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GAUSSIAN LIMITS FOR RANDOM MEASURES
IN GEOMETRIC PROBABILITY

BY YU. BARYSHNIKOV AND J. E. YukicHl
Bell Laboratoriesand Lehigh University

We establish Gaussian limits for general measures induced by binomial
and Poisson point processesdifdimensional space. The limiting Gaussian
field has a covariance functional which depends on the density of the point
process. The general results are used to deduce central limit theorems for
measures induced by random graphs (nearest neighbor, Voronoi and sphere
of influence graph), random sequehpacking models (allistic deposition
and spatial birth—growth models) and statistics of germ—grain models.

1. Introduction. The purpose of this paper is to provide a methodology
for showing that renormalized random pbimeasures in geometric probability
converge weakly to a generalized Gaussian field. We focus on random point
measures, defined on the Borel subsef®4fof the following types:

(i) point measures associated with random graphs in computational geometry,
including nearest neighbor graphs, Voronoi graphs and sphere of influence graphs,

(i) point measures arising in random sequential packing models, including
random sequential adsorption (RSA) and spatial birth—growth models, and

(iii) point measures associated with germ—grain models.

The total mass of random point measures yields random functionals, which
in the context of the measures (i)—(iii), have been extensively studied; see
[2, 21, 23, 24, 26, 32], [5, 7-9, 11, 15, 25, 27] and [12, 13, 22, 26], respectively,
as well as the references therein. With the exception of [13], the study of the
random measures (i)—(iii) Baeceived considerably leatention. We show here
after renormalization that measures of the type (i)—(iii) converge to a generalized
Gaussian field; that is, their finite-dimensional distributions, as described by
the action of the measure on continuous test functions, converge to those of
a generalized finitely additive Gaussian field. The results relate the large-scale
Gaussian limit properties of renormalized random point measures to the small-
scale properties of the underlying binomial or Poisson point process.

The general approach taken here, which employs stabilization of functionals and
coupling arguments, has the particular benefit of describing the limiting variance
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over large sample sizes as a function of the underlying density of points. A similar

approach is used in [26], which treats the easier problem of finding limiting means.
Random measures considered here assume the ¥orm & (x; X)3,, where

X is a random point set iR?, §, is the Dirac point measure at and

£(x; X) is a weight representing the interaction ofwith respect toX and is

usually defined in terms of the underlying geometry. For all constast® and

probability densitieg, let #,, be a Poisson point process with intensity measure

rc R4 — RT. Define the “binomial” point proces¥,, := {X1, ..., X}, where

X;,i > 1, are i.i.d. with densitx. All of our results follow from general central

limit theorems (Theorems 2.1, 2.2, 2.5) which show that renormalized measures

of the type

(1.1) VRN EOM A P08, A=l

foP)LK

as well as their respective renormalized binomial counterparts,

(1.2) nY2 N @YX nY4x,)8x, n=1,
XieXy

converge weakly as — oo (resp. as — 00) to a Gaussian field with a covariance
functional described in terms of the weightand the underlying density of
points.

The general central limit theorem (CLT) for the measures (1.2) implies a CLT
for the “total mass” functional_x, . x;, & (Y4 X;; n¥/9,,). k need not be uniform
and¢ need not be translation invariant, showing that even in the functional setting,
we extend and generalize previous results [2, 3, 5, 24, 25].

The proofs are based on the method of cumulants, which requires showing
that the cumulants of the integrals of the rescaled measures (1.1) against a
large class of test functions converge to the cumulants of a normal random
variable. An important tool is “stabilization” of functionals, used heavily in
[5, 24-26]. Stabilization guarantees that the pair correlation function for the
weights &£(x, ), x € R?, decays fast enough to prove convergence of the
cumulant measures associated with (1.1). To show convergence of the first-
and second-order cumulant measures against test functions, we rely upon the
“objective method,” which exploits the fact that §f is locally determined in a
sense to be made precise, then the larpehavior ofe (A Y4x, A1/42,,), x fixed,
is approximated by the behavior 8fon homogeneous Poisson point processes.
This idea was developed in [26], a law of large numbers (LLN) precursor to the
present paper. To show convergence of the higher-order cumulant measures, we
employ cumulant expansion techniques [20].
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2. Main results.

2.1. Terminology. Before stating our main results we introduce some ter-
minology similar to that developed in [5, 24-26]. L&t c R¢ be finite and
y4+ X :={y+x:xeX}forall yeR¢ Givena > 0, letaX = {ax:x € X}.
Forx € R, |x| denotes the Euclidean norm aBg(x) denotes the Euclidean ball
centered ate of radiusr. w; denotes the volume of the unit ball & and0
denotes the origin dR¢.

Throughout, 4 denotes the family of compact, convex subsdts— R?
with nonempty interior. Let4’ denotes together with the spade?. For A € A/,
C(A) denotes the continuous functiofs A — R. For f € C(A) andu a Borel
measure oB(A) we let(f, u) := [, fdu. Given f:R? — R, let Suppf be the
closure of{x e R?: f(x) # 0}.

Let £(x; X) be a measurabl®-valued function defined for all pairse, X),
wherex is an element ofX. For the momentywe assume that £ is translation
invariant, that is,&(x; X)) =&(x — y; X — y) for all y R, Whenx ¢ X, we
abbreviate notation and writgx; X) instead of (x; X U x).

Any finite X induces the point measude . &(x; X)3,. For all » > 0, let
£.(x; X) 1= £ Yx; A4 X). A densityx with support onA € 4 and a weight
generate scalecndom point measures

1= Y &0 Pruody.

XE:‘PAK

The centered version qiix is ,ELiK = Mik — Eﬂiw where for all Borel sets

B CA, E[MiK(B)] =X [ E[&.(x; Puc) ]k (x) dx. This paper develops a method-
ology for establishing convergence of the finite-dimensional distributions of the
renormalized random point measuﬁesl/Z;liK, A > 1. Previous work [25, 26] de-
veloped laws of large numbers for ttatal mass functional

(2.1) W (A= Y &0 P

er’M

as well as CLTs [24] for translation-invariant functionals on uniform point sets
which are “locally determined.” The following concept of stabilization makes
precise the idea of “locally determined.” For all<0a < b < o0, let F (a, b)
consist of allf : R — R* having support in4’ and such that the range ¢fis

in [a, b] U {0}. The common probability spac¢e, ¥, P) for all ¢, f € ¥ (a, b),

can be chosen as the probability space of the Poisson point pr@cebaving
intensity 1 orR? x R* such that?; = e (P*N{(x,h) € R?:h < f(x)}), where

nrae denotes projection fronk? x R* onto R?. For all r > 0, let 2, denote a
homogeneous Poisson point proces®8rwith intensity .
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DEFINITION 2.1. The functionak is stabilizing if for allA € A',0<a <
b < o0, A >0, andx € LA, there exists an a.s. finite random varial®lér) :=
R(x,A,a,b, A) (aradius of stabilization for & at x) defined on(2, ¥, P) such
that for all f € F(a, b), with Suppf = AA, and all finiteXl C LA \ Bg(x) we
have

E(x; (PrNBr(x))UX)=&(x; PrNBrx))
and moreover sypr« P[R(x, A,a, b, A) > t] — 0 ast — co. Whené stabilizes,
then for allx € R? and allz > 0 we define

§(x: Pr) 1= lim &(x: Pr 0 By()).

ThusR := R(x, 1, a, b, A) is a radius of stabilization if the value §fx; ),
f € ¥ (a,b), is unaffected by changes outsidi; (x). One might expect that
exponential decay of the tails & impIies exponential decay of the correlations

of £ and thus convergence mfl/ZMA ,A >1, to a Gaussian field. This loosely
formulated idea figures prominently in interacting particle systems on the lattice,
and also in cluster expansions and the moment method in statistical physics [20].
Assuming neither translation invariance ghor spatial homogeneity of points,

we will show that this idea also works well in the continuum, where it yields

convergence of f, A~ l/zlli,c)k’ f € C(A), to a Gaussian field whose covariance
depends on the density of points. This motivates defining uniform tail probabilities
forthe radiiR(x, A, a, b, A):

r(t):=r(t,a,b,A):= sup P[R(x,A,a,b,A)>t].

xeR4 A>0

r(t) quantifies the region of influence of points in the Poisson point $ots
wheneverf € ¥ (a, b) and Supgy is a scalar multiple ofA. & is exponentially
stabilizing if r(r) decays exponentially infor all a, » and anyA € A'. £ is poly-
nomially stabilizing if for all a, b andA € A4’ we have[s°(r(1))Y?4 1dt < oo,
which readily implies the rough estimaté&) = o(t =2).

The next condition is used frequently in the scaling limit analysis of random
fields on lattices (e.g., page 193 in [20]) and it is only natural to use it in the
continuum setting as well. Here and hencefartts a probability density which
is continuous on its support and Supp 4. Let € denote the collection of finite
point sets inR<.

DEFINITION 2.2. & has a moment of ordgr > 0 with respect tac if

sggd E[I& (x; Prc U X)|7]
2>0,xe[0,AY4]4 A, X e
2.2) reldATIrA X
and forallx >0 sup  E[|E(x; P UX)|P] < o0
xeRd, XeC

We implicitly assume for all > 0 that&¢ := £(x, X N B;(x)) has moments no
larger than those df.
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2.2. General central limit theorems. Under stabilization and moment condi-
tions, we will show in Theorem 2.1 thﬁuik and Var;lik have volume order
asymptotics and that the scaling limit of the finite-dimensional distributions of the
renormalized measurés /215 _is a mean zero Gaussian field. Theorem 2.1 is a
special case of the upcoming Theorem 2.4 and applications of both are described
in Section 3.

By the convergence of finite-dimensional distributions of random signed
measures., to those of a generalized Gaussian field we mean the convergence in
distribution of the integral$ f du, to the corresponding normal random variables
for all test functionsf € C(A). This is the usual functional analytic point of view
where a measure is viewed as a continuous linear functional acting on continuous
functions. Henceforth we say thateasures converge to a Gaussian field if their
finite-dimensional distributions converge.

Forallt > 0, let

VE (1) :=EIE*(0; )]
+ /Rd (BIE(0; P U y) - &(v: P UO)] — EI£(0; Po)IELE (v P)])T dy,

where#, denotes an independent copyf.

THEOREM 2.1. (i) If & isstabilizing and satisfies (2.2) for some p > 1, then
forall f € C(A)

(2.3) lim ﬂ /f(x)E 0: Peoy) ] () dx.

whereasif £ is polynomlally stabilizing and satisfies (2.2)for p = 4, then

2.4 i Varl(s. ne)
' A

= [ FP@VvEer dx.
A—00 A
(ii) If & is exponentially stabilizing and satisfies (2.2) for all p > 0, then
~1/27%  converges as A — oo to a Gaussian field with covariance kernel
fA S10) f2) VE (e ()i (x) dix.

Statistical applications often require the analog of Theorem 2.1 for mea-
sures induced by exactly i.i.d. points on A. This “de-Poissonized” ver-
sion of Theorem 2.1 goes as follows. L&, i > 1, be i.i.d. with common
density «, X, = {X1,...,X,}, and ,oﬁ = > 1 18X X,)8x, the random
“de-Poissonized” measures inducedkbandg To obtain the convergence of the
finite-dimensional distributions q@,, = ,o,, E,o,, we need some additional ter-
minology and assumptions.
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Let X, be a point process consisting afi.i.d. random variablea/¢x on
nt/4 A, whereX has density. For all X, let H(X) := H5(X) := Y e E(x; X)
and for allA > 0 let Hf(X) = cex &1 (x; X). For any finiteX, let A, (X) :=
H(X Ux) — H(X). Say thatH satisfies thebounded moments condition for «

(cf. [24]) if
(2.5) sup sup sup  E[AY(Xn.0)] < 0.
n xenl/dA me[n/2,3n/2]

If H satisfies the bounded memts condition forx then we will assume
throughout thatr; defined by H(X) := ¥,cx f(X)E(x: X). f € C(4), also
satisfies the bounded moments condition. This assumption is satisfied in all of
our applications in Section 3.

