.3, where only
the numbers of points are involved). The corresponding estimate can be found in
the Appendix.

The discretizations are carried out as follows. For eZery 1 and forh(T) > 1,
setny := [h(T)YP1] — 1 andny := [TYP2] — 1, where[x] denotes, for any
x € R, the smallest integer > x. We subdivideJ; into smaller “discretization
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cuboids”Cy with lengths 1 in théRP2-directions and width w(T)h(lT»l/Dl in the

RP1-directions, whenever th€y, are not too close to the boundary &f. Here
h(T) can be thought of as order of the number of discretization cuboids in the
RP1-directions [there are [2(T)YP1] in every dimension oR”1]. To be more
precise, we set, for eveffy > 1,

Cy| = CIEIT)

D1
_ 1—[ |:_ ni n k-—1
oLl (MRTHYPL  (w(T)h(T))Y P

_ ni + ky )
(w(T)R(THYP1 ~ (w(T)h(T))YP1
D>
X H[—nz +Us—1,—n2+ ls)) NJr
s=1

for all kK = (k1,k2,...,kp,) €{0,1,...,2n1 + ].}Dl and| = (I1,12,...,1lp,) €
{0,1,...,2n + 1}P2, so thatJ; = Uk,|C|£{)- Note that in order to reduce the
complexity of presentation, we will make use of simplified notations for multi-
indices that should be obvious in their meaning. For instance, we write, in

short, 0" ay instead ofy 47!, _jak ork € {0.1,..., 211 + 1} instead of

k €{0,1,...,2n1 + 1}P1. Also, where not stated otherwise, the ranges of the
indices in expressions likg | or [y are given byk € {0,1,...,2n; + 1},
1€{0,1,...,2n2+1}. Some more notation is needed. We denoteyhe centre

of Ck) and define in the image space of the transformation

R =Ry =6r(Cy’)
D1

_1—[|:_ ni n k-—1 _ ni n k, )
_r:1 h(T)YP1 * p(THYD1’  p(T)YD1 * p(T)Y/D1

Dz no i —1 no I
X l_ll ~T1/D; + T1/D;’ — T1/D; + T1/D;
§=
for all k,| and write py| for the centre ofRy [correspondingly, we US®y| =
6r(Cll”) andpy in Section 2.4].
The discretizatiorE of the point proces$ is obtained by setting a point in the

middle of every discretization cuboi@, which contains any points gf Formally,
we set

Iy = IIEIT) = ]l{S(Ckl)Zl}’ Pkl = Ely for all k, |,

wi=wD =3I, AM=EW = pu.
kil k.l
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and defineE as

8= I8y, -
k.l

The error we make in the transition frogp;%|; to E6;% in terms of the
do-distance (with a slight alteration, the argument holds also fot/tkedistance
between the numbers of points; see Section 2.3) is small for Bydgpecause, on
the one hand, the orderliness condition (Condition 2) takes care that the probability
of two points within the same discretization cuboid (and, as a consequence, of any
point vanishing in the transition) is small, and, on the other hand, we have chosen
our discretization in such a way that we only have to move pointsdyydistance
of, at most, half a body diagonal of a discretization cub®id(Ry in Section 2.4)
in the image space, which is small for largeas well.

As a discretization (at least “in distribution”) of the Poisson point progesse
take

H:=>" Ukiday
k.l

where Uy, are arbitrary independent Be)-distributed random variables for
O<k=<2n1+1,0<I<2ny+ 1. Again, the error we make in the transition from
o1, to Ho;t is small for reasons quite similar to those stated above for the
transition from6, 2| ; to 26, (note that the two discretizations were not realized
in the same way, and that we have to argue a little more carefully in Section 2.5,
where a limiting Poisson process that is independeft &f considered).

We then have an indicator point proce8swith a local dependence property
(stemming from the mixing Conditionx3 and a discrete Poisson point process
with the appropriate intensity measure, so that we are in the position to apply
the local Stein Theorem A.D for point processes (or, in case of Section 2.3,
Theorem A.A for sums of indicators), which in each case yields the stated result.

There is one point about the refinement of our discretization that is worth noting.
In our mainp-mixing case we retain the highgsissible flexibility by introducing
the variablek(T). Although it will often turn out to be a natural and relatively
good choice to sét(T) := T, doing so is, in many cases, not optimal. The optimal
choice ofi(T) depends on the specific orderliness and mixing conditions that can
be obtained fo£. The weaker the orderliness condition [the slowér) goes to
zero forv — 0], the higher the optimak(T) will be; conversely (and somewhat
surprisingly at the moment), the weaker the mixing condition [the slg§vep
goes to zero fou — o], the lower the optimah(7T) will be. In contrast, no
such considerations are necessary for the discretization ifRttedirections.

A discretization cuboid length of 1 can easily be seen to be both natural and
optimal. A length of higher order iff only increases the distance, by which
we have to move points for discretizing, a length of lower ordeF imcreases
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the number of discretization cuboids without changing the order of the length
that the orderliness condition “sees” [i.e., without changiti@y) with v as in
Condition 2].

2.2. The do-distance between the point processds. this section the
do-distance between the transformed point processgéu and neT_llJ is con-
sidered. In all the results we use the notat@(f1(T), ..., f;(T)) as short hand
for O(max{ f1(T), ..., f;(T)}).

2.2.1. Results.
THEOREM 2.A (“The principal theorem”). Suppose that the prerequisites of

Sectionl hold, including the Conditiong, 2and3p, and let: > 0.
Then we obtain for arbitraryn :=m(T) € Z, andh(T) > 1 for everyT > 1:

do(LEO ), LMOF )
—0 1 1ot (T mP2y1 T o 202
= (h(T)l/Dl’Tl/Dz’ g (w(T)) w(T) ’w(T)“(w(T)h(T))’

IogT( T )&(ZD(Z’" - ”Dz), /Tm/s*(m))

w(T) w(T)

for T — oo,

where we writdog" (x) := 1+ (log(x) v 0) for x > 0.

For a quantitative form of the upper bousek (2.10) and (2.11) at the end of the
proof. Note that the powers of 2 and 5 that appear in these inequalities have been
chosen (for the convenience of calculations) to be unnecessarily large and might
be dramatically improved.

One now might ask the question under what conditions dhelistance
converges to zero.

COROLLARY 2.B (Convergence to zero in Theorem 2.ASuppose that the
prerequisites of Theore®.A hold. Furthermore suppose thaiv(T) > kT? for
k> 0,68 € (0,1] and that

a(v)=00") for v — Owithr > 0,

1-61+r 1)
8 r '8)

. 1 _
ﬂ(u)=0<m> for u — oo with 14 s > max{ ——
u

Then
do(LEOT ), LMO7 ) — 0 for T — oc.

REMARK 2.C (Convergence to zero, simplified).
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(a) By adjustingm and i(T) to the functionB it can be shown easily that
for w(T) < T, the convergencex(L(£6072]1), L(n67],)) — 0 holds under the
general prerequisits of Theorem 2.A. This is consistent with Corollary 2.B for
8 = 1 (note that the requirements for the functiminandB are a bit stronger in
Corollary 2.B).

(b) From Corollary 2.B follows that for arbitrar§ (O, 1] and forr > i—jr‘g
1+ s> 2, we haveda(L(E07 1), L(n67]1)) — 0 for T — oco. These simpler,
but stronger requirements on the functiahsand 8 reflect the case where we
refrain from adapting (7") to the concrete problem and simply &&7') =T .

