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GAUSSIAN LIMITS FOR RANDOM MEASURES
IN GEOMETRIC PROBABILITY

BY YU. BARYSHNIKOV AND J. E. YUKICH1

Bell Laboratories and Lehigh University

We establish Gaussian limits for general measures induced by binomial
and Poisson point processes ind-dimensional space. The limiting Gaussian
field has a covariance functional which depends on the density of the point
process. The general results are used to deduce central limit theorems for
measures induced by random graphs (nearest neighbor, Voronoi and sphere
of influence graph), random sequential packing models (ballistic deposition
and spatial birth–growth models) and statistics of germ–grain models.

1. Introduction. The purpose of this paper is to provide a methodology
for showing that renormalized random point measures in geometric probability
converge weakly to a generalized Gaussian field. We focus on random point
measures, defined on the Borel subsets ofR

d , of the following types:
(i) point measures associated with random graphs in computational geometry,

including nearest neighbor graphs, Voronoi graphs and sphere of influence graphs,
(ii) point measures arising in random sequential packing models, including

random sequential adsorption (RSA) and spatial birth–growth models, and
(iii) point measures associated with germ–grain models.

The total mass of random point measures yields random functionals, which
in the context of the measures (i)–(iii), have been extensively studied; see
[2, 21, 23, 24, 26, 32], [5, 7–9, 11, 15, 25, 27] and [12, 13, 22, 26], respectively,
as well as the references therein. With the exception of [13], the study of the
random measures (i)–(iii) has received considerably lessattention. We show here
after renormalization that measures of the type (i)–(iii) converge to a generalized
Gaussian field; that is, their finite-dimensional distributions, as described by
the action of the measure on continuous test functions, converge to those of
a generalized finitely additive Gaussian field. The results relate the large-scale
Gaussian limit properties of renormalized random point measures to the small-
scale properties of the underlying binomial or Poisson point process.

The general approach taken here, which employs stabilization of functionals and
coupling arguments, has the particular benefit of describing the limiting variance
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over large sample sizes as a function of the underlying density of points. A similar
approach is used in [26], which treats the easier problem of finding limiting means.

Random measures considered here assume the form
∑

x∈X ξ(x;X)δx , where
X is a random point set inRd , δx is the Dirac point measure atx and
ξ(x;X) is a weight representing the interaction ofx with respect toX and is
usually defined in terms of the underlying geometry. For all constantsλ > 0 and
probability densitiesκ , let Pλκ be a Poisson point process with intensity measure
λκ :Rd → R

+. Define the “binomial” point processXn := {X1, . . . ,Xn}, where
Xi, i ≥ 1, are i.i.d. with densityκ . All of our results follow from general central
limit theorems (Theorems 2.1, 2.2, 2.5) which show that renormalized measures
of the type

λ−1/2
∑

x∈Pλκ

ξ(λ1/dx;λ1/dPλκ)δx, λ ≥ 1,(1.1)

as well as their respective renormalized binomial counterparts,

n−1/2
∑

Xi∈Xn

ξ(n1/dXi;n1/dXn)δXi
, n ≥ 1,(1.2)

converge weakly asλ → ∞ (resp. asn → ∞) to a Gaussian field with a covariance
functional described in terms of the weightξ and the underlying densityκ of
points.

The general central limit theorem (CLT) for the measures (1.2) implies a CLT
for the “total mass” functional

∑
Xi∈Xn

ξ(n1/dXi;n1/dXn). κ need not be uniform
andξ need not be translation invariant, showing that even in the functional setting,
we extend and generalize previous results [2, 3, 5, 24, 25].

The proofs are based on the method of cumulants, which requires showing
that the cumulants of the integrals of the rescaled measures (1.1) against a
large class of test functions converge to the cumulants of a normal random
variable. An important tool is “stabilization” of functionals, used heavily in
[5, 24–26]. Stabilization guarantees that the pair correlation function for the
weights ξ(x,Pλ), x ∈ R

d, decays fast enough to prove convergence of the
cumulant measures associated with (1.1). To show convergence of the first-
and second-order cumulant measures against test functions, we rely upon the
“objective method,” which exploits the fact that ifξ is locally determined in a
sense to be made precise, then the largeλ behavior ofξ(λ1/dx, λ1/dPλκ), x fixed,
is approximated by the behavior ofξ on homogeneous Poisson point processes.
This idea was developed in [26], a law of large numbers (LLN) precursor to the
present paper. To show convergence of the higher-order cumulant measures, we
employ cumulant expansion techniques [20].
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2. Main results.

2.1. Terminology. Before stating our main results we introduce some ter-
minology similar to that developed in [5, 24–26]. LetX ⊂ R

d be finite and
y + X := {y + x :x ∈ X} for all y ∈ R

d . Givena > 0, let aX := {ax :x ∈ X}.
Forx ∈ R

d , |x| denotes the Euclidean norm andBr(x) denotes the Euclidean ball
centered atx of radiusr . ωd denotes the volume of the unit ball inRd and 0
denotes the origin ofRd .

Throughout,A denotes the family of compact, convex subsetsA ⊂ R
d

with nonempty interior. LetA′ denoteA together with the spaceRd . ForA ∈ A′,
C(A) denotes the continuous functionsf :A → R. For f ∈ C(A) andµ a Borel
measure onB(A) we let 〈f,µ〉 := ∫

A f du. Givenf :Rd → R, let Suppf be the
closure of{x ∈ R

d :f (x) 	= 0}.
Let ξ(x;X) be a measurableR-valued function defined for all pairs(x,X),

wherex is an element ofX. For the moment,we assume that ξ is translation
invariant, that is,ξ(x;X) = ξ(x − y;X − y) for all y ∈ R

d . Whenx /∈ X, we
abbreviate notation and writeξ(x;X) instead ofξ(x;X ∪ x).

Any finite X induces the point measure
∑

x∈X ξ(x;X)δx . For all λ > 0, let
ξλ(x;X) := ξ(λ1/dx;λ1/dX). A densityκ with support onA ∈ A and a weightξ
generate scaledrandom point measures

µ
ξ
λκ := ∑

x∈Pλκ

ξλ(x;Pλκ)δx.

The centered version ofµξ
λκ is µ̄

ξ
λκ := µ

ξ
λκ − Eµ

ξ
λκ , where for all Borel sets

B ⊂ A, E[µξ
λκ(B)] = λ

∫
B E[ξλ(x;Pλκ)]κ(x) dx. This paper develops a method-

ology for establishing convergence of the finite-dimensional distributions of the
renormalized random point measuresλ−1/2µ̄

ξ
λκ , λ ≥ 1. Previous work [25, 26] de-

veloped laws of large numbers for thetotal mass functional

µ
ξ
λκ(A) := ∑

x∈Pλκ

ξλ(x;Pλκ)(2.1)

as well as CLTs [24] for translation-invariant functionals on uniform point sets
which are “locally determined.” The following concept of stabilization makes
precise the idea of “locally determined.” For all 0≤ a < b < ∞, let F (a, b)

consist of allf :Rd → R
+ having support inA′ and such that the range off is

in [a, b] ∪ {0}. The common probability space(�,F ,P ) for all Pf , f ∈ F (a, b),
can be chosen as the probability space of the Poisson point processP ∗ having
intensity 1 onRd ×R

+ such thatPf = πRd (P ∗ ∩{(x,h) ∈ R
d :h ≤ f (x)}), where

π
Rd denotes projection fromRd × R

+ onto R
d . For all τ > 0, let Pτ denote a

homogeneous Poisson point process onR
d with intensityτ .
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DEFINITION 2.1. The functionalξ is stabilizing if for all A ∈ A′,0 ≤ a <

b < ∞, λ > 0, andx ∈ λA, there exists an a.s. finite random variableR(x) :=
R(x,λ, a, b,A) (a radius of stabilization for ξ at x) defined on(�,F ,P ) such
that for all f ∈ F (a, b), with Suppf = λA, and all finiteX ⊂ λA \ BR(x) we
have

ξ
(
x; (

Pf ∩ BR(x)
) ∪ X

) = ξ
(
x;Pf ∩ BR(x)

)
and moreover supx∈Rd P [R(x,λ, a, b,A) > t] → 0 ast → ∞. Whenξ stabilizes,
then for allx ∈ R

d and allτ > 0 we define

ξ(x;Pτ ) := lim
l→∞ ξ

(
x;Pτ ∩ Bl(x)

)
.

ThusR := R(x,λ, a, b,A) is a radius of stabilization if the value ofξ(x;Pf ),
f ∈ F (a, b), is unaffected by changes outsideBR(x). One might expect that
exponential decay of the tails ofR implies exponential decay of the correlations
of ξ and thus convergence ofλ−1/2µ̄

ξ
λκ , λ ≥ 1, to a Gaussian field. This loosely

formulated idea figures prominently in interacting particle systems on the lattice,
and also in cluster expansions and the moment method in statistical physics [20].
Assuming neither translation invariance ofξ nor spatial homogeneity of points,
we will show that this idea also works well in the continuum, where it yields
convergence of〈f,λ−1/2µ̄

ξ
λκ〉λ, f ∈ C(A), to a Gaussian field whose covariance

depends on the density of points. This motivates defining uniform tail probabilities
for the radiiR(x,λ, a, b,A):

r(t) := r(t, a, b,A) := sup
x∈Rd ,λ>0

P [R(x,λ, a, b,A) ≥ t].

r(t) quantifies the region of influence of points in the Poisson point setsPf ,
wheneverf ∈ F (a, b) and Suppf is a scalar multiple ofA. ξ is exponentially
stabilizing if r(t) decays exponentially int for all a, b and anyA ∈ A′. ξ is poly-
nomially stabilizing if for all a, b andA ∈ A′ we have

∫ ∞
0 (r(t))1/2td−1 dt < ∞,

which readily implies the rough estimater(t) = o(t−2).
The next condition is used frequently in the scaling limit analysis of random

fields on lattices (e.g., page 193 in [20]) and it is only natural to use it in the
continuum setting as well. Here and henceforthκ is a probability density which
is continuous on its support and Suppκ ∈ A. Let C denote the collection of finite
point sets inRd .

DEFINITION 2.2. ξ has a moment of orderp > 0 with respect toκ if

sup
λ>0,x∈[0,λ1/d ]dA,X∈C

E[|ξλ(x;Pλκ ∪ X)|p] < ∞

and for allλ > 0 sup
x∈Rd ,X∈C

E[|ξ(x;Pλ ∪ X)|p] < ∞.
(2.2)

We implicitly assume for alll > 0 thatξ	 := ξ(x,X ∩ Bl(x)) has moments no
larger than those ofξ .
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2.2. General central limit theorems. Under stabilization and moment condi-
tions, we will show in Theorem 2.1 thatEµ

ξ
λκ and Varµ̄ξ

λκ have volume order
asymptotics and that the scaling limit of the finite-dimensional distributions of the
renormalized measuresλ−1/2µ̄

ξ
λκ is a mean zero Gaussian field. Theorem 2.1 is a

special case of the upcoming Theorem 2.4 and applications of both are described
in Section 3.

