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MODERATE DEVIATIONS FOR PARTICLE FILTERING
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des Télécommunications

Consider the state space modgl, Y;), where(X;) is a Markov chain,
and(Y;) are the observations. In order to solve the so-called filtering problem,
one has to computé€(X;|Y1, ..., Y:), the law of X; given the observations
Y1,..., Y;). The particle filtering method gives an approximation of the
law £(X;|Y1,...,Y;) by an empirical measuré; Z'{‘Sx[,w In this paper
we establish the moderate deviation principle for the empirical mean
% 1 ¥ (x; 1) (centered and properly rescaled) when the number of particles
grows to infinity, enhancing the central limit theorem. Several extensions and
examples are also studied.

1. Introduction.

The state space modelLet (X;) be aR“-valued sequence of unobserved
random variables and |€Y;) be theR"-valued observations,> 1.

. \ . \
Y]_ Yt_]_ Yt Yt+1

We endowR? (resp.R™) with its Borel o-field 8(R?) [resp. B(R™)] and we
assume thatX;);en is a Markov chain with initial distributionlP?(Xg € A) =
[4 ao(x)u(dx) and transition kernels

P(X; € AlXi—1=x;—1) = /A ar(x;—1, x¢) dp(xy), t>1,

whereu is a reference measure ®&f andag (resp.a;) is a probability density
(resp. probability kernel density) with respectuto

The observationgY;) are R”-valued and independent conditionally OK;).
Formally, Y; depends orX, via the kernel

P(Y, € BIX, = x;) =fBb,<x,, Wy, =1,

wherev is a reference measure &' andb;, is a probability density kernel with
respect to. It is worth noting that the general procgss, Y;) is a Markov chain.
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These models, either called state space models or hidden Markov models
(HMM), are widely used in engineering, biology, mathematical finance, geo-
physics, and so on. For an overview, see [18] and the references therein.

We will denote byy! the R™-valued series of observatiors;, ..., y;) and
whens <t, by f;s(x;1y7) [or simply f;s(x;)], the conditional density ok; given
Y] =y with respect tqu. In the case where=1, f;; is the filter density; in the
case where =1 — 1, f;;—1 is the one-step predictor. These quantities are related
via the following relations: theropagation(or prediction step,

(1.1) fr—1Gelyi™h = / fi—1 1y Ha, (e, x0) d (),
and theupdatingstep,

ftlt—l(xt |)’i_1)bt Xz, yr)
I -1y b (x, yop(dx)

(1-2) ftlt(xtlyi) =

Particle filtering. The recursive computation of the filter density is a major
issue. However, apart the very important Gaussian case for which filter density can
be computed recursively with the Kalman—Bucy equations, there is no hope to geta
closed-form formula for the filter densitf, in the general case. Among the body
of methods available to approximate the filter density (e.g., extended Kalman filter,
approximate grid based filters, etc.), particle filtering (also known as recursive or
sequential Monte Carlo filtering) has recently received a lot of attention. Let us
mention the important contribution of Del Moral et al. [4—7, 12] and the work of
Kinsch [18, 19]. The book edited by Doucet, de Freitas and Gordon [17] gives an
overview of the subject and provides extra references.

In the sequel, we will say thak;, ..., xy) isasample frony du if (x;;1<i <
N) are independent and identically distributed (i.i.d.) with probability distribution
f du. We define recursively the approximate filter density:

Attimer =0, (x;0; 1 <i < N) is a sample fronagdp and

b1(x, y1)(1/N) XN 1 a1(xi 0, x)
Jra b1(x, YD) (L/N) XN 1 aa(xi.0, X)p(dx)”

Attimer=T, (x;7;1<i <N)is asample fronfﬁT du and

i) =

br1(x, yr+1)(A/N) XN Jari1(xi T, x)
Jra br1(x, yr+0) (Y NY XNy ara(xir, x)p(dx)

As the number of particlesv grows to infinity, the empirical probability
distribution %Zjlv 8y converges to the filter probability distributiofy|r du.
Among the main results for the patrticle filter, let us mention the law of large
numbers [12], central limit theorems ([7, BL], see also [1%pr a nice exposition)
and the large deviation principle [6].

f%v+1\T+1(x) =
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Links with genetic algorithms.The approximate particle filter as expressed in
the Introduction,

br(x, yr)(I/N) XN 1 ar (xi7-1, %)
Jra b1, yr) U/ NY SN ar (i 71, x)p(dx)’

can be interpreted as a genetic algorithm, a particle system approximation
of the Feynman-Kac formula, as well as a so-called bootstrap filter in the
filtering literature. This is of importance since up to some compatibility with
the assumptions, we will then be able to rely on the important body of methods
developed in the framework of particle systems approximation of the Feynman—
Kac formulae (see [4, 6—13]). Denote by

fhr@) =

(1.3) br(xr_1) = / br(x, yr)ar (cr—1, x)u(dx)
Rd
and

br(xr, yr)ar(xr—1, x7)
Jra br(xr, yr)ar (xr—1, xp)p(dxr)

(1.4) ar(xr—1,x1) =

In this case f7; writes

N

br(xit—1) .
) = — ar(x;7—1, x)
| ; YN br(xer-1) l

and one can see the propagation and updating steps as a selection step followed by
a mutation step:

. selection, . .
(xi7,1<i<N) — (;r1,1<i<N)

M i1, 1< i < N).