In the principal Theorem 2.A, it may seem a little unsatisfactory that our “dis-
cretization depth’:(T') in the RP:-directions appears in the tertdT 7 (T) S (m),
which stems from the mixing condition in tHRP2-directions, and that, in fact,
a finer discretization could increase the overall upper bound we get for the
d»-distance. Whereas it might well be that the fac{@r(T) is superfluous, it has
not been possible to prove this so far. However, there are other ways in which this
problem can be, if not remedied, then at least circumvented, simply by assuming
one of the other two mixing conditions.

THEOREM 2.D (Other types of mixing). Suppose that the requirements for
Theorem2.A are mef with the exception that ConditioBx holds in place of
Condition3p.

(@) If x is B, thenda(L(£6; 1), £(n67 2| 1)) has the same order as that stated
in TheorenmR.A, except for the term/Th(T)B(m), which is replaced by the two
terms /T /w(T)a (2P /w(T)) and /w(T)T B(m); hence[since h(T) > 1 was

arbitrary],
do(LEOF ), LOF )
1 T \mP2+1
_ 0
_0<T1/Dz"°g <w<T)> w(T)

og" T \./2P@m+1)P2
g<w<T))°‘< w(T) )

La(i) Vw(T)T B(m) for T — oo
w(T) \w(T))’ '

(b) If x is ¢, thenda(L(E07 1 1), L(n671],)) has the same order as that stated
in Theorem2.A, but the termy/7h(T)A(m) can be replaced by/T/w(T)B(m);
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henceas above
do(LEOT ), LMOF))

= 0( 755108 (= )m”2+1
=Y\ 777, '%9 w(T)) w(T) ’

'ogT<w<TT>>5‘<2D(T(:>1)DZ)’/jn’é On))

for T — oo.

REMARK 2.E. Note that in the above theorem, a certain price must be paid
for the elimination of(T) in the term that comes from the mixing condition:
In statement (a) we obtain for our upper bound an order which is, in many
cases, worse than the corresponding order we get for an optimal choic& pf
in Theorem 2.A; only for sufficiently highD4 is the upper bound order from
Theorem 2.D(a), in general, better. In statement (b) we require a much stronger
kind of mixing condition than in Theorems 2.A and 2.D(a).

On the other hand, we do not have to require a strictly stronger mixing condition
in statement (a) and we get a strictly better upper bound in statement (b).

EXAMPLE. A typical choice of parameters for illustrating the above
mentioned points is given b§(v) = v, Bu) = ,42%2 andw(T) = T, whence
we immediately getO(7T~13) and 0(T~%/3) as upper bound orders for the
do-distance under th@g-mixing and ¢g-mixing conditions, respectively; solving
a little optimization problem yields the order(7 —%/(P1+6)) under thep-mixing
condition, which forD41 < 3 is better and foD1 > 3 is worse than the order under
B-mixing.

2.2.2. Proofs. The following simple lemma will be useful.
LEmmA 2.F. Forall k, I, we have

b2 1 ( D 1 )
v(Ckl) — 272 w(T)h(T)a 2 Zw(T)h(T) < pki = v(Cx).

PROOF The second inequality is immediate, the first one is obtained as

v(Ck1) — pki = E&(Ck)) — P[E(Ck)) = 1]

=Y (r —DP[E(Ck) =]

r=2

1
< ZE[E(Ck)*Ligcay=2)]

4
2L g (202 _r )
w(T)h(T) w(T)h(T)

A
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by the orderliness condition with(Cy|) < 2D2W. O

PrRooOF OFTHEOREM 2.A. We use the notation introduced in Section 2.1; in
particular, we write

8= Z by, and H:= Z Ukidqy,
K| k.|
for the discretized point processes, whéfig are independent Rpy|)-variables
forO<k<2n1+4+1,0<l<2ny+1.
The overalldo-distance can now be split up accordingly:
da(LEOT ), L(OFH 1))
(2.1) <dp(LE67 1)), LEOD)
+do(L(EOF ), LHOFY) + do(LHOFY. LT ).
We first take a look at the discretization errors. Forghdiscretization we can
obtain, via the Kantorovich—Rubinstein equation (1.2),
da(LEOFY ), LEOT)
(2.2) <Ed1(£07 77, E67 )
=E[d1(607 17, 807 D1 g1y wiry] + 1 P[EOT () = WD),

The second summand can easily be estimated as follows:

PlEo; () £ W] = |:U{§(Ckl) > 2}}

k.l
<Y PlE(CW) = 2]
kI
1

<2 2 ElECa)*Leca=2]
k.l

22D+D2 2+ r . <2D2 1 )
w(T) w(T)h(T)

by the orderliness condition with(Cy) < ZDZW'

In order to estimate the first summand in (2.2), we use the representation of
the d;-distance given by (1.1). LeXy, ..., Xeo-10) be the points o&6;!|; and
Y1, ..., Yy the points ofE@T‘l and suppose w.l.0.g. that they are numbered in an
optimal way on{g6; (/) = WP}, that is, in such a way that is the centrepy
of the cuboidRy; which containsX;. Thus, by (1.1), and since in the transition

(2.3)
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from & to E we do not move the points any farther than half a body diagonal of a
cuboid Ry,

-1 —~n—1
dl(SQT VE QQT )]1{59;1(1)zw(T)}

w @
= (W(T) 2 do(Xi. Yi)>1{seT1u>=w<T>zl}
=
(2.4) :

<1 D 71 i D —1 2]1
-2 1<h(T)1/Dl) " 2<T1/Dz> €07 (H=w D=1

1( VD1 «/D_z)’

=2\nuos T T/

whence we get for the totgldiscretization error

do(LEOTH ), LEOY)

1/ Dy VD2 2p+Dy—2 L (oD 1
SE(h(T)l/Dl Tl/Dz)+2 2 w(T)“(22w<T)h(T>)'

Next we consider the discretization error fprLet H := Y, | n(Cki)d4, and
gkl := v(Ck)). We split up the error as

dop(LHOTY), L6711 )

(2.5)
< do(LHOFY), LIHOTY) + da(LHOY), Lo ).

The first summand gives us a little more trouble. Since for any two point processes
&1 andé, on a compact sex; the inequality

Edy(£1, &) = E(d1(81, £2)Lig, 25,)) < Pl€1 # &2]

holds, it can be seen from (1.2) and the analogue of (1.4) for probability
distributions on more general spaces [see Barbour, Holst and Janson (1992),
Appendix A.1] that

d2(P, Q) <dtv(P, Q)
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for any distributionsP, Q of point processes o%. Hence, by another application
of the more general version of (1.4) in the second inequality,

do(LHOY, LHOY) < drv (£LHOFY), LH6:D)

1) (2)
< min P U(
o pl

Uk| Pa(pki), L k.l

U;E|)NPC(61kI),J.|_

(2.6) = drv(PoApki). Pdgk))
k.l

<Y (qx — px)
k.|

<22D+D2—2 T &(2D2 1 )
- w(T) w(TYh(T) )’

where the last two inequalities follow from Proposition A.C and Lemma 2.F,
respectively. For the second summand in (2.5), we obtain

do(LHOTY), LOT ) < Eda(Ho7*, 007 )
1,1
=E[d1(H'0; ", nb; |J)]1{H'9T‘1(J)=n9;l(1)}]
- 1_ D1 v D2
) h(T)l/Dl T1/D2

by the same argument that was used in (2.4). So, an estimate for the total
n-discretization error is given by

do(LHOTY), LMo )
< 1( \/_ ‘/_> 22D+D2—2 T &<2D2 1 )
—2\n(T)Yb1 = T1D2 w(T) w(T)h(T))"

