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MODERATE DEVIATIONS FOR PARTICLE FILTERING

BY R. DOUC, A. GUILLIN AND J. NAJIM

Ecole Polytechnique, Université Paris Dauphine and Ecole Nationale Supérieure
des Télécommunications

Consider the state space model(Xt ,Yt ), where(Xt ) is a Markov chain,
and(Yt ) are the observations. In order to solve the so-called filtering problem,
one has to computeL(Xt |Y1, . . . , Yt ), the law ofXt given the observations
(Y1, . . . , Yt ). The particle filtering method gives an approximation of the
law L(Xt |Y1, . . . , Yt ) by an empirical measure1n

∑n
1 δxi,t . In this paper

we establish the moderate deviation principle for the empirical mean
1
n

∑n
1 ψ(xi,t ) (centered and properly rescaled) when the number of particles

grows to infinity, enhancing the central limit theorem. Several extensions and
examples are also studied.

1. Introduction.

The state space model.Let (Xt ) be a R
d -valued sequence of unobserved

random variables and let(Yt) be theR
m-valued observations,t ≥ 1.

X0 → X1 → ·· · → Xt−1 → Xt → Xt+1 → ·· ·
↓ ↓ ↓ ↓
Y1 Yt−1 Yt Yt+1

We endowR
d (resp.Rm) with its Borel σ -field B(Rd) [resp.B(Rm)] and we

assume that(Xt )t∈N is a Markov chain with initial distributionP(X0 ∈ A) =∫
A a0(x)µ(dx) and transition kernels

P(Xt ∈ A|Xt−1 = xt−1) =
∫
A

at(xt−1, xt ) dµ(xt), t ≥ 1,

whereµ is a reference measure onRd anda0 (resp.at ) is a probability density
(resp. probability kernel density) with respect toµ.

The observations(Yt ) areR
m-valued and independent conditionally on(Xt ).

Formally,Yt depends onXt via the kernel

P(Yt ∈ B|Xt = xt ) =
∫
B

bt (xt , yt ) dν(yt ), t ≥ 1,

whereν is a reference measure onR
m andbt is a probability density kernel with

respect toν. It is worth noting that the general process(Xt , Yt ) is a Markov chain.
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These models, either called state space models or hidden Markov models
(HMM), are widely used in engineering, biology, mathematical finance, geo-
physics, and so on. For an overview, see [18] and the references therein.

We will denote byyt
s the R

m-valued series of observations(ys, . . . , yt ) and
whens ≤ t , by ft|s(xt |ys

1) [or simplyft|s(xt )], the conditional density ofXt given
Y s

1 = ys
1 with respect toµ. In the case wheres = t , ft|t is the filter density; in the

case wheres = t − 1, ft|t−1 is the one-step predictor. These quantities are related
via the following relations: thepropagation(or prediction) step,

ft|t−1(xt |yt−1
1 ) =

∫
ft−1|t−1(x|yt−1

1 )at (x, xt ) dµ(x),(1.1)

and theupdatingstep,

ft|t (xt |yt
1) = ft|t−1(xt |yt−1

1 )bt (xt , yt )∫
ft|t−1(x|yt−1

1 )bt (x, yt )µ(dx)
.(1.2)

Particle filtering. The recursive computation of the filter density is a major
issue. However, apart the very important Gaussian case for which filter density can
be computed recursively with the Kalman–Bucy equations, there is no hope to get a
closed-form formula for the filter densityft|t in the general case. Among the body
of methods available to approximate the filter density (e.g., extended Kalman filter,
approximate grid based filters, etc.), particle filtering (also known as recursive or
sequential Monte Carlo filtering) has recently received a lot of attention. Let us
mention the important contribution of Del Moral et al. [4–7, 12] and the work of
Künsch [18, 19]. The book edited by Doucet, de Freitas and Gordon [17] gives an
overview of the subject and provides extra references.

In the sequel, we will say that(x1, . . . , xN) is a sample fromf dµ if (xi;1≤ i ≤
N) are independent and identically distributed (i.i.d.) with probability distribution
f dµ. We define recursively the approximate filter density:

At time t = 0, (xi,0;1≤ i ≤ N) is a sample froma0dµ and

f N
1|1(x) = b1(x, y1)(1/N)

∑N
i=1 a1(xi,0, x)∫

Rd b1(x, y1)(1/N)
∑N

i=1 a1(xi,0, x)µ(dx)
.

At time t = T , (xi,T ;1≤ i ≤ N) is a sample fromf N
T |T dµ and

f N
T +1|T +1(x) = bT +1(x, yT +1)(1/N)

∑N
i=1 aT +1(xi,T , x)∫

Rd bT +1(x, yT +1)(1/N)
∑N

i=1 aT +1(xi,T , x)µ(dx)
.

As the number of particlesN grows to infinity, the empirical probability
distribution 1

N

∑N
1 δxi,T

converges to the filter probability distributionfT |T dµ.
Among the main results for the particle filter, let us mention the law of large
numbers [12], central limit theorems ([7, 9, 11], see also [19]for a nice exposition)
and the large deviation principle [6].
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Links with genetic algorithms.The approximate particle filter as expressed in
the Introduction,

f N
T |T (x) = bT (x, yT )(1/N)

∑N
i=1 aT (xi,T −1, x)∫

Rd bT (x, yT )(1/N)
∑N

i=1 aT (xi,T −1, x)µ(dx)
,

can be interpreted as a genetic algorithm, a particle system approximation
of the Feynman–Kac formula, as well as a so-called bootstrap filter in the
filtering literature. This is of importance since up to some compatibility with
the assumptions, we will then be able to rely on the important body of methods
developed in the framework of particle systems approximation of the Feynman–
Kac formulae (see [4, 6–13]). Denote by

b̂T (xT −1) =
∫

Rd
bT (x, yT )aT (xT −1, x)µ(dx)(1.3)

and

âT (xT −1, xT ) = bT (xT , yT )aT (xT −1, xT )∫
Rd bT (xT , yT )aT (xT −1, xT )µ(dxT )

.(1.4)

In this case,f N
T |T writes

f N
T |T (x) =

N∑
i=1

b̂T (xi,T −1)∑N
k=1 b̂T (xk,T −1)

âT (xi,T −1, x)

and one can see the propagation and updating steps as a selection step followed by
a mutation step:

(xi,T ,1 ≤ i ≤ N)
selection−→ (x̃i,T ,1 ≤ i ≤ N)

mutation−→ (xi,T +1,1≤ i ≤ N).

The selection step consists in drawing a multinomialM(ω1,T , . . . ,ωN,T ), where

ωi,T = b̂T (xi,T −1)∑N
i=1 b̂T (xi,T −1)

to choose accordingly the new particles(x̃i,T ,1 ≤ i ≤ N)

among the generation(xi,T ,1≤ i ≤ N). At generationT + 1, each particlexi,T +1
is drawn independently according to the distributionâT (x̃i,T , ·) dµ.

The main results. In this paper we establish a moderate deviation principle
(MDP) for the particle filter at timeT conditionally on the observations
(y1, . . . , yT ). Since the observations(yt ) are frozen, this is a quenched result and
we might sometimes drop the observations(yt ) in our notation. In the sequel we
will, therefore, denote byPT the conditional probabilityP(·|Y1 = y1, . . . , YT =
yT ).
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The MDP complements the previously obtained CLTs [7, 9, 11, 19] and LDP
[6] and is established for the rescaled and centered quantity

MT
N = 1

bN

√
N

N∑
i=1

(
ψ0(xi,0) −

∫
ψ0a0dµ, . . . ,ψT (xi,T ) −

∫
ψT fT |T dµ

)
,

where the functions(ψ0, . . . ,ψT ) are bounded and the speedb2
N is such that

lim
N→∞bN = lim

N→∞
√

Nb−1
N = ∞.