The selection step consists in drawing a multinon¥&lws 7, ..., wn.1), Where
l;T(xi,Tfl)
YN br(xiT-1)
among the generatiaiy; 7, 1 <i < N). At generatior?’ + 1, each particle; 741

is drawn independently according to the distribution(x; 7, -) d.

wiT = to choose accordingly the new particles 7,1 <i < N)

The main results. In this paper we establish a moderate deviation principle
(MDP) for the particle filter at timeT conditionally on the observations
(y1, ..., y7). Since the observatiorn(s,) are frozen, this is a quenched result and
we might sometimes drop the observati@ms in our notation. In the sequel we
will, therefore, denote by the conditional probability?(-|Y1 = y1,...,Yr =

yr).
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The MDP complements the previously obtained CLTs [7, 9, 11, 19] and LDP
[6] and is established for the rescaled and centered quantity

My =

beZ(WO(xl 0) — /lﬂoaodu,...,wT(x,-,T)—/lprTleM),

where the functiongyry, ..., ¥7) are bounded and the spegj{;l is such that

lim by = I|m \/_le_oo

N—o0

The formal definition of an MDP states that there exists a good rate funiction
such that

1
—inf Ip < I|m|nf —logP7{M} €T}
int(I") bN

< Ilmsup— IogIPT{M el}
N—o0 bN
<—inflp.
r

The setl’ ¢ R”*1 is Borel, with interior intI") and closurd™. The rate function
|7 depends on the asymptotic covariance matrix

VT(WO:T) = (VS,Z(WS’ WI))Ogs’ng’

which appears in the central limit theorem (see details in Section 3.1). For
applications of moderate deviations, see [1] or [14].

We then develop various extensions, such as the MDP for unbounded functions
and a functional MDP for the particle density profile,

[Nu]
U+ Y(xiT)—m .
be Z 0T T(¥))
In this situation, the rate function turns out to be given by

F2(0) 2D 1 1
Jr(f)= /ZT(w)dH_ 2 (VT(W)_U%(W))

where f is absolutely continuous witlf (0) = 0. The last part of the article is
devoted to examples such as nonlinear observation models with additive noise and
stochastic volatility models.

The paper is organized as follows. In Section 2 we give the notation and we state
the main assumptions. In Section 3 we establish the MDP. Section 4 is devoted to
various extensions of the MDP. Examples are studied in Section 5.
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2. Notation, assumptionsand a preliminary estimate.

2.1. Notation and the main assumptionWe will endowR¢ (resp.R™) with
its Borel o-field B(R?) [resp. B(R™)]. Let u be a reference measure on
(R4, B(RY)) and denote by.1(u) the set ofu-integrable functions. Similarly,
consider the reference measurdefined onR™, 8 (R™)) and the function space
L1(v). We will simply write 8 and L whenever the context is clear. As usual,
|| - l1 denotes thé.1-norm and|| - ||« the sup-norm|(f |- = sup, | f (x)|). Recall
that

P(X; € A|Xs_1 = xr_1) = fA ar(xi—1, x)dp(x) and

P(Y, € B|X, = x;) = fB be(xr, 1) dv(yy).

In the following, the sequend@y ) y>1 Will denote a sequence of nonnegative real
numbers with the property that

VN
lim by = lim — =00
N—oo N—oo by
We shall use the following notation (by conventigglo = ao):
(2.1) m) = [Vfidn and my.n = [yridu,
(2.2) Loy () = [ e, 10bi a0 @) (),
t 1 al
2.3 M - i) —
(2.3) N bNﬁ;(w ) = mi(Y))
2 O () + Ry (¥,
where
oNW) = ™ fZ ¥ (xi) —my,(¥)) and
2.4
@4 /m

RN(W) (mN (¥) — mt(lﬁ))
We might sometimes drov) and simply writeQ’, andR},. Denote by
MY W, ... ¥7) =My (Yo 7) & (My(o). ..., My (Yr)) e RT T
Ar = (Ao, ..., A7) e RTHL,

Recall thatPy = P(:|Y1 = y1,..., Y7 = yr). We will denote byE; the expecta-
tion with respect t@®r. Let us introduce now the main assumption on the model.
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ASSUMPTIONA-O. Foreveryr > 1,

yi 2 SUpL,1(x) = Sup / ar(x, )by (u, y)u(du) < 0o and

L:1(x)>0 VxeR?

REMARK 2.1. SincelL;1(x) > 0 under Assumption A-0, it is straightforward
that

(2.5) K é/L,]l(x) fr—1j1-1(x) u(dx) > 0.

However, Assumption A-O does not imply inf; (x, y;) > 0 as will be illustrated
in the stochastic volatility model (see Section 5) wherg batx, y;) = 0.

REMARK 2.2. A stronger version of Assumption A-O is used in Section 4.
See also Remark 4.1 for the link with genetic models.

Following [19], we define recursively the following variance-like quantities:

o2 = [ b —m)fudpe and
@8 o
o ) = [ (0= my ) 1y .

1

(2.7) V() = o2(y) + ?Vt—l(Ltw —m;(Y)L1), Vo(¥) = o (),
t

and the related covariance-like quantities:

1
(2.8) Vit (e, ) = K—tVr,t—l(‘//r, Lt(‘//t - mt(‘//z))) forr <t,

(2.9 Vi ) = 5(Vi(r + d0) — ViWr) — V().
Of courseV, (Y, Y1) = Vi (Y1, ¥). The covariance matrix is then defined by

Vr@0. oY) = V1 (Wo: 1) = (Vo (W ¥ gy g1

In the sequel, we will usg, -) for the scalar product and™for the matrix product.