By the convergence of finite-dimensional distributions of random signed
measuresµn to those of a generalized Gaussian field we mean the convergence in
distribution of the integrals

∫
f dµn to the corresponding normal random variables

for all test functionsf ∈ C(A). This is the usual functional analytic point of view
where a measure is viewed as a continuous linear functional acting on continuous
functions. Henceforth we say thatmeasures converge to a Gaussian field if their
finite-dimensional distributions converge.

For all τ > 0, let

V ξ(τ ) := E[ξ2(0;Pτ )]
+

∫
Rd

(
E[ξ(0;Pτ ∪ y) · ξ(y;Pτ ∪ 0)] − E[ξ(0;Pτ )]E[ξ(y;P ′

τ )]
)
τ dy,

whereP ′
τ denotes an independent copy ofPτ .

THEOREM 2.1. (i) If ξ is stabilizing and satisfies (2.2) for some p > 1, then
for all f ∈ C(A)

lim
λ→∞

E[〈f,µ
ξ
λκ〉]

λ
=

∫
A

f (x)E
[
ξ
(
0;Pκ(x)

)]
κ(x) dx,(2.3)

whereas if ξ is polynomially stabilizing and satisfies (2.2) for p = 4, then

lim
λ→∞

Var[〈f,µ
ξ
λκ〉]

λ
=

∫
A

f 2(x)V ξ (κ(x))κ(x) dx.(2.4)

(ii) If ξ is exponentially stabilizing and satisfies (2.2) for all p > 0, then
λ−1/2µ̄

ξ
λκ converges as λ → ∞ to a Gaussian field with covariance kernel∫

A f1(x)f2(x)V ξ (κ(x))κ(x) dx.

Statistical applications often require the analog of Theorem 2.1 for mea-
sures induced by exactlyn i.i.d. points on A. This “de-Poissonized” ver-
sion of Theorem 2.1 goes as follows. LetXi , i ≥ 1, be i.i.d. with common
density κ , Xn := {X1, . . . ,Xn}, and ρ

ξ
n := ∑n

i=1 ξn(Xi;Xn)δXi
the random

“de-Poissonized” measures induced byκ andξ . To obtain the convergence of the
finite-dimensional distributions of̄ρξ

n := ρ
ξ
n − Eρ

ξ
n we need some additional ter-

minology and assumptions.
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Let Xm,n be a point process consisting ofm i.i.d. random variablesn1/dX on
n1/dA, whereX has densityκ . For allX, let H(X) := Hξ(X) := ∑

x∈X ξ(x;X)

and for allλ > 0 let Hξ
λ (X) := ∑

x∈X ξλ(x;X). For any finiteX, let �x(X) :=
H(X ∪ x) − H(X). Say thatH satisfies thebounded moments condition for κ

(cf. [24]) if

sup
n

sup
x∈n1/dA

sup
m∈[n/2,3n/2]

E[�4
x(Xm,n)] < ∞.(2.5)

If H satisfies the bounded moments condition forκ then we will assume
throughout thatHξ

f defined byH
ξ
f (X) := ∑

x∈X f (x)ξ(x;X), f ∈ C(A), also
satisfies the bounded moments condition. This assumption is satisfied in all of
our applications in Section 3.

The next definition recalls a notion of stabilization forH introduced in [24]. We
are grateful to Mathew Penrose for pointing out that stabilization ofH rather than
that ofξ is essential for the upcoming de-Poissonization methods of Section 6; this
observation corrects an earlier version of our results.

DEFINITION 2.3. The functionalH := Hξ is strongly stabilizing if for
all τ > 0, there exist a.s. finite random variablesS (a radius of stabilization of H )
and�ξ(τ ) such that with probability 1,

�ξ(τ ) = �0
((

Pτ ∩ BS(0)
) ∪ A

)
(2.6)

for all finite A ⊂ R
d \ BS(0).

If Hξ is strongly stabilizing, then we will assume throughout thatH
ξ
f ,

f ∈ C(A), is also strongly stabilizing. This assumption is satisfied in all of our
applications in Section 3.

Let Dξ(τ ) := E[�ξ(τ )] for all τ > 0. The following de-Poissonized version
of Theorem 2.1 shows thatE[〈f,ρ

ξ
n〉] and Var[〈f,ρ

ξ
n〉], f ∈ C(A), have volume

order fluctuations and that the scaling limit of the re-normalized measuresn−1/2ρ̄
ξ
n

is a mean zero Gaussian field.

THEOREM 2.2. (i) If ξ is stabilizing and satisfies (2.2) for some p > 1, then
for all f ∈ C(A),

lim
n→∞

E[〈f,ρ
ξ
n〉]

n
=

∫
A

f (x)E
[
ξ
(
0;Pκ(x)

)]
κ(x) dx,(2.7)

whereas if ξ is polynomially stabilizing and satisfies (2.2) for p = 4, and if H is
strongly stabilizing and satisfies the bounded moments condition for κ , then for all
f ∈ C(A),

lim
n→∞

Var[〈f,ρ
ξ
n〉]

n

=
∫
A

f 2(x)V ξ (κ(x))κ(x) dx −
(∫

A
f (x)Dξ(κ(x))κ(x) dx

)2

.

(2.8)
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(ii) If ξ is exponentially stabilizing and satisfies (2.2) for all p > 0 and if H

is strongly stabilizing, then n−1/2ρ̄
ξ
n converges as n → ∞ to a Gaussian field with

covariance kernel∫
A

f1(x)f2(x)V ξ (κ(x))κ(x) dx

−
∫
A

f1(x)Dξ (κ(x))κ(x) dx

∫
A

f2(x)Dξ(κ(x))κ(x) dx.

(2.9)

(iii) If the distribution of �ξ(κ(X)) is nondegenerate, then

lim
n→∞

Var[ρ̄ξ
n(A)]
n

> 0,(2.10)

that is, the limiting Gaussian field is nondegenerate.

REMARKS. (i) Theorems 2.1 and 2.2 generalize existing central limit the-
orems in geometric probability (Heinrich and Molchanov [13], Malyshev [19],
Penrose and Yukich [24] and Ivanoff [16]) in several ways: (a) they show as-
ymptotic convergence of measures to a Gaussian field, thus also yielding asymp-
totic convergence of functionals to a limiting normal random variable, (b) they
identify the limiting variance and covariance structure in terms of the underlying
density of points, and (c) they do not assume spatial homogeneity of the under-
lying points. Theorem 2.2 implies that forf1, . . . , fm ∈ C(A), the random vector
〈〈f1, n

−1/2ρ̄
ξ
n〉, . . . , 〈fm,n−1/2ρ̄

ξ
n〉〉 converges to a multivariate Gaussian random

variable.
(ii) Evaluating (2.4) and (2.8) is in general difficult. However, for some

problems of geometric probability, for example, those involving functionals which
count the number of pairs of points within a specified distance of one another, it
is relatively simple to evaluateV ξ andDξ [6]. Moreover, a simplification of (2.4)
and (2.8) occurs wheneverξ is homogeneous of order γ , that is, whenever there
is a constantγ > 0 such thatξ satisfies the relationξ(ax;aX) = aγ ξ(x;X) for
all positive scalarsa and all finite point setsX � x. Homogeneity occurs naturally
in many problems of geometric probability. Ifξ is homogeneous of orderγ , then
V ξ (τ ) = V ξ(1)τ−2γ /d , andDξ(τ ) = Dξ(1)τ−γ /d , yielding

lim
λ→∞

Var[〈f, µ̄
ξ
λκ〉]

λ
= V ξ (1)

∫
A

f 2(x)κ(x)(d−2γ )/d dx(2.11)

and

lim
n→∞

Var[〈f, ρ̄
ξ
n〉]

n
= V ξ (1)

∫
A

f 2(x)κ(x)(d−2γ )/d dx

− (
Dξ(1)

)2
(∫

A
f (x)κ(x)(d−γ )/d dx

)2

.

(2.12)
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If κ is the uniform distribution on the unit cube, then by (2.12)

lim
n→∞

Var[ρ̄ξ
n([0,1]d)]

n
= V ξ (1) − (

Dξ(1)
)2

,

which is strictly positive whenever�ξ(1) is nondegenerate. Ifξ is scale invariant,
or homogeneous of order 0, then for anyκ with supportA,

lim
n→∞

Var[ρ̄ξ
n(A)]
n

= V ξ(1) − (
Dξ(1)

)2
,

showing that the limiting variance is not sensitive to the underlying density but
depends only on the dimension.

Still in the setting of generalκ , the inequality
∫
A κ(x)(d−2γ )/d dx ≥

(
∫
A κ(x)(d−γ )/d dx)2 implies that the right-hand side of (2.12) is strictly posi-

tive whenever�ξ(1) is nondegenerate. Moreover, (2.12) implies that whend = 2,
κ a density onA = [0,1]2, andγ = 1, which would be the case for total edge
length functionals of graphs on vertex sets in[0,1]2, then the limiting variance of
n−1/2ρ̄

ξ
n(A) equalsV ξ (1) − (Dξ (1))2(

∫
A κ(x)1/2 dx)2, which isminimized when

the underlying density κ is uniform.
(iii) A comparison of (2.4) and (2.8) shows that Poissonization contributes extra

randomness which shows up in the limiting variance (2.8). To show nondegeneracy
of �ξ(κ(X)), we need to appeal to the particular geometric structure of the
underlying problem. This is done on a case by case basis and is already treated
in many problems of interest [24]. The implicit finiteness of the right-hand side of
(2.4) and (2.8) is made explicit in Section 4.3.

(iv) Our method of proof actually yields (2.4) whenever (2.2) holds for some
p > 2 and ξ is exponentially stabilizing. This modification requires a small
modification of Lemma 4.2. Also, ifξ satisfies stabilization (Definition 2.1) only
when 0< a < b, then Theorems 2.1 and 2.2 hold provided thatκ is bounded away
from zero.

(v) The conditionm ∈ [n/2,3n/2] in (2.5) is needed in order to achieve
an efficient coupling between Poissonized and de-Poissonized measures. See
Lemma 6.2 for details.

(vi) Theorem 2.1 holds for arbitrary continuousκ :Rd → R
+; that is,κ need

not be a probability density.

2.3. Extensions of main results.

2.3.1. Random measures induced by marked point processes. Theorems
2.1 and 2.2 extend to random measures induced by marked point processes. Let
(M,F , ν) be a probability space of marks and letPτ×ν (resp.Pκ×ν ) be a Poisson
point process onRd × M with intensity measureτ × ν (resp.κ × ν). We say that
ξ stabilizes if Definition 2.1 holds withBR(x) replaced byBM

R (x) := BR(x)×M,



GAUSSIAN LIMITS FOR RANDOM MEASURES 221

andX ranging over the finite subsets of(Rd \ BR(x)) × M. Write ξ(x;Pτ ) for
ξ(x;Pτ×ν).

