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MIXED POISSON APPROXIMATION OF NODE DEPTH
DISTRIBUTIONS IN RANDOM BINARY SEARCH TREES

BY RUDOLF GRUBEL AND NIKOLCE STEFANOSKI

Universitat Hannover

We investigate the distribution of the depth of a node containing
a specific key or, equivalently, the number of steps needed to retrieve an item
stored in a randomly grown binary search tree. Using a representation in terms
of mixed and compounded standard distributions, we derive approximations
by Poisson and mixed Poisson distributions; these lead to asymptotic
normality results. We are particularly interested in the influence of the key
value on the distribution of the node depth. Methodologically our message is
that the explicit representation may provide additional insight if compared to
the standard approach that is based on the recursive structure of the trees.
Further, in order to exhibit the influence of the key on the distributional
asymptotics, a suitable choice of distance of probability distributions is
important. Our results are also applicable in connection with the number
of recursions needed in Hoare8¢gmm. ACM4 (1961) 321-322] selection
algorithm FND.

1. Introduction. The classical algorithm for storing data sequentially into a
binary search tree proceeds as follows: The first item is put into the root node;
subsequent elements are compared to the existing nodes, starting with the root,
moving to the left if smaller than and to the right if greater than the content of
the node until an external node is found. If there mmistinct (and comparable)
values, then we obtain a random binary tree if we assume that all permutations of
the data are equally likely. This data structure and its properties are discussed in
the standard texts of the area; see, for example, Knuth (1973), Cormen, Leiserson
and Rivest (1990) and Sedgewick and Flajolet (1996). Mahmoud (1992) gives a
book-length treatment of random search trees.

Suppose now that a binary search tree is associated with a random permutation
of the set{l, 2,...,n} in the above manner. One of the quantities of interest in
this structure is the deptki, ; of the node containing, that is, its distance from
the root; 14 X, ; is the number of steps needed to retrieve the va(tsuccessful
search”). Arora and Dent (1969), in an early paper on the subject, obtained a simple
and explicit formula for the corresponding expectation,

(AD) E(1+ Xn,l) = Hl + Hn+1—l -1,
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280 R. GRUBEL AND N. STEFANOSKI

whereH; := Zﬁ-‘zl 1/i, k € N, are the harmonic numbers. This result implies that
the average number of steps needed grows logarithmically only. It is easily seen,
however, thatX, ; can be as large as— 1, which motivates a closer analysis of
its distribution.

In contrast to many other characteristics of the tree such as its height or
total path length, the depth depends on two parameters, the: Sfd¢he base
set and the key value (or labdl)of the node, which complicates the analysis.
Averaging the distributions over the second parameter avoids this problem; the
result can be interpreted as the distribution of the depth of a key or node
selected uniformly at random from the available rafie. ., n}. Louchard (1987)
obtained a corresponding asymptotic normality result; see also Section 2.5 in
Mahmoud (1992). The distance of two randomly selected nodes has recently been
investigated by Mahmoud and Neininger (2003). Averaging leads to a loss of
information, though. For example, it is immediate from (AD) that

. EX . EX
lim nl_ g, lim —=mMm/2l _ o
n—00 |ogn n—00 Iogn

that is, the depth of the node with the smallest key is only about half of that of the
node with the median key value on average, if the size of the base set is large.
Our intention here is to obtain distributional approximations and asymptotics
for X, that are sufficiently precise to show the dependence of the depth of a
node on its key. The main tool is a distributional representatioX,of in terms
of mixed and compounded distributions from well-known families (Theorem 1).
In contrast to many investigations in this area we do not base our analysis on
a recursion for the quantities of interest, but exploit the relationship to records
which seems to have been noticed first by Devroye (1988). Devroye used this
connection to investigate the depth of the last node; he wrote that it “allows
us to obtain...hopefully insightful proofs....” The representation can also
be used to obtain the expectation Xf,; and therefore leads to an alternative
proof for Arora and Dent’s (1969) formula. Somewhat to our surprise, asymptotic
normality in the sense tha&, ; — EX,.,)/EXn,, converges in distribution
to a standard normal variable holds fewverysequencel,),cn. This result has
also been obtained by Devroye and Neininger (2004). It implies Louchard's
(1987) result for randomly selected nodes, but it can also be used to see the
influence of the key on the node depth on the level that is apparent from
the consequence of (AD) mentioned above: If the key vajugaries with n
such that lod,/logn — ¢ € [0, 1], then (X,;, — (1 + t)logn)//(1+1t)logn
is asymptotically standard normal. However/jfn — t asn — oo, then the
approximating normal distribution does not dependspas long as G< r < 1.
Hence, with this level of detail only extreme values of the key will have a
noticeable influence on the depth distribution.
The proof of asymptotic normality is based on a Poisson approximation result
(Theorem 3), where we use total variation distance. If we replace the total
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variation distance by an appropriate Wasserstein metric, then a mixed Poisson
approximation is needed since with this metric shifts are not swamped by the fact
that EX, ;, — oo asn — oo. Indeed, the mixing distribution will asymptotically