The formal definition of an MDP states that there exists a good rate functionIT

such that

− inf
int(�)

IT ≤ lim inf
N→∞

1

b2
N

logPT {MT
N ∈ �}

≤ lim sup
N→∞

1

b2
N

logPT {MT
N ∈ �}

≤ − inf
�̄

IT .

The set� ⊂ R
T +1 is Borel, with interior int(�) and closurē�. The rate function

IT depends on the asymptotic covariance matrix

VT (ψ0 :T ) = (
Vs,t (ψs,ψt )

)
0≤s,t≤T ,

which appears in the central limit theorem (see details in Section 3.1). For
applications of moderate deviations, see [1] or [14].

We then develop various extensions, such as the MDP for unbounded functions
and a functional MDP for the particle density profile,

u 	→ 1

bN

√
N

[Nu]∑
i=1

(
ψ(xi,T ) − mT (ψ)

)
.

In this situation, the rate function turns out to be given by

JT (f ) =
∫ 1

0

ḟ 2(t)

2σ 2
T (ψ)

dt + f 2(1)

2

(
1

VT (ψ)
− 1

σ 2
T (ψ)

)
,

wheref is absolutely continuous withf (0) = 0. The last part of the article is
devoted to examples such as nonlinear observation models with additive noise and
stochastic volatility models.

The paper is organized as follows. In Section 2 we give the notation and we state
the main assumptions. In Section 3 we establish the MDP. Section 4 is devoted to
various extensions of the MDP. Examples are studied in Section 5.
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2. Notation, assumptions and a preliminary estimate.

2.1. Notation and the main assumption.We will endowR
d (resp.Rm) with

its Borel σ -field B(Rd) [resp. B(Rm)]. Let µ be a reference measure on
(Rd,B(Rd)) and denote byL1(µ) the set ofµ-integrable functions. Similarly,
consider the reference measureν defined on(Rm,B(Rm)) and the function space
L1(ν). We will simply write B andL1 whenever the context is clear. As usual,
‖ · ‖1 denotes theL1-norm and‖ · ‖∞ the sup-norm (‖f ‖∞ = supx |f (x)|). Recall
that

P(Xt ∈ A|Xt−1 = xt−1) =
∫
A

at (xt−1, xt ) dµ(xt) and

P(Yt ∈ B|Xt = xt) =
∫
B

bt(xt , yt ) dν(yt ).

In the following, the sequence(bN)N≥1 will denote a sequence of nonnegative real
numbers with the property that

lim
N→∞bN = lim

N→∞

√
N

bN

= ∞.

We shall use the following notation (by conventionf0|0 = a0):

mt(ψ) =
∫

ψft|t dµ and mN,t (ψ) =
∫

ψf N
t|t dµ,(2.1)

Ltψ(x) =
∫

at(x,u)bt(u, yt )ψ(u)µ(du),(2.2)

Mt
N(ψ) = 1

bN

√
N

N∑
i=1

(
ψ(xi,t ) − mt(ψ)

)
(2.3)

� Qt
N(ψ) + Rt

N(ψ),

where

Qt
N(ψ) = 1

bN

√
N

N∑
i=1

(
ψ(xi,t ) − mN,t (ψ)

)
and

(2.4)

Rt
N(ψ) =

√
N

bN

(
mN,t (ψ) − mt(ψ)

)
.

We might sometimes dropψ and simply writeQt
N andRt

N . Denote by

MT
N(ψ0, . . . ,ψT ) = MT

N(ψ0 : T ) �
(
M0

N(ψ0), . . . ,M
T
N(ψT )

) ∈ R
T +1,

λT = (λ0, . . . , λT ) ∈ R
T +1.

Recall thatPT = P(·|Y1 = y1, . . . , YT = yT ). We will denote byET the expecta-
tion with respect toPT . Let us introduce now the main assumption on the model.
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ASSUMPTIONA-0. For everyt ≥ 1,

γt � sup
x

Lt1(x) = sup
x

∫
at(x,u)bt(u, yt )µ(du) < ∞ and

Lt1(x) > 0 ∀x ∈ R
d .

REMARK 2.1. SinceLt1(x) > 0 under Assumption A-0, it is straightforward
that

κt �
∫

Lt1(x) ft−1|t−1(x)µ(dx) > 0.(2.5)

However, Assumption A-0 does not imply infx bt (x, yt ) > 0 as will be illustrated
in the stochastic volatility model (see Section 5) where infx bt (x, yt ) = 0.

REMARK 2.2. A stronger version of Assumption A-0 is used in Section 4.
See also Remark 4.1 for the link with genetic models.

Following [19], we define recursively the following variance-like quantities:

σ 2
t (ψ) =

∫ (
ψ − mt(ψ)

)2
ft|t dµ and

(2.6)
σ 2

N,t (ψ) =
∫ (

ψ − mN,t (ψ)
)2

f N
t|t dµ,

Vt(ψ) = σ 2
t (ψ) + 1

κ2
t

Vt−1
(
Ltψ − mt(ψ)Lt1

)
, V0(ψ) = σ 2

0 (ψ),(2.7)

and the related covariance-like quantities:

Vr,t (ψr,ψt ) = 1

κt

Vr,t−1
(
ψr,Lt

(
ψt − mt(ψt )

))
for r < t,(2.8)

Vt,t (ψt , φt) = 1
2

(
Vt(ψt + φt ) − Vt(ψt ) − Vt(φt )

)
.(2.9)

Of course,Vr,t (ψr,ψt ) = Vt,r(ψt ,ψr). The covariance matrix is then defined by

VT (ψ0, . . . ,ψT ) = VT (ψ0 : T ) = (
Vs,t (ψs,ψt )

)
0≤s,t≤T .

In the sequel, we will use〈·, ·〉 for the scalar product and “·” for the matrix product.

2.2. An exponential estimate.In this section we prove an exponential estimate
which will be useful to prove the MDP. This result is very close to Theorem 3.1
in [10] (see also Lemma 4 in [11] and Theorem 3.39 in [12]). However, since the
model is slightly different, we provide a full proof.
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LEMMA 2.1. Assume that AssumptionA-0 holds. Assume, moreover, that
ψ :Rd → R is a bounded measurable function. Then, for everyε > 0, there exist
α(T ) > 0 andβ(T ) > 0 such that

PT

(∣∣∣∣∣ 1

N

N∑
i=1

ψ(xi,T ) − mT (ψ)

∣∣∣∣∣ > ε

)
≤ α(T )e−Nε2/(β(T )‖ψ‖2∞),(2.10)

PT

(∣∣∣∣
∫

ψ(f N
T |T − fT |T ) dµ

∣∣∣∣ > ε

)
≤ α(T )e−Nε2/(β(T )‖ψ‖2∞).(2.11)

Moreover, one can define recursively

α(0) = 2,

α(T ) = 4 max
(
1, α(T − 1)

)
,

and
β(0) = 2,

β(T ) = max
(

8,
16β(T − 1)γ 2

T

κ2
T

)
.

PROOF. We shall prove (2.10) by induction. Recall thatγt is defined in
Assumption A-0 and thatκt is defined in (2.5). At timet = 0, the result is a direct
application of Hoeffding’s inequality. Assume that (2.10) holds at timet = T − 1
and write

1

N

N∑
i=1

ψ(xi,T ) − mT (ψ) = 1

N

N∑
i=1

ψ(xi,T ) − mN,T (ψ) + mN,T (ψ) − mT (ψ).