The next definition recalls a notion of stabilization fdrintroduced in [24]. We
are grateful to Mathew Penrose for pointing out that stabilizatioH o&ther than
that of¢ is essential for the upcoming de-Poissonization methods of Section 6; this
observation corrects an earlier version of our results.

DEFINITION 2.3. The functionalH := H¢ is strongly stabilizing if for
all T > 0, there exist a.s. finite random variabkega radius of stabilization of H)
and A¢ (1) such that with probability 1,

(2.6) Af(2) = Ao((P: N Bs(0)) U A)
for all finite A c R \ Bs(0).

If HE is strongly stabilizing, then we will assume throughout th‘aﬁ,
f € C(A), is also strongly stabilizing. This assumption is satisfied in all'of our
applications in Section 3.

Let D% (7) := E[Aé(7)] for all ¢ > 0. The following de-Poissonized version

of Theorem 2.1 shows th&{[( f, ,of,)] and Vai(f, ,of,)], f € C(A), have volume

order fluctuations and that the scaling limit of the re-normalized meaauﬂé%éf,
is a mean zero Gaussian field.

THEOREM 2.2. (i) If £ isstabilizing and satisfies (2.2) for some p > 1, then
forall f e C(A),
E[(/. ox)]
% = [ SOE[E(0: Peco) e dx.
whereas if £ is polynomially stabilizing and satisfies (2.2) for p =4, and if H is
strongly stabilizing and satisfies the bounded moments condition for «, then for all
feC(A),

2.7) lim

n—oo

&
im Var{(f, on)]
= /A F2)VE (ke (x))ie (x) dx — ( /A f(x)D%(x))x(x)dx) :
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(i) If & is exponentially stabilizing and satisfies (2.2) for all p > 0 and if H
is strongly stabilizing, then n=%/255 convergesasn — oo to a Gaussian field with
covariance kernel

/A F100) 20 VE (e ()i () dx
(2.9)
— /A F1(x) DE (e (x))ie (x) dx /A F2(x) D (i (x))ie (x) dx.

(iii) If the distribution of A (x (X)) is nondegenerate, then

~&
(2.10) jim VAo (A1 o

n—oo n

that is, the limiting Gaussian field is nondegenerate.

REMARKS. (i) Theorems 2.1 and 2.2 generalize existing central limit the-
orems in geometric probability (Heinrich and Molchanov [13], Malyshev [19],
Penrose and Yukich [24] and Ivanoff [16]) in several ways: (a) they show as-
ymptotic convergence of measures to a Gaussian field, thus also yielding asymp-
totic convergence of functionals to a limiting normal random variable, (b) they
identify the limiting variance and covamce structure in terms of the underlying
density of points, and (c) they do not assume spatial homogeneity of the under-
lying points. Theorem 2.2 implies that fgi, ..., f,, € C(A), the random vector
(U n~Y255), . (fn, n~Y/255)) converges to a multivariate Gaussian random
variable.

(i) Evaluating (2.4) and (2.8) is in general difficult. However, for some
problems of geometric probability, for example, those involving functionals which
count the number of pairs of points within a specified distance of one another, it
is relatively simple to evaluaté® and D¢ [6]. Moreover, a simplification of (2.4)
and (2.8) occurs whenevéris homogeneous of order y, that is, whenever there
is a constany > 0 such that satisfies the relatioB(ax; aX) = a?&(x; X) for
all positive scalara and all finite point set8¢ > x. Homogeneity occurs naturally
in many problems of geometric probability.4fis homogeneous of order, then
Vé(r) = VE() T~ 2/4, andDf (1) = D5 (1)~ 7/, yielding

-&
(2.11) lim Varl(f, i) _ Vg(l)/ P20 (x)[@=2/d g
A—00 A A
and
~£
lim M — Vg(l)/ fz(x)/{(x)(d_zy)/d dx
n—oo n A

(2.12) )
— (D* (1>)2( /A f ()i (x)@=r/d dx) :
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If « is the uniform distribution on the unit cube, then by (2.12)

- d
im Var(p; ([0, 1]9)]

n—00 n

= Vi) — (D5 (D),

which is strictly positive whenevex? (1) is nondegenerate. § is scale invariant,
or homogeneous of order 0, then for anyith supportA,

=&
lim Varp (A)] = vE(@1) — (Df (1))2’
n—oo n
showing that the limiting variance is not sensitive to the underlying density but
depends only on the dimension.

Still in the setting of generalc, the inequality [, k(x)“@=2"/4dx >
(f4x(x) 4/ 4x)2 implies that the right-hand side of (2.12) is strictly posi-
tive wheneveri¢ (1) is nondegenerate. Moreover, (2.12) implies that wthen?,

« a density onA = [0, 12, andy = 1, which would be the case for total edge
length functionals of graphs on vertex set§n1]?, then the limiting variance of
n=Y255 (A) equalsVé (1) — (Df (1))2(f, k (x)Y2dx)2, which isminimized when
the underlying density « is uniform.

(iii) A comparison of (2.4) and (2.8) shows that Poissonization contributes extra
randomness which shows up in the limiting variance (2.8). To show nhondegeneracy
of A¥(k(X)), we need to appeal to the particular geometric structure of the
underlying problem. This is done on a case by case basis and is already treated
in many problems of interest [24]. The implicit finiteness of the right-hand side of
(2.4) and (2.8) is made explicit in Section 4.3.

(iv) Our method of proof actually yields (2.4) whenever (2.2) holds for some
p > 2 and & is exponentially stabilizing. This modification requires a small
modification of Lemma 4.2. Also, if satisfies stabilization (Definition 2.1) only
when O< a < b, then Theorems 2.1 and 2.2 hold provided th& bounded away
from zero.

(v) The conditionm € [n/2,3n/2] in (2.5) is needed in order to achieve
an efficient coupling between Poissonized and de-Poissonized measures. See
Lemma 6.2 for details.

(vi) Theorem 2.1 holds for arbitrary continuousR? — R™; that is,x need

not be a probability density.

2.3. Extensions of main results.

2.3.1. Random measures induced by marked point processes. Theorems
2.1 and 2.2 extend to random measures induced by marked point processes. Let
(M, F,v) be a probability space of marks and et , (resp..«,) be a Poisson
point process ok x M with intensity measure x v (resp.« x v). We say that
& stabilizes if Definition 2.1 holds witBz (x) replaced b)B# (x):=Br(x) x M,
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and X ranging over the finite subsets GR? \ Bg(x)) x M. Write &(x; &) for
§(x; Prxv).

Let X;,i > 1, be i.i.d. marked random variables with common ladw x v.
le denotes the projection of; on R4, X, = {X41,...,X,}, and ,of, =
>i_161(Xi; X,)3y, the associated marked random measureRbnLet A (1)
denote the marked version of (2.6), that is,

Ag(r) = Ag(t X V)
= Ao((Prxv N BFLO)) U A)

for all finite A4 c (R?\Bg(0)) x M. Let V&(7) := V&(r x v) denote the marked
version of V& (7).
The analog of Theorem 2.2 for marked processes is as follows:

(2.13)

THEOREM 2.3. Let ,oﬁ,n > 1, denote the marked measures defined above.
Then (2.7)—(2.10)old with D¢ (7) and V4 (t) replaced by their respective marked
versions E[A (7 x v)] and V& (7 x v).

REMARKS. (i) Theorem 2.3 generalizes Theorem 3.1 of [25], which estab-
lishes a CLT forfunctionals of markedhomogeneous samples.

(i) Applications of Theorem 2.3 to random sequential packing and spatial
birth—growth models are discussed in Section 3.2.

2.3.2. Random measures induced by nontranslation-invariant functionals. It
takes just a little extra effort to use our general approach to prove CLTs for
measures induced by nontranslation-invariant weight®\lthough translation
invariance is often present in the measures (i)—(iii), we envision situations where
measures ofR¢ do not enjoy translation invariance, as would be the case if the
metric onR¢ changes from point to point.

Let&é(y;x, X)),y € R4, be a family of measurablB-valued functions defined
for all pairs (x, X), whereX C R4 is finite andx is an element ofX. In cases
with x ¢ X, we abbreviate the notatidty; x, X U {x}) to £(y; x, X). We assume
for all y that&(y; x, X) is translation invariant in the pailg, X), that is, for all
z € R? and all pairs(x, X),

E;x, X) =& x —2z, X —2).

£(y;-,-) is a rule depending on € R? which assigns a real value to all pairs
(x, X5). We donot assume thaf is translation invariant in the triple&; x, X).
We definet (x; X) := &(x; x, X) for all x € R? and for allx > 0, we set

£ (v x, X) 1= &(y; A, aM4%0) and & (x; X) 1= E(x; 2%, AM9x60).
We will consider limit theorems for the random measures
Mi/{ = Z £ (x5 X, Prc)dx

xeﬂ’)\,(
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and

n
(2.14) 05 =Y Ea(Xis Xi, %,)8x, .
i=1
& is said to bestabilizing if £(x; X) = &(x; x, X) stabilizes in the sense of
Definition 2.1. If the rulest(y; -, -) are identical for ally € R?, then&(x — z;
X —z) =£&(x; X) for all z € R4, and we reduce to the translation-invariant setting
of Theorems 2.1 and 2.2.

When & is translation invariant, that is to say, whéx; x, X) = &£(x, X),
stabilization guarantees that pair correlation functionséfatecay suitably fast
enough with respect to the interpoint distance. It also guarantees that the pair
correlation function with respect to nonhomogeneous samples can be closely
approximated by the pair correlation function with respect to homogeneous
samples. However, for nontranslation-invariana suitable approximation of pair
correlation functions is not possible without some continuity efith respect to
its first argument. This motivates the following definition.

DEFINITION 2.4. The functiort is slowly varying in L4 (abbreviatedt e
SV(g)) if for all 7 € (0, 00), anyx € R?, and any compact sé&f containing0:

lim SupE[|&,(x + A~ Y4y: x, o) — &.(x; x, Pro)|9]1=0.
—>OOyEK

The following generalizes Theorem 2.1 to nontranslation-invagarior all
x € R? andt > 0, let

VE(x, 1) = E[E2(x; x, P0)]
+ fR‘,<E[s<x; 0, P Uy)-§(x;y, P UO)]

—E[&(x; 0, P)IE[E(x; y, P)])T dy.

THEOREM 2.4. () If & € SV(%) is stabilizing and satisfies (2.2) for some
p>1,thenfor all f € C(A),

E[{f, uiK

ei5)  im SN [ omfe (s Pl d.

whereas if £ is polynomially stabilizing and satisfies (2.2) for p = 4, then for all
feC(A),

-&
(2.16) jim w: fA FREOVE (x, 1 (0)ic (x) dx.