2.2. An exponential estimate.In this section we prove an exponential estimate
which will be useful to prove the MDP. This result is very close to Theorem 3.1
in [10] (see also Lemma 4 in [11] and Theorem 3.39 in [12]). However, since the
model is slightly different, we provide a full proof.
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LEMMA 2.1. Assume that Assumptioh-O holds Assume moreoveyr that
v :R? — R is a bounded measurable functioFhen for everye > 0, there exist
a(T) > 0andB(T) > 0 such that

1N
N > Y (xir) —mr ()

i=1

/W(f%vw — frir) du’ > g) < a(T)e N/ BDIVIZ)

(2.10) ]P’T< . g> < a(T)e N/ EDIVIE)

(2.11) ]P’T<

Moreoverone can define recursively

a(0) =2, ; pO) =2, LB — 12
an —Dy
a(T) =4max(1, a(T — 1)), p(T) = maX(& K—ZT)
T
PrRoOOF We shall prove (2.10) by induction. Recall thgt is defined in

Assumption A-0 and that; is defined in (2.5). At time = 0, the result is a direct
application of Hoeffding’s inequality. Assume that (2.10) holds at tireeT — 1
and write

1Y 1Y
N > oY) —mr () = N Y W xir) —my W) +my () —mr ().

i=1 i=1
>'8)

Thus,
pT(
1 N
~ > W) —my ()

i=1

1N
N > Y (xir) —mr ()
i=1

&
o g

+1P>T(|mN,T<w> —mr )] > %)

Denote by&‘l\f theo -field generated byx; ;; 0<i < N,0 <7 < T). Conditionally

on }‘,3_1, the variablesx; r) are i.i.d. Therefore, Hoeffding’s inequality yields

Ne2
]}DT( >%’}‘,$>§2ex ° )

R
which implies

1N
N D V&) —my (W)
i=1

e Neg?
-] <2ex .
” 2) = )

2.12 P -
(212) T( 8lv 2,

1N
N D V&) —my (W)
i=1
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Let us now deal withn i 7 () —m7 (). Apply the following identity:% — % =
- mT(W)y

B/
my.7 () —mr(¥)

_ WM YL Lry@ir) [ Lryfroar-idp
A/N)Y YN LriGir)  JLrlfr-yr—1dp

1
fLT]]-fT 1T— ld//«( ZLTW(-XZ T)_/LTWfT—lT—ldM>

my. ()
+fLT]lfT 17— 1d“< ZLT]].(Xz T) — /LTllfT 17— 1du)

Therefore,

IPT<|mN,T(vf) —mr )| > f)

KTE
S]P’T{ ZLTlﬂ(xz T)—/LTlﬂfT yr—-1dp| > Z }
P 1ZL11( ) /L]lf d Kre
— Xi, — —1|T— > .
T Ni:1 T T rijr-yr-i1apn MY oo
As|ILT¥ 112, < y2IlY 1%, the induction assumption yields
&
IPT<|mN,T(vf) —mr ()] > 5)
Ni2g2
<a(T — Dexpl — r )
513 = ) 168(T — D||ILry 113
& 4+ a(T —1)ex NK%EZ )
a — —
168(T — DIIL7LIZ ¥ 112,

2
< 20(T — Dexp| — Nkfe )
168(T — 1)VTIIWI|50

Inequality (2.10) is proved with the help of (2.12) and (2.13). Finally, (2.13) yields
immediately (2.11). O

3. Themoderate deviation principle.

3.1. The MDP. The moderate deviation principle is first proved for bounded
test functiong)y, ..., ¥r. The proofis simpler and one can focus on the main idea
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which is an induction approach. This technique has been used by Del Moral and
Guionnet [6] for the LDP of the particle filter and by Kiinsch [19] for the CLT. The
induction enables us to spM %, (o, ..., ¥r) into one quantity depending on the
last generation of particlgs; 7)1<i<x and another one depending on all the other
particles. These quantities turn out to be asymptotically independent. We relax the
boundedness assumption over the test functions in Section 4.1.

THEOREM 3.1. Assume that AssumptigaO holds and letyy, ..., ¥r be
bounded measurable functio@he function defined by

Ar,Vr(Wo:1) -XT)}

l7(Xr) = sup {(XT,XT)— >

XTGRT+1
is a good rate function and the family of random variath]Tv(wo;T))Nzl
satisfies the moderate deviation principle with speﬁdand good rate functiohy,
that is,

1
iy L = N b2 ogPr{My(Yo:7) €T}

1
< limsup-—-logP7{M\ (Yo.7) € T'} < —infl 7,
N—>oo DOy r

for ' e BRT+1).

REMARK 3.1. If the covariance matri¥ 7 (yq- ) is invertible, then the rate
function can be expressed as

xr, V7 (Wo:1) - XT)
: .

l7(X7) =

REMARK 3.2 (Particle profile). In the case where all the functions gt
are equal to zerd\/lf,(wo;T) reduces to the particle profilM{,(wT) and the rate
function is given by the usual formula:

2

2Vr(Yr)

Moreover, one can prove under additional assumptions that the asymptotic
varianceVr (y¥r) is uniformly bounded in time:

(3.1) V() <K|lyll2, ~ forallz>1.

This result is based on the property that the filter distribution forgets its initial
condition (see [8], Theorer®.1 and [13], Section 4.2 for the continuous time
model). Equation (3.1) gives an MDP upper bound which does not depend on
time.

IT(x) =
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REMARK 3.3 (Splitting the covariance matrix). Consider the covariance
matrix Vr (¥o: 7). Denote by

AT
pr_1(x) = (xmwm + 2Ly - mTwr)))(x)

and letAir_1 = (Ao, ..., A7—2,1). Then the following identity holds true using
(2.6)—(2.9):

Ar_1,V7_1(Yo:7—2, pT—1) - A7_1)
= (A7, V7 (o:7) - A1) — A202(Yr).

This identity will be useful in the sequel.