Thus,

PT

(∣∣∣∣∣ 1

N

N∑
i=1

ψ(xi,T ) − mT (ψ)

∣∣∣∣∣ > ε

)

≤ PT

(∣∣∣∣∣ 1

N

N∑
i=1

ψ(xi,T ) − mN,T (ψ)

∣∣∣∣∣ >
ε

2

)

+ PT

(
|mN,T (ψ) − mT (ψ)| >

ε

2

)
.

Denote byF T
N theσ -field generated by(xi,t ;0≤ i ≤ N,0≤ t ≤ T ). Conditionally

onF T −1
N , the variables(xi,T ) are i.i.d. Therefore, Hoeffding’s inequality yields

PT

(∣∣∣∣∣ 1

N

N∑
i=1

ψ(xi,T ) − mN,T (ψ)

∣∣∣∣∣ >
ε

2

∣∣∣F T
N

)
≤ 2 exp

(
− Nε2

8‖ψ‖2∞

)
,

which implies

PT

(∣∣∣∣∣ 1

N

N∑
i=1

ψ(xi,T ) − mN,T (ψ)

∣∣∣∣∣ >
ε

2

)
≤ 2 exp

(
− Nε2

8‖ψ‖2∞

)
.(2.12)



594 R. DOUC, A. GUILLIN AND J. NAJIM

Let us now deal withmN,T (ψ) − mT (ψ). Apply the following identity:A
B

− A′
B ′ =

A−A′
B ′ + A

B
(B ′−B

B ′ ) to mN,T (ψ) − mT (ψ),

mN,T (ψ) − mT (ψ)

= (1/N)
∑N

i=1 LT ψ(xi,T )

(1/N)
∑N

i=1 LT 1(xi,T )
−

∫
LT ψfT −1|T −1 dµ∫
LT 1fT −1|T −1 dµ

= 1∫
LT 1fT −1|T −1 dµ

(
1

N

N∑
i=1

LT ψ(xi,T ) −
∫

LT ψfT −1|T −1dµ

)

+ mN,T (ψ)∫
LT 1fT −1|T −1 dµ

(
1

N

N∑
i=1

LT 1(xi,T ) −
∫

LT 1fT −1|T −1dµ

)
.

Therefore,

PT

(
|mN,T (ψ) − mT (ψ)| >

ε

2

)

≤ PT

{∣∣∣∣∣ 1

N

N∑
i=1

LT ψ(xi,T ) −
∫

LT ψfT −1|T −1dµ

∣∣∣∣∣ >
κT ε

4

}

+ PT

{∣∣∣∣∣ 1

N

N∑
i=1

LT 1(xi,T ) −
∫

LT 1fT −1|T −1 dµ

∣∣∣∣∣ >
κT ε

4‖ψ‖∞

}
.

As ‖LT ψ‖2∞ ≤ γ 2
T ‖ψ‖2∞, the induction assumption yields

PT

(
|mN,T (ψ) − mT (ψ)| >

ε

2

)

≤ α(T − 1)exp
(
− Nκ2

T ε2

16β(T − 1)‖LT ψ‖2∞

)
(2.13)

+ α(T − 1)exp
(
− Nκ2

T ε2

16β(T − 1)‖LT 1‖2∞‖ψ‖2∞

)

≤ 2α(T − 1)exp
(
− Nκ2

T ε2

16β(T − 1)γ 2
T ‖ψ‖2∞

)
.

Inequality (2.10) is proved with the help of (2.12) and (2.13). Finally, (2.13) yields
immediately (2.11). �

3. The moderate deviation principle.

3.1. The MDP. The moderate deviation principle is first proved for bounded
test functionsψ0, . . . ,ψT . The proof is simpler and one can focus on the main idea
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which is an induction approach. This technique has been used by Del Moral and
Guionnet [6] for the LDP of the particle filter and by Künsch [19] for the CLT. The
induction enables us to splitMT

N(ψ0, . . . ,ψT ) into one quantity depending on the
last generation of particles(xi,T )1≤i≤N and another one depending on all the other
particles. These quantities turn out to be asymptotically independent. We relax the
boundedness assumption over the test functions in Section 4.1.

THEOREM 3.1. Assume that AssumptionA-0 holds and letψ0, . . . ,ψT be
bounded measurable functions. The function defined by

IT (xT ) = sup
λT ∈RT +1

{
〈xT ,λT 〉 − 〈λT ,VT (ψ0 :T ) · λT 〉

2

}

is a good rate function and the family of random variables(MT
N(ψ0 : T ))N≥1

satisfies the moderate deviation principle with speedb2
N and good rate functionIT ,

that is,

− inf
int(�)

IT ≤ lim inf
N→∞

1

b2
N

logPT {MT
N(ψ0 : T ) ∈ �}

≤ lim sup
N→∞

1

b2
N

logPT {MT
N (ψ0 :T ) ∈ �} ≤ − inf

�̄
IT ,

for � ∈ B(RT +1).

REMARK 3.1. If the covariance matrixVT (ψ0 : T ) is invertible, then the rate
function can be expressed as

IT (xT ) = 〈xT ,V−1
T (ψ0 :T ) · xT 〉

2
.

REMARK 3.2 (Particle profile). In the case where all the functions butψT

are equal to zero,MT
N(ψ0 :T ) reduces to the particle profileMT

N(ψT ) and the rate
function is given by the usual formula:

IT (x) = x2

2VT (ψT )
.

Moreover, one can prove under additional assumptions that the asymptotic
varianceVT (ψT ) is uniformly bounded in time:

Vt(ψ) ≤ K‖ψ‖2∞ for all t ≥ 1.(3.1)

This result is based on the property that the filter distribution forgets its initial
condition (see [8], Theorem3.1 and [13], Section 4.2.3 for the continuous time
model). Equation (3.1) gives an MDP upper bound which does not depend on
time.
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REMARK 3.3 (Splitting the covariance matrix). Consider the covariance
matrix VT (ψ0 : T ). Denote by

ρT −1(x) =
(
λT −1ψT −1 + λT

κT

LT

(
ψT − mT (ψT )

))
(x)

and let λ̃T −1 = (λ0, . . . , λT −2,1). Then the following identity holds true using
(2.6)–(2.9):

〈λ̃T −1,VT −1(ψ0 :T −2, ρT −1) · λ̃T −1〉
(3.2) = 〈λT ,VT (ψ0 :T ) · λT 〉 − λ2

T σ 2
T (ψT ).

This identity will be useful in the sequel.

3.2. Proof of Theorem3.1. We will proceed by induction. Letu0 be a
bounded function, thenM0

N(u0) satisfies the MDP with good rate functionI0(x) =
x2

2V0(u0)
since the particles(xi,0) are i.i.d. with distributiona0 dµ. Assume that

at time T − 1, for every bounded functionsu0, . . . , uT −1, the random variables
(MT −1

N (u0 :T −1))N≥0 satisfy the MDP inR
T with good rate functionIT −1.

Consider now bounded functionsψ0, . . . ,ψT and the family of random variables
(MT

N (ψ0 :T ))N≥1. The following lemma is crucial:

LEMMA 3.2. Recall that by the definition off N
T |T and by(2.4),

RT
N =

√
N

bN

(
mN,T (ψT ) − mT (ψT )

)

=
√

N

bN

(∑N
i=1 LT ψT (xi,T −1)∑N
i=1 LT 1(xi,T −1)

− mT (ψT )

)

and let

R̃T
N = 1

bN

√
NκT

(
N∑

i=1

LT ψT (xi,T −1) − mT (ψT )

N∑
i=1

LT 1(xi,T −1)

)
,

where κT is defined in (2.5). Then the random variablesRT
N and R̃T

N are
exponentially equivalent up to the speedb2

N . Otherwise stated,

lim sup
N→∞

1

b2
N

logPT {|RT
N − R̃T

N | > δ} = −∞ for all δ > 0.