Let Xi, i ≥ 1, be i.i.d. marked random variables with common lawdκ × ν.
X′

i denotes the projection ofXi on R
d , Xn := {X1, . . . ,Xn}, and ρ

ξ
n :=∑n

i=1 ξn(Xi;Xn)δX′
i

the associated marked random measures onR
d . Let �ξ(τ )

denote the marked version of (2.6), that is,

�ξ(τ ) := �ξ(τ × ν)

= �0
((

Pτ×ν ∩ BM
S (0)

) ∪ A
)(2.13)

for all finite A ⊂ (Rd\BS(0)) × M. Let V ξ(τ ) := V ξ(τ × ν) denote the marked
version ofV ξ (τ ).

The analog of Theorem 2.2 for marked processes is as follows:

THEOREM 2.3. Let ρ
ξ
n, n ≥ 1, denote the marked measures defined above.

Then (2.7)–(2.10)hold with Dξ(τ ) and V ξ(τ ) replaced by their respective marked
versions E[�ξ(τ × ν)] and V ξ(τ × ν).

REMARKS. (i) Theorem 2.3 generalizes Theorem 3.1 of [25], which estab-
lishes a CLT forfunctionals of markedhomogeneous samples.

(ii) Applications of Theorem 2.3 to random sequential packing and spatial
birth–growth models are discussed in Section 3.2.

2.3.2. Random measures induced by nontranslation-invariant functionals. It
takes just a little extra effort to use our general approach to prove CLTs for
measures induced by nontranslation-invariant weightsξ . Although translation
invariance is often present in the measures (i)–(iii), we envision situations where
measures onRd do not enjoy translation invariance, as would be the case if the
metric onR

d changes from point to point.
Let ξ(y;x,X), y ∈ R

d , be a family of measurableR-valued functions defined
for all pairs (x,X), whereX ⊂ R

d is finite andx is an element ofX. In cases
with x /∈ X, we abbreviate the notationξ(y;x,X∪{x}) to ξ(y;x,X). We assume
for all y that ξ(y;x,X) is translation invariant in the pairs(x,X), that is, for all
z ∈ R

d and all pairs(x,X),

ξ(y;x,X) = ξ(y;x − z,X − z).

ξ(y; ·, ·) is a rule depending ony ∈ R
d which assigns a real value to all pairs

(x,X). We donot assume thatξ is translation invariant in the triples(y;x,X).
We defineξ(x;X) := ξ(x;x,X) for all x ∈ R

d and for allλ > 0, we set

ξλ(y;x,X) := ξ(y;λ1/dx, λ1/dX) and ξλ(x;X) := ξ(x;λ1/dx, λ1/dX).

We will consider limit theorems for the random measures

µ
ξ
λκ := ∑

x∈Pλκ

ξλ(x;x,Pλκ)δx
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and

ρξ
n :=

n∑
i=1

ξn(Xi;Xi,Xn)δXi
.(2.14)

ξ is said to bestabilizing if ξ(x;X) = ξ(x;x,X) stabilizes in the sense of
Definition 2.1. If the rulesξ(y; ·, ·) are identical for ally ∈ R

d , then ξ(x − z;
X− z) = ξ(x;X) for all z ∈ R

d , and we reduce to the translation-invariant setting
of Theorems 2.1 and 2.2.

When ξ is translation invariant, that is to say, whenξ(x;x,X) = ξ(x,X),
stabilization guarantees that pair correlation functions forξ decay suitably fast
enough with respect to the interpoint distance. It also guarantees that the pair
correlation function with respect to nonhomogeneous samples can be closely
approximated by the pair correlation function with respect to homogeneous
samples. However, for nontranslation-invariantξ , a suitable approximation of pair
correlation functions is not possible without some continuity ofξ with respect to
its first argument. This motivates the following definition.

DEFINITION 2.4. The functionξ is slowly varying in Lq (abbreviatedξ ∈
SV(q)) if for all τ ∈ (0,∞), anyx ∈ R

d , and any compact setK containing0:

lim
λ→∞ sup

y∈K

E[|ξλ(x + λ−1/dy;x,Pλτ ) − ξλ(x;x,Pλτ )|q ] = 0.

The following generalizes Theorem 2.1 to nontranslation-invariantξ . For all
x ∈ R

d andτ > 0, let

V ξ(x, τ ) := E[ξ2(x;x,Pτ )]
+

∫
Rd

(
E[ξ(x; 0,Pτ ∪ y) · ξ(x;y,Pτ ∪ 0)]

− E[ξ(x; 0,Pτ )]E[ξ(x;y,P ′
τ )]

)
τ dy.

THEOREM 2.4. (i) If ξ ∈ SV (4
3) is stabilizing and satisfies (2.2) for some

p > 1, then for all f ∈ C(A),

lim
λ→∞

E[〈f,µ
ξ
λκ〉]

λ
=

∫
A

f (x)E
[
ξ
(
x;Pκ(x)

)]
κ(x) dx,(2.15)

whereas if ξ is polynomially stabilizing and satisfies (2.2) for p = 4, then for all
f ∈ C(A),

lim
λ→∞

Var[〈f, µ̄
ξ
λκ〉]

λ
=

∫
A

f 2(x)V ξ
(
x, κ(x)

)
κ(x) dx.(2.16)
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(ii) If ξ ∈ SV (4
3) is exponentially stabilizing and satisfies (2.2) for all p > 0,

then λ−1/2µ̄
ξ
λκ converges as λ → ∞ to a Gaussian field with covariance kernel∫

A f1(x)f2(x)V ξ (x, κ(x))κ(x) dx.

Letting Hξ(X) = ∑
x∈X ξ(x;X), we say thatH is strongly stabilizing for all

τ > 0 and allx ∈ R
d if there exist a.s. finite random variablesS (a radius of

stabilization of H ) and�ξ(τ, x) such that with probability 1,

�ξ(τ, x) = �x

((
Pτ ∩ BS(x)

) ∪ A
)

(2.17)

for all finite A ⊂ R
d \ BS(x).

It is easy to check that the measures (2.14) satisfy the law of large numbers in
Theorem 2.2(i). The following de-Poissonized version of Theorem 2.4 generalizes
Theorem 2.2 and shows that the normalized versions of the measures (2.14)
converge to a Gaussian field as well. PutDξ(x, τ ) := E[�ξ(x, τ )].

THEOREM 2.5. Let ξ ∈ SV (4
3). Assume that H is strongly stabilizing and

satisfies the bounded moments condition for κ . Then we have:

(i) If ξ is polynomially stabilizing and satisfies (2.2) for p = 4, then for all
f ∈ C(A),

lim
n→∞

Var[〈f, ρ̄
ξ
n〉]

n

=
∫
A

f 2(x)V ξ
(
x, κ(x)

)
κ(x) dx −

(∫
A

f (x)Dξ
(
x, κ(x)

)
κ(x) dx

)2

.

(2.18)

(ii) If ξ is exponentially stabilizing and satisfies (2.2) for all p > 0, then
n−1/2ρ̄

ξ
n converges as n → ∞ to a Gaussian field with covariance kernel∫

A
f1(x)f2(x)V ξ

(
x, κ(x)

)
κ(x) dx

−
∫
A

f1(x)Dξ
(
x, κ(x)

)
κ(x) dx

∫
A

f2(x)Dξ
(
x, κ(x)

)
κ(x) dx.

(2.19)

(iii) If the distribution of �ξ(X,κ(X)) is nondegenerate, then

lim
n→∞

Var[ρ̄ξ
n(A)]
n

> 0.

REMARKS. (i) Formulas (2.18) and (2.19) are, in general, difficult to
evaluate explicitly. However, in the context of statistics involving one-dimensional
spacings, these formulas are readily evaluated [6], thus extending existing CLTs
for sum functions of spacings.

(ii) We have used the assumptionξ ∈ SV(4/3) only for technical convenience
and have not aimed to find the optimal choice ofSV(q). Higher moment
assumptions onξ will in general requireξ ∈ SV (q) for smaller values ofq
(cf. Lemma 4.2).
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2.3.3. Random measures induced by graphs. Theorems 2.1 and 2.2 assume a
special form when the random point measures are induced by graphs. We see this
as follows. LetX be a locally finite point set and letG := G(X) be a graph onX.
G is translation invariant if translation byy is a graph isomorphism fromG(X)

to G(y + X) for all y ∈ R
d and all locally finiteX. G is scale invariant if scalar

multiplication bya induces a graph isomorphism fromG(X) to G(aX) for all X
and alla > 0. GivenG and a vertexx ∈ X, let E(x;G(X)) be the set of edges
incident tox (or for the Voronoi graph, the set of edges whose planar duals in the
Delaunay graph are incident tox), and let|e| denote the length of an edgee.

For anyf ∈ F (a, b), let Pf,x denotePf together with a point atx.

DEFINITION 2.5. G stabilizes if for all A ∈ A′, 0 ≤ a < b < ∞, λ > 0,
andx ∈ λA, there exists an a.s. finite random variableR(x) := R(x,λ, a, b,A)

(aradius of stabilization) defined on(�,F ,P ) such that for allf ∈ F (a, b), with
Suppf = λA, and all finiteX ⊂ λA \ BR(x), we have

E
(
x;G

(
Pf,x ∩ BR(x) ∪ X

)) = E
(
x;G

(
Pf,x ∩ BR(x)

))
.

Given φ :R+ → R
+, consider functionals of the typeξG

φ (x;X) :=∑
e∈E(x;G(X)) φ(|e|); such functionals could represent, for example, the total

length ofφ-weighted edges inG incident tox, the number of edges inG inci-
dent tox, or the number of edges inG less than some specified length. These
functionals induce the point measures

µG
φ,X := ∑

x∈X

∑
e∈E(x;G(X))

φ(|e|)δx.

If G is polynomially stabilizing (resp. exponentially stabilizing), then so isξG
φ for

anyφ. Givenp > 1, say thatξG
φ is Lp bounded if

sup
λ>0

sup
x∈λ1/dA

sup
X∈C

E

[( ∑
e∈E(x;G(Pλκ∪X))

φ(λ1/d |e|)
)p]

< ∞.(2.20)

Let HG
φ (X) denote the total mass ofµG

φ,X. HG
φ (X) is strongly stabilizing if for

all τ > 0 there exist a.s. finite random variablesS := S(τ ) and�G
φ (τ ) such that

with probability 1

HG
φ

(
Pτ ∪ {0} ∩ BS(0) ∪ A

) − HG
φ

(
Pτ ∩ BS(0) ∪ A

) = �G
φ (τ )

for all finite A ⊂ R
d \ BR(0).

Let Xn := n1/d(X1, . . . ,Xn), with Xi i.i.d. with densityκ . Write

ρG
φ,n :=

n∑
i=1

∑
e∈E(n1/dXi;G(Xn))

φ(|e|)δXi
.(2.21)
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The next result is the CLT counterpart to the main result of [26] and
follows immediately from Theorem 2.2. There is obviously a Poisson version of
Theorem 2.6, but we do not state it here. PutDG

φ (τ ) := E[�G
φ (τ )] and letV G

φ be

the functionV ξ whenξ := ξG
φ is defined as above.

THEOREM 2.6. Assume that the graph G is translation and scale invariant.
Let Xi, i ≥ 1, be i.i.d. with density κ . Assume that HG

φ is strogly stabilizing and
satisfies the bounded moments condition.