A—>00
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@iy If&e SV(%) is exponentially stabilizing and satisfies (2.2) for all p > 0,
then 2~1/2z5 converges as 1 — oo to a Gaussian field with covariance kernel
4 F10) f20) VE (3, ke () (x) dx,

Letting H (X) = Y ocex E(x; X), we say thatH is strongly stabilizing for all
T > 0 and allx € R? if there exist a.s. finite random variabl&s(a radius of
stabilization of H) and A% (z, x) such that with probability 1,

(2.17) AS(1,x) = A ((Pr N Bs(x)) U A)

for all finite A C RY \ Bg(x).

It is easy to check that the measures (2.14) satisfy the law of large numbers in
Theorem 2.2(i). The following de-Poissonized version of Theorem 2.4 generalizes
Theorem 2.2 and shows that the normalized versions of the measures (2.14)
converge to a Gaussian field as well. Pt(x, ) := E[A% (x, 7)].

THEOREM 2.5. Let & SV(%). Assume that A is strongly stabilizing and
sati sfies the bounded moments condition for «. Then we have:

() If & is polynomially stabilizing and satisfies (2.2) for p = 4, then for all
feCA),

~&
im varl{f, pn)]
(.18 "7 "
2
:/ L2 VE (x, 0 (x0)k (x) dx — (/ f(x)DS(x,K(x))K(x)dx) .
A A
(i) If & is exponentially stabilizing and satisfies (2.2) for all p > 0, then

n=Y255 convergesasn — oo to a Gaussian field with covariance kernel

/A A1) F00) VE (x, 1 (0 (x) dx
(2.19)

—/Afl(x)Df(x,K(x))K(x)dx/Afz(x)Df(x,K(x))K(x)dx.
(iii) If the distribution of A% (X, k(X)) is nondegenerate, then
im Var g, (A)]

n—oo n

> 0.

REMARKS. (i) Formulas (2.18) and (2.19) are, in general, difficult to
evaluate explicitly. However, in the context of statistics involving one-dimensional
spacings, these formulas are readily evaluated [6], thus extending existing CLTs
for sum functions of spacings.

(i) We have used the assumptiére SV (4/3) only for technical convenience
and have not aimed to find the optimal choice ®f(¢). Higher moment
assumptions org will in general require§ € SV(g) for smaller values ofy
(cf. Lemma 4.2).
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2.3.3. Random measures induced by graphs. Theorems 2.1 and 2.2 assume a
special form when the random point measures are induced by graphs. We see this
as follows. LetX be a locally finite point set and 1€t := G (X) be a graph orX.
G is translation invariant if translation by is a graph isomorphism fror& (X)
to G(y + X) for all y e R? and all locally finiteX. G is scale invariant if scalar
multiplication bya induces a graph isomorphism frof(X) to G (a X) for all X
and alla > 0. GivenG and a vertexx € X, let &(x; G(X)) be the set of edges
incident tox (or for the Voronoi graph, the set of edges whose planar duals in the
Delaunay graph are incident i9, and let|e| denote the length of an edge

Foranyf e ¥ (a, b), let P, denotef, together with a point at.

DEFINITION 2.5. G stabilizes if for allA e A, 0<a <b < o0, A > 0,
andx € LA, there exists an a.s. finite random varial®éx) := R(x,A,a, b, A)
(aradius of stabilization) defined on(2, #, P) such that for allf € ¥ (a, b), with
Suppf = 1A, and all finiteX¢ C AA \ Br(x), we have

&(x: G(Pfr N Br(x) U X)) = E(x; G(Pr.r N Br(x))).

Given ¢:RT — RT, consider functionals of the typég(x; X) =
Y ece(r:G(x) @ (lel); such functionals could represent, for example, the total
length of p-weighted edges itt; incident tox, the number of edges i inci-
dent tox, or the number of edges i less than some specified length. These
functionals induce the point measures

g o= > (e

xeX ec&(x;G(X))

If G is polynomially stablizing (resp. exponentially sabilizing), then so i%G for
any¢. Givenp > 1, say thatg is L” bounded if

p
(2.20)  sup sup supE[( > ¢(A1/d|e|)> }<oo.

A>0xepl/d A XeC ee&(x;G (P UX))

Let Hf(x) denote the total mass mg,x- Hf(x) is strongly stabilizing if for

all = > 0 there exist a.s. finite random variablgs= S(z) and Ag(r) such that
with probability 1

Hy (P: U{0}N Bs(0) U A) — HS (P N Bs(0) U A) = AG (1)
for all finite A c R \ Bg(0).
Let X, :=nY4 (X1, ..., X,), with X; i.i.d. with densityx. Write

(2.21) Poni=0. 2 $(edx,

i=lec&mVIX;;G(Xn)
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The next result is the CLT counterpart to the main result of [26] and
follows immediately from Theorem 2.2. There is obviously a Poisson version of
Theorem 2.6, but we do not state it here. Bi(z) := E[A§ (v)] and letV’ be

the functionvé wheng := £J is defined as above.

THEOREM 2.6. Assume that the graph G is translation and scale invariant.
Let X;,i > 1, bei.i.d. with density «. Assume that qu is strogly stabilizing and
satisfies the bounded moments condition.

@ If gg satisfies (2.20)for p =4, if G is polynomially stabilizing, then for
alz >0,

Var[H¢G WY4(P . N[0, 119))]
A—>moo A

andfor all f € C(A),

\V/ ) G
fim ar(f, pg )]

n—oo n

=Vi(r) T

(2.22) ,
= [ Fwvwwrmds - ( [ feopgurwads) .

(ii) If G isexponentially stabilizing, if5¢G satisfies (2.20)for all p > 0,thenas
n— 00, n—l/zﬁgn convergesto a Gaussian field with covariance kernel

[ A L0V () dx
(2.23)

- [ AWDG Nk dx [ 120D (ki) .

REMARKS. (i) If ¢(x) =xP, p > 0, then the integrals in (2.22) and (2.23)
can be simplified using the identitieg () = V,’(1)r~2"/¢ and D (x) =
Dy(DT—P/4,

(i) We may generalize Theorem 2.6 to treat nontranslation-invagaror
example, IeEg(x; x, X) be a functional which assigns to a powin the graph
G(X) a value which depends on the poine R? (e.g., the value may depend
upon the local metric structure a}. Such functionals are not translation invariant
in the triples (x; x, X). By applying an appropriate uniformization to curved
surfaces, we can fit functionals on such surfaces into our set-up of nontranslation-
invariant functionals of point processes &1. This yields, for example, CLTs
for functionals of graphs defined over curved surfaces, in particular functionals of
Voronoi diagrams over surfaces [17].
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3. Applications. Theorems 2.1-2.6 can be applied to point measures induced
by random graphs, packing processes and germ—grain models. This extends
previous results [2, 21, 24, 26], [5, 7-9, 11, 15, 25, 27] and [12, 13, 22, 26]
to the weak limit setting as well as to the setting of interaction processes over
nonhomogeneous point fields. We do not provide an encyclopedic treatment of
applications and anticipate applications to other interaction process@&s on
including measures induced by continuum percolation models. The methods
described here can be modified to extend and generalize the central limit theory for
classical spacings angtdivergences; in this setting the functiovi§ and A% may
be determined explicitly, allowing us to compute the limiting variance explicitly as
a function of the underlying density of points. We refer to [6] for complete details.

Throughout, we will often show the exponentially stabilizing condition by
appealing to results of [24, 26], which involves a slightly stronger definition of
stabilization.

3.1. Random graphs. We limit discussion to random graphs & with the
usual Euclidean metric, but since translation invarianceiefnot assumed, many
results hold if the graphs are defined on curved spaces. Our discussion parallels
that in [26]. We say thap haspolynomial growth if there existsu < oo such that
d(x) <CA+x% forallx e RT.

3.1.1. k-nearest neighborsgraphs. Letk be a positive integer. Given a locally
finite point setX c R?, thek-nearest neighbors (undirected) graphbéndenoted
NG(X), is the graph with vertex seX obtained by includindx, y} as an edge
whenevery is one of thek nearest neighbors af and/orx is one of thek nearest
neighbors ofy. Thek-nearest neighbors (directed) graphXndenoted NG X),
is the graph with vertex seX obtained by placing a directed edge between each
point and itsk nearest neighborg-nearest neighbors graphs are translation and
scale invariant. Given a binomial samp$, ..., X,, of i.i.d. random variables
with densityx, define the induced point measuyg); andpg‘f asin (2.21).

THEOREM 3.1. The random measures pg'ffl and pg'f;’l/, n > 1, satisfy
(2.22), (2.23)if ¢ has polynomial growth, Suppc € 4, and « is bounded away
frominfinity and zero on its support.

If we set¢C(|le|) = |e|/2, then we obtain a CLT for the total edge length of
the k-nearest neighbors graph on the nonhomogeneous poirdt,sethenever
Suppc € A and « is bounded away from infinity and zero. This generalizes
existing CLTs [2, 24] which only show CLTs for nearest neighbor graphs on
homogeneous point sets. The convergence to a Gaussian limit (2.23) is new.

Still more generally, ifpC(le]) = |e|?/2, p > 0, then Theorem 3.1 yields a
CLT for the pth power-weighted total edge length of thie-nearest neighbors graph
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on X, when Supp € 4 andk is bounded away from infinity and zero. That is,
there are constantsN®(1) and DNG(1) such that

- Varl(f, by
im ————

n—oo n

(3.1) = vNC(1) f F2(0)k (x) @2/ gy
A

2
= (PV)( [ e ax)
A

andn~%25}'S converges as — oo to a Gaussian field with covariance kernel

vNG() / FL(6) a0k (x) 4214 g
(3.2) A

_ (DNG(]_))Z/I;fl(x)K(x)(d—V)/ddx/Afz(x)K(x)(d—y)/ddx.

Another application of Theorem 3.1 goes as follows. Fix 0. Let¢ (Je|) be
either O or 1 depending on whether the lengthof the edge is bounded by or
not. Then (2.23) gives a CLT for the empirical distribution function of the rescaled
lengths of the edges in thkenearest neighbors graph 6¢),.

PROOF OF THEOREM 3.1. The proof is straightforward and essentially
follows from existing arguments in [24] and [26]. For completeness we sketch the
proof whenG (X) denotes N@X); similar arguments apply whe@(X) denotes
NG'(X). It will suffice to apply Theorem 2.6 and to show that NG stabilizes
on elements off (a, b) whena > O [recall Remark (iv) after Theorem 2.2]. Let
f € F(a, b) be arbitrary, where & a < b < oo. As shown in Lemma 6.1 of [24]
(even though the definition of stabilization there is slightly different), the set of
edges incident toc in NG(#y ) is unaffected by the addition or removal of
points outside a ball of random almost surely finite radigs that is, the graph
G(X) = NG(X) is stabilizing. MoreoverR is constructed as follows [24]. For
eachr > 0 construct six disjoint equilateral triangl&$(z), 1 < j < 6, such that
is a vertex of each triangle and such that each triangle has edge tefigten R
is the minimumr such that each trianglg; (r), 1 < j <6, contains at least+ 1
points from#,,.. Sincef is bounded away from zero, elementary properties of the
Poisson point process give the desired exponential decRyaoi thus ® decays
exponentially as well. We verify the moments condition (2.20) as in the proof of
Theorem 2.4 of [26]. Strong stabilization &f is given by Lemma 6.1 of [24] and
the bounded moments condition féfF is as in Lemma 6.2 of [24]. The positivity
of the limiting variance is given by Lemma 6.3 of [24]
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3.1.2. Voronoi and Delaunay graphs. Given a locally finite set¢ ¢ R and
x € X, the locus of points closer to than to any other point it¥ is called the
\oronoi cell centered at. The graph on vertex sé& in which each pair of adjacent
cell centers is connected by an edge is calledX8aunay graph on X; if d = 2,
then the planar dual graph consisting of all boundaries of Voronoi cells is called the
Voronoi graph generated by¢. Edges of the Voronoi graph can be finite or infinite.
Let DEL(X) [resp. VOR X)] denote the collection of edges in the Delaunay graph
(resp. the Voronoi graph) ak. The Voronoi and Delaunay graphs are clearly scale
and translation invariant. Define the induced point measp¥§§ and pp5k as
in (2.21).