be close to a shifted and reflected exponential distribution, with shift2sg

2y +log(t (1—1)) depending om :=lim,, .~ I,,/n (Theorem 6y denotes Euler’s
constant).

These results are given in the next section. In the final section we discuss various
consequences of our results and also relate these to the number of recursions
needed by Hoare’s (1961) selection algorithrb-

distr

We write .£(X) for the distribution of the random variablé, with X = Y
abbreviatingL(X) = £L(Y), and 14 for the indicator function of the sef.
Instead of.L(X) = u, with some probability distributiom, we also writeX ~ .

Distributional convergence is denoted S andN (0, 1) is the standard normal

distribution, so that, ¥ Z, Z ~ N (0. 1) is short for

lim_ P(Xy < x) = ®(x) = —*24y  forallx € R.

1 X
Nz /_oo ¢

2. Results. Our first result displays the distribution of,; in terms of
mixed and compounded standard dkmtions from the Bernoulli, uniform
and hypergeometric families. The representation becomes transparent once we
consider an example. Suppose we have= 20 and!/ = 11. A particular
permutation is given in the first line of Table 1.

In the second line of Table 1 the part of the permutation to the left of the element
of interest is divided into those that are greate) ¢r smaller () than this element.

The third line marks the descending @nd ascending)) records in these sublists,
where the@'th element; of alist(x1, ..., x,) of numbers is a descending record if
x; =Mini<<; x;, ascending if; = max<;<; x;.

Figure 1 shows the search tree corresponding to the data in Table 1. The crucial
point to note is that the path from the root of the tree to the element of interest
passes through the descending records in #Hkelist, moving to the left, and the
ascending records in the-"-list, moving to the right.

We recall the definitin of some standard distribution¥: is said to have a
Bernoulli distribution with parametep if P(X=1)=1— P(X=0) = p, to
be uniformly distributed on the (finite) s&tif P(X =s) =1/|S| forall s € S, and

TABLE 1
A permutation and its subrecord structure foe= 20,/ =11

T 18 1 5 6 10 20 3 13 9 17 7 12 8 16 14 19 2 11 4 15
>< + - - - - + - 4+ - 4+ - + - + 4+ + - «
records | 1+ 1 1 ¢ l J *
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FIG. 1. The binary search tree with as in Tablel.

to have a hypergeometric distribution with parameférsy andn if
(D)
(N
n

PX=k) = fork=0,...,n.

We abbreviate these t& ~ Ber(p), X ~ unif(S) and X ~ HypGedN; M, n),
respectively. By a random permutation of a finite Setwe always mean a
permutation that is uniformly distributed on th&g! possible values.