Proof of Lemma 3.2 is postponed to Appendix A. It is an alternative to the
delta-method used for the CLT in [19].
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PROOF OFTHEOREM 3.1 (Continued). The random variablesMT
N = QT

N +
RT

N andM̃T
N � QT

N + R̃T
N are exponentially equivalent by Lemma 3.2. Therefore,

it is sufficient by Gärtner–Ellis’ theorem ([14], Theorem 2.3.6) to prove that

lim
N→∞

1

b2
N

logET exp

{
b2
N

T −1∑
t=0

λtM
t
N(ψt ) + b2

NλT M̃T
N(ψT )

}

(3.3)
= 〈λT ,VT (ψ0 : T ) · λT 〉

2
.

By (3.2),

1

b2
N

logET

(
exp

{
b2
N

T −1∑
t=0

λtM
t
N(ψt ) + b2

NλT M̃T
N(ψT )

})

− 〈λT ,VT (ψ0 :T ) · λT 〉
2

= 1

b2
N

logET

(
exp

{
λT b2

NQT
N − λ2

T b2
Nσ 2

N,T (ψT )

2
+ λ2

T b2
N

2
�N

+ b2
NλT R̃T

N + b2
N

T −1∑
t=0

λtM
t
N(ψt )

})

− 〈λ̃T −1,VT −1(ψ0 : T −2, ρT −1) · λ̃T −1〉
2

,

where�N = σ 2
N,T (ψT ) − σ 2

T (ψT ). Recall thatF T
N is the σ -field generated by

(xi,t ;0≤ i ≤ N,0 ≤ t ≤ T ). In this case,�N andR̃T
N are measurable with respect

to F T −1
N . Thus, we get

1

b2
N

logET

(
exp

{
b2
N

T −1∑
t=0

λtM
t
N(ψt ) + b2

NλT M̃T (ψT )

})

− 〈λT ,VT (ψ0 :T ) · λT 〉
2

= 1

b2
N

logET

[
ET

(
exp

{
λT b2

NQT
N − λ2

T b2
Nσ 2

N,T (ψT )

2

}∣∣∣F T −1
N

)

× exp

{
λ2

T b2
N

2
�N + b2

NλT R̃T
N + b2

N

T −1∑
t=0

λtM
t
N(ψt )

}]

− 〈λ̃T −1,VT −1(ψ0 :T −2, ρT −1) · λ̃T −1〉
2

.
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Conditionally onF T −1
N , the variables(xi,T ) are i.i.d. Therefore,

ET

(
exp

(
λT b2

NQT
N − λ2

T b2
Nσ 2

N,T (ψT )

2

)∣∣∣F T −1
N

)

= ET

(
exp

(
λT bN√

N

(
ψT (x1,T ) − mN,T (ψT )

) − λ2
T b2

Nσ 2
N,T (ψT )

2N

)∣∣∣F T −1
N

)N

= ET

(
1+ λT bN√

N

(
ψT (x1,T ) − mN,T (ψT )

) − λ2
T b2

N

2N
σ 2

N,T (ψT )

+ λ2
T b2

N

2N

(
ψT (x1,T ) − mN,T (ψT )

)2 + O

(
λ3

T b3
N

N3/2

)∣∣∣F T −1
N

)N

= (
1+ ET

(
O(λ3

T b3
N/N3/2)|F T −1

N

))N
.

As ψT is bounded,O(λ3
T b3

N/N3/2) ≤ Kλ3
T b3

N/N3/2, whereK does not depend
on fromx1,T . Therefore,

(
1− K

λ3
T b3

N

N3/2

)N

≤ ET

(
e
λT b2

NQT
N−λ2

T b2
Nσ2

N,T (ψT )/2|F T −1
N

)
(3.4)

≤
(

1+ K
λ3

T b3
N

N3/2

)N

.

Let us now deal with

λ2
T b2

N

2
�N =

(
λ2

T b2
N

2

(
σ 2

N,T (ψT ) − σ 2
T (ψT )

))
.

Recall that

|σ 2
N,T (ψT ) − σ 2

T (ψT )|

=
∣∣∣∣
∫

ψ2
T (f N

T |T − fT |T ) dµ

−
(∫

ψT (f N
T |T + fT |T ) dµ

)(∫
ψT (f N

T |T − fT |T ) dµ

)∣∣∣∣
≤

∣∣∣∣
∫

ψ2
T (f N

T |T − fT |T ) dµ

∣∣∣∣ + 2‖ψT ‖∞
∣∣∣∣
∫

ψT (f N
T |T − fT |T ) dµ

∣∣∣∣.
As PT {| ∫ ψ(f N

T |T − fT |T ) dµ| > ε} ≤ α(T )exp(−Nε2/(β(T )‖ψ‖2∞)) for every
bounded measurableψ by Lemma 2.1, we get

lim sup
N→∞

1

b2
N

logPT

(|σ 2
N,T (ψT ) − σ 2

T (ψT )| > δ
) = −∞ ∀ δ > 0.
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In particular, R̃T
N and R̃T

N + (λT /2)�N are exponentially equivalent up to the
speedb2

N . We can now conclude

lim sup
N→∞

∣∣∣∣∣ 1

b2
N

logET exp

{
b2
N

T −1∑
t=0

λtM
t
N(ψt ) + b2

NλT M̃T
N(ψT )

}

− 〈λT ,VT (ψ0 :T ) · λT 〉
2

∣∣∣∣∣
(a)= lim sup

N→∞

∣∣∣∣∣ 1

b2
N

logET exp

{
λ2

T b2
N

2
�N + b2

NλT R̃T
N + b2

N

T −1∑
t=0

λtM
t
N(ψt )

}

− 〈λ̃T −1,VT −1(ψ0 : T −2, ρT −1) · λ̃T −1〉
2

∣∣∣∣∣
(b)= lim sup

N→∞

∣∣∣∣ 1

b2
N

logET exp

{
b2
NλT R̃T

N + b2
N

T −1∑
t=0

λtM
t
N(ψt )

}

− 〈λ̃T −1,VT −1(ψ0 :T −2, ρT −1) · λ̃T −1〉
2

∣∣∣∣
(c)= lim sup

N→∞

∣∣∣∣ 1

b2
N

logET exp{b2
N 〈λ̃T −1,MT −1

N (ψ0 :T −2, ρT −1)〉}

− 〈λ̃T −1,VT −1(ψ0 :T −2, ρT −1) · λ̃T −1〉
2

∣∣∣∣
(d)= 0,

where (a) comes from (3.4), (b) comes from the exponential equivalence,
(c) follows from the definition ofρT −1 (see Remark 3.3) and (d) follows from
the induction assumption. Therefore, (3.3) is proved and so is Theorem 3.1.�

4. Extensions of the MDP. In this section we extend the MDP to unbounded
functions and we derive a functional MDP.

4.1. The MDP for unbounded functions.In this section we extend the MDP
to unbounded functions. The main argument in the following proof is the use of a
concentration property for i.i.d. random variables established by Ledoux [20]. For
the sake of simplicity, we establish the MDP forMT

N(ψT ) instead ofMT
N (ψ0 :T ).

However, the same kind of results holds forMT
N(ψ0:T ).

Let T ≥ 1 and assume the following stronger version of Assumption A-0:



600 R. DOUC, A. GUILLIN AND J. NAJIM

ASSUMPTIONA-1. There exists a nonnegative constantCa such that for every
t ≥ 1, there exist functionsh+

t , h−
t for which

C−1
a h−

t (x′) ≤ at(x, x′) ≤ Ca h+
t (x′) ∀ (x, x′) ∈ R

d × R.