Last, we look at the remaining terda(L(E67 1), L(H6, 1)), which is perfect
for the application of a Stein estimate. In the notation of the Appendix we write

r={0,1,....2n1+ 11 x{0,1,..., 21+ 1}P2

[accordingly, we write elements @f as(i, j), meaning € {0,1,...,2n1 + 101,
j €{0,1,...,2n5 + 1}P2], and for the sets of strongly and weakly dependent
indicators, respectively,

k=10, elk;lj =1 <m},
F={0.Dell—ll=m+1},

for everyk, |, where|j — || := maxi<s<p, | js — Is| andm :=m(T) € Z. for every
T > 1is chosen arbitrarily. We can assume w.l.0.g. that 2n, + 1 [note that for

2.7)
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m > 2ny+ 1 we haver = 0, so that (2.9) below is still true]. As in the Appendix,

we set
Zy) = Z Lij, Y = Z L.
(i.j)ery (.)ery

From the local Stein Theorem A.D for point processes we know that

do(L(EO7Y), LHOF D))

2 (A )
.9 < {1 A <1+ 2log <§>)} %:(pm + piEZi + E(Ii Zk))

1
+ (1 A 1.65—) exl,
)
with

ekl =2 max | cov(Zki, 1p)|.
Beo (Iij; (i.)) T

Starting from the right-hand side, most further estimates are very easy. First, we
have

Pkl < v(Ckl) <kt

w(TYh(T)
and
2n1+1 (I4+m)A(2n2+1) b b 1
EZu= ) o pi<«krl@ni+2Pr2m + P2 - 1] ———;
i=0  j=(I-m)\0 w(T)h(T)
(i.D#KD

furthermore, by the mixing condition,
ekl = 2~/ pki(1 — px1) max VP[B](1—P[B])| corr(lki, 1p)|
Beo (ljj; (L) ely))
(2.9)

1. 1 o
< Zméﬂ(m) <Jkr mﬂ(m);

and, by Lemma 2.F,

B _ D—Z;“ D ;
=2 P zZ(v<Ck') 2 w(nh(r)“(z 2w<T)h(T>)> Vo

k.l k.l

2D2—2 1
- - b D, 2" fop, 1
= (U(JT) (2n1+2)"1(2n2+2) zw(T)h(T)a<2 Zu)(T)h(T))) VO

2D T <LT _ 2D+D2—20v{ <2D2

z )
w(T) w(T)h(T)
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whence we get a “magic factor” estimate of

1 1 w(T)
XS(H (T)) .
with
1 1 -1
_ D+Dy—-2 — ~ D, =~ _ H .
e(T) 1= (1 2 2 L7a<2 2w(T)h(T))> 1, if (1 ) >0,
00, otherwise,

an expression of orda@(&(ZDZW)) for T — oo, provided that > 0.

For the remaining termE(/x Zx|), a little trick is required. We subdivide
the setl’ = {0,1,...,2n1 + 1}P1 x {0,1,..., 215 + 1}P2 along the lastD,
dimensions inD»-cube sections of extensiom2+ 1 in every dimension (except
for possible left over cuboids), and look at the individual sections separately. For
S=(s1,52,...,5p,) €{1,2, .. r2”12+2]}D2 set for thesth section, that is, the
section containing the;th coIIectlon of 2n + 1 numbers in thg'th coordinate,

c(9) :=cB(s,m) = () (), ....cHN®)
=((s1—D@2m+1),...,(sp, —1)(2m + 1)),

which is the “lower left” corner index (the multi-index that is in each coordinate
minimal among all indices belonging to tlséh section), and

c@(9) :=c@(s,m) = (¢, ....c(9)
= ([s2@m + 1) — 1 A @2+ 1), ..., [sp,(2n + 1) — 1] A (212 + D)),

which is the “upper right” corner index (the multi-index that is in each coordinate
maximal among all indices belonging to thté section). Furthermore, we set

2n1+1[c@ (9+m]A(2n2+1)

Dg:= Dém) = U U Cij,

i=0  j=[c®(9)—-m]v0

the subset of/; that naturally belongs to the-neighborhood cube of thgth
section. Using our usual multi-index notation and index range convention for sums,
we now obtain for the remaining term

> E(kZk)
K.l

IO

= i=0 j=(-m)v0
(.)#K,D

2n1+12n24+12n1+1 (I+m)A(2no+1)
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2.

[(2ny+2)/(2m+1)]
< E{
s=1

)IEDIEDD 2 I"'I”)]l{swé’")»z}}

k=0 |=c®W () i=0 j=[cD(5)—m]vO
(iL.H#K.D

[(2n242)/(2m+1)] /21141 [cP (9 +m]A(2n2+1) 2
SE[ > ( > 2 I‘i) ﬂ{s(Dé’"))>2}}

s=1 i=0  j=[c®(5)—m]VvO

<2n1+l c@(s) 2n14+1[c@ (9+m]A(2no+1)

[(2n2+2)/(2m+1)] 5

s=1

1
< 2P+D2(pY/D2 oy 4 )2~ (zD (2m + 1)P2

w(T) w(T))

by the orderliness condition with(DY™) < 2P (2m + 1)P2-L1 - -

All that is left to do now is to combine the various estimates for the right-hand
side terms of the Stein inequality (2.8). Then, adding the discretization errors and
setting

s e S5 2 ()

yields for the overalll>-distance

do(L£EO ), LOF 1))
VD1 D

2D+2D
= h(T)Y/ D1 + T1/D; + L(T)22P200e]
4 p2D+Dp-1 T ~< 2Pz )
(2.10) w(T) \w(T)h(T)

o+, TYP2 +m + 1)1’2&(2,) (2m + 1)”2)
w(T) w(T)

<1A165/1+ (1) 2D T) ZDJ_ ) TB(m).

> T (2m + 1)P2
(w(T))?

+ L(T)
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For: > 0 and preferably” large enough, we get the rougher, but less nasty looking
upper bound

do(LEOT ), L7 )
JDi . JDs

= h(T)Y/ D1 Tl/Dz

T \ (2m + 1)P2
D+2D1+2K” t(oD-1,
4 2D+2D (1+8(T))|0g (2 (T)) e
(211) 22D+D2 1 T *-'( 2D2 )
w(T) \w(TYh(T)
Dat2eDy 1 T(Dl r )v(D(2m+1)D2)
+ 2P2tegD2 (1+8(T))Iog 2 oy 2 @)

+ 25’D+1\/§¢1+8(T)JTh(T>B<m),

which is of the required order..J

PrROOF OF COROLLARY 2.B. ForT > 1, we have to findi(T) > 1 and
m :=m(T) € Z4, such that all six terms on the right-hand side of the equality
in Theorem 2.A go to zero aB — oo. We seth(T) = T? andm := [T*], with
q>0and0<x< > Thus,

1 1
7h(T)1/D1 — 0, T1/Dz — 0,
mP2
IgT< d ) +1—>O and
w(T)/) w(T)
D D>
|ogT( T )&(2 (2m +1) )_)0;
w(T) w(T)

so the only two terms we have to worry about are

r o 27 _ ppld—br—qr
w(T)“(w(T)h(T)) =0 )

and
JTh(T)B(m) = O(TY2A+a=1+)D2x0))
which both converge to zero if there exist- 0 and 0< x < Di such that
2

1-6-96
q>7r and g < (1+s)Dyx — 1.
r
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This last is true provided that

1-85—35
(1455 —1> max(ir,o),

r

whence we obtain the statemenk]

PROOF OFTHEOREM 2.D. Since the mixing condition is used only once in
the proof of Theorem 2.A, namely, in (2.9) for obtaining the upper bound adiihe
from the Stein estimate, we can simply transfer the proof and re-calculate this
upper bound under our new mixing conditions.