(3.2)

3.2. Proof of Theorem3.1L We will proceed by induction. Letig be a
bounded function, thelvtl?v(uo) satisfies the MDP with good rate functibgix) =

-~ since the particlesx; o) are i.i.d. with distributionagdnr. Assume that

2Vo(uo)

attimeT — 1, for every bounded functionsgy, ..., ur_1, the random variables
(M,{,_l(uo;T_l))Nzo satisfy the MDP inR” with good rate functionl7_;.
Consider now bounded functions, ..., ¥ and the family of random variables

M ,{,(WO:T))Nzl- The following lemma is crucial:

LEMMA 3.2. Recall that by the definition qf%v‘T and by(2.4),
VN

Ry = o m (Ur) = mr ()

_ W(Z,N:lLTWT(Xi,T—l) —mT(lﬁT))
by \ YN Lri(xir-1)
and let
. 1 (Y -
Ry=—""— L iT—1) — Lr1(xj7— ,
z bNﬁxT(g YT (xi,7-1) mr(l//r)i; TL(x 7 1>)

where «r is defined in(2.5). Then the random variable®?, and R are
exponentially equivalent up to the spdx%gi Otherwise stated

. 1 ~
limsup—-logP7{|RY, — Ry|>8}=—oc0  forall 6 >0.
N—oo Dy

Proof of Lemma 3.2 is postponed to Appendix A. It is an alternative to the
delta-method used for the CLT in [19].
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PROOF OFTHEOREM 3.1 (Continued). The random variablég, = 0%, +
RI andMl £ QT + RY are exponentially equivalent by Lemma 3.2. Therefore,
it is sufficient by Gartner—Ellis’ theorem ([14], Theorem 2.3.6) to prove that

1 T-1 3
lim —-logEr exp b?, > My (W) + b3 AT My (Ur)
N—o0 bN =0
(Ar, V7 (Yo:7) - A1)
> :

(3.3)

By (3.2),

1 T-1 )
0 logEr (exp{bjzv > MMy ) + bJZVXTMKI(WT)})
N

=0
A, Vr(o:7) - A1)
2
1 Ab%0% (W) A2b2
:b—zlogET<exp[ATbﬁQ]Tv— TN Z’T + TZN N
N

T—1
+b3ATRY + 6% > xtM,’Vom)})
t=0
(Ar—1,Vr_1(¥0: 7—2, pT—1) - A7—1)
2 9

where Ay = o (Y1) — 02(yr). Recall thatF} is the o-field generated by
(xi;;0<i<N,0<t<T).Inthis caseAy andI?,(, are measurable with respect
to F 1. Thus, we get

1 r-1 3
logEr<exp{b/2v > My () + b,%xTMTwT)D

72
N =0
B Ar.Vr(Yo:.7) - AT)
2
1 A2b202 (Yr) _
= 2 togs [ET(exp{ATbJZVQ]{, ARV )
N

k2 b2 ) . ) T-1
x exp{ CEAN +bRATRY +0% 3 szw»H
t=0

(Ar-1,V7_1(Y0:7—2, pT—1) - AT—1)
> )
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r~T1

Conditionally onF , the variablegx; 7) are i.i.d. Therefore,

A2b2
ET<exp<ATb of — M) ‘37,\7_1>

:ET(exp(l/_ (Yrxr,r) —my (Y1) — %NT(WT))‘}}VT%)N

212

b
2N 0'1\1 T(WT)

—ET(1+ N (lﬂT(xl 7) —mn,r(Yr)) —

2b2

T N (Yr(x17) — MN,T(WT))Z + ( N3/2 )‘NT 1)

(1+ET(0(x3b§V/N3/2)|f‘T V.

As yr is bounded,0 (1353, /N¥2) < KA3b3,/N%/?, whereK does not depend
on fromxy 7. Therefore,

)\3 b3 N
1=K 1\?3/];’) < Ep(&rohQh—E0Rok rrn)/2 g -1
(3.4) s
= <1+ K N3/2>

Let us now deal with

)\.2 bZ )\‘2 b2
hay= ( N (0 ) - o%<wr>)).

Recall that
08 7 (Y1) — o2 (Yr)|
=| [Vl - s an

(st s f st o)

< ‘/w%(ﬁ\’T _leT)dM’+2||1pT||ooUwT(f%vr _fTIT)dM’.

As Pr{| [y (fN; — frir)dul > e} < a(T) exp(—Ne?/(B(T) ¥ ]12,)) for every
bounded measurabie by Lemma 2.1, we get

lim supb— logPr(lod + (Y1) —02(Yr)| > 8) =—0c0  ¥8>0.
N—oo Oy
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In particular, I?,(, and I?,(, + (Ar/2)AN are exponentially equivalent up to the

speedy2.. We can now conclude

limsup|—-
N—oo

T-1
IogET exp{bN > My () + bA )»TMN(WT)}
1=0

_ (A7, Vr(o:7) - A1)
2

2,2 T-1
ATbYy 2. AT | .2 ¢ }

@ im sup

N—oo

AN +byAT Ry + by Z MMy ()
t=0

—2 logE7 exp{
N
B (Ar—1,V7_1(¥0:7—2, pr—1) - AT_1)
2

7-1
® Iimsup‘—logET exp{b2 ArRE +b% > 2 MN(Wz)}

N—oo =0

_ (Ar—1,V7r_1(Y0:7—2, pT—1) - A7_1)
2

. 1 ~ _
< limsup| > logEr expb (hr1. MY (Vo .72, pr-1)
N—oo bN
B (Ar—1,Vr_1(Y0:7—2, pr—1) - AT—1)
2

Do

where (a) comes from (3.4), (b) comes from the exponential equivalence,
(c) follows from the definition ofor_1 (see Remark 3.3) and (d) follows from
the induction assumption. Therefore, (3.3) is proved and so is Theorem(3.1.

4. Extensionsof the MDP. In this section we extend the MDP to unbounded
functions and we derive a functional MDP.

4.1. The MDP for unbounded functionsin this section we extend the MDP
to unbounded functions. The main argument in the following proof is the use of a
concentration property for i.i.d. random variables established by Ledoux [20]. For
the sake of simplicity, we establish the MDP MT(wT) instead ofv1 £ ~Wo:).
However, the same kind of results holds MlT (Yo.1).

Let T > 1 and assume the following stronger version of Assumption A-O:
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ASSUMPTIONA-L. There exists a nonnegative const@psuch that for every
t > 1, there exist functionsf, h, for which
Colhy () <ai(x,x') <C hf(x")  V(x,x)eR? xR.

Moreover,

0< Ca_lfhf(x/)b;(x/) du(x" =C, / R (xdu(x')y <o VyeR™.