Moreover,

0 < C−1
a

∫
h−

t (x′)bt (x
′) dµ(x′) ≤ Ca

∫
h+

t (x′)bt (x
′) dµ(x′) < ∞ ∀y ∈ R

m.

REMARK 4.1. It is straightforward to check that Assumption A-1 yields
Assumption A-0. Recall that̂at and b̂t are defined in (1.3) and (1.4), then
Assumption A-1 implies that

0 < C−1
a

∫
h−

t bt dµ ≤ b̂t (xt−1) ≤ Ca

∫
h+

t bt dµ,

0 < C−2
a

h−
t (xt )bt (xt )∫

h+
t bt dµ

≤ ât (xt−1, xt ) ≤ C2
a

h+
t (xt )bt (xt )∫

h−
t bt dµ

.

Otherwise stated, the particle model coincides with a simple genetic model with
strongly mixingât -mutations and regular̂bt -selections.

Assumption A-1 enables us to introduce the following class of functions:

ET =
{
ψ :Rd → R; ∃β > 0,

∫
Rd

eβ|ψ(x)|h+
T (x)bT (x, y)µ(dx) < ∞

}
,

Eα
T =

{
ψ :Rd → R; ∀β > 0,

∫
Rd

eβ|ψ(x)|4α/(1+2α)

h+
T (x)bT (x)µ(dx) < ∞

}
.

In the case where 0< α < 1
2, one can readily check that 0< 4α

1+2α
< 1 andEα

T

becomes a set of functions with subexponential moments.

THEOREM 4.1. Assume that AssumptionA-1 holds.

1. In the case whereψT ∈ ET , thenVT (ψT ) is finite for everyT ≥ 1 andMT
N(ψT )

satisfies the MDP with good rate functionIT .
2. Let 0 < α < 1/2 and fixbN = Nα. In the case whereψT ∈ Eα

T , thenVT (ψT )

is finite for everyT ≥ 1 and MT
N(ψT ) satisfies the MDP with good rate

functionIT .

REMARK 4.2. In the case whereT = 0, the problem reduces to the MDP for
i.i.d. random variables and is well known (see, e.g., [3, 20]).

PROOF OF THEOREM 4.1. Since fT |T (x) ≤ C2
a

h+
T (x)bT (x)∫
h−

T bT dµ
by Assump-

tion A-1, there existsβ > 0 such that∫
eβ|ψT |f N

T |T dµ < ∞
(

resp.∀β > 0,

∫
eβ|ψT |4α/(1+2α)

f N
T |T dµ < ∞

)
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wheneverψT ∈ ET (resp.ψT ∈ Eα
T ). Therefore,mT (ψT ) = ∫

ψT fT |T dµ and∫
ψ2

T fT |T dµ are finite. In particular,σ 2
T (ψT ) < ∞. Similarly,

|LT ψT (x)| =
∣∣∣∣
∫

ψT aT (x, ·)bT (·, y) dµ

∣∣∣∣ ≤ Ca

∫
|ψT |h+

T bT (·, y) dµ < ∞,

by Assumption A-1 and the functionLT ψT (·) is bounded. So isLT ψT (·) −
mT (ψT )LT 1(·). Finally, VT −1(LT ψT − mT (ψT )LT 1) < ∞ by Theorem 3.1 and
VT (ψT ) is finite by (2.7). Define

ψc
T (x) = ψT (x)1|ψT (x)|<c and ψ̄c

T (x) = ψT (x) − ψc
T (x).

By Theorem 3.1,MT
N(ψc

T ) satisfies the MDP with good rate functionIT,c(x) =
x2/Vt (ψ

c
T ). Let us now prove that

∀ δ > 0 lim
c→∞ lim

N→∞
1

b2
N

logPT

(|MT
N(ψ̄c

T )| > δ
) = −∞.(4.1)

Condition (4.1) is sufficient to get an MDP forMT
N(ψT ) since it asserts that

(MT
N(ψc

T ))c>0 is an exponential approximation ofMT
N(ψT ). Recall thatMT

N =
QT

N + RT
N [see (2.4)]. Therefore, in order to prove (4.1), it is sufficient to prove

that

∀ δ > 0 lim
c→∞ lim

N→∞
1

b2
N

logPT

(|RT
N(ψ̄c

T )| > δ
) = −∞,(4.2)

∀ δ > 0 lim
c→∞ lim

N→∞
1

b2
N

logPT

(|QT
N(ψ̄c

T )| > δ
) = −∞.(4.3)

Let us first prove (4.2). As in Theorem 3.1, we first prove thatRT
N(ψ̄c

T ) and
R̃T

N(ψ̄c
T ) are exponentially equivalent. This result is not a direct consequence of

Lemma 3.2 sincēψc
T is not bounded. However, sincēψc

T ∈ ET (resp.Eα
T ) implies

thatLT ψ̄c
T − mT (ψ̄c

T )LT 1 is bounded, one can prove the exponential equivalence
as in the proof of Lemma 3.2. Now, since limc→∞ VT −1(LT ψ̄c

T −mT (ψ̄c
T )LT 1) =

0, one has

lim
c→∞ lim sup

N→∞
1

b2
N

logPT {|R̃T
N(ψ̄c

T )| > δ} = −∞,

and (4.2) is proved by the exponential equivalence.
Let us now prove (4.3).
In the case whereψT ∈ ET , denote by

β(c) � C2
a

∫ |ψ̄c
T |2 h+

T bT dµ∫
h−

T bT dµ
.
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Then 0< σ 2
N,T (ψ̄c

T ) ≤ β(c) which is deterministic and satisfies limc→∞ β(c) = 0.

Since the(xi
T )’s are i.i.d. with lawf N

T |T conditionally onF T −1
N , the large deviation

upper bound for i.i.d. random variables yields

P

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
ψ̄c

T − mN
T (ψ̄c

T )
)∣∣∣∣∣ > δ|F T −1

N

}

= P

{∣∣∣∣∣ 1

N

N∑
i=1

(
ψ̄c

T − mN
T (ψ̄c

T )
)∣∣∣∣∣ >

bNδ√
N

∣∣∣F T −1
N

}

≤ 2 exp
(
−N�∗

N

(
bNδ√

N

))
,

where the former inequality is valid for everyN ≥ 1 (see [14], Chapter 2) and�∗
N

is given by

�∗
N(x) = sup

λ∈R

{
λx − ln

∫
eλ(ψ̄c

T −mN
T (ψ̄c

T ))f N
T |T dµ

}

= sup
λ∈R

{
λx − ln

(
1+ λ2σ 2

N,T (ψ̄c
T )

2

+
∞∑

k=3

λk

k!
∫ (

ψ̄c
T − mN

T (ψ̄c
T )

)k
f N

T |T dµ

)}
.

Since− ln(1+ u) ≥ −u for u > −1, one gets

�∗
N(x) ≥ sup

λ∈R

{
λx − λ2σ 2

N,T (ψ̄c
T )

2

−
∞∑

k=3

|λ|k
k!

∫ (|ψ̄c
T | + |mN

T (ψ̄c
T )|)kf N

T |T dµ

}
.

Let x = bNδ√
N

and chooseλ = bNδ√
Nβ(c)

, then

�∗
N

(
bNδ√

N

)

≥ b2
Nδ2

2Nβ(c)
− C2

a∫
h−

T bT dµ

∞∑
k=3

|bNδ|k
|√Nβ(c)|kk!