(i) If ξG
φ satisfies (2.20) for p = 4, if G is polynomially stabilizing, then for

all τ > 0,

lim
λ→∞

Var[HG
φ (λ1/d(Pλτ ∩ [0,1]d))]

λ
= V G

φ (τ ) · τ

and for all f ∈ C(A),

lim
n→∞

Var[〈f,ρG
φ,n〉]

n

=
∫
A

f 2(x)V G
φ (κ(x))κ(x) dx −

(∫
A

f (x)DG
φ (κ(x))κ(x) dx

)2

.

(2.22)

(ii) If G is exponentially stabilizing, if ξG
φ satisfies (2.20)for all p > 0, then as

n → ∞, n−1/2ρ̄G
φ,n converges to a Gaussian field with covariance kernel∫

A
f1(x)f2(x)V G

φ (κ(x))κ(x) dx

−
∫
A

f1(x)DG
φ (κ(x))κ(x) dx

∫
A

f2(x)DG
φ (κ(x))κ(x) dx.

(2.23)

REMARKS. (i) If φ(x) = xp, p > 0, then the integrals in (2.22) and (2.23)
can be simplified using the identitiesV G

φ (τ ) = V G
φ (1)τ−2p/d and DG

φ (τ ) =
Dφ(1)τ−p/d .

(ii) We may generalize Theorem 2.6 to treat nontranslation-invariantξ . For
example, letξG

φ (x;x,X) be a functional which assigns to a pointx in the graph

G(X) a value which depends on the pointx ∈ R
d (e.g., the value may depend

upon the local metric structure atx). Such functionals are not translation invariant
in the triples (x;x,X). By applying an appropriate uniformization to curved
surfaces, we can fit functionals on such surfaces into our set-up of nontranslation-
invariant functionals of point processes onR

d . This yields, for example, CLTs
for functionals of graphs defined over curved surfaces, in particular functionals of
Voronoi diagrams over surfaces [17].
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3. Applications. Theorems 2.1–2.6 can be applied to point measures induced
by random graphs, packing processes and germ–grain models. This extends
previous results [2, 21, 24, 26], [5, 7–9, 11, 15, 25, 27] and [12, 13, 22, 26]
to the weak limit setting as well as to the setting of interaction processes over
nonhomogeneous point fields. We do not provide an encyclopedic treatment of
applications and anticipate applications to other interaction processes onR

d ,
including measures induced by continuum percolation models. The methods
described here can be modified to extend and generalize the central limit theory for
classical spacings andφ-divergences; in this setting the functionsV ξ and�ξ may
be determined explicitly, allowing us to compute the limiting variance explicitly as
a function of the underlying density of points. We refer to [6] for complete details.

Throughout, we will often show the exponentially stabilizing condition by
appealing to results of [24, 26], which involves a slightly stronger definition of
stabilization.

3.1. Random graphs. We limit discussion to random graphs onR
d with the

usual Euclidean metric, but since translation invariance ofξ is not assumed, many
results hold if the graphs are defined on curved spaces. Our discussion parallels
that in [26]. We say thatφ haspolynomial growth if there existsa < ∞ such that
φ(x) ≤ C(1+ xa) for all x ∈ R

+.

3.1.1. k-nearest neighbors graphs. Let k be a positive integer. Given a locally
finite point setX ⊂ R

d , thek-nearest neighbors (undirected) graph onX, denoted
NG(X), is the graph with vertex setX obtained by including{x, y} as an edge
whenevery is one of thek nearest neighbors ofx and/orx is one of thek nearest
neighbors ofy. Thek-nearest neighbors (directed) graph onX, denoted NG′(X),
is the graph with vertex setX obtained by placing a directed edge between each
point and itsk nearest neighbors.k-nearest neighbors graphs are translation and
scale invariant. Given a binomial sampleX1, . . . ,Xn of i.i.d. random variables
with densityκ , define the induced point measuresρNG

φ,n andρNG′
φ,n as in (2.21).

THEOREM 3.1. The random measures ρNG
φ,n and ρNG′

φ,n , n ≥ 1, satisfy
(2.22), (2.23)if φ has polynomial growth, Suppκ ∈ A, and κ is bounded away
from infinity and zero on its support.

If we setφG(|e|) = |e|/2, then we obtain a CLT for the total edge length of
the k-nearest neighbors graph on the nonhomogeneous point setXn whenever
Suppκ ∈ A and κ is bounded away from infinity and zero. This generalizes
existing CLTs [2, 24] which only show CLTs for nearest neighbor graphs on
homogeneous point sets. The convergence to a Gaussian limit (2.23) is new.

Still more generally, ifφG(|e|) = |e|p/2, p > 0, then Theorem 3.1 yields a
CLT for thepth power-weighted total edge length of thek-nearest neighbors graph
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on Xn when Suppκ ∈ A andκ is bounded away from infinity and zero. That is,
there are constantsV NG(1) andDNG(1) such that

lim
n→∞

Var[〈f, ρ̄NG
φ,n〉]

n

= V NG(1)

∫
A

f 2(x)κ(x)(d−2γ )/d dx

− (
DNG(1)

)2
(∫

A
f (x)κ(x)(d−γ )/d dx

)2

(3.1)

andn−1/2ρ̄NG
φ,n converges asn → ∞ to a Gaussian field with covariance kernel

V NG(1)

∫
A

f1(x)f2(x)κ(x)(d−2γ )/d dx

− (
DNG(1)

)2
∫
A

f1(x)κ(x)(d−γ )/d dx

∫
A

f2(x)κ(x)(d−γ )/d dx.

(3.2)

Another application of Theorem 3.1 goes as follows. Fixt > 0. LetφG(|e|) be
either 0 or 1 depending on whether the length|e| of the edgee is bounded byt or
not. Then (2.23) gives a CLT for the empirical distribution function of the rescaled
lengths of the edges in thek-nearest neighbors graph onXn.

PROOF OF THEOREM 3.1. The proof is straightforward and essentially
follows from existing arguments in [24] and [26]. For completeness we sketch the
proof whenG(X) denotes NG(X); similar arguments apply whenG(X) denotes
NG′(X). It will suffice to apply Theorem 2.6 and to show that NG stabilizes
on elements ofF (a, b) whena > 0 [recall Remark (iv) after Theorem 2.2]. Let
f ∈ F (a, b) be arbitrary, where 0< a < b < ∞. As shown in Lemma 6.1 of [24]
(even though the definition of stabilization there is slightly different), the set of
edges incident tox in NG(Pf,x) is unaffected by the addition or removal of
points outside a ball of random almost surely finite radius 4R, that is, the graph
G(X) = NG(X) is stabilizing. Moreover,R is constructed as follows [24]. For
eacht > 0 construct six disjoint equilateral trianglesTj (t),1 ≤ j ≤ 6, such thatx
is a vertex of each triangle and such that each triangle has edge lengtht . ThenR

is the minimumt such that each triangleTj (t),1 ≤ j ≤ 6, contains at leastk + 1
points fromPf,x . Sincef is bounded away from zero, elementary properties of the
Poisson point process give the desired exponential decay ofR and thus 4R decays
exponentially as well. We verify the moments condition (2.20) as in the proof of
Theorem 2.4 of [26]. Strong stabilization ofH is given by Lemma 6.1 of [24] and
the bounded moments condition forH is as in Lemma 6.2 of [24]. The positivity
of the limiting variance is given by Lemma 6.3 of [24].�
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3.1.2. Voronoi and Delaunay graphs. Given a locally finite setX ⊂ R
d and

x ∈ X, the locus of points closer tox than to any other point inX is called the
Voronoi cell centered atx. The graph on vertex setX in which each pair of adjacent
cell centers is connected by an edge is called theDelaunay graph on X; if d = 2,
then the planar dual graph consisting of all boundaries of Voronoi cells is called the
Voronoi graph generated byX. Edges of the Voronoi graph can be finite or infinite.
Let DEL(X) [resp. VOR(X)] denote the collection of edges in the Delaunay graph
(resp. the Voronoi graph) onX. The Voronoi and Delaunay graphs are clearly scale
and translation invariant. Define the induced point measuresρVOR

φ,n andρDEL
φ,n as

in (2.21).

THEOREM 3.2. Let d = 2. The random measures ρVOR
φ,n and ρDEL

φ,n satisfy
(2.22), (2.23)if φ has polynomial growth with φ(∞) = 0, Suppκ ∈ A and if κ

is bounded away from infinity and zero on its support.

The limits (2.22), (2.23) extend the results of Penrose and Yukich [24] and
Avram and Bertsimas [2], who consider CLTs for the total edge length of Voronoi
graphs overhomogeneous samples. The convergence in distribution to a Gaussian
limit (2.23) is new. Clearly, the analogs of (3.1) and (3.2) hold for the measures
ρVOR

φ,n andρDEL
φ,n .

PROOF OF THEOREM 3.2. We will apply Theorem 2.6. The moments
condition (2.20) is shown in Theorem 2.5 of [26]. We can verify as in [26] that
G(X) is stabilizing. Letf ∈ F (a, b) be arbitrary, with 0< a < b < ∞. We
will show that the Voronoi cell centered atx with respect toPf,x is unaffected
by changes beyond a random but a.s. finite distanceR from x. We only need
to showR has exponentially decreasing tails. This is done in a manner similar
to that for thek-nearest neighbors graph. For eacht > 0 construct 12 disjoint
isosceles trianglesTj (t),1 ≤ j ≤ 12, such thatx is a vertex of each triangle, such
that each triangle has two edges of lengtht , whereTj (t) ⊂ Tj (u) whenevert < u

and where
⋃

t>0
⋃12

j=1Tj (t) = R
2. If R is the minimumt such that each triangle

Tj (t),1 ≤ j ≤ 12, contains at least one point fromPf,x , then 3R is a radius of
stabilization (page 1037 of [24]). Sincef is bounded away from zero, elementary
properties of the Poisson point process give the desired exponential decay of 3R.
We can verify the bounded moments condition onH as in Lemma 8.1 of [24].
Strong stabilization ofH is proved in Section 8 of [24]. The positivity of the
limiting variance is given by Lemma 8.2 of [24].�

3.1.3. Sphere of influence graph. Given a locally finite setX ⊂ R
d , the sphere

of influence graph SIG(X) is a graph with vertex setX, constructed as follows: for
eachx ∈ X let B(x) be a ball aroundx with radius equal to miny∈X\{x}{|y − x|}.
ThenB(x) is called the sphere of influence ofx. Draw an edge betweenx andy
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iff the ballsB(x) andB(y) overlap. The collection of such edges is the sphere of
influence graph (SIG) onX and is denoted by SIG(X). It is clearly translation and
scale invariant. Define the induced point measureρSIG

φ,n as in (2.21).
In Section 7 of [24], CLTs are proved for the total edge length, the number

of components, and the number of vertices of fixed degree of SIG when the
underlying sample is uniform. The following extends these results to nonuniform
samples and also shows weak convergence of the associated measures. We also
obtain a CLT and variance asymptotics for the total number of edges in the SIG on
nonuniform samples, extending results of [14].