() Letl €{0,1,..., 2no + 1}P2 be fixed, seC, := Uﬁ”zloﬂ Ck1, and define
Xi(r?t = (Li;ie€{0,1,...,2n1+ l}Dl), J‘f'”glt) = U(Xi(r?t)’
X0 = (Iij; (i,]) e T) regardless ok, FO = a(}?git).

~ (1 | =0 _ o
Note that?’ir(]t) C 3~'ir(,t) =0 (E|c,) and £y C Fat := o €l jyery Ci)» regardless
of k. Itis seen for everk € {0, 1, ..., 2n1 + 1}P1 that

ekl =2 max | cov(ly;, 1p)|
BeFE)

=2 max |IP’[B N{lx =1}]1 — P[B|P[Ix = 1]|
BeFdy

=<2 max[P[B N {X{y = x}] - PIBIP[ Xy = ]|
BeFin

+ 2 max
Befé)l()t

P[Bm{&lzl}m{ijalzzi}

’

—Hmeﬂ}&lzl}m{Z:nlzz}}

wherexy is the element of0, 1}{0-1-21+1"1 \which has a 1 in thé&th and a 0
in every other component. We denote the first summandpythe second by
and look at the sums ové&rseparately. For thdy-sum we obtain

2nq1+1 2n1+1 ~ ~
Y Au=2) max IP[BI X = x] — PIBI[P[Xpt = x¢]
k=0 k=0 Be?e(x)t

< 2E< max [P[B|X{h] - ]P’[B]|>
BeFM

0 = ~D ~( 5
= 2B(F3). FX) < 2B(FY, F42) < 2B0m),
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where the monotony of thg-mixing coefficient is immediate if it is written in

its dual form as a supremum over measurable partitions [see Doukhan (1994),
Section 1.1]. For theBy-sum, the upper bound is obtained by application of the
orderliness condition:

2n1+1 2n1+1
> Ba=4 ) E(llyp=2)
k=0 k=0

< 2E[(E(C))* g (cp=2)]
< 2D+1 1 &<2D 1 )
- w(T) w(T)
We thus have for the total,-sum oveik the estimate
2n1+1

5 p+1 1 ~<D 1 )
I(XZ% ekl <2B(m) +2 —w(T)a 2 —w(T) .

(b) In the case of the-mixing condition, the corresponding estimate is very
easy. It follows that

ekl =2 max |cov(Iy, 1p)|
Be£ED

_ z( max [PLB| g = 1] — P[B]|)1P>[Ik| —1
Be£EY)
KT

=y .

2.3. Thedty-distance between the numbers of pointSince for evenA C Z .
the function f4 : M, — R, that is defined byfa(p) :=I[|p] € A] is in %3, it
follows for any two point processés, £, on a compact sex;, that

IP[£1(X) € A] — P[62(X) € A]| < do(L(£1), L(£2)),
hence, also

drv (L(E1(X), L(E2(X)) < do(L(E1), L(62)).

Thus, the upper bounds we obtained in the theorems of Section 2.2 are also upper
bounds fordTV(£(§9T_1(J)), £(n9T_1(J))). However, using the same method as
above and making only slight modifications in the proofs, one can do a little better.
Note that although now we are only concerned about numbers of points and not
about their positions, we can still improyeut possibly also impair, depending on

the leading term in our estimate) our upper bound by choosing a finer discretization
in the RP1-directions. This is because the advantage we get from the orderliness
condition if we have smaller discretization cuboids surmounts the disadvantage of
having more of them.
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THEOREM 2.G. Suppose that the prerequisites of Sectlomold, including
the Conditionsl, 2and3p, and let: > 0.
Then we obtain for arbitrary: :=m(T) € Z, andh(T) > 1 for everyT > 1:

drv(LEOTHD). Lo (D))

Co(MIEL T (B (P@D) )

w() () \w(D)h(T) w(T)

for T — oc.

REMARK 2.H. Of course, all theorems stated in Section 2.2 have their
equivalents for thedty-distance between the distributions of the numbers of
points. The corresponding upper bounds can simply be obtained by leaving out
the log -terms, as well as the terms

()T and T1/D;"

Note, however, that the conditions in Corollary 2.B for convergence to zero of the
principal upper bound remain unchanged.

PROOF OFTHEOREM?2.G. Although our task now seems to be quite different,
we can proceed exactly as we did in the proof of Theorem 2.A. First, we split up
the distance as

dry(LE07 (). L7 ()
= drv(L(ET)), Pov(JT)))
<drv(LEUT)), LW))
+ d1v (L(W), PaX)) 4 dv (PoA), Po(v(J7))).
Here the two discretization errors can be estimated very easily. By the orderliness

condition, we obtain

drv(LEUT)), LW)) < PIET) # W]

=P[U{E(Ck|) > 2}}

k.l

=

Y E[E(Cua)*Lec=2)]
k,l

< 22D+D2—2 T & <2D2 1 )
- w(T) w(T)Yh(T)

N
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and by Proposition A.C,

drv(Por), Pa(v(Jr)))
< m|n<1 i ;
B "V U

1
(1A —— Cur) —
( /\m) I%:(v( k1) — Pki)
1 w(T) \p2p+pp—2_ T v< D 1 )
S(“20/2\/; T )2 i w(T)a 2 2w(T)h(T) '

As for the remaining termgry (L(W), PoX)), we can proceed exactly as we
did with da(L(E67 1), L(HO7 1)), with the only difference that now we use the
classical local Stein—Chen Theorem A.A. Thus,

drv (L(W), Po(h))

(1 in(1 L
< mm(l, —) > (Pl + PEZi +E(aZi) + mm(l, —) > ek
) Vil

k.l

)Ik ()|

with

ekl =2 max [cov(Iki, 1)
Beo (Ij; (i, ell)
All notation has exactly the same meaning as it had in the proof of Theorem 2.A,
so except for the logarithmic factor in front of the first sum, and the constéat 1
in front of the second, we get exactly the same upper bound{ot-L (W), Pa(L))
as we did forda(L(E67 1), L(HO71)).
Assembling of all the different pieces yields the result claimdd.

2.4. Results for measure preserving transformatiéps When we consider
a stretch factorw(T)Y/P1 = o(TY/P1), the expected number of points of the
transformed proce$9T_1 contained within the fixed cubg& goes to infinity as
T — oo if ¢« > 0, which for some applications is not desirable (e.g., if we want
to approximateé@;lh by a Poisson process that does not depend’pisee
Section 2.5). We therefore formulate another theorem in this section, which deals
with the case where we adjust the volume of the cubbim the volume of the
cuboidsJr, and thus produce space for the additional points.

In this regard, lef; and J}, defined as in Section 1, be our substitute for the
transformatiord7 and our enlarged version of the cuboidrespectively. We then
obtain the following result, where once more the quantitative form of the upper
bound can be found at the end of the proof.
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THEOREMZ2.l. Suppose that the prerequisites of Secfidrld, including the
Conditionsl, 2and3p, and let: > 0.
Then we obtain for arbitrary: :=m(T) € Z, andh(T) > 1 for everyT > 1:

do(L(EGTY ;). L0 7))

T l/Dl 1 1
=0 ’ ’
<<w(T)> h(T)Y D1’ T1/D2

T( T )mDZ—i-l T ( 2D2 )
log a ;

w(T)) w(T) "~ w() \w(T)h(T)
T \./2P@2m+1)P2 y
"
og (w(T))“( (D) )’V”(T)ﬁ (’”))
for T — oo,

which is the same order as in Theor@mw, apart from the facto(7/ W (T))Y/P1,

PROOF For a large part we can adopt the proof of Theorem 2.A. We use the
same notation and the same discretization as we did there, replacing-dmyi;
andJ by Jr. First note that there is no change at all for the estimate of the Stein
term, now written aslz(£(E§T_1), £(H5T_1)), because in the Stein estimate only
objects in the pre-image @f have to be considered (the Stein estimate does not
take into account the distances between the points!).