∫ (|ψ̄c
T | + m∗

T (ψ̄c
T )

)k
h+

T bT dµ,

wherem∗
T (ψ̄c

T ) = C2
a

∫
ψ̄c

T h+
T bT dµ∫

h−
T bT dµ

. In particular,

�∗
N

(
bNδ√

N

)
≥ b2

Nδ2

2Nβ(c)
− b2

N

2N
�(c,N),
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where�(c,N) is deterministic and limN→∞ �(c,N) = 0. Thus,

P

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
ψ̄c

T − mN
T (ψ̄c

T )
)∣∣∣∣∣ > δ

}
≤ 2 exp

(
− b2

Nδ2

2β(c)
+ b2

N

2
�(c,N)

)

and (4.3) is proved in the case whereψT ∈ ET since limc→∞ β(c) = 0.
In the case whereψT ∈ Eα

T , denote by

φ1 = ψ̄c
T 1{|ψc

T |≤√
n/bN } and φ2 = ψ̄c

T − φ1.

Then

P

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
ψ̄c

T − mN
T (ψ̄c

T )
)∣∣∣∣∣ > δ

}

≤ P

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
φ1 − mT

N(φ1)
)∣∣∣∣∣ >

δ

2

}
(4.4)

+ P

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
φ2 − mN

T (φ2)
)∣∣∣∣∣ >

δ

2

}
.

One can deal with the first part of the right-hand side of the inequality as done
previously in order to obtain

P

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
φ1 − mN

T (φ1)
)∣∣∣∣∣ >

δ

2

}

(4.5)

≤ 2 exp
(
−b2

N(δ/2)2

2β(c)
+ b2

N

2
�(c,N)

)
,

with limN→∞ �(c,N) = 0.
Let us now deal with the second part of the right-hand side of (4.4). Since

φ2 ∈ Eα
T andbN = Nα, one can prove (cf. [2]) that there existsM > 0 such that

lim sup
N→∞

1

b2
N

logN P̃
(|φ2(x̃

N
i ) − Ẽ(φ2)| > u

√
NbN

) ≤ −u2

M
,(4.6)

whereP̃(dx) = h+
T (x)bT (x)µ(dx)∫

h+
T bT dµ

and x̃N
i is distributed according tõP. Denote by

κ = C2
a

∫
h+

T bT dµ∫
h−

T bT dµ
. One gets

P
{|φ2(x

N
i ) − mN

T (φ2)| > ubN

√
N |F T −1

N

}
≤ P

{|φ2(x
N
i ) − Ẽ(φ2)| > 2−1ubN

√
N |F T −1

N

}
(4.7)

+ P
{|mN

T (φ2) − Ẽ(φ2)| > 2−1ubN

√
N |F T −1

N

}
.
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SincemN
T (|φ2|) ≤ κẼ|φ2|, there existsN0 deterministic such that

P
{|mN

T (φ2) − Ẽ(φ2)| > 2−1ubN

√
N |F T −1

N

} = 0 for N ≥ N0.

Therefore, there existsN1 deterministic andM2 > 0 such that

NP
{|φ2(x

N
i ) − mN

T (φ2)| > ubN

√
N |F T −1

N

}
(4.8)

≤ κ exp
(
−u2b2

N

M2

)
for N ≥ N1.

With condition (4.8) in hand, a minor modification of the proof of Theorem 1
in [20] yields

∀ δ > 0 lim sup
N→∞

1

b2
N

logP

{∣∣∣∣∣ 1

bN

√
N

N∑
i=1

(
φ2 − mN

T (φ2)
)∣∣∣∣∣ >

δ

2

}
= −∞.(4.9)

Finally, (4.5) and (4.9) yield (4.3) in the case whereψ ∈ Eα
T .

It remains to identify the rate function. In fact, the exponential approximation
procedure yields to the formula

Ī (x) = sup
ε>0

lim inf
c→∞ inf|z−x|≤ε

IT,c(z).

It is straightforward to check thatVT (ψc
T ) → VT (ψT ) as c → ∞ by the

dominated convergence theorem. SinceIT,c(x) = x2/VT (ψc
T ), we easily get

Ī (x) = x2/VT (ψT ), which concludes the proof.�

4.2. A functional MDP. We now state a functional version of the MDP.
Consider the space of càdlàg functionsD � D([0,1],R) and letMψ

N,T : [0,1] → D

be defined by

M
ψ
N,T (u) =




0, if 0 ≤ u < 1/N ,

1

bN

√
N

[Nu]∑
i=1

(
ψ(xi,T ) − mT (ψ)

)
, otherwise,

where[a] denotes the integer part ofa. We shall establish the MDP forMψ
N,t ∈ D.

For the sake of simplicity, we only consider the particle profile involving the last
generation of particles and we assumeψ to be bounded. We will denote byAC0
the set of absolutely continuous functionsf from [0,1] to R with f (0) = 0 [in
particular,f ∈ AC0 ⇒ f (v)

a.e.= ∫ v
0 ḟ (u) du with ḟ ∈ L1(du)].

THEOREM 4.2. Assume that AssumptionA-0 holds and endowD with the
supremum norm topology. Then the functional

JT (f ) =



∫ 1

0

ḟ 2(t)

2σ 2
T (ψ)

dt + f 2(1)

2

(
1

VT (ψ)
− 1

σ 2
T (ψ)

)
, if f ∈ AC0,

+∞, otherwise,
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is a convex good rate function andMψ
N,T satisfies the MDP inD with rate

functionJT .

REMARK 4.3. Note that the contraction principle yields immediately The-
orem 3.1. The unusual form of the rate functionJT (from the point of view of
Theorem 3.1) might be interpreted as the centering with the true filter density and
the particles dependency with the last generation.

Proof of Theorem 4.2 is postponed to Appendix B.

5. Examples.

A nonlinear observation model with additive noise.Let {(Xt , Yt ); t ≥ 0} be a
family of random variables recursively defined by

Xt+1 = ft(Xt , εt ),

Yt = gt (Xt ) + ηt ,

where ft :R × R → R (resp. gt :R → R) is a B(R × R)-measurable [resp.
B(R)-measurable] function and(εt )t≥0 [resp.(ηt )t≥0] is a family of i.i.d. random
variables.

PROPOSITION 5.1. Assume thatηt has a bounded and positive density with
respect to the Lebesgue measure, then AssumptionA-0 holds.

PROOF. Let b be the density ofηt w.r.t. the Lebesgue measure. Using that
bt(u, y) = b(y − gt (u)), we have

γt ≤ sup
x

∫
at(x,u)sup

v
b(v)µ(du) = sup

v
b(v) < ∞.

Moreover, for allx ∈ R, Lt1(x) = ∫
at (x,u)b(y − gt (u))µ(du) > 0 sinceb(v) >

0 for all v ∈ R. The proof is complete.�

A stochastic volatility model.Let {(Xt , Yt ); t ≥ 0} be a family of random
variables recursively defined by

Xt+1 = ft (Xt , εt ),

Yt = exp(Xt )ηt ,

whereft :R → R is a B(R)-measurable function and(εt )t≥0 [resp. (ηt )] is a
family of i.i.d. random variables. We refer to [22] for more references and results
on this model.

PROPOSITION5.2. Assume thatηt ∼ N (0,1), then AssumptionA-0 holds.
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PROOF. Following the arguments used in the proof of Proposition 5.1, it
is sufficient to prove that for ally, supx |bt (x, y)| < ∞. This can be achieved

by noting that, sincebt (x, y) = 1√
2π exp(x)

exp(− y2

2 exp(2x)
), we have for ally,

limx→∞ bt(x, y) = limx→−∞ bt(x, y) = 0. �

REMARK 5.1. In this example, Assumption A-0 holds and one has∀y ∈ R
m,

infx bt (x, y) = 0.