THEOREM 3.3. The random measures ρSIG
φ,n satisfy (2.22), (2.23)if φ has

polynomial growth, Suppκ ∈ A and κ is bounded away from infinity and zero
on its support.

PROOF. We will apply Theorem 2.6 again. Letf ∈ F (a, b) be arbitrary,
0 < a < b < ∞. As shown in [26],G(Pf ) has moments of all orders and is
stabilizing, so we only need to show exponential stabilization. However, this
follows from the analysis of SIG in [24]. Consider an infinite coneC with its vertex
at x, subtending an angle ofπ/6 radians. As in [24], letT be the distance fromx
to its closest neighbor inPf,x ∩C, and ifY is the point inC ∩B6T (x) closest tox,
then note (page 1030 of [24]) that the configuration of points outsideB3|Y |(x) has
no effect on the set of points inC connected tox. Thus, the radius of stabilizationR
equals the maximum ofm i.i.d. copies of 3|Y |, wherem is the minimum number of
conesC1, . . . ,Cm congruent toC, each with vertex atx, whose union isRd . It is
easy to check thatR has exponential tails. ThusG(X) is exponentially stabilizing.
The bounded moments condition onH is as in Lemma 7.2 of [24] and strong
stabilization ofH is as in Lemma 7.1 of [24]. The positivity of the limiting variance
is given by Theorem 7.2 of [24].�

3.2. Random packing. We will use Theorem 2.3 to extend earlier results on
random sequential packing [5, 7–9, 11, 15, 25, 27] to cases of nonhomogeneous
input as well as to show the weak convergence of packing measures induced by
Poisson and fixed input.

3.2.1. RSA packing. The following prototypical random sequential packing
model is of considerable scientific interest.

Let Bn,1,Bn,2, . . . ,Bn,n be a sequence ofd-dimensional balls of volumen−1

whose centers are i.i.d. randomd-vectorsX1, . . . ,Xn with probability density
function κ :A → [0,∞). Without loss of generality, assume that the balls are
sequenced in the order determined by marks (time coordinates) in[0,1]. Let the
first ball Bn,1 be packed, and recursively fori = 2,3, . . . ,N , let theith ball Bn,i

be packed iffBn,i does not overlap any ball inBn,1, . . . ,Bn,i−1 which has already
been packed. If not packed, theith ball is discarded. The collection of centers
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of accepted balls induces a point measure onA, denotedµn−1. We call this the
random sequential packing measure induced by balls (of volumen−1) with centers
arising fromκ .

Packing models of this type arise in diverse disciplines, including physical,
chemical and biological processes. In statistical mechanics, this model describes
the irreversible deposition of colloidal particles or proteins onto a substrate. In this
context, the model described above is known as the RSA model for hard spheres
on a continuum substrate. When the ball centers belong to a stationary Poisson
point process onRd , then this model is the Matérn hard-core process (page 163
of [29]). When the ball centers belong to a bounded region ofR

d , then this model
is known in spatial statistics as the simple sequential inhibition model (page 308
of [30]).

The vast scientific literature on versions of RSA models (see [25] for references)
contains an abundance of experimental results, but few rigorous mathematical
results. In d = 1, Rényi [27] and Dvoretzky and Robbins [11] established
LLNs and CLTs, respectively, for the total number of accepted balls. Coffman,
Flatto, Jelenkovíc and Poonen ([9], equation (2), Theorems 13 and 14) determine
explicit formulae for some of the limiting constants in the LLN and CLT, but
restrict attention tod = 1. In d ≥ 1, Penrose and Yukich [25] establish the
asymptotic normality of the number of accepted balls when the spatial distribution
is uniform and also show [26] an LLN for the number of accepted balls when
the spatial distribution is nonuniform. Baryshnikov and Yukich [5] establish
weak convergence of the sequential packing measures ind ≥ 1, but only for
homogeneous Poisson input. Here we will use our general result for marked
processes, Theorem 2.3, to establish convergence of the variance and also weak
convergence in the case of nonhomogeneous input ind ≥ 1. We will follow the
set-up of [26].

For any finite point setX ⊂ A, assume the pointsx ∈ X have time coordinates
which are independent and uniformly distributed over the interval[0,1]. Assume
balls of volumen−1 are centered at the points ofX and arrive sequentially in an
order determined by the time coordinates, and assume as before that each ball is
packed or discarded according to whether or not it overlaps a previously packed
ball. Let ξ(x;X) be either 1 or 0 depending on whether the ball centered atx is
packed or discarded. Letξn(x;X) = ξ(n1/dx;n1/dX), wheren1/dx denotes scalar
multiplication ofx andnot the mark associated withx and where balls centered at
points ofn1/dX have volume 1. LetH(X) := ∑

x∈X ξ(x;X) be the total number
of balls packed. The random measure

µξ
n :=

n∑
i=1

ξn(Xi; {Xi}ni=1)δXi

coincides withµn−1.

Straightforward modifications of [25, 4] show thatξ is exponentially stabilizing.
The strict positivity ofV ξ(τ ) is shown in Theorem 1.2 of [25]. Sinceξ is bounded
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it satisfies the moments condition (2.2). By Section 5 of [25],H satisfies the
bounded moments condition and strong stabilization. Therefore, Theorem 2.3
yields the following CLT.

THEOREM 3.4. The random measures µ
ξ
n,n ≥ 1, satisfy (2.8)and (2.9).

Theorem 3.4 shows asymptotic normality of the total number of accepted balls
and generalizes [4, 25] to the case of nonhomogeneous input.

3.2.2. Spatial birth–growth models. Consider the following spatial birth–
growth model inR

d . Seeds are born at random locationsXi ∈ R
d at timesTi ,

i = 1,2, . . . , according to a unit intensity homogeneous spatial temporal Poisson
point process� := {(Xi, Ti) ∈ R

d × [0,∞)}. When a seed is born, it forms a cell
by growing radially in all directions with a constant speedv ≥ 0. Whenever one
growing cell touches another, it stops growing in that direction. Initially the seed
takes the form of a ball of radiusρi ≥ 0 centered atXi . If a seed appears atXi and
if the ball centered atXi with radiusρi overlaps any of the existing cells, then the
seed is discarded.

In the special case when the growth ratev = 0 and ρi is constant, this
model reduces to the RSA packing model. In the alternative special case where
all initial radii are zero a.s., the model is known as the Johnson–Mehl model,
originally studied in model crystal growth, and is described in Stoyan, Kendall
and Mecke [29]. Chiu and Quine [8] show that the number of seeds accepted
inside a cubeQλ of volumeλ by time t satisfies a CLT, but apart from numerical
considerations, their arguments do not preclude the possibility of limiting normal
random variable with zero variance [7]. Penrose and Yukich [25] consider a
modification of this model in which all seeds outsideQλ are automatically
rejected, while the rules for seeds insideQλ×[0,∞) are as above. They establish a
CLT for this model and show that the limiting variance is strictly positive (page 295
of [25]), thus implying that the CLT of [8] is nondegenerate.

If seeds are born at random locationsXi ∈ A, it is natural to study thespatial
distribution of accepted seeds. As far as we know, this problem has not been
investigated. We may use Theorem 2.3 to establish the weak convergence of the
random measure induced by the locations of the accepted seeds.

For any finite point setX ⊂ A, assume the pointsx ∈ X have i.i.d. marks over
[0,1]. A mark atx ∈ X represents the arrival time of a seed atx. Assume that
the seeds are centered at the points ofX and that they arrive sequentially in an
order determined by the associated marks, and assume that each seed is accepted
or rejected according to the rules above. Letξ(x;X) be either 1 or 0 according to
whether the seed centered atx is accepted or not.H(X) := ∑

x∈X ξ(x;X) is the
total number of seeds accepted and�ξ(τ ) is as in (2.7).
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As with RSA packing, letX1, . . . ,Xn be i.i.d. random variables with densityκ
onA and with marks in[0,1]. The random measure

σ ξ
n :=

n∑
i=1

ξn(Xi; {Xi}ni=1)δXi

is the scaled spatial birth–growth measure onA induced byX1, . . . ,Xn. The
next result, a consequence of Theorem 2.3, shows that the spatial birth–growth
measures converge to a Gaussian field.

THEOREM 3.5. The random measures σ
ξ
n , n ≥ 1, satisfy (2.8)and (2.9).

Theorem 3.5 generalizes [8] and extends [25] to the case of nonhomogeneous
input.

3.2.3. Related packing models. (a) Theorem 3.4 extends to more general
versions of the prototypical packing model. By following the stabilization analysis
of [25], one can develop asymptotics in the finite input setting for the number
of packed balls in the following general models: (i) models with balls replaced
by particles of random size/shape/charge, (ii) cooperative sequential adsorption
models and (iii) ballistic deposition models (see [25] for a complete description of
these models). In each case, Theorem 2.3 yields weak convergence to a Gaussian
limit of the random packing measures associated with the centers of the packed
balls, whenever the balls have a densityκ :A → [0,∞).

(b) The above packing models describe convergence of measures arising as a
result of dependently thinning a Poisson point process. Related ways of thinning
processes include theannihilating process, described as follows. A clock is
attached to each point (particle) in the process; when the clock for a chosen particle
rings, then if the particle has itself not been annihilated, it annihilates its neighbors
within a fixed radius. Clearly, once a particle is free from occupied neighboring
sites, it remains there undisturbed and is fixed for all time. Thus in any finite
region the process is unchanging after a finite time. This models the thinning
of seedlings [31] and the resulting random point measure satisfies the CLT in
Theorem 3.4.

3.3. Germ–grain models. Germ–grain models form a central part of stochastic
geometry and spatial statistics [12, 22]. Here we consider the limit theory of
functionals and measures associated with germ–grain models. Such models fall
within the scope of the general set-up of Heinrich and Molchanov [13], who
were the first to develop a general limit theory for random measures induced by
translation-invariant germ–grain models.

Let Ti, i ≥ 1, be i.i.d. bounded random variables defined on(�,F ,P ),
independent of the i.i.d. random variablesXi, i ≥ 1, which are also defined on
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(�,F ,P ) and which have densityκ . For simplicity, consider random grains
having the representationXi + n−1/dBTi

(Xi) and consider the random set

�n :=
n⋃

i=1

(
Xi + n−1/dBTi

(0)
)
.

When theXi, i ≥ 1, are the realization of a Poisson point process, the set�n

is a scale-changed Boolean model in the sense of Hall [12], pages 141 and 233.
Heinrich and Molchanov [13] exploit the translation invariance of such a model
and establish a central limit theorem for the associated measures. For translation-
invariant models, Heinrich and Molchanov [13] establish CLTs without assuming
boundedness ofTi .

For all u ∈ R
d , let T (u) be a random variable with a distribution equal to that

of T1. For all x ∈ R
d and all point setsX ⊂ R

d , let V (x,X) be the Voronoi
cell aroundx with respect toX. Givenx ∈ R

d , let L(x,X) denote the Lebesgue
measure of the intersection of the random set

⋃
u∈X BT (u)(u) andV (x,X).

Thevolume measure induced by�n is

µL
n :=

n∑
i=1

Ln(Xi;Xn)δXi

and the total volume ofn1/d�n is given byHL(n1/dXn) := ∑n
i=1 Ln(Xi;Xn).