But the changes for the estimates of the approximation errors are not exactly
huge either: As we have seen in the proof of Theorem 2.A, these errors can be
split up into two additive parts, one stemming from the fact that the original
and the discretized point process need not have the same numbers of points in
every discretization cuboid [see (2.3), resp. (2.6), in the proof of Theorem 2.A]
and one stemming from the fact that even when we have the same numbers of
points in every discretization cuboid, their positions are, in general, a bit shifted
[see (2.4), resp. (2.7)]. From those two parts only the second is affected by
the transition fromp; to 67 and fromJ to Jr (inasmuch as the discretization
cuboids in the image space get a little bigger), because for the first, we have
to deal once more only with objects in the pre-imag&pf A short calculation
taking into account the above considerations [reproducing inequalities (2.4) and,
accordingly, (2.7)] provides as upper bounds for each of the discretization errors

da(LEOT Y 7,), LEOFY) andda(LHIFY, LG0T ;7))

1‘(( T )I/Dl VD1 + VD2>+22D+D2—2 T &<2D2 1 )
2\\w(T) h(T)Y/D1 * T1/D2 w(T) w(T)h(T)
Thus, we obtain as possible upper bounds for the ovdpatlistance those of
(2.10) and (2.11) witqu’f}Dl replaced by(-1-)Y/P1- (j)’f_},)l, which yields the
required qualitative estimate ]
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Again we can formulate versions of the other results of Section 2.2 with only
slight (and very obvious) changes; in particular, we get the following:

COROLLARY 2.J (Convergence to zero in Theorem 2.15uppose that the
prerequisites of Theorer®.| hold. Furthermore suppose thaw(7) > kT? for
k> 0,8 € (0, 1] and that

a(v)=0®0") for v — Owithr > 0,

y 1 ¢ ith 1-61+4r 2-9
ﬁ(u):0<m> or u — oo wit 1+s>ma><< 5 7 s )
Then

do(L(EOT Y ), L7 ;))— 0  for T — oo.

Note that under thgg-mixing or the ¢-mixing condition, no changes in the
respective upper bound order obtained in Theorem 2.D are necessatry.

2.5. Results for a fixed limiting processSo far we have only examined
approximations of the transformed proc&;1 (resp. ge;l) by a Poisson

process which has the expectation measﬂ;‘el. Of course, this implies that the
expectation measure may (and, unless it is a constant multiple of the Lebesgue
measure, does) changeZ&sends to infinity: The approximating Poisson process,

in general, will not be stable. One might therefore ask under what circumstances it
is possible to approximate the transforméeg@rocess by a fixed Poisson process,
whose distribution does not dependBpand what loss in terms of thie-distance

one has to face.

First of all, the correcT-independent intensity measure for our new Poisson
process has to be found. Clearly, for 0, using the transformatioyy with a
stretch factomw (T) = o(T) is unnatural, because in that case the expected number
of points ofé@T‘1 contained inJ goes to infinity, whereas, of course, for any fixed
Poisson process, the expectation of the number of pointsisnalways finite. So
the natural choice for general(T) is the measure preserving transformatign
together with the enlarged cubalg from Section 2.4.

For the following heuristics we ignore the fact that might be a counting
measure. Then, restricted to the cubgidfor T relatively large, the measute
with density p with respect tor” should be relatively “close” to the measure
v = p(0)AP, provided thatp is constant in theRP2-directions [hence, the
notation p(s) = p(s,t) for all se RP1, t e RP2] and thatp satisfies a regularity
condition in theRP1-directions ab. Thus, restricted tdy, véT‘l should be close to

v/éT_l [which is againp(0)A”, hence, not dependent @1 as well, and, therefore,
Po(p(O)AD|J~T) should be a good choice for approximatiﬁgg@;ﬂfr).

The following makes the above considerations rigorous. First, we formulate the
additional regularity condition fop.
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CONDITION 4 (Regularity ofp). The densityp = dv/du is constant in the
RP2-directions, so that we can write

p(st)y=p(  forallse RP1 t e RP2(respit e ZP2 + 31).

Moreover, p satisfies the following regularity condition in tHgP1-directions:
There existL > 0 andz > 0, such that

|p(s) — p(0)| < LIsf? for all se RP1

(or forse [—(ﬁ)l/l)l, (ﬁ)l/Dl)Dl for the T one wishes to consider).
We are now in the position to formulate the theorem.

THEOREM 2.K. Suppose that the prerequisites of Sectlomold, including
the Conditionsl, 2, 3o, as well as the new Conditiod above Let ¢ > 0,
T > 1 (remember that we always assume tiae {n”2;n € N} if uo = JfoDZ),
m:=m(T) e Zs+,andh(T) > 1.Then

da(L(E07 Y 7,), PAp (01|}, ))

- D1 T
< A(T) 4 2@&+D1+2D2)/2 Lt
< A(T) 2+ D1 Dlw(T)1+z/D1

T T \YP1 1 1
= O(w(T)1+z/D1’ (w(T)) h(T)l/Dl’ T/ D2’
of T \mP2+1 T 2D2
oo (o) ey s wee )
w(T) w(T) w(T) w(T)Yh(T)
T 2P (2m + 1)P2 y
N
09 (w(T)) ( w(T) ) ” Th(T)ﬂ(m)>
for T — oo,
where A(T) := A(T,m, h(T)) is the explicit upper bound that we obtained in

Theoren®.l [formula(2.10)or (2.11)with the corresponding modificatiohand
p, = nP1/2) F(% + 1) is the volume of thé®;-dimensional unit ball

Q¢

COROLLARY 2.L. Under the prerequisites of Corolla®.Jplus Conditiord,
with z > 12Dy, we obtain

da(L(EG7 Y 7). PAp()21P; ) >0  for T — oo,
henceif § =1 (z > 0),

£6:Y; 3 Pa(p02P])),
by result(1.3).
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PROOF OF THEOREM 2.K. Once again we can largely adopt the proof of
Theorem 2.A (or, more precisely, that of Theorem 2.1). This time only the estimate
for the discretization errod2(£(H0T_l), °C(’79T_1|JT)) has to be replaced by an

appropriate estimate for our new ertQ(£(H(§;1), Po(p(O)AD|J~T)). We proceed
just as we did in Theorem 2.A.