An example of unbounded functions.Consider the previous framework,
slightly modified:

Xt+1 = ft (Xt ) + εt ,

Yt = gt (Xt ) + ηt ,

in the particular case whereft andgt are bounded continuous andσt = 1. Assume,
moreover, thatεt ∼ N (0,1) and thatηt has a positive continuous densityut(z)

with respect to the Lebesgue measure. In this case, the probability kernels are
given by

at (xt−1, xt ) = 1√
2π

exp
(
−(xt − ft−1(xt−1))

2

2

)
,

bt (xt , yt ) = ut

(
yt − gt (xt )

)
,

and Assumption A-1 is trivially satisfied. In particular,bt (x, y) is bounded for
fixedy uniformly in x. Moreover, one can chooseh+

t as

h+
t (x) = Cte

−(1/2)x2+Mt |x|,

whereCt,Mt > 0 are constants depending onft . In this case,

E t =
{
ψ :R → R; ∃β > 0,

∫
eβ|ψ(x)|e−(1/2)x2+Mt |x| dx < ∞

}
,

Eα
t =

{
ψ :R → R; ∀β > 0,

∫
eβ|ψ(x)|4α/(1+2α)

e−(1/2)x2+Mt |x| dx < ∞
}
.

In particular,

{ψ :R → R; ∃K > 0, |ψ(x)| ≤ K(1+ x2)} ⊂ E t and

ψ :x 	→ log+(|x|) ∈ E t .

Moreover,{
ψ :R → R; ∃K > 0,∃ θ ∈ (0,1), |ψ(x)| ≤ K

(
1+ xθ(1+2α)/(2α)

)} ⊂ Eα
t ,

and one gets interesting examples based on unbounded functions for which the
MDP holds.
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APPENDIX A

PROOF OFLEMMA 3.2. LetKN be defined by

KN = 1

N

N∑
i=1

(
LT ψT (xi,T −1) − mT (ψT )LT 1(xi,T −1)

)
.

We can express the difference as

|RT
N − R̃T

N | =
∣∣∣∣
√

NKN

bN

{
1∑N

i=1 LT 1(xi,T −1)/N
− 1

κT

}∣∣∣∣.
Thus,

PT {|RT
N − R̃T

N | > δ}
(A.1)

≤ PT

{
|KN | > L

√
δbN√
N

}
+ PT

{∣∣∣∣ 1∑N
i=1 LT 1(xi,T −1)/N

− 1

κT

∣∣∣∣ >

√
δ

L

}
.

SincemT −1(LT ψT −mT (ψT )LT 1) = 0, one can apply Lemma 2.1 to the fist part
of the right-hand side,

lim sup
N→∞

1

b2
N

logPT

{
|KN | > L

√
δbN√
N

}
≤ − L2δ

4γ 2
T ‖ψT ‖2∞β(T )

−→
L→∞−∞.

Let us now deal with the second part of the right-hand side of (A.1),∣∣∣∣∣
(

1

N

N∑
i=1

LT 1(xi,T −1)

)−1

− κ−1(T )

∣∣∣∣∣ >

√
δ

L

⇐⇒ 1

κT

∣∣∣∣∣ 1

N

N∑
i=1

LT 1(xi,T −1) − κT

∣∣∣∣∣
−

√
δ

L

(
1

N

N∑
i=1

LT 1(xi,T −1) − κT

)
>

√
δ

L
κT

�⇒
(

1

κT

+
√

δ

L

)∣∣∣∣∣ 1

N

N∑
i=1

LT 1(xi,T −1) − κT

∣∣∣∣∣ >

√
δ

L
κT .

Denote byε(L) �
√

δ
L

κT ( 1
κT

+
√

δ
L

)−1 and apply Lemma 2.1 to conclude

lim sup
N→∞

1

b2
N

logPT

{∣∣∣∣∣ 1

N

N∑
i=1

LN1(xi,T −1) − κT

∣∣∣∣∣ > ε(L)

}
= −∞

for everyL > 0. Therefore, Lemma 3.2 is proved.�
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APPENDIX B

PROOF OF THEOREM 4.2. In order to prove the functional MDP, one may
want to follow the lines of proof of Theorem 5.1.2 in [14] and to introduce the
polygonal approximationM̆ψ

N,T of M
ψ
N,T . However, it turns out to be nontrivial to

prove the exponential tightness ofM̆
ψ
N,T in C[0,1] for the sup-norm. In particular,

the level sets are useless since one can show that limN→∞ P(M̆
ψ
N,T /∈ {J ≤ a}) = 1.

This issue is circumvented with the use of the following lemma whose proof can
be found in [16], Lemma A.1. Denote byU the set of all subdivisions of[0,1],
that is,

U ∈ U ⇐⇒ U = {0 = u0 < u1 < · · · < um ≤ 1}.
LEMMA B.1. Let (XN(u); 0≤ u ≤ 1)N≥0 be a sequence of càdlàg processes

defined on(�,F,P). Endow the spaceD with the uniform convergence topology
and let (λ(N))N≥0 be a sequence of positive numbers going to infinity. Assume
that:

(i) For everyU = {0= u0 < u1 < · · · < um ≤ 1} ∈ U, (XN(u1), . . . ,XN(um))

satisfies the LDP onRm with speedλ(N) and rate functionIU .
(ii) For everyδ > 0,

lim
ε→0

sup
0≤u≤1

lim sup
N→∞

1

λ(N)
logP

(
sup

u≤v≤u+ε
|XN(v) − XN(u)| > δ

)
= −∞

[convention: ∀u > 1, XN(u) � XN(1)].

Then(XN) satisfies the LDP inD with speedλ(N) and rate function given by

I (f ) = sup
U∈U

IU ((
f (u1), . . . , f (um)

))
, f ∈ D.

Moreover, the set{I < +∞} is a subset of the spaceC[0,1] of continuous
functions over[0,1].

As in Theorem 3.1, we will proceed by induction. Since the functionψ is
bounded and the first generation of particle is an i.i.d. sample froma0, Mogulskii’s
theorem yields the functional MDP at timeT = 0.

STEP 1. The finite-dimensional MDP. Recall that

M
ψ
N,T (u) = 1

bN

√
N

[Nu]∑
i=1

(
ψ(xi,T ) − mT (ψ)

)

= 1

bN

√
N

[Nu]∑
i=1

(
ψ(xi,T ) − mN,T (ψ)

) + [Nu]
bN

√
N

(
mN,T (ψ) − mT (ψ)

)
,
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and letU = {0 = u0 < u1 < · · · < um ≤ 1} ∈ U. We shall first prove that the vector
(M

ψ
N,T (ui))1≤i≤m satisfies the MDP. Since the map

(x1, . . . , xm) 	→ (x1, x2 − x1, . . . , xm − xm−1)

is continuous and one-to-one, it is sufficient by the contraction principle to prove
the MDP for (

M
ψ
N,T (ui) − M

ψ
N,T (ui−1)

)
1≤i≤m.

Moreover, using the exponential equivalence proved in Lemma 3.2, one only has
to prove the MDP for the family(M̃ψ

N,T (ui) − M̃
ψ
N,T (ui−1))1≤i≤m, where

M̃
ψ
N,T (u) = 1√

NbN

[Nu]∑
i=1

(
ψ(xi,T ) − mN,T (ψ)

)

+ u√
NbNκ2

T

(
N∑

i=1

LT ψ(xi,T −1) − mT (ψ)

N∑
i=1

LT 1(xi,T −1)

)

� QT
N(u) + R̃T

N (u).