THEOREM 3.2. Let d = 2. The random measures py O and pPE- satisfy
(2.22), (2.23)if ¢ has polynomial growth with ¢ (c0) = 0, Suppc € A4 and if «
is bounded away from infinity and zero on its support.

The limits (2.22), (2.23) extend the results of Penrose and Yukich [24] and
Avram and Bertsimas [2], who consider CLTs for the total edge length of Voronoi
graphs ovehomogeneous samples. The convergence in distribution to a Gaussian

limit (2.23) is new. Clearly, the analogs of (3.1) and (3.2) hold for the measures

pggR andpgﬁ".

PROOF OF THEOREM 3.2. We will apply Theorem 2.6. The moments
condition (2.20) is shown in Theorem 2.5 of [26]. We can verify as in [26] that
G(X) is stabilizing. Let f € F(a, b) be arbitrary, with O< a < b < co. We
will show that the Voronoi cell centered atwith respect tofy . is unaffected
by changes beyond a random but a.s. finite distaRdeom x. We only need
to showR has exponentially decreasing tails. This is done in a manner similar
to that for thek-nearest neighbors graph. For each 0 construct 12 disjoint
isosceles triangle%; (1), 1 < j <12, such thak is a vertex of each triangle, such
that each triangle has two edges of lengttvhereT; () C T;(u) whenever < u
and wherd J,_oU}2; Tj () = R2. If R is the minimum such that each triangle
T;(t),1<j <12, contains at least one point frofy ., then R is a radius of
stabilization (page 1037 of [24]). Singeéis bounded away from zero, elementary
properties of the Poisson point process give the desired exponential decRy of 3
We can verify the bounded moments condition Bnas in Lemma 8.1 of [24].
Strong stabilization ofH is proved in Section 8 of [24]. The positivity of the
limiting variance is given by Lemma 8.2 of [24]]

3.1.3. phereof influencegraph. Given a locally finite sef; ¢ R?, the sphere
of influence graph SIGX) is a graph with vertex seX, constructed as follows: for
eachx € X let B(x) be a ball arouna with radius equal to mipex\ (x}{ly — x1}.
ThenB(x) is called the sphere of influence of Draw an edge betweenandy
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iff the balls B(x) and B(y) overlap. The collection of such edges is the sphere of
influence graph (SIG) of and is denoted by SIGX). Itis clearly translation and
scale invariant. Define the induced point mea asin (2.21).

In Section 7 of [24], CLTs are proved for the total edge length, the number
of components, and the number of vertices of fixed degree of SIG when the
underlying sample is uniform. The following extends these results to nonuniform
samples and also shows weak convergence of the associated measures. We also
obtain a CLT and variance asymptotics for the total number of edges in the SIG on
nonuniform samples, extending results of [14].

THEOREM 3.3.  The random measures p3'® satisfy (2.22), (2.23)if ¢ has

polynomial growth, Suppc € A and « is bounded away from infinity and zero
on its support.

PrRoor We will apply Theorem 2.6 again. Let € ¥ (a,b) be arbitrary,
0 <a < b < oo. As shown in [26],G(#f) has moments of all orders and is
stabilizing, so we only need to show expaotial stabilization. However, this
follows from the analysis of SIG in [24]. Consider an infinite canwith its vertex
atx, subtending an angle af/6 radians. As in [24], leT" be the distance from
to its closest neighbor iPr,, N C, and if Y is the pointinC N Bgr (x) closest tox,
then note (page 1030 of [24]) that the configuration of points outBiglg (x) has
no effect on the set of points @ connected ta. Thus, the radius of stabilizatia®
equals the maximum af i.i.d. copies of Y|, wherem is the minimum number of
conesCy, ..., C,, congruent taC, each with vertex at, whose union iR, Nt is
easy to check thak has exponential tails. Thus(X) is exponerially stabilizing.
The bounded moments condition @h is as in Lemma 7.2 of [24] and strong
stabilization ofH is as in Lemma 7.1 of [24]. The positivity of the limiting variance
is given by Theorem 7.2 of [24].0

3.2. Random packing. We will use Theorem 2.3 to extend earlier results on
random sequential packing [5, 7-9, 11, 15, 25, 27] to cases of nhonhomogeneous
input as well as to show the weak convergence of packing measures induced by
Poisson and fixed input.

3.2.1. RSA packing. The following prototypical random sequential packing
model is of considerable scientific interest.

Let B, 1, Bn.2, ..., By, be a sequence ef-dimensional balls of volume—1
whose centers are i.i.d. randafiavectors X1, ..., X, with probability density
function x: A — [0, c0). Without loss of generality, assume that the balls are
sequenced in the order determined by marks (time coordinat¢8)if Let the
first ball B, 1 be packed, and recursively foi =2, 3,..., N, let theith ball B, ;
be packed iffB, ; does not overlap any ball i, 1, ..., B, ;—1 Which has already
been packed. If not packed, thth ball is discarded. The collection of centers
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of accepted balls induces a point measuredgrdenotedu,,-1. We call this the
random sequential packing measureinduced by balls (of volume 1) with centers
arising from.

Packing models of this type arise in diverse disciplines, including physical,
chemical and biological processes. In statistical mechanics, this model describes
the irreversible deposition of colloidal particles or proteins onto a substrate. In this
context, the model described above is known as the RSA model for hard spheres
on a continuum substrate. When the ball centers belong to a stationary Poisson
point process ofR?, then this model is the Matérn hard-core process (page 163
of [29]). When the ball centers belong to a bounded regidR‘Gfthen this model
is known in spatial statistics as the simple sequential inhibition model (page 308
of [30]).

The vast scientific literature on versions of RSA models (see [25] for references)
contains an abundance of experimental results, but few rigorous mathematical
results. Ind = 1, Rényi [27] and Dvoretzky and Robbins [11] established
LLNs and CLTs, respectively, for the total number of accepted balls. Coffman,
Flatto, Jelenkow and Poonen ([9], equation (2), Theorems 13 and 14) determine
explicit formulae for some of the limiting constants in the LLN and CLT, but
restrict attention tod = 1. In d > 1, Penrose and Yukich [25] establish the
asymptotic normality of the number of accepted balls when the spatial distribution
is uniform and also show [26] an LLN for the number of accepted balls when
the spatial distribution is nonuniform. Baryshnikov and Yukich [5] establish
weak convergence of the sequential packing measures>inl, but only for
homogeneous Poisson input. Here we will use our general result for marked
processes, Theorem 2.3, to establish convergence of the variance and also weak
convergence in the case of nonhomogeneous inpdtinl. We will follow the
set-up of [26].

For any finite point seX; C A, assume the pointse X have time coordinates
which are independent and uniformly distributed over the intdi@dl]. Assume
balls of volumen—! are centered at the points &f and arrive sequentially in an
order determined by the time coordinates, and assume as before that each ball is
packed or discarded according to whether or not it overlaps a previously packed
ball. Let&(x; X) be either 1 or 0 depending on whether the ball centeredisit
packed or discarded. L&t (x; X) = £(n¥/9x; n1/4X), wheren/?x denotes scalar
multiplication ofx andnot the mark associated withand where balls centered at
points ofn/4 X have volume 1. LeH (X) := Y, x &(x; X) be the total number
of balls packed. The random measure

n
1= (Xi {XiY_1)dx,
i=1
coincides withu,,-1.

Straightforward modifications of [25, 4] show thais exponentially stabilizing.
The strict positivity ofv’é () is shown in Theorem 1.2 of [25]. Sinéeis bounded
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it satisfies the moments condition (2.2). By Section 5 of [28],satisfies the
bounded moments conditioand strong stabilizain. Therefore, Theorem 2.3
yields the following CLT.

THEOREM 3.4. Therandom measuresuf,, n > 1, satisfy (2.8)and (2.9).

Theorem 3.4 shows asymptotic normality of the total number of accepted balls
and generalizes [4, 25] to the case of nonhomogeneous input.

3.2.2. Spatial birth—growth models. Consider the following spatial birth—
growth model inR?. Seeds are born at random locatiotise R? at timesT;,

i =12, ..., according to a unit intensity homogeneous spatial temporal Poisson
point processl := {(X;, T;) € R? x [0, c0)}. When a seed is born, it forms a cell

by growing radially in all directions with a constant spaed 0. Whenever one
growing cell touches another, it stops growing in that direction. Initially the seed
takes the form of a ball of radiys > 0 centered ak;. If a seed appears &f; and

if the ball centered aX; with radiusp; overlaps any of the existing cells, then the
seed is discarded.

In the special case when the growth rate= 0 and p; is constant, this
model reduces to the RSA packing model. In the alternative special case where
all initial radii are zero a.s., the model is known as the Johnson—Mehl model,
originally studied in model crystal growth, and is described in Stoyan, Kendall
and Mecke [29]. Chiu and Quine [8] show that the number of seeds accepted
inside a cubg?, of volumea by time satisfies a CLT, but apart from numerical
considerations, their arguments do not preclude the possibility of limiting normal
random variable with zero variance [7]. Penrose and Yukich [25] consider a
modification of this model in which all seeds outside, are automatically
rejected, while the rules for seeds insidg x [0, co) are as above. They establish a
CLT for this model and show that the limiting variance is strictly positive (page 295
of [25]), thus implying that the CLT of [8] is nondegenerate.

If seeds are born at random locatiokise A, it is natural to study thepatial
distribution of accepted seeds. As far as we know, this problem has not been
investigated. We may use Theorem 2.3 to establish the weak convergence of the
random measure induced by the locations of the accepted seeds.

For any finite point seX C A, assume the pointse X have i.i.d. marks over
[0, 1]. A mark atx € X represents the arrival time of a seedvatAssume that
the seeds are centered at the pointsXoand that they arrive sequentially in an
order determined by the associated marks, and assume that each seed is accepted
or rejected according to the rules above. £ét; X) be either 1 or 0 according to
whether the seed centeredyais accepted or notH (X) := >, . &(x; X) is the
total number of seeds accepted axft{t) is as in (2.7).
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As with RSA packing, lefX1, ..., X, be i.i.d. random variables with density
on A and with marks if0, 1]. The random measure

n
o =Y Ea(Xis {Xi}{_1)ox,
i=1
is the scaled spatial birth—growth measure 4rinduced byXy,..., X,. The
next result, a consequence of Theorem 2.3, shows that the spatial birth—growth
measures converge to a Gaussian field.

THEOREM 3.5. Therandom measuresmf, n > 1, satisfy (2.8)and (2.9).

Theorem 3.5 generalizes [8] and extends [25] to the case of nonhomogeneous
input.

3.2.3. Related packing models. (a) Theorem 3.4 extends to more general
versions of the prototypical packing model. By following the stabilization analysis
of [25], one can develop asymptotics in the finite input setting for the number
of packed balls in the following general models: (i) models with balls replaced
by particles of random size/shape/charge, (ii) cooperative sequential adsorption
models and (iii) ballistic deposition models (see [25] for a complete description of
these models). In each case, Theorem 2.3 yields weak convergence to a Gaussian
limit of the random packing measures associated with the centers of the packed
balls, whenever the balls have a dengityA — [0, c0).