SinceT is bounded it follows thatL is exponentially stabilizing and thatHL

is strongly stabilizing. Moreover, since the functionalL is bounded by the
volume of a Voronoi cell, it is clear from Section 3.1.2 thatL satisfies the
moment condition (2.2) for allp > 0 and thatHL satisfies the bounded moments
condition (2.5) for anyκ ∈ Fa,b,0< a ≤ b < ∞.

Therefore, for germ–grain models�n given above we have thus proved:

THEOREM 3.6. Let the density κ be bounded away from infinity and zero.
(i) For all f ∈ C(A)

lim
n→∞

Var[〈f, µ̄L
n 〉]

n

=
∫
A

f 2(x)V L
(
x, κ(x)

)
κ(x) dx −

(∫
A

f (x)DL
(
x, κ(x)

)
κ(x) dx

)2

.

(3.3)

(ii) As n → ∞, n−1/2µ̄L
n converges to a Gaussian field with covariance kernel∫

A
f1(x)f2(x)V L

(
x, κ(x)

)
κ(x) dx

−
∫
A

f1(x)DL
(
x, κ(x)

)
κ(x) dx

∫
A

f2(x)DL
(
x, κ(x)

)
κ(x) dx.

(3.4)
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REMARKS. (i) We have confined attention to one of the simplest germ–
grain models. Instead of ballsBT , one could assume that the grains have some
distribution on the space of convex subsets ofR

d . We have also limited our
discussion to volume functionals, but it should be clear that the approach above
readily extends to other spatial statistics, including total curvature.

(ii) Theorem 3.6 shows that volume functionals satisfy a CLT over nonuniform
point sets, adding to results of [13] and [12], Chapter 3.4, involving the vacancy
functional for germ–grain models.

(iii) The LLN counterpart of Theorem 3.6 is established in [26] and is not
reproduced here.

4. Proof of variance convergence (Poisson case).

4.1. Correlation functions. The proof of (2.16) uses the objective method [1]
together with correlation functions. To illustrate the method, it is instructive
to first prove the limit (2.3). Recall that for allf ∈ C(A), λ−1

E[〈f,µ
ξ
λκ〉] =∫

A f (x)E[ξλ(x;Pλκ)]κ(x) dx. The key observation lying at the heart of the
objective method is that for any pointx ∈ A distant at least(K/λ)1/d from ∂A, K

large,ξλ(x;Pλκ) is well approximated by the candidate limiting random variable
ξ(x;Pκ(x)) in the sense that asλ → ∞∣∣Eξλ(x;Pλκ) − Eξ

(
x;Pκ(x)

)∣∣
≤ ∣∣Eξλ(x;Pλκ) − Eξλ

(
x;Pλκ(x)

)∣∣
+ ∣∣Eξλ

(
x;Pλκ(x)

) − Eξ
(
x;Pκ(x)

)∣∣ → 0,

(4.1)

wherePλκ(x) is a Poisson point process onR
d with intensityλκ(x) coupled toPλκ

as in the upcoming coupling (4.2).
Indeed, to prove (4.1), for any pointx ∈ A distant at least(K/λ)1/d from ∂A,

consider the eventFK,λ(x) that the radius of stabilizationR(λ1/dx) at λ1/dx with
respect toPκ(x) is less thanK and thatPλκ = Pλκ(x) onB(K/λ)1/d (x). Then

P [FK,λ(x)c] ≤ P [R(λ1/dx) > K] + λ

∫
B

(K/λ)1/d (x)
|κ(y) − κ(x)|dy.

By stabilization, we haveP [R(λ1/dx) > K] ≤ ε uniformly in λ by choosingK
large enough. For suchK , the Lebesgue point property ofx shows that the second
term above can be made arbitrarily small for largeλ and thusP [F c

K,λ(x)] ≤ 2ε for
largeλ. Bound|Eξλ(x;Pλκ) − Eξλ(x;Pλκ(x))| by∣∣E[(

ξλ(x;Pλκ) − ξλ

(
x;Pλκ(x)

)) · 1FK,λ(x)

]∣∣
+ ∣∣E[(

ξλ(x;Pλκ) − ξλ

(
x;Pλκ(x)

)) · 1FK,λ(x)c
]∣∣.

The first term vanishes by the definition ofFK,λ(x). The second term is bounded
by a multiple ofε by combining Hölder’s inequality, the assumed 1+ δ moment
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condition andP [F c
K,λ(x)] ≤ 2ε. Thus, for any pointx ∈ A distant at least

(K/λ)1/d from ∂A, the first term on the right-hand side of (4.1) goes to zero and
the second term goes to zero by stabilization.

The proof of the variance convergence (2.16) is more involved and requires
some extra terminology. LetP ′

λκ be a Poisson point process equidistributed with
and independent ofPλκ , that is,P ′

λκ is a copy ofPλκ . For all λ ∈ R
+ andx ∈ A

we introduce two auxiliary homogeneous (independent) Poisson point processes
P̃λκ(x) andP̃ ′

λκ(x) defined on(�,F ,P ) such that:

(i) P̃λκ(x) andP̃ ′
λκ(x) haveconstant intensity onA equal toλκ(x),

(ii) Pλκ andP̃λκ(x) are coupled in the sense that for any Borel subsetB ⊂ A,

P
[
Pλκ(B) 	= P̃λκ(x)(B)

] ≤ λ

∫
B

|κ(y) − κ(x)|dy,(4.2)

and the same is true forP ′
λκ andP̃ ′

λκ(x).

The proof of the variance convergence (2.16) approximates the correlations of
ξλ(x;Pλκ), x ∈ R

d , by those ofξλ(x;Pλκ(x)), x ∈ R
d . Thus, for allx ∈ R

d define

qλ(x) := E[ξ2
λ (x;Pλκ)] and q̃λ(x) := E

[
ξ2
λ

(
x; P̃λκ(x)

)]
,

as well as the pair correlation function

cλ(x, y) := E[ξλ(x;x,Pλκ ∪ y)ξλ(y;y,Pλκ ∪ x)]
− E[ξλ(x;x,Pλκ)]E[ξλ(y;y, P̃ ′

λκ)], x, y ∈ R
d, x 	= y.

Abbreviating notation throughout and writingξλ(x;Pλκ ∪ y)ξλ(y;Pλκ ∪ x) for
ξλ(x;x,Pλκ ∪ y)ξλ(y;y,Pλκ ∪ x), we also have the pair correlation functions in
the homogeneous intensity case:

c̃λ(x, y) := E
[
ξλ

(
x; P̃λκ(x) ∪ y

)
ξλ

(
y; P̃λκ(x) ∪ x

)
− ξλ

(
x; P̃λκ(x)

)
ξλ

(
y; P̃ ′

λκ(x)

)]
, x 	= y,

and

c̃x
λ(x, y) := E

[
ξx
λ

(
x; P̃λκ(x) ∪ y

)
ξx
λ

(
y; P̃λκ(x) ∪ x

)
− ξx

λ

(
x; P̃λκ(x)

)
ξx
λ

(
y; P̃ ′

λκ(x)

)]
, x 	= y.

Here we employ the notationξx
λ (z;X) for ξλ(x; z,X). Clearly, the correlations

c̃λ(x, y) and c̃x
λ(x, y) arenot symmetric inx andy, unlike cλ. Whenλ = 1 we

write simply q(x) andc(x, y) for q1(x) andc1(x, y), respectively, and similarly
for q̃, c̃ andc̃x . Denote the integral off ∈ C(A) with respect to a Borel measureµ

onR
d by 〈f,µ〉. Now

λ−1 Var[〈f,µ
ξ
λκ〉] = λ〈f ⊗ f,E[µξ

λκ ⊗ µ
ξ
λκ − µ

ξ
λκ ⊗ µ

′ξ
λκ ]〉,(4.3)
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wheref ⊗ f denotes the functionf (x)f (y) on the productA × A, µ ⊗ ν stands

for the product measure onA × A andµ′ξ
λκ is just an independent copy ofµ

ξ
λκ .

Considering the diagonal and off-diagonal terms, we may rewrite the integral (4.3)
in terms of correlation functions

λ−1 Var[〈f,µ
ξ
λκ〉]

= λ

∫ ∫
A×A

f (y)f (x)cλ(x, y)κ(x)κ(y) dx dy +
∫
A

f (x)2qλ(x)κ(x) dx

=
∫
A

κ(x)f (x)

[
f (x)qλ(x) + λ

∫
A

f (y)cλ(x, y)κ(y) dy

]
dx.

To show the desired asymptotics (2.16), we will first show for allx ∈ A not too
close to the boundary ofA, that asλ → ∞

f (x)qλ(x) + λ

∫
A

f (y)cλ(x, y)κ(y) dy

−
[
f (x)q̃(x) +

∫
Rd

f (x)c̃x(x, y)κ(x) dy

]
→ 0.

(4.4)

Note that the bracketed expression in (4.4) isf (x)V ξ (x, κ(x)).

4.2. Properties of correlation functions. Showing the limit (4.4) requires
some properties of correlation functions. Using the definitions and the translation
invariance ofξ(y;x,X) in the pairs(x,X), it is easy to verify that for allx, y ∈ A:

q̃λ(x) = q̃(x) and c̃x
λ(x, x + y) = c̃x(x, x + λ1/dy).

Also, if (2.2) holds forp = 2, then we have the following uniform bounds:

sup
x,y∈Rd ,λ>0

[
max[qλ(x), q̃λ(x), cλ(x, y), c̃λ(x, y), c̃x

λ(x, y)]] < ∞.(4.5)

Our next fact provides some crucial decay properties. Here and elsewhereC

denotes a constant whose value may change from line to line.

LEMMA 4.1. Under the moment condition (2.2)with p = 4, we have[
max

(|cλ(x, y)|, |c̃λ(x, y)|, |c̃x
λ(x, y)|)] ≤ C

(
r(λ1/d |x − y|/2)

)1/2
.

PROOF. We prove only

|cλ(x, y)| ≤ C
(
r(λ1/d |x − y|/2)

)1/2

since the proof of the other two inequalities is identical. LetRx := R(λ1/dx) and
Ry := R(λ1/dy) be the radii of stabilization ofξ for λ1/dx andλ1/dy, respectively.
Let E := Ex,y,λ denote the event thatR(λ1/dx) and R(λ1/dy) are both less
than δ := λ1/d |x − y|/2 and note thatP [Ec] ≤ Cr(λ1/d |x − y|/2). On E the
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stabilization ballsBRx (λ
1/dx) andBRy(λ

1/dy) do not intersect and thus onE we
haveξλ(x;Pλκ ∪ y) = ξλ(x;Pλκ) andξλ(y;Pλκ ∪ x) = ξλ(y;Pλκ) showing that∣∣E[ξλ(x;Pλκ ∪ y)ξλ(y;Pλκ ∪ x)]

− E
[
ξλ

(
x;Pλκ ∩ Bδ(λ

1/dx)
)
ξλ

(
y;Pλκ ∩ Bδ(λ

1/dy)
)]∣∣ ≤ CP[Ec]

by Hölder’s inequality and the moment condition (2.2) withp = 4. Using
independence in the second expectation and the bound∣∣E[

ξλ

(
x;Pλκ ∩ Bδ(λ

1/dx)
)] − E[ξλ(x;Pλκ)]

∣∣ ≤ CP[Ec].
we are done. �

The next lemma shows thatqλ and cλ are closely approximated by their
“uniform versions”q̃λ andc̃x

λ, respectively. Compactness ofA and the continuity
of κ and f imply uniform continuity, so we fixmoduli of continuity tκ , tf :
R

+ → R
+ such that for anyx, y ∈ A : |x − y| ≤ δ, |κ(x) − κ(y)| ≤ tκ (δ) and

|f (x) − f (y)| ≤ tf (δ).