Let ' ~ Pa(p(0)AP) [consequently, alsoy’d;t ~ Po(p(0)rP)], H” :=
> k.1 ' (Ck)dey ,» and split up the error as

dao(LHI, Pop(01P] ;)
= da(LHEY, L(7'6717,)

< dap(LHOF Y, LH"O7Y) + do(LH"OLY), L0071 ;7)).-

Inequality (2.7) (or, more precisely, the corresponding modification from the proof
of Theorem 2.1) yields for the second summand, as before,

np—1 1a—1 1 T b \/D_l \/D_z
(2.12) do(LH"077), L(n'0F |jT)) = E((w(T)) h(T)1/D1 Tl/Dz)'

For the first summand we get, by the same method as in (2.6),
do(LHIFY), LH"6:Y))
<Y drv(Pa(pu). Po(p(0)1” (Ck)))
k|

(2.13)
<> (v(Cx) — pu) + D v(Cki) — p(OLP (Ci)l,
k.l k.l

where the first sum was already estimated in (2.6). Its upper bound, to-
gether with the upper bound from (2.12), forms the bound we arrived at for
d2(£(H0‘1) £(n0T |J )). Therefore, all that is left to do is to show that the sec-
ond sum on the right- hand side of (2.13) can be estimated by the claimed additional
term. This, however, is done very easily:

XIv(Cia) = pOA )l = Z‘ [, (v9 = p@)niacs vy

< f 1P(9) — pO)(d(s. 1))
Jr

[—(1/w(T)YP1,(1/w(T))YP1)P1

},.Z+D1_1 d}"

V2(1/w(T)YP1
<2P2pyLp, - T/

D T
_ o(z+D1+2Dy)/2 1
=2 e+ D1 PrwmEn O
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3. Applications. The results of Section 2 can be applied in a number of
different ways. For example, they yield useful upper bounds for certain theoretical
statements about Poisson process approximation, such as classical thinning and
superposition theorems (by projection of the point processes involved @he
directions and th&P1-directions, resp.). There are also statistical problems where
the results of Section 2 can be of help. To obtain an idea of what is possible, we
look at two examples in more detail: in Section 3.1 we consider a fairly general
density estimation problem, examined by Ellis (1991), and in Section 3.2 we
consider a problem of testing for long range dependence.

3.1. Density estimation. First of all, we need a new regularity condition for
the densityp.

ConNDITION 4’ (Regularity ofp). The densityp = dv/du is constant in the
RP2-directions, so that we can write

p(st=p(  forallseRPL t e RP?(respt e ZP2 + 31).
Moreover,p satisfies the following regularity condition in tfie”1-directions:
p € C3(RPy).

Of course, it is enough ip|; € C2(Z) for a sufficiently large neighborhoad of
0eRP1,

Suppose that Condition’ 4holds (along with the usual conditions from
Section 1), and that we want to estimate the densiay the poin0 € RP1, say.

By way of illustration, it is convenient to think of th&Pi-space as the
“data space” (i.e., the space of possible data points) andRfffespace as the
“ascertainment space” [i.e., the space of points at which data is obtained, typically
by continuous observation over tim&%2 = R = time axis) or by repetition of
experiments RP2 with reference measure, = Jfé)z)]. An example suggested
by Ellis (1986, 1991) is the estimation of the rate at which earthquakes above a
certain magnitude occur per unit area and unit time in a certain region. Here we
haveD1 = 2 andD, = 1, and the points ifR3 represent the positions and times of
the observed earthquakes.

Among various methods for density estimation, we choose kernel estimation
with a data-independent window width, that is, the window width in TRH& -
directions does not depend directly on the data, but does depend on the
“observation span” (which in the discrete case corresponds to the sample size).
For a detailed account of density estimation see Silverman (1986). We adapt the
usual notation in connection with density estimation to the notation we used in
Section 2. Thus, 22 is our observation span (ib- directions), 2w(7T)Y/P1 is
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the window width (inD4 directions) and our density estimator at the p@itdkes
the form

1
|7
where the functiorK is our Kernel, which fulfills the following condition:

pe(0) = /J 2P (w(T)YPr9)E(d(s 1)),

CONDITION 5 (Shape ofK). The kernelk :RP1 — R, satisfies:

() K(5=0 fors¢[—1,1)P1;

(i) Kl;_11)p: is Lipschitz (w.r.t.dg restricted taR"1) with constant (K);
(i) [K(s)ds=1;

(iv) [K(s)sds=0.

Note thatk does not have to be continuous on the boundaify-df 1)”1, and
that it is reasonable to choose a Kerfethat is radially symmetric (or at least an
even function in each coordinate), in which case Condition 5(iv) is satisfied. We
now write

f00:=2P1K(9-1_y gy, ()  forx:=(s,t) e R x RP? =R,

so that f|; is Lipschitz (w.r.t.dy on R?) with constant 21/(K); by the
transformation theorem for integrals, we obtain

1
[J7]

The way is now clear for the application of Theorem 2.A. Our primary goal will
be to estimate a probability distandebetween the distribution of our estimator
pe(0) and the distribution that is concentrated at the true val@@. To do this,
we will first estimated (L(pg(0)), L(p,(0))) with the aid of Theorem 2.A, and
then utilize the excellent properties of Bedn point processes to obtain an upper
bound ford(L(p,(0)),8,0)). The two corresponding results are contained in
the following theorems. For the distangdewe choose the bounded Wasserstein
distance, as defined in Section 1, because the other distances that we have used so
far are too strong to be usefulyy (L(p:(0)), 8,(0) is generally too big, and is
even always equal to 1 whenevgs(0) is a continuous random variable, because
then

pe@ === [ roogertav.

1> drv(L(pg(0)), 8p0) = IP[p(0) = p(0)] = P[p(0) = p(O)]| = 1;
and for the Wasserstein distandg (L(ps(0)), L(p,(0))), there seem to be
unsurmountable difficulties in obtaining a useful upper bound in Theorem 3.A.

THEOREM 3.A. Suppose that the prerequisites of Sectlomold, including
the Conditionsl, 2, 30, as well as the additional Conditior8 and5. Let: > 0,
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and forT > 1, let m :=m(T) € Zy, h(T) > 1 and alsow(T) = o(T?%") for
T — oo with§* € (0,1). Then

daw (L (pg(0)), L(py(0)))

(K T
< (Gpe e M ) ol (€07, L0007 H) + 2Ky (M)

—0 1 1ot (T mP2y1 T o 2D
= (h(T)l/Dl’Tl/Dz’ g (w(T)) w(T) ’w(T)“(w(T)h(T))’

IogT( T )&(ZD(Z’" + DDZ), Wﬁom)

w(T) w(T)

for T — oo,
whereM := M (T) € N* with M > 3v(J7) arbitrary and

vIDY

b (M) =2%—

which decays exponentially i as T tends to infinityThus we obtain the same
order for the upper bound as in TheoréhA

REMARK 3.B. The upper bound given in Theorem 3.A remains true for
generalw (T) = O(T). However, ifw(T) goes to infinity at a rate that is too close
to T, thenM (T) has to be chosen to grow somewhat faster than(7), and then
the order of the upper bound is a littleovee (by a logarithmic factor i) than
the one stated in Theorem 3.A.

PROOF OF THEOREM 3.A. Leté& ~ L&), n' ~ L(n) =Pav), andX :=
pe(0), Y := p,y(0). Then we have

daw (L(Pg(0)), L(Py(0))) = sup [Eg(X) —Eg(Y)]

geFw
with
[Eg(X) —Eg(Y)]
<E(|g(X) - g(Y)|1{§’9;1(J)=n/9;1(1)})
+E(1800 = 8Dty o)

-1 -1
S E(IX = Y01 o) + PEOT ) #0607 ()]

(3.1)
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for everyg in Fpw. For the first summand, we obtain

E(IX = Y1111 =yo; 1))
—r( FOE0 A — | Foon'67 dx),,,,1 .
Uzl Jre T eo T (&07 (N=n'0; 1))}
() _ _
§2D11(K)E<7n ITJ | d1(5’9T1|J,n/9T1|,)),
T

the latter inequality by the definition of thé -distance and becausg|; is
Lipschitz. Next we utilize the fact that sinoé@;l(J) is Poisson distributed
with parameteny := v(J7), it exceeds a certain bound := M (T) € N* with

M + 1> 2vr only with very small probability. As noted in Barbour, Holst and
Janson (1992), Proposition A.2.3, the relation

PlPavy) = M1 < —1 L pipour) = b < 2L o
V _— 1% = —¢€
S VT ! =M
holds, and, thus,
01 () _ _
E(”T—dl@’eT 4,00 1|J>)
[JT]
M
<E(—di1'0; . 0011 )L, - )
= <|JT| 1@ T |J nor |J) {Tl‘grl(J)fM}
-1
n'0;~(J)
E( |J7] 1{n/9rl(l)>M})
M _ _ v _
< ——E(d1(E"07 s, n'671)) + —Pln'671(J) = M]
[JT| [J7|
1 w(T) _ _
< o5~ ME(d1(€'0: 1. 1/07 1) + 87 (M),
where we use the notation
vt
— 14 ,=Vr
6T(M)_2KM!e .