THEOREM 1. Suppose thatN,Gyy,...,Gu 1, K1, K2, K3, ..., K], K5,
Ké,... are independent random variables witéi ~ unif({1, ...,n}), G ~
HypGedn —1;1—-1,m—1)form=1,...,nandK;, K; ~ Ber(1/i) forall i e N.
Then

i Gy N-1-Gy,
Istr Z Z I
i=1 i=1

PrROOF We first formalize the construction that we outlined above with the
help of an example. Remember thatand [ are given. Letr be a random
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permutation off1, ..., n} and letN := = —1(/) be the position of. Further, let
S_={1l<i<N:n(@)<l}={i1,...,ig},

Sy ={1<i<N:w()>U}={j1,..., jN-1-G},
withi; <--- <igandj; <--- < jy_1-¢ and let

n_ = (7(@i1),...,7(g)), =70, .... T(iN-1-6))
G r-1 N-1-Gr-1

=Y []lwao<rin.  Re:= D Jllraosnn-
r=1k=1 r=1 k=1

With these constructions we hawg, ; = R_ + Ry ; see Section 13.4 in Cormen,
Leiserson and Rivest (1990) for a formal proof. It remains to verify the
distributional statements. For these, we simply recall some well-known or easily
checked properties of records and random permutations; see, for example, Arnold,
Balakrishnan and Nagaraja (1998): Obviousl, ~ unif({1,...,n}). Given
N=m, (x(1),...,m(m — 1)) is a random permutation of the sgt(i):1 <

i <m}. We can viewr (i) as the result of théth draw, without replacement, from

an urn withn — 1 balls,/ — 1 being “white,” meaning a result less tharHence,
conditionally onN = m,

=|S_| ~HypGedn — 1,/ —1,m —1).

Conditionally onN = m and G = k, =— and m; are independent random
permutations ofn (i1), ..., 7 (ix)} and{m (j1), ..., T (jm—1-k)}, respectively. The
distributional structure of records in random permutations is such that the products
in the definition of R_ and R, which indicate the presence of a record at
positionr, are independent and Bernoulli distributed with parameter 1

The assertion of the theorem now follows on comparing the respective
(conditional) distributions in the above decomposition to those in the constructive
representation.

From the proof of the theorem it is evident that the first sum in the representation
corresponds to the number of moves to the right on the path from the root to the
node containing; similarly, the second sum corresponds to the moves to the left.
In this context it is interesting to note that

Gy~ unif({o0, ...,/ —1}), N—-1—-Gpy~unif({0,...,n—1}).
To see this, we simply calculate

P(Gyi=k)= Z P(Gm,1=k)
m 1
- Z 1 (mn ll k)

()
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- 1-
Z (”l 1 ¢)

w0 (1)

G
(1)
using HypGet: — 1,1 — 1,m — 1) = HypGedn — 1;m — 1,/ — 1) and one of
the basic identities for binomial coefficients given, for example, as equation (5.26)
in Graham, Knuth and Patashnik (1989). The statememN enl — G y ; follows
from similar calculations or from symmetry considerations (see also Section 3).

Note, however, thaGy; and N — 1 — Gy ; are not independent; their joint
distribution, which will be used repeatedly below, is given by

(JD) P(GN,lzi,N—l—GN’[zj)z_%.
no (5

For our first approximation result we require the following bound for the variance
of H(G) + H(N — 1— G), where we have writte® (G) instead ofH;. As usual,
we putH (0) = Hp =0.

1 1
- = - fork=0,...,] -1,
T n l

LEMMA 2. LetG and N be random variables with joint distribution given
by (JD). Then

var(H(G) + H(N —1— G)) <28,
PROOF Because of va + Y) < var(X) + varY) + 2varX)¥2vany)¥/2,
it is enough to bound the variance &f(G) and H(N — 1 — G) by 7. The
remarks following Theorem 1 imply that both can (individually) be represented

in distribution asH (kU |) with U ~ unif(0,1) andk =/ andk=n —1—1,
respectively. We may assume tliat 1, and then, using Minkowski’s inequality,

var(H ([kU))) < E(H([kU]) — logk)?
= E((H([kUJ) — logk)Liy <1/1))°
+E((H(kU)) — Iogk)]l{UZl/k})z

- (Iogk)

with

Vi = (H(LkU ) — log(LkU )Ly =1k}

kU |
Wi = Liu>1/k) |09—
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The first term is bounded bye4?; for V;, we use thatH; — logj| <1 for all
Jj € N. Finally,

k-1

EW? :%Z(Iog ) / (logx)2dx =2

j=1

which gives vatH (kU |)) <4e 2+ (1++/2)2<7. O

Our first result shows that the distribution &f, ; can be approximated by a
Poisson distribution with the same mean; it comes with an explicit error bound.
Recall that the total variation distance of two probability measwreand v
concentrated oiYg is given by

drv (i, v) = sup [u(A) —v(A)] =3 Iu({k}) —v(kDI.
ACNp k=0

Further, for a probability measune concentrated on the nonnegative half line
[0,00) we write MixPqav) for the mixed Poisson distribution with mixing
measure, that is,

)\k
MixPo(v) ({k}) :/e_)‘ﬁv(d)\) for all k e No.