REMARK 4.1. It is straightforward to check that Assumption A-1 yields
Assumption A-0. Recall thaéi; and b; are defined in (1.3) and (1.4), then
Assumption A-1 implies that

O<Ca_1/ht_bl‘d:u§l;t(xt—l) Sca/l’l;rbzdﬂ,
[ b du “ [ hibidp

Otherwise stated, the particle model coincides with a simple genetic model with
strongly mixinga,-mutations and reguldr,-selections.

0<C,

<ay(x;—1,x) <C

Assumption A-1 enables us to introduce the following class of functions:

& = {w ‘R > R; 38> 0, /deﬁ"/’(x)‘h}r(x)bT(x, udx) < oo},
R

Aot/ (14 22)

%= {w R? > R; VB >0, /deﬁ““x) Wt (Obr (x) p(dx) < oo}.
R

In the case where @ « < 1, one can readily check that % <1and&%

becomes a set of functions with subexponential moments.

THEOREM4.1. Assume that Assumptiénl holds

1. Inthe case wher¢r € €7, thenVy(yr) is finite for everyl > 1 andMK,(wT)
satisfies the MDP with good rate functidp.

2. LetO <« < 1/2 and fixby = N*. In the case whergyr € €7, thenVr (Yr)
is finite for everyT > 1 and MI{,(wT) satisfies the MDP with good rate
functionIr.

REMARK 4.2. Inthe case wherE = 0, the problem reduces to the MDP for
i.i.d. random variables and is well known (see, e.g., [3, 20]).

Cc? h7 )by (x)

@ hzbr dr by Assump-

PROOF OF THEOREM 4.1. Since frir(x) <
tion A-1, there existg > 0 such that

/eﬁh/fﬂf]{\"T du < oo (resp.‘v’ﬂ > 0, /eﬁh/fﬂ“a/(uzw f%T du < OO)
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wheneveer € &r (resp.yr € €%). Therefore,nr (V) = [¥r frir dpn and
[waT\T du are finite. In partlculaqu(x//T) < 0o. Similarly,

Ly ()] = ‘/wm(x, br, y)du‘ < caf WrlhEbr (. y)dp < 0o,

by Assumption A-1 and the functiod7v7(-) is bounded. So iLryr () —
mr (Yr)Lr1(-). Finally, Vi _1(L7y¥7 — m7(¥r)L11) < oo by Theorem 3.1 and
Vr (¥rr) is finite by (2.7). Define

V() = Y1 () Lyrei<e  and ¥i(x) = ¥r(x) — Y7 (x).

By Theorem 3.1M,€(1//;‘) satisfies the MDP with good rate functidia .(x) =
x2/ V,(¥£). Let us now prove that

(4.1) Vé>0 Ll_l)ngOth — IogIP’T(|MN(wT)| >3) =
—)OO N

Condition (4.1) is sufficient to get an MDP fav} (y7) since it asserts that
(M (1//T))c>0 is an exponential approximation (M ~ (). Recall thatM? =

QN + R [see (2.4)]. Therefore, in order to prove (4 1), it is sufficient to prove
that

1
(4.2) V§>0 lim lim —Iog]P’T(|RN(wT)|>6) —00,
C>ON—->x h N
R | ;-
(43) Vv6>0 Ci@OJ@w%IogPT(IQN(W%)I>8)=—

Let us first prove (4.2). As in Theorem 3.1, we first prove tiRdt(y£) and
Ié}(,(&T) are exponentially equivalent. This result is not a direct consequence of
Lemma 3.2 smcq/fT is not bounded. However, smaiér € &7 (resp.€%) implies
thatLTxpT — mT(wT)LTll is bounded, one can prove the exponential equivalence
as in the proof of Lemma 3.2. Now, since limy, Vr_1(L7¥ 5 —m7 (¥ 7)Lrl) =

0, one has

lim lim supb— IogIP’T{|RN(1//T)| >48}=

€0 N oo DY

and (4.2) is proved by the exponential equivalence.
Let us now prove (4.3).
In the case wherér € &, denote by

SIS 12 hE brdp
pe) =€ [hy brdp
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Then 0< O']%’T(&%) < B(c) which is deterministic and satisfies imy, B(c) =0

Since the(x})’s are i.i.d. with Iawf%T conditionally onF,y %, the large deviation
upper bound for i.i.d. random variables yields

|

mY (¥%))

s srio] ot

1 . bys
=IP’HNZ(w%—m’TV<vf%>)‘ 7 \?T 1}
i=1

< 2ex;< NA% <l:7ﬁ8>)

where the former inequality is valid for evely > 1 (see [14], Chapter 2) antl},
is given by

Ay (x) = Sup{Ax —In / e)‘(%_my(l/_/;))fﬁT d,u}

reR
)LZGZ 7.C
= sup{ ix —In 1+M
reR 2

Ao N Tenk N
+ZF/(W%—’"T(W§)) fT|TdM>}-
k=3"
Since—In(1+u) > —u foru > —1, one gets

)\‘2 2 7.C
A*N(x) > Sup[)\‘x — M

LeR 2

!
|A|

—Z o [ Y G0 e,

Letx = ’z/N_‘s and choose. = J%I;f(c), then
bnéd
A*( )
N \/ﬁ
b?,82 cg X |bysIk _, ok
+ * c h+b d ,
wherem?.(¥5) = CZM In particular,

a [hybrdu

2 ¢2 2
ﬂ&(b,va) _ bR8® b

N
JN) Z2ng ot e



MDP FOR PARTICLES 603

wherel (¢, N) is deterministic and lilg_. oo I'(c, N) = 0. Thus,

{ >8} zex‘( 2;3<c) + 2 e N)>

and (4.3) is proved in the case whefre € &7 since lim._, . B(c) =0
In the case wherér € &%, denote by

o fZ s S

$1="7 Ly 1<ynpyy ANd g2= V7 —

i

(4.4) < {

Then

beZ Vi —my ()| > 8

6
mpy (¢l) }

beZ

_.l_

o f Z —m¥ (¢2))