Furthermore, foM > 3v7, the DeMoivre-Stirling formula gives

Sr(M) < const-(ﬁ) eV TV < const-(\,—))) e VT,
The second summand from (3.1) is estimated as
PLE'077(J) # 107 ()D] = E[da(€'07 1. 007 1)Ly 2ot

< Edi(&'072 7, n'0711)).
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Hence, we obtain altogether in (3.1),

[Eg(X) —Eg(Y)|

(K T
- (%#M + 1)E(dl(g’e;1|,, 00711 ) + 2P (K7 (M)

for every g € Fgw and every pair of random variablégs, " with & ~ L(§),

n ~ £L(n). Forming the infimum ovet’ andn’ yields on the right-hand side the
do-distance {r is bijective), and forming the supremum ovgon the left-hand
side, the bounded Wasserstein distance. Thus, we obtain the statefment.

The second result that was discussed above is contained in the next theorem.
We write || - || for the Lo-norm with respect to the Lebesgue measur®&h.

THEOREM3.C. Suppose thatthe prerequisites of Secfitwold, including the
Conditionsl, 2, 3o, as well as the additional Condition® and5. Let: > 0, and
for T > 1,letm :=m(T) € Z, h(T) > 1 and alsow(T) = O(T*%") for T — oo
with §* € (0, 1). Then

daw (L(p£(0)),8,(0))
< dpw/(L(p:(0)), L(py(0)))

K e w(T) L' 1
+[am 1K 2 +w(r>2/m+"<7w(r>z/m)

B w(T) 1 1 1
=0 T ~w(T)2/Pr’ p(T)YDP1’ T1/D2’
of T \mP2+1 T 2b2
o5 (o5 )ty o™ (i)
w(T)) w(T)  w(T) \w(Th(T)

og' (175 o 22, i)

w(T) w(T)

for T — oo,

whereL’ is a nonnegative constadepending o andK); if K possesses certain
symmetry propertie@specially ifK is radially symmetriy, we can write

L' :=31ap(0) / s2K (91P1(ds),
whereA denotes thé{-dimensional Laplace operator

PROOF Due to Theorem 3.A we only have to estimaigy (L (p,(0)), 8,(0))



646 D. SCHUHMACHER
for n ~ Po(v). We decompose this distance as

daw (L(y(0)), 850) < dsw(L(Py(0)), 8k, 0)) +dBW(SES,0)> 5(0)
< E[p,(0) —Ep,0)| + |Ep,(0) — p(0)]
< sd(p,(0)) + biag p, (0)).

For the standard deviation we obtain

A 1 -
S5, (0) = \/W(m [, £oomsr @)

1
— 2 -1
|JT|\//RDf (X))o~ (dX)

1 1
< 22D1 g 2(g) ) D1 dS) —Tl/Dz’ T1/D2\D;
B IJTI\/KT<w<T) D1 (992D (ds) ) a(l )P2)

- [ K % w(T)
= ﬁ” ||2 T,

where the second and third steps are applications of Campbell’s theorem for
the variance of an integral w.r.t. a Poisson point process [see Kingman (1993)]

and Fubini's theorem, respectively [note thét’r ® )6, = ﬁADl ®

pn2(TYP21p.), where Ip,:RP2 — RP2 is the identity]. An application of
Campbell's theorem for the expectation [see Kingman (1993)] and Fubini's
theorem again then yields

1 -1
o L Foove

1 ( ! 2D1K(S)p(

~ 177 \w(T) Jros

x po([=TYP2, 7Y/P2)P2)

1 D
= _/RDl K(S)p(iw(T)l/Dls))‘ 1(ds).
Thus, we obtain for the bias

[Epy(0) — p(O)]

_ 1 b
| 9 o)

1
< K(©S)————
- ‘/[—1,1)01 ( )w(T)l/Dl

Eﬁn (0) =

1
T s)le(ds))

8p(0)SkD1(dS)‘
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TP
+ ‘/[—1,1)01 K(s) Zw(T)Z/Dla p(0)(s, 9AP1(ds)
1

K(S)———
[-1.1)P1 ( )Zw(T)Z/D1

82p<h

+

X max
O<hxl

TR s) —32p(0) Hlslzk’jl(ds)

by Taylor's approximation, wheré - || is the standard norm for bilinear forms
on RP1, Of the last three summands, the first is always zero because of
CO.ndItIOI’] 5F|v), the second cgn pe esjumatedlbm with a c.onstan'rL ,
which for “nice” Kernels (e.g., ifK is radially symmetric) can be written as

L'= %Ap(O)/st(s)xDl(ds),

and the third is of ordav(m) because of the continuity 8% p at0. Thus,

o , 1 1
bias(p, () = L w(T)2/D1 +0<w(T)2/D1)' -

Once more we formulate the conditions under which the upper bound goes to
zero.

CoROLLARY 3.D (Convergence to zero in Theorem 3.Cpuppose that the
prerequisites of Theorem®.C hold. Furthermore suppose thaiv(T) > kT? for
k>0,6 € (0,1) and that

a(v) =00") for v — Owithr > 0,

5) = O 1 ; ith 1 1-51+4r 1
ﬁ(u)— (W) oru — oo WI 4+ s> ma T " ,5)

Then
dw(L(p(0)),8p0) >0  for T — oo,

and, therefore since thedgw-distance metrizes convergence in distributjsee
Dudley(1989), Theoreml1.3.3]and sinces, (o) is the distribution of a constant
we obtain

pe(0 5 p©)  for T — oo,

that is the consistency of the estimatas(0).
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REMARK 3.E. The consistency of: (0) was already obtained as a conse-
quence of Theorem 2.5 in Ellis (1991) under conditions that were similar, but for
the most part somewhat more general. So Corollary 3.D is not so much a new re-
sult, but rather a crosscheck on the suitability of the explicit upper bound obtained
in Corollary 3.C.

PROOF Let M := [3v(Jr)] in Theorem 3.A. We then get immediately by
applying Theorems 3.C and 3.A and Corollary 2.B thg{y(L(pz(0)), §,0))
converges to zero.[

3.2. Testing for long range dependencé&upposet is a stationary point
process ofR? with expectation measure= ¢ - AP (¢ known or estimated) which
satisfies the conditions of Section 1, except for Condition 3. We would like to
test from a single realization df if there is important long range dependence
in the RP2-directions or not (our null hypothesis). “No important long range
dependence” means here that Conditioni8 satisfied for givernx € {8, p, ¢}
and j, corresponding to the minimal mixing rate one wants to test for. For the
sake of illustration, think of th&P1-direction(s) as time and tHR2-directions
as space. Imagine that for fixgd> 1, the points of in Jr denote the times and
locations of incidences of a certain rare disease, which is observed in a large area
(e.g., a country or a continent) over a relatively short period of time (e.g., some
months or a year).