(b) The above packing models describe convergence of measures arising as a
result of dependently thinning a Poisson point process. Related ways of thinning
processes include thannihilating process, described as follows. A clock is
attached to each point (particle) in the process; when the clock for a chosen particle
rings, then if the particle has itself not been annihilated, it annihilates its neighbors
within a fixed radius. Clearly, once a particle is free from occupied neighboring
sites, it remains there undisturbed and is fixed for all time. Thus in any finite
region the process is unchanging after a finite time. This models the thinning
of seedlings [31] and the resulting random point measure satisfies the CLT in
Theorem 3.4.

3.3. Germ—grainmodels. Germ-—grain models form a central part of stochastic
geometry and spatial statistics [12, 22]. Here we consider the limit theory of
functionals and measures associated with germ—grain models. Such models fall
within the scope of the general set-up of Heinrich and Molchanov [13], who
were the first to develop a general limit theory for random measures induced by
translation-invariant germ—grain models.

Let 7;,i > 1, be ii.d. bounded random variables defined @n, , P),
independent of the i.i.d. random variabl&s,i > 1, which are also defined on
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(2, %, P) and which have density. For simplicity, consider random grains
having the representatiot; + n—l/dBTl. (X;) and consider the random set

8, = J(Xi +n~ Y Br,(0)).
i=1

When theX;,i > 1, are the realization of a Poisson point process, theEget
is a scale-changed Boolean model in the sense of Hall [12], pages 141 and 233.
Heinrich and Molchanov [13] exploit the translation invariance of such a model
and establish a central limit theorem for the associated measures. For translation-
invariant models, Heinrich and Molchanov [13] establish CLTs without assuming
boundedness df;.

For allu € R?, let T (1) be a random variable with a distribution equal to that
of T1. For all x € R? and all point setsX ¢ R?, let V(x, X)) be the Voronoi
cell aroundx with respect taX. Givenx € R4, let L(x, X) denote the Lebesgue
measure of the intersection of the random(ggt 5 Br ) (1) andV (x, X).

Thevolume measureinduced byg,, is

n
iy =y Ln(Xi; Xn)dx,
i=1

and the total volume of/? g, is given byHX (nY/9X,,) := 371 L, (X5 X).

SinceT is bounded it follows thaL is exponentially stabilizing and thaf -
is strongly stabilizing. Morever, since the functional is bounded by the
volume of a Voronoi cell, it is clear from Section 3.1.2 thatsatisfies the
moment condition (2.2) for alp > 0 and thatd ” satisfies the bounded moments
condition (2.5) for anyk € ¥, 5,0<a <b < co.

Therefore, for germ—grain modes;, given above we have thus proved:

THEOREM 3.6. Let the density « be bounded away from infinity and zero.
(i) Forall feC(A)

=L
im YA )]

n—oo n

(3.3) X
:/ LR VE(x, k(x)k(x) dx — (/ f(x)DL(x,K(x))K(x)dx) )
A A

(i) Asn — oo, n~Y?1L convergesto a Gaussian field with covariance kernel

fA A1) f20)VE (3, 10 ()i () dx
(3.4)
_/Afl(x)DL(xJ‘(x))K(x)dx/AfZ(X)DL(x,K(x))K(x)dx.
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REMARKS. (i) We have confined attention to one of the simplest germ—
grain models. Instead of ballBy, one could assume that the grains have some
distribution on the space of convex subsetsRdf. We have also limited our
discussion to volume functionals, but it should be clear that the approach above
readily extends to other spatial statistics, including total curvature.

(i) Theorem 3.6 shows that volume functionals satisfy a CLT over nonuniform
point sets, adding to results of [13] and [12], Chapter 3.4, involving the vacancy
functional for germ—grain models.

(iii) The LLN counterpart of Theorem 3.6 is established in [26] and is not
reproduced here.

4. Proof of variance conver gence (Poisson case).

4.1. Correlation functions. The proof of (2.16) uses the objective method [1]
together with correlation functions. To illustrate the method, it is instructive
to first prove the limit (2.3). Recall that for alf € C(A), A~ 1E[(/, 'Mi/c)] =
[a FOEE. (x; Puc) ]k (x)dx. The key observation lying at the heart of the
objective method is that for any pointe A distant at leastk /A)Y/? from A, K
large, &, (x; Py) is well approximated by the candidate limiting random variable
£(x; Pe(x)) in the sense that ds— oo

|E&. (x; Prc) — E& (x5 Py
(4.1) < [E&,.(x: Prc) — E&(x: Prcn)]
+ |E$A(x§ ?Ax(x)) - ES(XQ g)/c(x))| — 0,

wherep; . (x) is a Poisson point process &4 with intensityix (x) coupled taf;,.
as in the upcoming coupling (4.2).

Indeed, to prove (4.1), for any pointe A distant at leastk /)¢ from 9 A,
consider the everfix ; (x) that the radius of stabilizatioR(AY¢x) at A1/¢x with
respect taP(y) is less thark and thatPy,, = Pyc(x) ON Bk jyva (x). Then

P[Fg ()1 < P[ROY9x) > K142 lic (y) — ke (x)| dy.
Bk oy ()

By stabilization, we haveP[R(AY¢x) > K] < & uniformly in 1 by choosingk
large enough. For suck, the Lebesgue point property ofshows that the second
term above can be made arbitrarily small for lakgand thusP[F, , (x)] < 2¢ for
large .. Bound|E&, (x; i) — B, (x; Prc()| by ’

IE[(6.(x; Prc) = &1.(55 Pre))) - Lrg 0]
+ |E[($)‘-(x’ ‘7))»1() - g)»(-x; J))»K(x))) . 1FK,)L(X)C]|'

The first term vanishes by the definition Bk ; (x). The second term is bounded
by a multiple ofe by combining Hélder's inequality, the assumed-5 moment
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condition andP[F;;,A(x)] < 2¢. Thus, for any pointx € A distant at least

(K /24 from 9 A, the first term on the right-hand side of (4.1) goes to zero and
the second term goes to zero by stabilization.

The proof of the variance convergence (2.16) is more involved and requires
some extra terminology. LeP;, be a Poisson point process equidistributed with
and independent o, that is,;, is a copy of#;,. For allx e RT andx € A
we introduce two auxiliary homogeneous (independent) Poisson point processes
Pric) andJsA/K(x) defined on(2, F, P) such that:

() Prcr) andP;,,, haveconstant intensity onA equal torx (x),
@ii) Poe and,/sx,c(x) are coupled in the sense that for any Borel sulBset A,

(4.2) P[Puc(B) # Prci)(B)] < )»/B ke (y) — Kk (x)|dy,

and the same is true foP’;, andJSA/K(X).

The proof of the variance convergence (2.16) approximates the correlations of
£, (x; Puc), x € R, by those of; (x; Py (r)), x € RZ. Thus, for allx € R? define

0.(x) :=EIEX(x; P0] and §(x) :=B[&7(x; Prcc)],
as well as the pair correlation function
cn(x, y) = E[&(x; x, Pue U)Ea(y; ¥, Pax Ux)]
—El&(x; x, PuOIEIE 05 v, Pl xyeREx#y.

Abbreviating notation throughout and writigg(x; Py U y)&,.(v; P U x) for
E.(x; x, P UE(Y; y, Prc Ux), we also have the pair correlation functions in
the homogeneous intensity case:

&.(x,y) = E[E (x5 Prcir) U Y)EL (Y Prico) Ux)
— 6.0 Prue0)ir (v Py x#
and
&, y) = E[E (% Prery UY)E (Y Preir) UX)
— & (5 P& 5 Prew)]s ¥ # Y.

Here we employ the notatiafj (z; X) for &, (x; z, X). Clearly, the correlations
¢y (x,y) andcy (x, y) arenot symmetric inx andy, unlike c,. Wheni =1 we
write simply g(x) andc(x, y) for g1(x) andci(x, y), respectively, and similarly
for g, ¢ andc*. Denote the integral of € C(A) with respect to a Borel measune
onR? by (£, ). Now

@3) A NVar(f S ) =AMF @ fE, @ us, — us, @ i),



236 YU. BARYSHNIKOV AND J. E. YUKICH

where f ® f denotes the functiorf (x) f (y) on the producfd x A, u ® v stands

for the product measure ot x A andu’ik is just an independent copy @zﬁk.
Considering the diagonal and off-diagonal terms, we may rewrite the integral (4.3)
in terms of correlation functions

aTIvar(f, 1l )]

= f f FO) e e o (y) dx dy + f F0)2q5 (0 (x) dx
AxA A

=/ K(x)f(x)[f(x)QA(x)+)\/ f(y)CA(x,y)K(y)dy] dx.
A A

To show the desired asymptotics (2.16), we will first show forxadl A not too
close to the boundary of, that ash. — oo

Fg () + A / F3ente, v (y) dy
(4.4) A

- [f(x)c](x) + /R O @y () dy} — 0.
Note that the bracketed expression in (4.4 8) V¢ (x, k (x)).

4.2. Properties of correlation functions. Showing the limit (4.4) requires
some properties of correlation functions. Using the definitions and the translation
invariance ok (y; x, X) in the pairg(x, X), it is easy to verify that for alt, y € A:

G.(x)=q4(x) and & (x,x +y) =&, x + 1Y)
Also, if (2.2) holds forp = 2, then we have the following uniform bounds:

(4.5) sup [maxqx(x), gr(x), ca(x,y), E(x, ¥), & (x, )] < oo.
x,yeRd 1>0

Our next fact provides some crucial decay properties. Here and else@here
denotes a constant whose value may change from line to line.

LEMMA 4.1. Under the moment condition (2.2)with p = 4, we have
[max(|es (x, y)1. 16, 1. 18 (e p))] < Cr (3 x — yl/2) Y2,
PROOF We prove only

lex (e, )| < C(rM)x — y)/2)Y?

since the proof of the other two inequalities is identical. Ret= R(1/9x) and
Ry := R(xY?y) be the radii of stabilization af for A/4x and./y, respectively.
Let E := E, ., denote the event thakR(1Y/“x) and R(xY/4y) are both less
than s := AY4|x — y|/2 and note thatP[E‘] < Cr(AY¢|x — y|/2). On E the
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stabilization ballsBg, (1¥/?x) and B, (AY/?y) do not intersect and thus an we
haveg; (x; Puc Uy) =& (x: Pi) andéx(y Prc U x) =&, (y; Prc) showing that

|E[£2 (x5 Prc UEL(Y; Prc Ux)]
— E[&,(x; Poc N Bs Y 9)) &1 (v Prc N Bs (WM y))]| < CPLEC]

by Hélder's inequality and the moment condition (2.2) with= 4. Using
independence in the second expectation and the bound

[E[&5,(x; Puc N Bs(W1x))] — El&, (x; Pac)]| < CPIE].

we are done. [

The next lemma shows that, and ¢, are closely approximated by their
“uniform versions”g; andc;, respectively. Compactness afand the continuity
of x and f imply uniform continuity, so we fixmoduli of continuity 7, :
R* — R* such that for any,y € A:|x — y| <6, |k(x) — «(y)] < t.(8) and
|F) = FODI<17(8).

LEMMA 4.2. Assumethat & SV(%’) satisfies the moment condition (2.2) for
p =4 and is polynomially stabilizing. Then there exists a function e : R™ — R™,
decreasingto 0, and a function § : R™ — R, increasing to oo, such that §/» — 0
and
() Vx e A distant at least (§/1)Y9 fromd A, |g,(x) — G,.(x)| < e(A),
(i) Yx,yeA,eachdistant at least (§/1)%9 from A,

SM)len(x, ) — & (x, ) < e(d),
(iii) asA — oo, thefunction § satisfies

SE((B/MYY) =0, 80 (5 /2) ) — 0.