LEMMA 4.2. Assume that ξ ∈ SV (4
3) satisfies the moment condition (2.2) for

p = 4 and is polynomially stabilizing. Then there exists a function e :R+ → R
+,

decreasing to 0, and a function δ :R+ → R
+, increasing to ∞, such that δ/λ → 0

and
(i) ∀x ∈ A distant at least (δ/λ)1/d from ∂A, |qλ(x) − q̃λ(x)| ≤ e(λ),
(ii) ∀x, y ∈ A, each distant at least (δ/λ)1/d from ∂A,

δ(λ)|cλ(x, y) − c̃x
λ(x, y)| ≤ e(λ),

(iii) as λ → ∞, the function δ satisfies

δ(λ)tf
((

δ(λ)/λ
)1/d) → 0; δ(λ)tκ

((
δ(λ)/λ

)1/d) → 0.

PROOF. It is clear that one can always find a functionδ := δ(λ) → ∞ as
λ → ∞ such thatδ/λ → 0 and implication (iii) holds, and even more strongly,
that

δ(λ)2tκ
((

δ(λ)/λ
)1/d) → 0 asλ → ∞.(4.6)

Fix suchδ.
For anyλ > 0 andx ∈ A, x distant at least(δ/λ)1/d from ∂A, consider the

event�x := �x,λ,δ that the radius of stabilizationR(λ1/dx) of ξ is less thanδ, and
thatPλκ = P̃λκ(x) onB(δ/λ)1/d (x), that is,λ1/dPλκ = λ1/dP̃λκ(x) onBδ1/d (λ1/dx).
By polynomial stabilization, by definition oftκ , as well as by the coupling
estimate (4.2), the probability of the complement of�x is

P [�c
x] ≤ ωdδtκ

(
(δ/λ)1/d

) + a1δ
−a2,(4.7)
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wherea1 > 0 anda2 > 2 are constants andωd is the volume of the unit ball
in R

d . ThusP [�c
x] tends to 0 asλ → ∞ by (4.6). To show (i) we need to show

|E[ξ2
λ (x;Pλκ) − ξ2

λ(x;Pλκ(x))]| → 0 asλ → ∞:∣∣E[
ξ2
λ (x;Pλκ) − ξ2

λ

(
x;Pλκ(x)

)]∣∣
≤ E

[∣∣ξ2
λ (x;Pλκ) − ξ2

λ

(
x;Pλκ(x)

)∣∣1�x

]
+ E

[∣∣ξ2
λ (x;Pλκ) − ξ2

λ

(
x;Pλκ(x)

)∣∣1�c
x

]
.

The first term vanishes by the definition of�x and the definition ofξλ(x;Pλκ(x)) =
ξ(λ1/dx;Pκ(x)). Hölder’s inequality, the moment condition (2.2) withp = 4, and
the bound (4.7) show that the second term vanishes asλ → ∞. This proves (i).

For the proof of (ii) it suffices to show that there exists a functionδ(λ) → ∞
such that both

δ(λ)|cλ(x, y) − c̃λ(x, y)| ≤ e(λ)(4.8)

and

δ(λ)|c̃λ(x, y) − c̃x
λ(x, y)| ≤ e(λ).(4.9)

We first show the bound (4.8). By Lemma 4.1 it is enough to show for all
|x − y| < δ/λ1/d that δ(λ)|E[ξλ(x;Pλκ ∪ y)ξλ(y;Pλκ ∪ x) − ξλ(x; P̃λκ(x) ∪
y)ξλ(y; P̃λκ(x) ∪ x)]| → 0 asλ → ∞.

We proceed as in the proof of (i), but now consider the event�x,y that the radii
of stabilizationR(λ1/dx) andR(λ1/dy) of ξ for λ1/dx andλ1/dy, respectively, are
both less thanδ, thatPλκ = P̃λκ(x) on the ballB(δ/λ)1/d (x), and thatP ′

λκ = P̃ ′
λκ(x)

on the ballB(δ/λ)1/d (y). Sincey is within δ/λ1/d of x, the probability thatPλκ 	=
P̃λκ(x) on the ballB(δ/λ)1/d (y) is less thanωdδtκ ((δ/λ)1/d) + a1δ

−a2. Therefore,
under polynomial stabilization

P [�c
x,y] ≤ 2ωdδtκ

(
(δ/λ)1/d) + 2a1δ

−a2.

The triangle inequality, the moment condition (2.2) withp = 4 and Hölder’s
inequality give

δ
∣∣E[

ξλ(x;Pλκ ∪ y)ξλ(y;Pλκ ∪ x) − ξλ

(
x; P̃λκ(x) ∪ y

)
ξλ

(
y; P̃λκ(x) ∪ x

)]∣∣
≤ a3δ(Eξ4)1/4P [�c

x,y]3/4 ≤ a4δ
(
δtκ

(
(δ/λ)1/d

) + δ−a2
)3/4

.

We may similarly show

δ|cλ(x, y) − c̃λ(x, y)| ≤ a3δ(Eξ4)1/4P [�c
x,y]3/4 ≤ a4δ

(
δtκ

(
(δ/λ)1/d) + δ−a2

)3/4
,

which tends to zero asλ → ∞ sincea2 > 2. Thus (4.8) is satisfied.
We now show the bound (4.9). Notice that theSV(4

3) assumption onξ
implies automatically a somewhat stronger statement that the convergence is
uniform not only on each fixed compactK , but also on the balls of radius
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δs(λ) → ∞ asλ → ∞. Even more strongly, we have convergence to zero with
rateo((δs(λ))−1) uniformly on balls of radiusδs(λ)/λ1/d , that is,

sup
y : |x−y|≤δs(λ)/λ1/d

δs(λ) E
[∣∣ξλ

(
y; P̃λκ(x)

) − ξx
λ

(
y; P̃λκ(x)

)∣∣4/3] → 0

asλ → ∞. Thus by Hölder’s inequality (p = 4, q = 4/3) we have

δs(λ)
∣∣E[

ξλ

(
x; P̃λκ(x)

)
ξλ

(
y; P̃λκ(x)

) − ξλ

(
x; P̃λκ(x)

)
ξx
λ

(
y; P̃λκ(x)

)]∣∣
≤ δs(λ)

(
E

[
ξ4
λ

(
x; P̃λκ(x)

)])1/4(
E

∣∣ξλ

(
y; P̃λκ(x)

) − ξx
λ

(
y; P̃λκ(x)

)∣∣4/3)3/4 → 0

uniformly over balls aroundx of radiusδs(λ)/λ1/d . Similarly,

δs(λ)
∣∣E[

ξλ

(
x; P̃λκ(x)

)
ξx
λ

(
y; P̃λκ(x)

) − ξx
λ

(
x; P̃λκ(x)

)
ξx
λ

(
y; P̃λκ(x)

)]∣∣ → 0

asλ → ∞. Therefore the bound (4.9) holds on such balls. On the complement
of these balls, the bound (4.9) also holds by the polynomial decay of correlation
functions given by Lemma 4.1. Therefore the bound (4.9) holds and the proof of
Lemma 4.2 is complete.�

4.3. Convergence of variance. We establish the convergence ofλ−1 Var[〈f,

µ
ξ
λκ〉] for all f ∈ C(A). Convexity and compactness ofA implies the smoothness

condition limn→∞ n−1∂r(n
1/dA) = 0 for all r > 0, where∂r(n

1/dA) denotes the
volume of ther-neighborhood of the boundary ofn1/dA. Recalling (4.4), it suffices
to show for allx ∈ A distant at least 2(δ/λ)1/d from ∂A, that for largeλ,

f (x)qλ(x) + λ

∫
A

f (y)cλ(x, y)κ(y) dy(4.10)

is close to

f (x)q̃λ(x) + λ

∫
Rd

f (x)c̃x
λ(x, y)κ(x) dy.(4.11)

Without loss of generality, assume Suppf is the setA.
Lemma 4.2(i) implies that for allx the difference of the first terms in

(4.10) and (4.11) goes to zero asλ → ∞. The difference of the integrals in (4.10)
and (4.11) equals

λ

∫
Rd

[cλ(x, y)f (y)κ(y) − c̃x
λ(x, y)f (x)κ(x)]dy.(4.12)

Let δ := δ(λ) be as in Lemma 4.2 and letB(δ/λ)1/d (x) be the ball of radius
(δ/λ)1/d aroundx. To evaluate the integral (4.12), we integrate separately over
B(δ/λ)1/d (x) and R

d \ B(δ/λ)1/d (x). The integral overB(δ/λ)1/d (x) involves the
difference

λ

∫
B

(δ/λ)1/d (x)
[cλ(x, y)f (y)κ(y) − c̃x

λ(x, y)f (x)κ(x)]dy,
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which we split as

λ

∫
B

(δ/λ)1/d (x)

(
cλ(x, y) − c̃x

λ(x, y)
)
f (y)κ(y) dy

+ λ

∫
B

(δ/λ)1/d (x)
c̃x
λ(x, y)

(
f (y) − f (x)

)
κ(y) dy

+ λ

∫
B

(δ/λ)1/d (x)
c̃x
λ(x, y)f (x)

(
κ(y) − κ(x)

)
dy.

(4.13)

The first integral is bounded by the product ofλ, the volume ofB(δ/λ)1/d (x) and
the maximum of the integrand(cλ(x, y) − c̃x

λ(x, y))f (y)κ(y). However, sincey
is distant at least(δ/λ)1/d from ∂A, the product goes to zero by Lemma 4.2(ii).
The second and third integrals also tend to zero asλ → ∞ by the bound (4.5) and
Lemma 4.2(iii).

Sincef and κ are bounded, the integral in (4.12) overR
d \ B(δ/λ)1/d (x) is

bounded by

C

∫
Rd\B

(δ/λ)1/d (x)
[cλ(x, y) + c̃x

λ(x, y)]d(λ1/dy),(4.14)

which by Lemma 4.1 is bounded by

C

∫
Rd\B

δ1/d (x)

(
r(|z − x|/2)

)1/2 + (
r(|z − x|/2)

)1/2
dz.