With v = §,, the one-point measure oh > 0, we obtain the usual Poisson
distribution P@A). This also holds foi = 0 as we interpret R@) asdo.

THEOREM 3. With the above notatign

28+ 72
sup dTv(oC(Xn D, PAEX, ) < i
le(l,...n)

forall n > 2.

PrROOF We first give a conditional approximation by a Poisson distribution
which leads to an approximation by a mixed Poisson distribution. The latter will
then be approximated by a Poisson distribution with the same mean.

We use the following fundamental Poisson approximation resul; Jt .., X,
are independent witl; ~ Ber(p;), then

i) )t

see, for example, page 8 in Barbour, Holst and Janson (1992). Together with
the representation in Theorem 1 this immediately implies the following bound for
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the Poisson approximation of the conditional distributions:

drv(£L(X|G=i,N —1—G = j),Po(H; + H)))

1 N |

<— ~+¥Y =

Hi+Hj<§lz ;ﬂ)
7.[2

<
3Hiy;

fori + j > 0;fori = j = 0 the distance is 0. Note that- j corresponds t&v — 1,
which is uniformly distributed of0, ..., n — 1}. The unconditioning step therefore
leads to
24 n-1
w4l 1
drv(L(X,. 1), MixPo < —— —
v (L(Xn,1) (Un,1)) < 35 > 7

m=1

’

wherep,, ; denotes the distribution & (G) + H (N —1— G). Standard elementary
arguments show thaﬁjz;ll 1/H, <3n/logn forn > 2.

A mixed Poisson distribution can be approximated by an ordinary Poisson
distribution with the same mean. Using total variation distance we have, according
to Theorem 1.C(ii) in Barbour, Holst and Janson (1992),

2

dtv(MixPo ,PAEX < ,
v ( (tn,1), PO "’l))_EX,,J

with o2 the variance associated with, ;. Here we have used that the expectation
associated withy, ; is equal toEX, ;. An appeal to Lemma 2 and the triangle
inequality now completes the proof[]

We do not claim that the numerical values in the bound are tight; for us, the
more important aspect s the fact that the bound does not depénthgrarticular,
with (1,,),cn @ sequence of integers with<l/,, < n for all n € N, but completely
arbitrary otherwise, andl, ~ PO(EX, ;, ),

‘p(—X"”n — EXun _ x) — o)
VEXu, -
< dry(L(Xny, ) LY + ‘P(ﬂ < x) — o)
o Jvary,)

for all x € R, so the asymptotic normality of Poisson distributions with parameter
tending to infinity and the bound in Theorem 3 together imply that

X1, — EXp 1, distr
_om T Ty Z, Z,\,N(O’ ]_)’
VEXn,ln
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asn — oo. [In fact, combining this with the Berry—Esseen theorem we obtain
the rateO ((logn)~1/2) for the Kolmogorov—Smirnov distance.] Special cases can
be obtained on using Arora and Dent’s formula (AD). For example, if

(SC) im Mintlogy). log(n — )} _
n—00 logn

for somer € [0, 1], then
X1, — (A +1t)logn distr
-z — Z, Z~N(,1).
J/A+1t)logn ©.D
In particular, ifl,, /n — t € (0, 1), then(X,, ;,, —2logn)//2logn is asymptotically
standard normal, irrespective of the valueg of

Louchard (1987) showed that, witti, ~ unif({1, ..., n}) independent of the
search trees,

Xu,u, — 21007 distr
— = Z, Z~N(@,1).
/2logn - ©.h

This can now be derived from (SC) via the representalign= [nU7 with

U ~ unif(0, 1) by conditioning onU =t € (0, 1). (A conditioning argument can

also be used to extend the bound in Theorem 3 to randomly cligsdites.) The
special case also makes precise the intuitive picture that nodes with extreme keys,
that is, with/ being close to 1 o, have lesser depth and will be found faster than
those “within” the range from 1 te.