PrROOFE It is clear that one can always find a functién= §(1) — oo as
A — oo such thats/» — 0 and implication (iii) holds, and even more strongly,
that

(4.6) SV (6 )Y) >0 ash— co.

Fix suchs.

For anyi > 0 andx € A, x distant at leasts/1)Y¢ from 9 A, consider the
event, := Q. 5 that the radius of stabilizatioR (119 x) ) of & is less thard, and
that Py = Prc(x) ON By y1a (x), that is APy, = Y4 Py, (1) on Bsya (kl/dx)
By polynomial stabilization, by definition of., as well as by the coupling
estimate (4.2), the probability of the complementtfis

4.7) PISE] < wabt ((8/2)Y9) + a67%2,
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wherea; > 0 anday > 2 are constants and,; is the volume of the unit ball
in RY. ThusP[QC] tends to 0 as. — oo by (4.6). To show (i) we need to show
|E[‘§)\(x )\K)_S)\(x JAK(X)) | — 0 asA — oo:

E[£2(x: Prc) — £ (x5 Prseio) ]|
<E[JE2(x: Pre) — E2(x: Prreoy) |12, ]

+E[|§A(x AK)—fx(x Pren)| o]

The first term vanishes by the definition@f and the definition of; (x; Picx)) =
E(AYx; P (xy). Holder's inequality, the moment condition (2.2) with= 4, and
the bound (4.7) show that the second term vanish@s-asco. This proves (i).

For the proof of (ii) it suffices to show that there exists a funcioh) — oo
such that both

(4.8) S(M)]er(x,y) —cn(x, y) <e(d)
and
(4.9 SM)ca(x, y) — G (x, y)I <e(d).

We first show the bound (4.8). By Lemma 4.1 it is enough to show for all
x — vl < 8/2Y7 that SOVIEIE(x; Puc U 0E(Y; P U X) — .05 Preo U
WE&L(Y; ‘/)LK(X) Ux)]| — 0asi — oco.

We proceed as in the proof of (i), but now consider the evgnt that the radii
of stabilizationR (A /9 x) andR(kl/"’ ) of & for AY4x andal/4y, respectlvely, are
both less thag, thatPy. = Pic(x) ON the ballBs ;)14 (x), and that?;, = 25,
on the ballB s ;)14 (y). Sincey is within §/11/¢ of x, the probability thatP;,. #
Prc(x) on the ballB s ;114 (y) is less thanvgst, ((8/1)Y9) + a18~2. Therefore,
under polynomial stabilization

P[RS 1 < 2048t ((8/M)M?) + 2a1872.

The triangle inequality, the moment condition (2.2) with= 4 and Hoélder's
inequality give

SIE[E1(x; Prc U NELD: Pruc Ux) — E1(x: Prc(r) U ¥)E1 (7 Prscry U )]
< agd EHVAPIQS 1%/ < asd (51, ((3/0) M) + 572)¥%,

We may similarly show

~ ~ —ap\3/4
8lex(x,y) — E(x, )| < asd BEHYAPIQS 1¥* < aad (81 ((8/1)7) +672)%%,
which tends to zero as— oo sinceas > 2. Thus (4.8) is satisfied.

We now show the bound (4.9). Notice that tl&’(%) assumption ong
implies automatically a somewhat stronger statement that the convergence is
uniform not only on each fixed compad, but also on the balls of radius
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8s(A) — oo asi — oo. Even more strongly, we have convergence to zero with
rateo((8;(»))~1) uniformly on balls of radius, (1) /A4, that is,

~ _ .
sup 8s () E[|E0(v: Prccr)) — E5(v: Preen) V3] = 0
v lx—y|<8s (1) /A4

asi — oo. Thus by Holder’s inequalityf{ = 4, ¢ = 4/3) we have
BS()‘)HE[EA(X; ﬁkk(x))‘i:)\(y; j;)\/c(x)) - SA(X; jN)AK(x))E}f (y; j;)\/c(x))”

< 85 D (E[E!(v: Prucco) D L& (73 Precor) = 8 (73 Preco) |7 = 0
uniformly over balls around of radiuss, (1) /AY<. Similarly,

SS()L)HE[EA(X; j;)uc(x))g)f (y; ji)uc(x)) - E}f (X; ﬁ)\/{(x))‘i:))f(y; ﬁkk(x))” -0

as A — oo. Therefore the bound (4.9) holds on such balls. On the complement
of these balls, the bound (4.9) also holds by the polynomial decay of correlation
functions given by Lemma 4.1. Therefore the bound (4.9) holds and the proof of
Lemma 4.2 is complete.[

4.3. Convergence of variance. We establish the convergence jof! Var((f,
MiK)] for all f € C(A). Convexity and compactness afimplies the smoothness
condition lim,_, oo 718, (nY¢A) = O for all > 0, whered, (n1/? A) denotes the
volume of the--neighborhood of the boundary@t/? A. Recalling (4.4), it suffices
to show for allx € A distant at least@/1)Y¢ from 9 A, that for largex,

(4.10) FG () + A /A Ferte, v (y) dy
is close to
(4.11) @0 +2 [ F0E @ 3K dy.

Without loss of generality, assume Suf)js the setA.

Lemma 4.2(i) implies that for allk the difference of the first terms in
(4.10) and (4.11) goes to zero As> oc. The difference of the integrals in (4.10)
and (4.11) equals

(4.12) i [ er (e ) F GG = E ) f RG] dy.

Let 5 := §(1) be as in Lemma 4.2 and lek ;)1 (x) be the ball of radius

(8/0)Y4 aroundx. To evaluate the integral (4.12), we integrate separately over
Bs3y14(x) and R4 \ B(sy1a(x). The integral overB,, 1 (x) involves the
difference

A / e (X, ) F K () = E(x, y) F @Ok (x)]dy,
Bis/prax



240 YU. BARYSHNIKOV AND J. E. YUKICH

which we split as

/\/ (e (x,y) =& (x, ) f K () dy

Bis317d (X)

4.13) [ E () — F@)eG)dy
Bsjay1a *

[ & ) FO () — k() dy.
Bsjaya *

The first integral is bounded by the productiofthe volume ofB; ;)14 (x) and
the maximum of the integran@;. (x, y) — ¢} (x, y)) f (y)x(y). However, sincey
is distant at leasts/1)1/¢ from 9 A, the product goes to zero by Lemma 4.2(ii).
The second and third integrals also tend to zerb as oo by the bound (4.5) and
Lemma 4.2(iii).

Since f and« are bounded, the integral in (4.12) ovRf \ B;,;1a(x) is
bounded by

(4.14) c [e3.(x, y) 4+ & (x, )1d WM y),
RIB s ;1174 (x)

which by Lemma 4.1 is bounded by

1/2 1/2
C (r(lz = x1/2)) "% + (r (12 — x1/2)Y? dz.
RY\Bg1/4 (x)
The above integral is bounded bY@, fg’ﬁd/z(r"(t))l/zt"’—ldt which tends to
zero asi — oo by assumption. We conclude that (4.14) converges to zero
uniformly for all x € A distant at least@/1)Y/¢ from 9 A. Hence,

rtvar(f, MiKH—/ K(X)f(X)[f(X)Cb(X)JrK/ f(X)5i‘(x,X+y)K(X)dy] dx
A Rd

converges to zero @s— oo. The equivalenced; (x) = g(x) andc; (x,x +y) =
& (x, x + AY4y) yield (4.4) as desired:

Atvarl(f, 1))

(4.15)
- f(x)[f(x)c](x)Jr / f<x>6xoc,y)x(x)dy]x(x)dx.
A R4

5. Proof of Theorem 2.4. We will only prove Theorems 2.4 and 2.5, since
they are clearly a generalization of Theorems 2.1 and 2.2. We will first prove
Theorem 2.4. We have already established Theorem 2.4(i) under the hypothesis
that¢ satisfies (2.2) fop = 4, and now to prove Theorem 2.4(ii) we assume that
& satisfies (2.2) for alp > 0.
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5.1. Cumulant measures. Recall thatC(A) denotes the continuous functions
f:A — R. To prove convergence of the finite-dimensional distributions of
A—l/zﬁik, A >1,in Theorem 2.4, it suffices to show for all test functighs C(A)
that the Laplace transform of the random variabte”/2(f, ﬁik) converges as
A — oo to the Laplace transform of a normal random variable with mean zero
and varianc&%L n F2(x)VE(x, k(x))k (x)dx. In other words, it suffices to show
forall f € C(A) that

(5.1) Ale()OIfzexp(rl/Z(—f, ﬁik)):exp[%/Afz(x)VS(x,K(x))K(x)dx].

We will use the method of cumulants to show (5.1). We first recall the formal
definition of cumulants. LeW :=R“ and formally expand (5.1) in a power series
in f as follows:

) 0 A —k/2((— )k pk
62)  Bexr Vg =14y T
= k!
where fK:R* - R k=1,2,..., is given by f*(v1,..., ) = f(v1) - --- -
f(vp), andv; € W, 1<i < k. MX is a measure o, the kth moment measure
(page 130 of [10]).
We have

k
(5.3) dM} = mj (v1, ..., v0) [ [ c @) d(wvy),
i=1

where the Radon—Nikodym derivatiwe, (v1, ..., vt) iS given by

k
(5.4) my (v, .., ) = E[ [15w: m)},
i=1

and where givenn, ..., vy we abbreviate notation and write for all<di < k,
En(vis Puc) for & (vis Puc) — El6a(vis Poc)] and &(v;; Poi) for &E(vis Puc U
{v‘,-}’;.zl). For each fixed, the mixed moment on the right-hand side of (5.4) is
finite uniformly in A by the moment bounds (2.2). Likewise, théh summand
in (5.2) is finite.

When the series (5.2) is convergent, the logarithm of the Laplace functional
gives

’

A= ME T &A= )
'OQ[HI; k! ; =,_X£ /! :

the signed measureg are cumulant measures (semi-invariants [20] or Ursell
functions). Regardless of the validity of (5.2), all cumul&rﬁt,sl =12, ..., admit



242 YU. BARYSHNIKOV AND J. E. YUKICH

the representation

_ T,
=Y v tp-nmtm,”,

whereM.’ denotes a copy of the moment measuté! on the product spacé’”
and wherefl, ..., T, ranges over all unordered partitions of the set 1,/ (see
page 30 of [20]). More generally,AT := ¢,(T) is the cumulant measure o’
with the representation

J= 3 vt -nmtm)”,
T1,..., Tp
whereTt, ..., T, ranges over all unordered partitions of the BetThe first cu-

mulant measure coincides with the expectation measure and the second cumu-
lant measure coincides with the covariance measure. The cumulajaits 1,

2, ..., all exist under the moment condition (2.2). In what follows we make criti-

cal use of the standard fact that if the cumulajtef a random variablé vanish

for [ > 3, thenZ has a normal distribution.

We will sometimes shorten notation and wri&, m andc’ instead ofo, my
andc} .

5.2. Cluster measures. Since ci coincides with the expectation measure,
we have (f, ci) =0 for all f € C(A). We already know from Section 4
that A=1(f2, ¢2) = A~IvVar((f, 15 )] — [, £2(0)VE(x, k() (x) dx. Thus, to
prove (5.1), it will be enough to show for ad > 3 and all f € C(A) that
ATK2(fk Ky — 0 ash — oo (see, e.g., Lemma 3 of [28]).