8 }
One can deal with the first part of the right-hand side of the inequality as done
previously in order to obtain
gl

2 2 2
< 2ex;<—bN(8/2) + b—NF( N))

2B(c) 2
with limpy_ o T'(c, N)=0
Let us now deal with the second part of the right-hand side of (4.4). Since
¢2 € € andby = N“, one can prove (cf. [2]) that there exigis> 0 such that

2

- fZ —m¥ (1))
(4.5)

(4.6) lim sup— log NP(1p2(iN) — E(o)| > uv/Nby) < ——,
N—o00 bN M
~ +
whereP(dx) = % andx is distributed according t&. Denote by
T
C%Z ZTZ“ One gets

P{lp2(x) — m¥ (¢2)| > uby~/N|F L1
(4.7) < P{Ig2(rM) — E@2)| > 2 luby /N F 1)
+ P{|m (p2) — E(¢2)| > 27 uby /NI F L 1),
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Sincem]}’(|¢2|) < kE|¢2|, there existsV deterministic such that
P{m} (¢2) — E(¢2)| > 2 tuby~/N|Fy "t} =0  for N = No.
Therefore, there exist§1 deterministic and/> > 0 such that
NP{|g2(x) — mY ($2)| > uby~/N|Fy )

u?b?
gfcexp(— N) for N > Nj.
M>

With condition (4.8) in hand, a minor modification of the proof of Theorem 1
bN\/_Z

in [20] yields
6 }
= —OQ.
Finally, (4.5) and (4.9) yield (4.3) in the case where= €7.
It remains to identify the rate function. In fact, the exponential approximation
procedure yields to the formula

(4.8)

—my (¢2)

N—o0

1
49 vé>0 lim supb2 Iog]P’{

I(x) =supliminf inf I7..(z).

OC—>OO Zx‘g

It is straightforward to check thavr(y;) — Vr(yr) as ¢ — oo by the
dominated convergence theorem. Singe.(x) = xZ/VT(x//;), we easily get
I(x) = x2/Vy(¥r), which concludes the proof.C]

4.2. A functional MDP. We now state a functional version of the MDP.
Consider the space of cadlag functid$: D([0, 1], R) and IetM v 0,1 =D
be defined by

0, ifO<u<1/N,
¥ [Nu]
My r(u) = .
’ VY (xir) —mr(Y)), otherwise,
bN\/__ ZE: )

where[a] denotes the integer part @f We shall establish the MDP fcM . €D.
For the sake of simplicity, we only consider the particle profile mvolvmg the last
generation of particles and we assuthéo be bounded. We will denote b%Cq
the set of absolutely continuous functiogisfrom [0, 1] to R with £(0) =0 [in

particular,f € ACo= f(v) = [ fw)du with f € L(du)].

THEOREM 4.2. Assume that AssumptigkO holds and endovid with the
supremum norm topolog¥hen the functional
LA A1 1
_ dt + ( - — )
Jr(f)=1Jo 262(y) 2 \Vr(¥)  o7r(¥)
+00, otherwise

if feA4Co,
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is a convex good rate function anM%’T satisfies the MDP inD with rate
functionJy.

REMARK 4.3. Note that the contraction principle yields immediately The-
orem 3.1. The unusual form of the rate functign (from the point of view of
Theorem 3.1) might be interpreted as the centering with the true filter density and
the particles dependency with the last generation.

Proof of Theorem 4.2 is postponed to Appendix B.
5. Examples.

A nonlinear observation model with additive noiséet {(X;, Y;);t > 0} be a
family of random variables recursively defined by

Xiv1= fi( X1, &),
Y =g (Xy) + s,

where ;R x R — R (resp.g;:R — R) is a B(R x R)-measurable [resp.
B(R)-measurable] function an@; );>o [resp.(n;):>0] is a family of i.i.d. random
variables.

ProPOSITIONS.1. Assume that, has a bounded and positive density with
respect to the Lebesgue meastinen AssumptioA-0 holds

PROOF Let b be the density of;; w.r.t. the Lebesgue measure. Using that
bi(u,y) =b(y — g(u)), we have

yi <Sup / ay (x, 1) SUPb (v) e (du) = SUPb(v) < 0.

Moreover, for allx e R, L;1(x) = [ a,(x, u)b(y — g:(u))u(du) > 0 sinceb(v) >
0 for all v € R. The proof is complete.

A stochastic volatility model.Let {(X,, Y;);z > 0} be a family of random
variables recursively defined by

Xiy1= fi(Xs, &),
Y, = exp(Xy)n;,

where f; :R — R is a 8(R)-measurable function ang;);>o [resp. (n;)] is a
family of i.i.d. random variables. We refer to [22] for more references and results
on this model.

PROPOSITIONS.2. Assume that; ~ A (0, 1), then AssumptioA-0 holds
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ProoOF Following the arguments used in the proof of Proposition 5.1, it
is sufficient to prove that for alb, sup, |b;(x,y)| < co. This can be achieved

. . 2
by noting that, sinceb,(x,y) = mexp(—ﬁm), we have for ally,
liMmy soobi(x,y) =limy _oob;(x,y)=0. O

REMARK 5.1. In this example, Assumption A-O holds and oneWias R,
inf, b;(x,y) =0.