By the same arguments as in the proof of Theorem 3.1 (conditioning with respect
to F T

N to deal withQT
N , using the induction assumption to deal withR̃T

N ), one can
show that the limit

�(λ1, . . . , λm) = lim
N→∞

1

b2
N

logET exp

(
b2
N

m∑
i=1

λi

(
M̃N,T (ui) − M̃N,T (ui−1)

))

is equal to

�T (λ1, . . . , λm) = 1

2

m∑
i=1

(ui − ui−1)λ
2
i σ

2
T (ψ)

+ VT (ψ)

2κ2
T

[
m∑

i=1

λi(ui − ui−1)

]2

.

Consequently, the MDP is proved for(M̃ψ
N,T (ui) − M̃

ψ
N,T (ui−1))1≤i≤m by

Gärtner–Ellis’ theorem and one can identify the rate function as

J̌ U
T (x1, . . . , xm) =

m∑
i=1

x2
i

2(ui − ui−1)σ
2
T (ψ)

+ VT −1(LT ψT − mT (ψ)LT 1)

2σ 2
T (ψ)VT (ψ)κ2

T

[
m∑

i=1

xi

]2

.
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Thus, the MDP holds for(Mψ
N,T (ui))1≤i≤m with good rate function

JU
T (x1, . . . , xm) =

m∑
i=1

(xi − xi−1)
2

2(ui − ui−1)σ
2
T (ψ)

+ VT −1(LT ψT − mT (ψ)LT 1)

2σ 2
T (ψ)VT (ψ)κ2

T

(xm)2

=
m∑

i=1

(xi − xi−1)
2

2(ui − ui−1)σ
2
T (ψ)

+
(

1

VT (ψ)
− 1

σ 2
T (ψ)

)
x2
m

2
.

STEP 2. The negligibility with respect to the sup-norm.Let us prove now that
∀ δ > 0,

lim
ε→0

sup
0≤u≤1

lim sup
n→∞

1

b2
N

logPT

(
sup

u≤v≤u+ε
|Mψ

N,T (v) − M
ψ
N,T (u)| > δ

)
= −∞.

By Lemma 3.2, it is sufficient to prove that∀ δ > 0,

lim
ε→0

sup
0≤u≤1

lim sup
N→∞

1

b2
N

logPT

(
sup

u≤v≤u+ε
|QT

N(v) − QT
N(u)| > δ

)
= −∞,

lim
ε→0

sup
0≤u≤1

lim sup
N→∞

1

b2
N

logPT

(
sup

u≤v≤u+ε
|R̃T

N(v) − R̃T
N(u)| > δ

)
= −∞.

Note that the last limit is directly obtained by the induction assumption. Thus, we
only have to establish the first one,

PT

(
sup

u≤v≤u+ε
|QT

N(v) − QT
N(u)| > δ

)

= PT

(
sup

u≤v≤u+ε

∣∣∣∣∣
[Nv]∑
i=1

(
ψ(xi,T ) − mN,T (ψ)

)

−
[Nu]∑
i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N

)
(B.1)

= ET

(
PT

(
sup

u≤v≤u+ε

∣∣∣∣∣
[Nv]∑

i=[Nu]+1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N |F T −1

N

))

≤ ET

(
PT

(
max

1≤k≤[Nε]+1

∣∣∣∣∣
k∑

i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N |F T −1

N

))
,

where the last inequality follows from the fact that[Nv] − [Nu] ≤ [Nε] + 1 and
by the stationarity conditionally onF T −1

N . By Ottaviani’s inequality (see [21],
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Chapter 6, Lemma 6.2),

PT

(
max

1≤k≤[Nε]+1

∣∣∣∣∣
k∑

i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N)|F T −1

N

)

≤ PT

(∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N/2|F T −1

N

)
(B.2)

×
{

1− max
1≤k≤[Nε] PT

(∣∣∣∣∣
[Nε]+1∑
i=k+1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣

> δbN

√
N/2|F T −1

N

)}−1

.

Let us first control the lower part of (B.2):

PT

(∣∣∣∣∣
[Nε]+1∑
i=k+1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N/2|F T −1

N

)

≤ 4
ET (|∑[Nε]+1

i=k+1 (ψ(xi,T ) − mN,T (ψ)|2|F T −1
N )

δ2b2
NN

= 4
([Nε] − k + 1)σ 2[Nε]−k+1,T

δ2b2
NN

≤ 16
‖ψ‖2∞
δ2b2

N

−→
N→∞ 0.

In particular, there exists a deterministicN0 such that for everyN ≥ N0,

max
1≤k≤[Nε] PT

(∣∣∣∣∣
[Nε]+1∑
i=k+1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ > δbN

√
N/2|F T −1

N

)
≤ 1/2.

Inequality (B.1) together with (B.2) yields

PT

(
sup

u≤v≤u+ε
|QT

N(v) − QT
N(u)| > δ

)

≤ 2PT

(
1

bN

√
N

∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ >
δ

2

)
.
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Now,

PT

(
1

bN

√
N

∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ >
δ

2

)

≤ PT

(
1

bN

√
N

∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mT (ψ)

)∣∣∣∣∣ >
δ

4

)

+ PT

( [Nε]√
NbN

|mT (ψ) − mN,T (ψ)| >
δ

4

)
.

And

lim sup
n→∞

1

b2
N

logPT

(
1

bN

√
N

∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mN,T (ψ)

)∣∣∣∣∣ >
δ

2

)

≤ sup

(
lim sup
n→∞

1

b2
N

logPT

(
1

bN

√
N

∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mT (ψ)

)∣∣∣∣∣ >
δ

4

)
;

lim sup
n→∞

1

b2
N

logPT

( [Nε]√
NbN

|mT (ψ) − mN,T (ψ)| >
δ

4

))
.

By the first step of the proof (finite dimensional MDP),

lim sup
n→∞

1

b2
N

logPT

(
1

bN

√
N

∣∣∣∣∣
[Nε]+1∑

i=1

(
ψ(xi,T ) − mT (ψ)

)∣∣∣∣∣ >
δ

4

)

≤ − δ2

16εσ 2
t (ψ)

+
(

1

VT (ψ)
− 1

σ 2
T (ψ)

)
(δ/4)2

2
−→
ε→0

−∞.

By Lemma 3.2, [Nε]√
NbN

(mT (ψ) − mN,T (ψ)) andR̃T
N(ε) are exponentially equiva-

lent up to the speedb2
N . Thus,

lim sup
n→∞

1

b2
N

logPT

( [Nε]√
NbN

|mT (ψ) − mN,T (ψ)| >
δ

4

)

= lim sup
n→∞

1

b2
N

logPT

(
|R̃T

N (ε)| > δ

4

)

≤ − δ2

16ε2VT −1(LT (ψ) − mT (ψ)LT (1))
−→
ε→0

−∞.

This yields the desired result:

lim
ε→∞ sup

0≤u≤1
lim sup
n→∞

1

b2
N

logPT

(
sup

u≤v≤u+ε
|QT

N(v) − QT
N(u)| > δ

)
= −∞.
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STEP 3. The MDP.By Steps 1 and 2, the assumptions of Lemma B.1 are
satisfied. Therefore,Mψ

N,t satisfies the MDP inD endowed with the sup-norm
topology with speedb2

N and good rate function

Ĵ (f ) = sup
U∈U

JU
T

(
f (u1), . . . , f (um)

)
.

STEP 4. Identification of the rate function.The identification of the rate
function is fairly standard and can be done as in the proof of Lemma 5.1.6 in [14]:

Ĵ (f ) = sup
U

JU
T

(
f (u1), . . . , f (um)

)

=
∫ 1

0

ḟ 2(t)

2σ 2
T (ψ)

dt + f 2(1)

2

(
1

VT (ψ)
− 1

σ 2
T (ψ)

)
.

The convexity ofJF is now straightforward. This ends the proof of Theorem 4.2.
�
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