A cluster measuré’f*T onWS x wT for nonemptys, T C {1, 2, ...} is defined
by

UST(A x B) = M3V (A x B) — M5 (A)M] (B)

for all Borel A andB in W5 andW7, respectively.

Let S1 andS> be a patrtition ofS and letTy andT>» be a partition off'. A product
of a cluster measurlaffl’T1 on W51 x Wt with products of moment measures on
W52 x W2 will be called a(S, T) semi-cluster measure.

For each nontrivial partitions, 7') of {1, ..., k} we next provide a representa-
tion of thekth cumulant* as

K=Y a((S1. T, (S2, To) U T1y152 172
(81,T1),(S2,T2)
where the sum ranges over partitiongdf. . ., k) consisting of pairing$S1, 71),

(S2, T»), where S1, S € S and Ty, 7> C T, and wherex((S1, T1), (S2, T2)) are
integer-valued prefactors.
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In other words, for any nontrivial partitio¢s, ) of {1, ..., k}, we show that*
is a linear combination ofS, T) semi-cluster measures. We were unable to find a
proof of this in the literature and provide it.

LEMMA 5.1. For each nontrivial partition (S, T) of {1, ..., k} we have
K=Y a((S1. T, (S2, Tp)) U1y 152l 172l
(81,71),(82,T2)

PrRoOOFE The proof involves some notation and definitions. The moment
measured/’/ are expressed in terms of the cumulants via

M= Y o(T)-c(Ty),

n,....Tp
where the sum is over all partitions ¢f, ..., j}, that is, unordered collections
T1, Ty, ..., T, of mutually disjoint subsets dfl, ..., j} whose unionid1, ..., j}
(page 27 of [20], or [18]). Similarly, for any sefsandT,
(5.5) M*PT = Y (S, T (S, Ty),

(SlsTl)"'(SpsTp)

where the sum is over all partitions 6fU T, whereS; ¢ S, T; C T. A typical

element(S;, T;), 1 < i < p, of a partition thus involves a pair of sets, one a subset

of § and the other a subset 6f Some partitions of U T' are such that the empty

set appears in each pas;, 7;), 1 <i < p. Call these the degenerate partitions.
We now prove Lemma 5.1. Split (5.5) as

(5.6) MSYT — ZC(. CYeeee(ee) F Z o) e,

() ()
where{- - -}* denotes degenerate partitions. The first sum contains the cumulant
¢(SUT) as well as products of lower-order cumulants, that is, cumulants of the
formc(S; UT;), whereS; UT; is a proper subsetdfl, ..., k}. Since eacl(S; UT;)
is a product of moment measures, it follows that the first sum conta\s T')
as well as linear combinations ¢, 7)) semi-cluster measures. The second sum is
just the product oM® andM 7. Thus the cumulant measureS U T) is

c(SUT)=M3"T —MSmT +1.c.,

where |.c. denotes a linear combination (6f 7) semi-cluster measures. Since
M3YT — MSMT is a(S, T) cluster measure, it follows tha(S U T) is a linear
combination of semi-clusters. In particular,(i§, 7) is a partition of{1, ..., k},
thenck is a linear combination ofS, 7') semi-cluster measures]

The following bound is critical for showing that™*/2(f, ck) — 0 fork > 3 as
A — 00.
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LEMMA 5.2. If & is exponentially stabilizing, then the functions m;, cluster
exponentially; that is, for positive constants A ; ; and C; ; one has uniformly

|mk(x1,---,xj7y1,---’y1)_mx(x17~~~7xj)m)\()’17---7yl)|

<Aj exp(—Cj 8219,

where § := mini<;<; 1<,</ |x; — yp| IS the separation between the sets (x; {:1
and (y,,)i,zl.

PrOOF The proof is similar to that of Lemma 4.1. With probability at least
1 — exp(—8AY4/C), the radius of stabilization for each”/?x;, 1 <i < j, and
eachaldy, 1< p <1, is less tham'/4s. Let E;, := E; ;(d) denote the event
for which all such radii are less thart/?s. On E;; the stabilization balls do not
intersect and therefore

J l
E[ [T& Gis o) T 6 Gps c(PAK)lEN:|
i=1

p=1

j !
= E[ [0 (i ?Ax)lE,,Z}E[ [1&60p: ?Ax)lE,,z}-

i=1 p=1
Holder’s inequality and the moment conditions imply there is a constapsuch
that
[my(xa, .o, X, y1, -0, Y1) —mp (X1, .., x)my (v, .., YD S Aj,z(P[Ej-,l])l/z-

SinceP[E;.",] decays exponentially i, Lemma 5.2 follows. O

The next lemma specifies decay rates for the cumulant measures. Such decay
rates are useful in establishing moderate deviation principles and laws of the
iterated logarithm for the measur;é%,( [4]. Here we simply use the decay rates to
conclude the proof of Theorem 2.4.

LEMMA 5.3. Forall f e C(A) andfor all k =2,3,..., we have A —*/2( fk,
k) = Ol fI5E112).

PROOF We need to estimate
A2 [ pen faden o).

Let A; denote the diagonal inv*, that is, vy = vp = --- = v. For all v :=
(v1,..., ) € AX, let D (v) denote the distance to the diagonal.

Let I1(k) be all partitions of{1, 2,..., k} into two subsetsS and T'. For all
such partitions consider the subssdts, ) of AS x AT having the property that
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veo(S,T)impliesd(x(v), y(v)) > Dy(v)/k, wherex(v) = vN AS andy(v) =
vN AT, Since for everyw := (v1, ..., v) € Ak, there is a splitting: := x(v) and
y := y(v) of v such thatd(x, y) > Dy (v)/k, it follows thatA is the union of the
setso (S, T), (S, T) € I1(k). The key to the proof of Lemma 5.3 is to evaluate the
cumulantc’kc over eachr (S, T). We then use Lemma 5.1 and adjust our choice of
semi-clusters there to the particular choice $f7').

By Lemma 5.1, the cumulant measde’;(vl, ...,)ono(S,T) is a linear
combination of(S, T') semi-cluster measures of the form

S a((S1 T, (S2, o)) U Trp1520 pp 12l
(81,71),(82,T2)

where the sum ranges over all partitions {df ..., k} consisting of pairings
(S1, T1), (S2, T2), where §1,S> € § and Ty, 7> C T, and wherea((S1, Tv),
(S2, T»)) are integer-valued prefactors.

Let x andy denote elements of’ and A7, respectively. Lef andy denote
elements ofd51 andA ™1, respectively, and let denote the complement &fwith
respect tor and likewise withy“. The integral off against ar(S, T') semi-cluster
measure has the form

AT / (S.T) f@p)-- f d(M2 GO (F, HIM ().

Letting u, (X, y) := m; (x,y) — m;(X)m, (y), and recalling (5.3), the above is
bounded by

k
(5.7) A7M? / @) f M E)us(F, 5Ims§) [ ] i) d(wwp).

o (8.T) i1

Decompose the product measuf(f:l;c(vi)d(/\vi) into two measures, one
supported by the diagonal, and the other not. Off the diagonal, the integral (5.7)
is bounded by

1/d

A
D||f||’;ox\"‘/2/0 exp(—C1)P[Dy > t]dt = 0(.7*/123),

sinceu, decays exponentially with the distance to the diagonal (Lemma 5.2),
the mixed momentsn, are uniformly bounded, and since the differential of

a volume element of points at a distance greater thémom the diagonal is
bounded by the Lebesgue measure of the diagonal. Integrating over the diagonal
measureix (v1) dvy, and using the boundedness ¢f we thus bound (5.7)

by D|fIIX,»7%/2» for some constantD. Since this estimate holds for all
o(S,T),(S,T) e I(k), whereA* is the finite union of sets (S, T'), Lemma 5.3
holds. [
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6. De-Poissonization: proof of Theorem 2.5. De-Poissonization involves a
significant modification of de-Poissonization arguments for CLTs for translation-
invariant functionals (Section 4 of [24]) defined over homogeneous point sets and
thus we provide the details.

Before de-Poissonizing, we need the following definition. For Xhy A and
feC(A),let

(6.1) HI (%) =Y f(0)&(x; X).

xeX

Letting X,, be a point process consisting of i.i.d. random variables with
densityk on A, setR,, , 1= H,-,f(me) — H,-,f(xm).

The following coupling lemma is inspired by and follows closely Lemma 4.2
in [24].

LEMMA 6.1. Suppose & is exponentially stabilizing for «, and suppose H
is strongly stabilizing. Let ¢ > 0. Then there exists § > 0 and np > 1 such
that for all n > ng and all m,m’ € [(1 — 8)n, (1 + §)n] with m < m’/, there
exist random variables X, X’ with density « and a coupled family of variables
D = D(X), D' := D(X'),R := R(X,X'), R := R'(X,X') with the following
properties:

() D and D’ each have the same distribution as f(X)A¢ (X, k(X));

(i) D and D’ areindependent;

(i) (R, R") havethe samejoint distribution as (R, ., Ry .n);

(iv) P[{|D—R|>¢e}U{|D'—R'|>¢e}]<e.

ProOF We will modify the proof of Lemma 4.2 of [24]. Suppose we are
givenn. Let X, X', Y1, Yo, ... be i.i.d. random variables with densityon A. On
the probability spacéQ, , P), let P := £, and P’ := £, be independent
Poisson processes @nwith intensity measurex (x) dx.

Let " be the point process consisting of those pointgPoivhich lie closer
to X than toX’ (in the Euclidean norm), together with those pointsisfwhich
lie closer toX’ than toX. Clearly " is a Poisson process also having intensity
measureix (x) dx on A and, moreover, it is independent®fand of X’.

Let N denote the number of points @?” (a Poisson variable with mean
n - vol A). Choose an ordering on the points 8f’, uniformly at random from
all N! possible such orderings. Use this ordering to list the pointsP6fas
Wi, Wo, ..., Wy. Also, setWy 1 =Y1, Wyi2= Yo, Wy3= Y3 and so on.

Let

R:=R(X.X):=HI (W1, ..., Wy, X}) — HI ((W1,..., Wy})
and

R=RX,X):=H/ (Wi,..., Wp_1, X, X')) — H/ (W1, ..., W1, X}).
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X, X', W1, Wp, W3, ... are i.i.d. variables om with density«, and therefore the
pairs(R, R’) and(R,, », R,y ») have the same joint distribution as claimed.

For allx € R? andt > 0, let B(x, t) denote a stabilization ball fdr at x with
respect ta?;. RecallingA, (X) := H(X U x) — H(X) we put

D(x):= f(xX)Ax(Pex) N B(x, k(x)))
and
D'(x'):= f(x") Ay (P! N B(x', k(x"))).

K(x

Let D := D(X), D' := D'(X’). Then D and D’ are independent, and by
strong stabilization of, given (X, X’) = (x, x’), have the same distribution as
Fx)AS(x,k(x)) and f(x") A% (x', k(x')), respectively. It remains to show that
P[{|D—R|>¢&}U{|D'—R'| > ¢}] <s.

Without loss of generality, we may coupf®.(,) andn?/¢#,, such that for all
Borel setsB C A

P[Puc(B) # Paciy(B)] <1 /B e (y) — k()| dy.