An example of unbounded function€onsider the previous framework,
slightly modified:

Xip1= fi(Xy) + &,
Y = g(Xy) + s,

in the particular case wherg andg; are bounded continuous asd= 1. Assume,
moreover, that, ~ A (0, 1) and thaty, has a positive continuous density(z)

with respect to the Lebesgue measure. In this case, the probability kernels are
given by

— 2
ar(X;—1, X)) = \/% exp(_ (1 ft—zl(xt—l)) )’

bi(xs, y1) = Mt(yt - gt(xt)),

and Assumption A-1 is trivially satisfied. In particuldr,(x, y) is bounded for
fixed y uniformly in x. Moreover, one can choogg¢ as

ht-*-(x) — Cte_(l/z)x2+Mr\x|’
whereC;, M, > 0 are constants depending @n In this case,

&€ = {WZR—> R;38 >0, /e’gwf(x)‘e_(l/z)szrM’lx‘dx < oo},

&' = {w R—R;VB >0, /eﬁlw(x)lw(lﬂa)e_(l/z)x2+Mf‘xl dx < oo}

In particular,
(Y R—>R;IK >0, [y(x)|<K1+x%)}cg and
Vx> logt(x]) € &;.
Moreover,
[y R—>R;3IK >0,30 € (0,1), [y (x)] < K(L+x"1T20/C0)} - g2,

and one gets interesting examples based on unbounded functions for which the
MDP holds.
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APPENDIX A

PROOF OFLEMMA 3.2. LetKy be defined by

1 N
Ky = I Z (Lryr (xi,7—1) —mr (Yr) L L(x; 7-1)).
i=1

We can express the difference as

RT — RT| = JNKN{ 1 1 ”
NEINIT by UM Lrtar /N el
Thus,
Pr{|RYy — RY| > 8}
(A-1) L/Sby 1 1 8
<Pri{|Kn|> + Pr N - — —_—
VN YiciLrl(xi7-1)/N KT L

Sincemyp_1 (LY —my(Y7)L71) =0, one can apply Lemma 2.1 to the fist part
of the right-hand side,

L/8by } - L35 e
VN 1T ARy 2 B(T) Lo
Let us now deal with the second part of the right-hand side of (A.1),

1 - 5
‘(ﬁ ZLrﬂ(x,-,T_l)) — Kk H(T) oL
i=1

>_
L

1
limsup—- Iog]P’T{|KN| >
N—o0 bN

P N i§:1 TL(X;, T-1 KT
(1 & J3
T NIZ;T“"LT—W” s
1 Js\|1 & N
— +— )| = Lri(xir-1) — 7.
= (KT—l- 7 >‘Ni:1 71(xi7-1) —KT| > T

Denote bys(L) £ %xT(% + %E y~1 and apply Lemma 2.1 to conclude

1N
N > LyL(xi7-1) — KT
i=1

for everyL > 0. Therefore, Lemma 3.2 is proved.]

_ 1
lim supb—2 Iog]P’T{

N—>oo DOy

> e(L)} = —00
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APPENDIX B

PROOF OF THEOREM 4.2. In order to prove the functional MDP, one may
want to follow the lines of proof of Theorem 5.1.2 in [14] and to introduce the

polygonal approximatiom?lj‘/jj of Mﬁj. However, it turns out to be nontrivial to
prove the exponential tightness]&f%j in C[0, 1] for the sup-norm. In particular,

the level sets are useless since one can show thlatJi(m]P’(MZ,T ¢{J <a})=1.

This issue is circumvented with the use of the following lemma whose proof can
be found in [16], Lemma A.1. Denote By the set of all subdivisions db, 1],

that is,

UceU +— U={0=ug<ui<---<u,=<1}.

LEMMA B.1. Let(Xy(u); 0<u <1)ns>0 be a sequence of cadlag processes
defined on(2, F, P). Endow the spac® with the uniform convergence topology
and let (A(N))y=0 be a sequence of positive numbers going to infidigsume
that

() ForeveryU ={0=ug<u1<---<up<1}eU, Xyw),..., XnWn))
satisfies the LDP o™ with speed.(N) and rate function/V .
(i) Foreverys >0,

lim sup lim SUth\/) Iog]P’( sup | Xy(w) — Xn@)| > 6) =—00

¢=>00<u<1 N—oo u<v<u-+e
[conventionYu > 1, Xy (1) £ Xy (D)].
Then(Xy) satisfies the LDP if with speed.(N) and rate function given by
1(f)=supIY((fu), ..., fun))),  feD.

UeU

Moreover the set{l < +oo} is a subset of the spac€[0, 1] of continuous
functions ovef0, 1].

As in Theorem 3.1, we will proceed by induction. Since the functjons
bounded and the first generation of particle is an i.i.d. sample dgmiogulskii’s
theorem yields the functional MDP at tinTe= 0.

STEP1. The finite-dimensional MDHRecall that

1 [Nu]
M}\[f’T(u) = P > (Wxir) —mr ()
i=1
1 [Nul

> (i) —my () +

" byJN = o T W) = mr (),
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andletU ={0=ug<uy <--- <u, <1} € U. We shall first prove that the vector
(M%’T(ui))lfiim satisfies the MDP. Since the map

(X1, .o X)) > (X1, X2 — X1, .y X — Xp—1)

is continuous and one-to-one, it is sufficient by the contraction principle to prove
the MDP for

(M%,T(”i) - M%,T(”i—l))lgifm‘

Moreover, using the exponential equivalence proved in Lemma 3.2, one only has
to prove the MDP for the famﬂYM i) — My T(u,-_l))lsl-sm, where

_ 1
M%’T(u) = Tnon > Wxir) —myr())
i=1

N
L iT-1) — Lr1(xi7-1)
be (Z TV (XiT-1 WlT(lﬁ)i; r1(xi, 7 1)

£ QN(’/‘) + RN(M)-

By the same arguments as in the proof of Theorem 3.1 (conditioning with respect
to 7 to deal withQ%,, using the induction assumption to deal wif}), one can
show that the limit

1
Ay, ..., p) = I|m —|09ETeXp<b12vZ?» My, (ui) — My 7 (ui— 1)))
i=1

is equal to

ArQa, ..., Zwl — ui—)AZof ()

l =1

2
V.
;f‘z”) [Zx (u; — ui_o} :

i=1

Consequently, the MDP is proved fqrM i) — ~%’T(ui_l))lfiim by
Gartner—Ellis’ theorem and one can identify the rate function as

m 2

jU( ey Xm) = -
T X1 x ;2(ui—ui_1)072~(1ﬁ)

Vr—1(Lryr —mr(Y)Lr1) [ix}z
202(Y) Vr (Y2 in

i=1
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Thus, the MDP holds fo('M%’T(Mi))lgigm with good rate function

= (xi — xi-1)?
JY (1, oo X)) =
7 (X 2m) ,.Zzlzw,-—u,-_l)o%(vf)

Vr_1(Lryr —my(y)Lr1)
202(Y) Vr (Y)Kc2

(Xm)?