Under the null hypothesis, by Theorem 2.A, respectively, Theorem 2.D, the
distribution of £671|; will be close to the distribution of6;|;, which here
is just the homogeneous Poisson processJowith intensity (T/w(T)) - £.
There are various reasonable statistics for testing the hypothesis of “complete
spatial randomness” in point patterns; one such statisticM, — R, is the
average nearest neighbor distance in the data, which can be shown to be Lipschitz
continuous with respect to thk-distance with a Lipschitz constant that we denote
by Lp.

We wish to find an approximate critical valug for, say, a one-sided test of
sizea of the null hypothesis against an aggregated alternative (i.e., the alternative
that there is a certain amount of “long range” clustering), using the stafistic
whereU (p) := U(,o@;lm for every point measure onR”. To do so, fixK > 0
and choose, so that

Efux (@) +KLp-s=a,
wheree is our upper bound fata(L(£6; 1), £(n6711,)), and
1, if x<t,

1
frk(x) = 1-K(x—1), ift§x§t+?,

1
0, if x>t+—,
x> +K
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is a K -Lipschitz approximation of the indicatdy_ ;. This yields

O<a—PlUE) < 14]
<Efi, x(UM) —Efu,—1/5).kUM) +2KLp - &.

Thus, ife is very small (i.e., the conditions for Theorem 2.A, resp. Theorem 2.D,
are strong enough), a largé can be chosen, and, consequently, we can adjust the
size of our test to be only slightly below:

It should be noted that the distribution 6in) is not known, but it can be simu-
lated very easily. Also, there are good normal approximation&(@f (n)||n| = N)
for N not too small which can be of use. See Ripley [(1981), Section 8.2] for fur-
ther details.

APPENDIX: LOCAL STEIN THEOREMS

The central results of this article are achieved by applying estimates that were
obtained in one or another form by Stein’s method. Since it is far beyond the scope
of this article to summarize in detail the classical Stein—Chen method (Stein’s
method for the approximation of a sum of indicator random variables by a Poisson
random variable) or what in this article is sometimes called the “generalized Stein—
Chen method” (Stein’s method for the approximation of an indicator point process
by a discrete Poisson point process), we only present very briefly the required
results. The proofs of these results and the method behind them, as well as a wealth
of related material, can be found in Barbour, Holst and Janson (1992).

Let I be any finite nonempty index set anf});cr a sequence of indicator
random variables with a local dependence property, that is, for éverly, the
setl’; :=T \ {i} can be partitioned ab; = I'{ UT"}” into a setl"; of indices,
for which I; depends “strongly” on;, and a setl’}” of indices j, for which /;
depends “weakly” onl;. Herein, the terms “strongly” and “weakly” are not
meant as a restriction to the partition Bf, but serve only illustrative purposes.
The same holds true for the term “local dependence,” which does not have to
possess any representation in the spatial structufé ¢h our applications in
Section 2 it always does, though). We now wiite:= Zjepl; 1;,Y; = Zjer;ﬂ I;,
pi = EI; >0 (w.lo.g.) for everyi e I" and setW := > ;. [;, A :=EW =
Y ier pi- Furthermore, we choose arbitrary poitis);cr in any desired complete,
separable metric space(, do) with dg <1 and se€ :=) ;. [;d;.

A.1. Poisson approximation of the distribution of the sum W of indicators.
By applying the classical Stein—Chen method [see Chen (1975)] the following
result is obtained.
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THEOREM A.A (Local Stein—Chen theorem for sums of indicatorsyVvith the
above definitionsve have

drv (L(W), Po(r))
1 1
in{1, - 24 piEZ; +E(; Z; i (1, —) i
smln( )‘)g(pl +p +E(L; Z;)) +min 7 igr:e
where

e; =E[E(L|(Ij:jel}))—pi|=2 max ’)|cov(l,-, 1)].

Beo(l;: jel'}l
PROOF See Barbour, Holst and Janson (1992), Theorem 1[A.

REMARK A.B. The order of the upper bound in Theorem A.A cannot
generally be improved. See Barbour, Holst and Janson (1992), Chapter 3.

The Stein—Chen method is by no means restricted to approximating sums of
indicator random variables. For instance, as faf. asvalued random variables are
concerned, one might also consider the case whérg itself Poisson distributed
with some parameter > 0.

PROPOSITIONA.C. Leti,u > 0.Then

drv (Pt Po(w) = min( .

L L 1) ,
s T — T — | — M
NZRNIT

PrROOF This proposition is a special case of Barbour, Holst and Janson
(1992), Theorem 1.C(i). However, the result can be obtained very easily by direct
calculation, using the Stein—Chen method]

A.2. Poisson process approximation of the distribution of the indicator
point process E. By applying a natural generalization of the Stein—Chen method
as in Barbour and Brown (1992), the following result is obtained.

THEOREM A.D (Local Stein theorem for indicator point processes)vith the
above definitions ang :=Y"; . pidy,;, We have

d2(£L(E), Pa(mr))

< {1/\ §<1+ 2|og+<%)> } > (p? + piEZ; + E(L: Z)))

iel’

+ (l/\ 1.65%) Y,

iel’
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where

ei =E|E(Li|(Ij; jeT{)—pil=2 max _ |cowl;, 1p)|.
Bea(lj;]eF}”)

PROOF See Barbour, Holst and Janson (1992), Theorem 1QJF.

REMARK A.E. Note that the upper bound in Theorem A.D depends neither
on the pointsy;, i € T", nor on the specific choice of the mettig, as long as it is
bounded by 1.
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REFERENCES

BARBOUR, A. D. and BROwN, T. C. (1992). Stein’s method and point process approximation.
Stochastic Process. Appl3 9-31.

BARBOUR, A. D., HOLST, L. and ANSON, S. (1992)Poisson ApproximatiorOxford Univ. Press.

Borovkoy, A. A. (1996). Asymptotic expansions for functionals of dilation of point processes.
J. Appl. Probab33 573-591.

CHEN, L. H. Y. (1975). Poisson approximation for dependent trialen. Probab3 534-545.

DALEY, D. J. (1974). Various concepts of orderliness for point processedtochastic Geometry
(E. F. Harding and D. G. Kendall, eds.) 148-161. Wiley, New York.

DOUKHAN, P. (1994) Mixing: Properties and ExampleSpringer, New York.

DUDLEY, R. M. (1989).Real Analysisand Probalility. Wadsworth & Brooks/Cole, Pacific Grove,
CA.

ELLIS, S. P. (1986). A limit theorem for spatial point procesgedv. in Appl. Probabl8 646—659.

ELLIS, S. P. (1991). Density estimation for point proces§&techastic Process. Apfd9 345—-358.

KALLENBERG, O. (1986).Random Measuredth ed. Academic Press, New York.

KINGMAN, J. F. C. (1993)Poisson Processe®xford Univ. Press.

RACHEV, S. T. (1984). The Monge—Kantorovich mass transference problem and its stochastic
applicationsTheory Probab. App29 647-676.

RIPLEY, B. D. (1981).Spatial StatisticsWiley, New York.

SILVERMAN, B. W. (1986).Density Estimation for Statistics and Data Analysifiapman and Hall,
London.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF ZURICH
WINTERTHURERSTRASSEL90
CH-8057 ZJRICH

SWITZERLAND

E-MAIL : schumi@amath.unizh.ch