In order to see the influence of the key on the node depth in the midrange,
by which we mean thal,/n — ¢ for somer with 0 < ¢t < 1, we have to use a
different metric for probability distributions. This becomes obvious as soon we
expandE X, ; up to constants, since in an asymptotic normality result constant
shifts do not matter asymptotically if the scaling factors tend to infinity. If we use
the total variation distance, this even holds on the Poisson approximation level as

)\“m dTv(P(Xk + ¢), PQX)) =0 forallc > 0.
—00

Our second result shows that with a suitable Wasserstein metric shifts do become
visible. There are two consequences: We now need a mixed Poisson distribution
as approximating measure, and we lose on the rate side. Following Barbour, Holst
and Janson (1992), we consider the distafgdor probability distributionsu, v

on (the Borel subsets of) the real line defined by

dw (e, v) :=Sup{‘/fd,u—/fdv

For distributions concentrated on the nonnegative integers it can be shown that

f:R—>R, sup |f(x)— fO)] 51}.

lx—yl<1

dw (. v) =) _|u(lk, 00)) — v([k, 00))|.

k=0
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Hence, ifX andY are random variables with distributiopsandv, respectively,
thendw (u,v) > |[EX — EY|, which in turn implies that P@ + ¢) and P@A)
remain distinguishable under this distance. i oo, ¢ > 0 fixed (we generally
usedw only in connection with distributions with finite mean). Furthéy, can be
realized by a suitable coupling in the sense that

dw(u,v) =min{E|X — Y|: X ~ 1, Y ~ v}

The following lemma contains two properties of the Wasserstein distance; their
proof makes use of the above alternative expressiongifokVhen we use the first

of these below we will speak of unconditioning; a similar property for the total
variation distance has already been used in the proof of Theorem 3. The second
property shows that — MixPo(u) is a weakdy -contraction.

LEMMA 4. (a)lf X with P(X € N) =1andY are random variables such that

dw (L(XY =y), PAg()) < f ()
for all y, with measurable functiong and f, then

dw (L(X), MiXPO(L(#(Y)))) < Ef(Y).
(b) For any two probability distributiong:, v on the nonnegative real line
dw (MixPo(i1), MixPo(v)) < dw (i, v).

PROOF (a) We condition on the value df; [ ---L(Y)(dy) means that we
integrate with respect to the distribution Bf

dw (£(X), MixPo(L(p(Y))))
~ Z\ / (LX]Y = y)([k. 00)) — PA () ([k, 50))) LY )(dy)
k=0
< / SO[LXTY = y)([k. 00)) — P () (k. 00)) | LY ) (dy)
k=0
- f dy (LX]Y = y), PO (1)) L) (dy).

(b) Let (N;);>0 be a unit rate Poisson process and Xetand Y be random
variables, independent of the process, wkh~ u, ¥ ~ v and dy(u,v) =
E|X —Y|. ThenNx ~ MixPo(u), Ny ~ MixPo(v) so that by conditioning on
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X andY and considering the cas&s> Y andX <Y separately,
dw(MiXPO(M), MiXPO(v)) < E|Nx — Ny|

= E(E[|[Nx — Ny||X,Y])
— E|X — Y| =dw(u,v). O

We also need an elementary estimate related to hypergeometric distributions.

LEMMA 5. With X ~ HypGedN; M, n),

E(‘IO X‘]l )<4NlogN+2 N
9Ex|Mx=0) ="y M’

PROOF We use
nM nM
EX=—, varnX) < —
N N

together with Chebyshev’s inequality, the bound Mdor the integrand, the fact
that|log(1+ x)| < 2|x] on|x| < 1/2,andE|X — EX| < 4/var(X) to obtain

E(‘Io X ‘11 )<(Io N)P<|X EX|>EX)+2E X 1‘
9Ex| x>0 ) =09 =72 EX
4N log N N
<— 4+ 2 [—.
- nM + nM 0

We can now state and prove our second approximation result for key values in
the central range.