" i —xi_1)? 1 1 \x2
+ - g
;2@1 wi—1)o2 () <vr<w> o—%w)) 2

STEP2. The negligibility with respect to the sup-norbet us prove now that
Vs >0,

1
lim sup Ilmsup—logIP’T< sup |M () — M}/V’T(u)|>8) —00.

e—=>00<y<1 n—o0 bN u<v<u+e

By Lemma 3.2, it is sufficient to prove th& > 0,

lim sup lim supbi Iog]P’T< sup 0L ) — ok w)| > 6) =—

¢>00<y<1 N>oo by u<v=ute

lim sup lim supb1 Iog]P’T< sup [RY(v) — RE )| > 5) = —00.

8_>00<u<1 N—oo Dy u<v=<u-e

Note that the last limit is directly obtained by the induction assumption. Thus, we
only have to establish the first one,

PT( sup 105w — 05w > 6)

u<v=u-+e

[Nv]
> (Wxir) —my 1))
i=1

[Nu]

(B.1) = > (Wxir) —my,r ()

i=1

:]P’T< sup

u<v=u-+e

> 3bN«/N)

[Nv]

=Er (PT< sup Z (v/(xi,T) _mN,T(W))
USVSUFE [ =[Nyl 41
k

SET<]P’T< max |y (¥ (xir) —my ()

1<k<[Ne]+1|1
i=1

> (SbN«/ﬁu«i{—l))

> Sbyv/N|Fy ™ 1))

where the last inequality follows from the fact tHatv] — [Nu] < [Ne] + 1 and
by the stationarity conditionally otF), -1 By Ottaviani's inequality (see [21],
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Chapter 6, Lemma 6.2),

k
Pl 0 s ) o2
[Nel+1
(B.2) S]P’T< o (W) —my () >6bNﬁ/2|?NT—1)
i=1
[Nel+1
X [1— 1<5<n<a[lz)\(/s]PT< i;rl (¥ (xi,7) —MN,T(W))’

-1
> abNW/2|¢,$—l>} .

Let us first control the lower part of (B.2):

e

[Nel+1

> (W) —my (W)

i=k+1

> abNﬁ/2|$,$—1)

Er (| XN W (i r) — myr ) RIFL Y
82b3 N

<4

2
_4 (INe] =k + Dofye iyt
82b2 N

2
Wi

<16
82b}2\/ N—o00

In particular, there exists a determinisiMg such that for every > No,

[Nel+1
max P T — Shyv/N/2|FI-1) <172,
1RSI T( l_:;l (¥ ir) = my,r ()| > by v/ N /21 Fy )_ /

Inequality (B.1) together with (B.2) yields

PT( sup |Qﬁ<v>—Q§<u>|>6)

u<v=<u-+e

[Nel+1

> (Wxir) —my ()

i=1

1
by~/N

< 2]P’T<

1)
> .
2
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Now,
1 [Nel+1 P
]P’T<b JN Z (Y (xir) —mn,T(Y)) >§)
N i=1
1 [Nel+1 P
sPT<b N > (Wxir) —mr () >Z)
N i=1
)
+1P>T([f] mr(y) — mN,T<w>|>Z).
N
And

[Nel+1

> (Wxir) —my 1))
i=1

. 1
lim supb—2 logPr (

)
—_— > —
n—o0o by by~ N 2)
[Nel+1

> (Wxir) —mr ()
i=1

6)
>
4

)
) — mN,T<w>|>Z) .

< sup( lim supb1 Iog]PT<

n—oo N

by~/N

lim sup Iog Pr (

n—oo

VNby
By the first step of the proof (flnlte dimensional MDP),

[Nel+1 S
Ilrrln_)solip NIOQIP’T( N l; (Y (xi,r) —mr () >Z>
S +< 11 )(5/4)2 B
16ec?(y) \Vr(¥) o2(¥)) 2 >0

By Lemma 3.2, [Ne] L (mr () —my .7 (V) and R} (¢) are exponentially equiva-

lent up to the speel‘zl2 Thus,

[Ne]
VNby

1 k)
imsup IogPT( mr(y) — mN,T<w>|>Z)

n—oo

1 ~
=lim Sup-~ IogIP’T(|R17\;(8)| > %)

n—oo N

2
=- ° — —
1662Vy 1 (L1 () —mr (Y) L1 (1)) e—0
This yields the desired result:

1 T T
lim sup limsup—- IogIP’T( sup Oy () — On(u)| > 8) =—

£ 0<y<1 n—>00 bN u<v<u+e
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STeEP 3. The MDP.By Steps 1 and 2, the assumptions of Lemma B.1 are
satisfied. ThereforeMﬂ,t satisfies the MDP D> endowed with the sup-norm
topology with spee@fv and good rate function

J(f)=supJ¥ (fr), ..., f(um)).

UeU

STEP 4. Identification of the rate functionThe identification of the rate
function is fairly standard and can be done as in the proof of Lemma 5.1.6 in [14]:

J(f)= sgpf%’ (f), ..., f(um))

_ [t Ao dt+f2(l)< 11 )
~Jo 262(y) 2 \Vr(¥y) o2/
The convexity of/r is now straightforward. This ends the proof of Theorem 4.2.
O
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