Given(X, X’) = (x,x'), foreveryK >0andn=1,2,..., let Fx , := Fg ,(x)
be the event thatB(n'/“x, x(x)) C Bgx(nY?x) and thatP., and n/¢P,,
coincide on the balBx (n¥/?x). As in the proof of the limit (2.3), we have by the
uniform continuity of« and the Lebesgue point propertyxothat for K andrn large
enough,P[F,@vn] < ¢/9 uniformly in x. Similarly, let Fg , := F,Q’n(x’) be the
event thatB(n¥/?x’, k (x')) C Bx (nY/4x") and that?, ) andn/42’,, coincide
on Bk (n*/4x"). For K andn large enougtP[(Fy )] < £/9 uniformly in.x’.

Thus given(X, X’) = (x,x’), on setsFg , and F,’m of probability at least
1—¢/9, we have

D(x) = f(xX)A,ya, (0P, 0 B(nYx, k(x)))
and
D'(x') = f(x/)Anl/dx/(nl/dJ’/,,,( N B(nl/dx/, K (x))).
Thus given(X, X’) = (x, x"), we need only show that
P[|f ) A1a, (nY4 P N B(Y9x, k(x))) — R(x,x")| > €] <&
and
P[|f () Ay1a 0 (n Y4 Pre 0BV X' k(X)) — R'(x, x)| > ] < .

We will show the first bound only; the proof of the second bound is identical.
We now follow [24], page 1018. Choosg large enough such tha®[S >
K] <¢/9. Forallw e R andr > 0, let Q,(w) = [—r,r]? + w be the cube
centered atv. Letz; denote the modulus of continuity gfe C(A) and findb(n)
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such thatb(n)t (K /nt/4) — 0. Givene andK as above, let > n(e, K) be so
large that

(6.2)  supb(n)-t7(K/nYHE|EmYIW1; n¥ Py UnYix)| < £2/72
X

and
(6.3) b(n) -t (K /nYDEIE@Y Wy nY 9P, < £2/72

Taken so large that except on an event (dendigylof probability less tham /9,
the positions ofY/4x andnl/?x’ are sufficiently far from the boundary af/¢ A
and from each other, that the cub@s (n1/¢x) and Qx (n¥/4x’) are contained
entirely within n*/¢ A (possible by the regularity afA), and also are such that
every point of Qg (n'/?x) lies closer ton'/?x than ton'/?x’ and every point of
Ok (nY4x") lies closer ton/?x’ than ton1/9x.

Sets :=¢(2K)~?/18. We assumgn — n| < 8n and|m’ — n| < 8n. Forn large
enough, except on an event (denoteg of probability at mosts/9, we have
IN —m| < 28n=¢e(2K)%n/9, and likewisg N —m’| < e(2K)"%n/9.

Let E be the event that the set of points ot/¢{Wy,..., W,} lying in
0« (n*4x) is not the same as the set of pointslying in Qx (n/%x). This will
happen either if one or more of thi&y —m)* “discarded” points of:/? #” or one
or more of the(m — N)* “added” points ofnl/4{Y1, Y, ...} lies in Qg (n¥/4x).
For each added or discarded point, the probability of lyingip(n1/?x) is at
most(2K)?/n, and so the probability of, given thatE; does not occur, is less
thane/9.

We now compute

PlID(x) — R(x, x')| > €]
< P[|D(x) — R(X,X’)|1FK,,,mEng§mEcm{S<K} >¢/2]
+ P[|D(x) — R(x, X’)|1(FK,,,mEng‘l*mEvm{kK})c >¢e/2]
< P[|D(x) — R(x, x/)|1FK,nmEng‘1’nEcn{S<K} >¢/2]
+ P[Fg ,1+ PlEol + P[E1]l+ P[E \ E1] + P[S > K].

The last five terms are bounded Iay9 for large n. Now consider the first
probability. On the sefg , N E;NE]{NE°N{S < K} the difference|D(x) —
R(x,x")| equals

| f(xX)A 174, (nl/d?n,c N B(nl/dx, Kk(x))) — R(x,x")
which by strong stabilization aff is bounded by (sincé < K)
< > | £ (Wi) — fFOONE@Y I Wis n4 Py Untlix))

nYdW;e Ok (n¥/dx)

+ > |F (W) — FOIE@Y Wiz n 9Py

nYdw;e Qx (nYdx)

’



GAUSSIAN LIMITS FOR RANDOM MEASURES 249

By definition ofz¢, the above is bounded by
<t(K/n*) > 16 IWi; M4 P Uny))
nl/dWiGQK(nl/dx)

+17(K /nt) > 1EmY W n V4P,

nY4W;e Qg (n'x)

Let Nx := cardn¥{W;} N Qx (n¥/9x)). Then the first term in the above is
bounded by

tp(K/n*) 3 &Y Wis 0 Py UnM ) | Iy <piny
nYdw;e Qx (nYdx)
+1(K /nt) > 1E@Y AW n Y P UnYax) Ay = b

nYdw;e Qg (ntdx)

with a similar bound for the second term. Therefore, combining all of the above
bounds

P[|D(x) — R(x,x")| > €]
<5¢/9+ P[ID(x) — R(x, x| 1ry ,nEgnEsnEn(S<K) > €/2]

b(n)
(6.4) <5¢/9+ P|:tf(K/n1/d) > @M Wi 04 Py Untix)| > 5/8}
i=1

b(n)
- P[mK/nl/"’) > g Wi n Py > 8/8} +2P[N > b(n)].
i=1
Using Chebyshev and the bounds (6.2) and (6.3), the second and third terms
in (6.4) are bounded by/9 for n large enough. Fat large, the last term in (6.4)
is bounded by /9, sinceN is a.s. finite.

Now integrate over all pairér, x’) to obtain the desired result[]

The next lemma extends Lemma 4.3 of [24].
LEMMA 6.2. Suppose & is exponentially stabilizing and satisfies (2.2) for

all p > 0. Suppose H is strongly stabilizing and satisfies the bounded moments
condition for «. Let (h(n)),>1 be a sequencewith 4 (n)/n — 0asn — oo. Then

6.5)  lim SUp  |ERmq —E[f(X)A(X,x(X))]|=0.
"0 n—h(n)y<m<n+h(n)
Also
(66) lim sup |ERm,an’,n - IEl:f(X)AéE (X7 K(X))]2| =0

n—00 n—h(n)<m<m’'<n+h(n)
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and

(6.7) lim sup IER? | < oo.

m,n
n—00 n—h(n)<m=<n+h(n)

ProoFr We will follow the proof of Lemma 4.3 of [24]. Lek be an arbitrary
integer satisfying — h(n) <m <n+h(n). Lete > 0. Provided: is large enough,
by Lemma 6.1 we can find coupled variablesand R, with D having the same
distribution asf (X)A% (X, k(X)), with R having the same distribution as, .,
and withP[|D — R| > ¢] <. Then

ERy,» =ER=E[D]+E[(R — D)1 g—pj=c] + E[(R — D)Ljr—p|=<]-

By Cauchy—Schwarz, the moments condition (2.2), and the fact that the bounded
moment condition implie€[D?] < co (Lemma 4.1 of [24]), we have

E|(R — D)1 jp_gjs¢| < Ce'/2.

Sincee is arbitrarily small, (6.5) follows. The proof of (6.7) is similar and is
omitted.

Next we considem, m’ with n — h(n) <m <m’ <n + h(n). By Lemma 6.1,
there are coupled variablégs, D', R, R’ such thatD and D’ are independent and
each has the same distribution A6X) A% (X, k (X)), (R, R') have the same joint
distribution as(R, ., R, ), and

P[{|D—R|>¢e}U{ID'—R'| >¢}] <e.

NowE[RR']—E[DD'] =E[R(R'— D")]+E[D’(R — D)]. By Cauchy-Schwarz,
we again obtain the boun@®{R|R’ — D'|] < C¢¥/2 andE[D'|R — D|] < CeY/2.

It follows that the differencéE[RR’] — E[DD’] can be made arbitrarily small
and (6.6) follows. O

PROOF OFTHEOREM 2.5. We first prove the limit (2.18). Givefi € C(A),
X C A and recalling (6.1), le#, := H (X,) andH') := H (P,.). Assume
that #,, is coupled toX, by setting #,, := {X1, X2, ..., Xn,}, With N, an
independent Poisson variable with mean

To prove (2.18), it is enough to show for glle C(A) that

H,'lf — EH,‘,f

6.8
(6.8) 7

— N(0,75),

whereN (0, r)%) denotes a mean zero normal random variable with variance

r]%::/Afz(x)VE(X,K(X))K(x)dx
6.9) 2
- (/A f(X)E[Aé(X,K(x))]K(x)dx) )
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Lettinga := E[ f(X)A% (X, k(X))], the first step is to prove that as— oo,
(6.10) E[n~Y2(H! — HI — (N, — n)a)?] - 0.

To do this, we employ the coupling Lemma 6.1 and follow pages 1019 and 1020
of [24] verbatim. The second step is to prove that

VarH; 2
=t

(6.11) lim

n—o0 n
However, this follows from the identity
nY2H'f =n7V2HS 40 Y2(N, —nya +n"Y2(HS — HI — (N, — n)a).

The third term in the above has variance tending to zero by (6.10); the second
term has variancex? and is independent of the first term. Lettirmg% =

L4 F20)VE (x, k(x))k (x) dx, it follows that

~ varH! . Var H/
a?: lim Varth, ") _ lim M_i_az

n—>oo n n—oo n

’

that is, (6.11) holds. The limit (6.8) follows as on page 1020 of [24], thus
establishing (2.18).

Let us now show (2.19). The above shows that the sequence of distributions
n~Y2(55 ) tends to a limiting normal random variabhg (0, r}%) for every
f € C(A). Taking f = f1 + f2 and using simple algebra shows that the limiting
Gaussian field has the desired covariance matrix (2.19). This completes parts
(i) and (ii) of Theorem 2.5.

To prove Theorem 2.5(iii), it suffices to show that

im VarlH, (X,)]

n—oo n

(6.12) 2
= [ Ve ax - ([ Elaf k@) dx) =0

We accomplish this by modifying the approach in Section 5 of [24].

We write H,(X,) — EH,(X,) as a sum of martingale differences as follows.
Let % =o(X1,,..., Xi,n) and write E; for conditional expectation givet;.
Define martingale difference; :=E; H,(X,,) — E;_1H,,(X,). ThenH,(X,) —
EH,(X,) =>""_4 D; and

VarlH, (X,)]= Y _E[Df].
i=1

It suffices to show that there exists a const@nt 0 such that for all ki <n,
E[D?] > C.
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Giveni <m, let Gim = Hy(Xm) — Hy(Xm \ {Xi}). Let G = Hy(Xmi1 \
{Xi}) — Hy (X \ {X;}). ThenD; = E;[G; , — Gi.n]. We setr := E[A® (X, k(X))]
and using nondegeneracy, take 0 such thatP[Af (X, k(X)) > a + 48] > 45.

Definef:R—> R by f(x)=0forx <a+d§and f(x) =1 forx > a + 26,
interpolating linearly betweer + § and o + 28. Let ¥; := f(E;[G;,]). The
remainder of the proof consists in showing thatidarge and fori > (1 — e3)n,
we have

E[(G,, —)Yi]1>482 and E[(G,, —a)Y;] <252

These inequalities follow from Lemmal6and pages 1021 and 1022 of [24]. Taken
together, this implies for large andi > (1 — e3)n, thatE[(G; , — G;»)Yi] > 252.
Using the fact that; is #;-measurable and lies in the ran@ 1], we obtain

282 <E[Y;Ei(Gin — Gin)] <ElE:(Gin — Gin)|]=E[ID; ],

and henceE[D?] > [E|D;|]? > 45% > 0. Thus (6.12) holds, completing the proof
of Theorem 2.5. [J
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