THEOREMG6. Suppose thaj, varies withn such that

Iy 1
no Tt O(./Iogn)
with some € (0, 1). Let
Vs o= L((2logn 4 2y +log(t (1 — 1)) — 2x) ™),

whereX is exponentially distributed with mednThen

_ 1
0. W00 = 0 )

PROOFE We continue to use the notation introduced in the proof of Theorem 3
and again begin by comparing conditional distributions to Poisson distributions.
The basic result for the Wasserstein distance, obtained by combining Lemma 1.1.5
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and Remark 1.1.7 in Barbour, Holst and Janson (1992), is the following: If
X1,..., X, are independent witl(; ~ Ber(p;), then

n n 2 n
(oS x) e $20)) 22 S0

i=1 i=1 di_1Dii=1
In our situation we obtain with the representation in Theorem 1, abbreviat-

ing Gy, .1, t0 G,
dw(L(Xn1,|Gn =1, Ny —1— G, = j),Po(H; + H}))

- 2 (Xl:lJri 1>< 272
B \/m m=1 m2 m=1 mZ B 3\/T+/
Unconditioning and usingogn)¥/2 3" % HyY? = 0(n), we see that

. 1
dy (LX), MiXPO(y11)) = 0( W)

whereu, := L(H(G,) + H(N, — 1 — G,)). Using the triangle inequality and
Lemma 4(b) we see that it remains to show that(ie,, v,.;) = O((logn)~/?).
This will follow if we can find random variableX,, andY, such thatf(X,) = w,,
LY, =v,,andlognE|X, —Y,| = O(1). (Because ok, > 0, going fromY,
to ¥,© will not increase the Wasserstein distance to the distributioX,oj Let
U ~unif(0, 1) andN,, := [nU] for all n € N. With

X, :=H(G,)+H(N,—-1-G,),

Y, :=2logn + 2y +log(r(1—1)) + 2logU,
the distributional requirements are satisfied and we have

6
|Xn - Ynl =< Z |Zi,n|
i=1
with
Z1,:=H(G,) — Iog(Gn)]l{G,,>0} -Y
N,
73, :=109(G,)1G,>0y — log(l, — 1) — |09(7n),
Ny
Z3, :=log(l, — 1) — log(nt) + Iog(—) —logU,
n

Z4n:=H(N,—1-G,)— log(N, — 1 — Gn)]l{Nn—l—G,,>O} -Y
n

N,
ZS,n = |09(Nn -1- Gn)]l{Nn—l—Gn>0} - |09(n -1- ln) - |Og< ),

Ze :=log(n —1—1,) —log(n(1—1)) + Iog(N ) —logU.

n
n
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For the first of these we use the fact that, for some constanto,
C
|H, —logn —y| < — foralln e N,
n
and.L(G,) =unif({0, ..., 1, — 1}) to obtain
1
E|Zial <y P(Gy=0) + CE(—ﬂ{Gn>0})

_r KL ('09")
_1 z§k—0

n

The second term is slightly more complicated as it involves h@thand N,,.
Conditioning on the latter we get

E|Zou| < E(E[|Z2,1||Ny])-
On{N, = 1} we haveG, =0, which leads to

E[1Z2,n|IN, = 1] = |09( ) =0(.

-1

Together withP(N,, = 1) = 1/n this givesE|Z; ,|1(y,=1; = O(1/n). We may
therefore assume that, > 1 as long as we deal withy .
We use another decomposition,

| Zon| < Zoan+ Z22.0+ 2231

with
Zo1,=|lO Gn 1
2,1n = gE[Gnan] {G,>0}>
N, — N,
Z2n = |l0g—" —log—|,
n— n
N,(, — 1)

Lemma 5 yields
T - 4n —1log(n — 1)

G, n—1
EHIogi 1 | < \/
n|Nn i (Np —D(ln — 1) (Np —D(ln — 1)

on N, > 1, which together with

k=1

Gn
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givesEZ2 1,1 (n,~1) = O((logn)~Y/2). For Z; 5, we obtain

1& k—1 k
EZ2,1in, 1y = — log—— — log—
220N, >1} nkg; °9 — Ogn‘
12 12
<= (logk —log(k — 1)) + = > (logn — log(n — 1))
" =2 " =2

n
n—1

1 n—1
=—logn + ——1log
n n

~o(%)

On{N, > /n} we have

— 1, \V"
E[]l{ano}|Nn] < (nn_ ﬁ) <kVn

for somex < 1 andn large enough, hence
EZ33n1iN,>1) = E(E[Z232|Nn]Lj1<n, < ym})
+ E(E[Z2,3,n|Nn]]1{Nn>ﬁ})
N

1 D] 1 &
<= |09M‘ += ) log(,)ic V™.
" k=2 " k=Lvni+1

Both terms on the right-hand side are obviously(logn)~/?) so that this rate
also holds forE Z5 3 ,1(,~1; and therefore foE|Z ,| too.

For Z3, we use the rate condition o‘f; — t together with the following
argument which is based on the constructiomVpf

N, N,
E‘Iog—"—logU’ = Elog— — ElogU
n n

12 k
==> log-+1
=1 "

=~ >
1

= —log(n!) —logn + 1
n

_ 0<I03n).

Finally, adapting the arguments used f@, to Z;43,, i =1,2,3, is a
straightforward task. O
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3. Miscellaneous comments. We relate our findings to another classical
algorithm in Section 3.1. In Section 3.2 we discuss the expectation and the
variance ofX, ;. The use of (and need for) other probability metrics, together
with the relationship between total variation and Wasserstein distance, are briefly
considered in Section 3.3. The final subsection deals with another noteworthy
aspect of the representation &f, ; as the sum of the number of moves to the
right and the number of moves to the left.

3.1. Asituation very similar to the one considered above arises in connection
with Hoare’s (1961) selection algorithmnNb, a randomized divide-and-conquer
algorithm that selects thé&h smallest element of a totally ordered setof
sizen in a recursive manner: First, anfrom S is chosen uniformly at random.
Comparing this element to all others, we obtain the sub$ets- {y € S:y < x}
andS, :={y e S:y > x}. We continue with(l, S) replaced by, S-) if the size
k :=|S_| is greater than or equal toand with(Il — 1 —k, S,) if k <l — 1. If
k=1—1, then we stop and returh For the time required by the algorithm the
number of comparisons,, ; is most important, but the numb@&y, ; of recursions
has also been investigated. Instead of introducing randomness via the selection of
the pivotal element, we can equivalently assume that the data are random, with all
permutations being equally likely, that we operate on lists rather than sets and that
we always choose the first element of the list as the pivot. This conneabstb
binary search trees, witli_ and S, corresponding to the left and right subtree,
respectively, and indeed, it is well known th&f ; is equal in distribution td,, ;

(orto 1+ X, ; if we include the initial step).

Again, details are given in many of the standard textbooks; see also the recent
book by Mahmoud (2000). As with binary search trees, if interest is in the behavior
of these quantities for large, one can average out th&his leads to results on the
number of comparisons and recursions needed for a randomly chioses, for
example, Section 7.5 in Mahmoud (2000) and the references given there. Instead,
Grubel and Rosler (1996) considered the whole functien C, ;. The resulting
limit theorem for the stochastic process€s [/,1)o</<1 implies the distributional
convergence of’, ;, /n if the sequencéd,,),cn is such that, /n — t asn — oo for
somer € [0, 1]; the limit distribution depends an A different approach, leading to
this result more easily, is given in Gribel (1998). The results in the previous section
cover similar aspects for the number of recursions required. In particular, the terms
SN K, and YN 19V K7 in Theorem 1 represent the number of times that
the element of interest is put int®_ and S, respectively, in the course of the
algorithm. It is interesting to note that, in contrast to the situation with the number
of comparisons, we have concentration of mass for the number of recursions in the
sense thar,, ;, /E R, ;, converges to 1 in probability. An analogue to the result in
Gribel and Rdsler (1996) would be a functional limit theorem for the “depth plot”

I — X, which, incidentally, characterizes the binary search tree. Figure 2 shows
this plot for the permutation in Table 1.
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FiG. 2. The depth plot — X, 1,1 for the permutation in Tablé.

3.2. The representation in Theorem 1 leads to an alternative proof of (AD).
LetY := ZiG:Nl*’ K, Z:= vaz_ll_GN” K/, with the notation as in Theorem 1. Using
Gy ~unif({0,...,1—1}), EK; = 1/i and equation (6.67) in Graham, Knuth and

Patashnik (1989), we obtain

11=1J 1 q1=1
EY:;Z%;;:;;HJ:HZ—l.

Together with a similar calculation fdf, this gives
EXyi=EY+EZ=H + Hyt+1-1 — 2.

The variance o, ; is mentioned in Arora and Dent (1969); the explicit formula

2n+1) 2(n+1)
var(X,, ;) = —————Hy (1 - 7) (H; + Hyq1-1)
' [ 1-1 l 1-1
(KP) (n+ ) (n+ )
_ H[(Z) _ H(Z) + 2’

n+1-1 + In+1-10)

with H® = S7_,1/k%, is given in Kirschenhofer and Prodinger (1998).
Obtaining this from our representation is a somewhat tedious task that boils down
to an unsightly formula involving harmonic numbers and a multitude of binomial
coefficients. In contrast to the situation with,, ;, this does not seem to lead to

an intuitive or short proof, so we do not give the details.
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3.3.  We have pointed out in Section 2 that the total variation distance will
not distinguish between, say, 89 and P@xA + ¢) with ¢ constant as. — oo,
so we may havelty (L(X,), L(Y,)) — 0 even if EX,, — EY, does not vanish
asymptotically asn — oo. For general distributions on the real line we may
conversely have a small Wasserstein distance together with a large total variation
distance, but for distributions concentrated on the integers the simple relation

w({k}) = pn(lk, 00)) — n(lk + 1, 00))

implies that

drv(w,v) < 2dw (e, v).

Using dy instead ofdyy, we obtained an approximation that is asymptoti-
cally correct with respect to first moments in the sense that liggdw (L(X},),

L(Yy)) =0 implies lim,_,(EX, — EY,) = 0. From (KP) and some straight-
forward calculations it follows that we would need yet another metric and a
more detailed expansion to obtain an approximation that is asymptotically cor-
rect for second moments too; see, for example, the metric used in Mahmoud and
Neininger (2003).

3.4. The simplification for the two constituent parts Xf ; that we used
in Section 3.2 has the following noteworthy consequence: The distribution of

ZGN’ K;, with the assumptions as in Theorem 1, is equal to thitjlofl -1,
which makes the random summation index disappear. Withand X~ for the
number of moves to the left and right, respectively, this means that

LA+ X, (ZK) LA+ X, (nJFXl:IK>

with K1, K>, ... independent and&; ~ Ber(1/i). SinceX,,; = X,;f, + Xn—}, this
leads to another proof of (AD).

A glance at Figure 3 explains the “distributional coincidence™ X is
the number of ascending records in the subpermutation of #lements that
are less than or equal 19 1+ X is the number of descending records in the
subpermutation of the + 1 — [ elements that are greater than or equadl this
leads to a very simple description of the node depth distribution in the extreme
cases,

n
LA+ Xp1) =LA+ Xy 0) = £<Z Ki),
i=1
since for the minimum and maximum all steps are in one direction only. Note,

however, that despite the independence of the subpermutations of the elements that
arestrictly smaller, respectively larger, thanX 7, and X’ arenotindependent.
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FiG. 3. The scatterplot for the permutation in Taldlde: records in the subpermutations

Indeed, since,C(Xn—jl) = L(X;,;) and QC(X,‘L—,) = L(Xp+1-1,1), it is tempting to

think of X,,; as the sum ofX;; and X411, but the simplest nontrivial case
already provides a counterexample to the assumption that these can be taken to be
independentL (X3 ) = unif({0, 1, 2}), £(X2,1) = £L(X2.2) = unif({0, 1}).

Acknowledgment. We thank the referee for drawing our attention to Devroye
and Neininger (2004).
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