The above integral is bounded by 2Cωd

∫ ∞
δ1/d/2(r

κ(t))1/2td−1 dt which tends to
zero asλ → ∞ by assumption. We conclude that (4.14) converges to zero
uniformly for all x ∈ A distant at least 2(δ/λ)1/d from ∂A. Hence,

λ−1 Var[〈f,µ
ξ
λκ〉]−

∫
A

κ(x)f (x)

[
f (x)q̃λ(x)+λ

∫
Rd

f (x)c̃x
λ(x, x+y)κ(x) dy

]
dx

converges to zero asλ → ∞. The equivalences̃qλ(x) = q̃(x) andc̃x
λ(x, x + y) =

c̃x(x, x + λ1/dy) yield (4.4) as desired:

λ−1 Var[〈f,µ
ξ
λ〉]

→
∫
A

f (x)

[
f (x)q̃(x) +

∫
Rd

f (x)c̃x(x, y)κ(x) dy

]
κ(x) dx.

(4.15)

5. Proof of Theorem 2.4. We will only prove Theorems 2.4 and 2.5, since
they are clearly a generalization of Theorems 2.1 and 2.2. We will first prove
Theorem 2.4. We have already established Theorem 2.4(i) under the hypothesis
thatξ satisfies (2.2) forp = 4, and now to prove Theorem 2.4(ii) we assume that
ξ satisfies (2.2) for allp > 0.
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5.1. Cumulant measures. Recall thatC(A) denotes the continuous functions
f :A → R. To prove convergence of the finite-dimensional distributions of
λ−1/2µ̄

ξ
λκ , λ ≥ 1, in Theorem 2.4, it suffices to show for all test functionsf ∈ C(A)

that the Laplace transform of the random variableλ−1/2〈f, µ̄
ξ
λκ〉 converges as

λ → ∞ to the Laplace transform of a normal random variable with mean zero
and variance1

2

∫
A f 2(x)V ξ (x, κ(x))κ(x) dx. In other words, it suffices to show

for all f ∈ C(A) that

lim
λ→∞ Eexp(λ−1/2〈−f, µ̄

ξ
λκ〉) = exp

[
1
2

∫
A

f 2(x)V ξ
(
x, κ(x)

)
κ(x) dx

]
.(5.1)

We will use the method of cumulants to show (5.1). We first recall the formal
definition of cumulants. LetW := R

d and formally expand (5.1) in a power series
in f as follows:

Eexp(λ−1/2〈−f, µ̄
ξ
λκ〉) = 1+

∞∑
k=1

λ−k/2〈(−f )k,Mk
λ)〉

k! ,(5.2)

where f k :Rdk → R, k = 1,2, . . . , is given by f k(v1, . . . , vk) = f (v1) · · · · ·
f (vk), andvi ∈ W,1 ≤ i ≤ k. Mk

λ is a measure onRdk , the kth moment measure
(page 130 of [10]).

We have

dMk
λ = mλ(v1, . . . , vk)

k∏
i=1

κ(vi) d(λvi),(5.3)

where the Radon–Nikodym derivativemλ(v1, . . . , vk) is given by

mλ(v1, . . . , vk) := E

[
k∏

i=1

ξ̄λ(vi;Pλκ)

]
,(5.4)

and where givenv1, . . . , vk we abbreviate notation and write for all 1≤ i ≤ k,
ξ̄λ(vi;Pλκ) for ξλ(vi;Pλκ) − E[ξλ(vi;Pλκ)] and ξ(vi;Pλκ) for ξ(vi;Pλκ ∪
{vj }kj=1). For each fixedk, the mixed moment on the right-hand side of (5.4) is
finite uniformly in λ by the moment bounds (2.2). Likewise, thekth summand
in (5.2) is finite.

When the series (5.2) is convergent, the logarithm of the Laplace functional
gives

log

[
1+

∞∑
k=1

λ−k/2〈(−f )k,Mk
λ〉

k!
]

=
∞∑
l=1

λ−l/2〈(−f )l, cl
λ〉

l! ;

the signed measurescl
λ are cumulant measures (semi-invariants [20] or Ursell

functions). Regardless of the validity of (5.2), all cumulantscl
λ, l = 1,2, . . . , admit
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the representation

cl
λ = ∑

T1,...,Tp

(−1)p−1(p − 1)!MT1
λ · · ·MTp

λ ,

whereM
Ti

λ denotes a copy of the moment measureM |Ti | on the product spaceWTi

and whereT1, . . . , Tp ranges over all unordered partitions of the set 1, . . . , l (see
page 30 of [20]). More generally,cT

λ := cλ(T ) is the cumulant measure onWT

with the representation

cT
λ = ∑

T1,...,Tp

(−1)p−1(p − 1)!MT1
λ · · ·MTp

λ ,

whereT1, . . . , Tp ranges over all unordered partitions of the setT . The first cu-
mulant measure coincides with the expectation measure and the second cumu-
lant measure coincides with the covariance measure. The cumululantscl

λ, l = 1,

2, . . . , all exist under the moment condition (2.2). In what follows we make criti-
cal use of the standard fact that if the cumulantscl

λ of a random variableZ vanish
for l ≥ 3, thenZ has a normal distribution.

We will sometimes shorten notation and writeMk,m andcl instead ofMk
λ,mλ

andcl
λ.

5.2. Cluster measures. Since c1
λ coincides with the expectation measure,

we have 〈f, c1
λ〉 = 0 for all f ∈ C(A). We already know from Section 4

that λ−1〈f 2, c2
λ〉 = λ−1 Var[〈f,µ

ξ
λκ〉] → ∫

A f 2(x)V ξ (x, κ(x))κ(x) dx. Thus, to
prove (5.1), it will be enough to show for allk ≥ 3 and all f ∈ C(A) that
λ−k/2〈f k, ck

λ〉 → 0 asλ → ∞ (see, e.g., Lemma 3 of [28]).
A cluster measureUS,T

λ onWS ×WT for nonemptyS,T ⊂ {1,2, . . . } is defined
by

U
S,T
λ (A × B) = MS∪T

λ (A × B) − MS
λ (A)MT

λ (B)

for all BorelA andB in WS andWT , respectively.
Let S1 andS2 be a partition ofS and letT1 andT2 be a partition ofT . A product

of a cluster measureUS1,T1
λ onWS1 × WT1 with products of moment measures on

WS2 × WT2 will be called a(S,T ) semi-cluster measure.
For each nontrivial partition(S,T ) of {1, . . . , k} we next provide a representa-

tion of thekth cumulantck as

ck = ∑
(S1,T1),(S2,T2)

α
(
(S1, T1), (S2, T2)

)
US1,T1M |S2|M |T2|,

where the sum ranges over partitions of(1, . . . , k) consisting of pairings(S1, T1),

(S2, T2), whereS1, S2 ⊂ S and T1, T2 ⊂ T , and whereα((S1, T1), (S2, T2)) are
integer-valued prefactors.
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In other words, for any nontrivial partition(S,T ) of {1, . . . , k}, we show thatck

is a linear combination of(S,T ) semi-cluster measures. We were unable to find a
proof of this in the literature and provide it.

LEMMA 5.1. For each nontrivial partition (S,T ) of {1, . . . , k} we have

ck = ∑
(S1,T1),(S2,T2)

α
(
(S1, T1), (S2, T2)

)
US1,T1M |S2|M |T2|.

PROOF. The proof involves some notation and definitions. The moment
measuresMj are expressed in terms of the cumulants via

Mj = ∑
T1,...,Tp

c(T1) · · · c(Tp),

where the sum is over all partitions of{1, . . . , j}, that is, unordered collections
T1, T2, . . . , Tp of mutually disjoint subsets of{1, . . . , j} whose union is{1, . . . , j}
(page 27 of [20], or [18]). Similarly, for any setsS andT ,

MS∪T = ∑
(S1,T1)···(Sp,Tp)

c(S1, T1) · · · c(Sp,Tp),(5.5)

where the sum is over all partitions ofS ∪ T , whereSi ⊂ S,Ti ⊂ T . A typical
element(Si, Ti),1 ≤ i ≤ p, of a partition thus involves a pair of sets, one a subset
of S and the other a subset ofT . Some partitions ofS ∪ T are such that the empty
set appears in each pair(Si, Ti), 1 ≤ i ≤ p. Call these the degenerate partitions.

We now prove Lemma 5.1. Split (5.5) as

MS∪T = ∑
{···}

c(· · ·) · · · c(· · ·) + ∑
{···}∗

c(· · ·) · · · c(· · ·),(5.6)

where{· · ·}∗ denotes degenerate partitions. The first sum contains the cumulant
c(S ∪ T ) as well as products of lower-order cumulants, that is, cumulants of the
form c(Si ∪Ti), whereSi ∪Ti is a proper subset of{1, . . . , k}. Since eachc(Si ∪Ti)

is a product of moment measures, it follows that the first sum containsc(S ∪ T )

as well as linear combinations of(S,T ) semi-cluster measures. The second sum is
just the product ofMS andMT . Thus the cumulant measurec(S ∪ T ) is

c(S ∪ T ) = MS∪T − MSMT + l.c.,

where l.c. denotes a linear combination of(S,T ) semi-cluster measures. Since
MS∪T − MSMT is a (S,T ) cluster measure, it follows thatc(S ∪ T ) is a linear
combination of semi-clusters. In particular, if(S,T ) is a partition of{1, . . . , k},
thenck is a linear combination of(S,T ) semi-cluster measures.�

The following bound is critical for showing thatλ−k/2〈f, ck
λ〉 → 0 for k ≥ 3 as

λ → ∞.
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LEMMA 5.2. If ξ is exponentially stabilizing, then the functions mλ cluster
exponentially; that is, for positive constants Aj,l and Cj,l one has uniformly

|mλ(x1, . . . , xj , y1, . . . , yl) − mλ(x1, . . . , xj )mλ(y1, . . . , yl)|
≤ Aj,l exp(−Cj,lδλ

1/d),

where δ := min1≤i≤j,1≤p≤l |xi − yp| is the separation between the sets (xi)
j
i=1

and (yp)lp=1.

PROOF. The proof is similar to that of Lemma 4.1. With probability at least
1 − exp(−δλ1/d/C), the radius of stabilization for eachλ1/dxi,1 ≤ i ≤ j, and
eachλ1/dyp,1 ≤ p ≤ l, is less thanλ1/dδ. Let Ej,l := Ej,l(d) denote the event
for which all such radii are less thanλ1/dδ. On Ej,l the stabilization balls do not
intersect and therefore

E

[ j∏
i=1

ξ̄λ(xi;Pλκ)

l∏
p=1

ξ̄λ(yp;Pλκ)1Ej,l

]

= E

[ j∏
i=1

ξ̄λ(xi;Pλκ)1Ej,l

]
E

[
l∏

p=1

ξ̄λ(yp;Pλκ)1Ej,l

]
.

Hölder’s inequality and the moment conditions imply there is a constantAj,l such
that

|mλ(x1, . . . , xj , y1, . . . , yl) − mλ(x1, . . . , xj )mλ(y1, . . . , yl)| ≤ Aj,l(P [Ec
j,l])1/2.

SinceP [Ec
j,l] decays exponentially inδ, Lemma 5.2 follows. �

The next lemma specifies decay rates for the cumulant measures. Such decay
rates are useful in establishing moderate deviation principles and laws of the
iterated logarithm for the measuresµ̄

ξ
λκ [4]. Here we simply use the decay rates to

conclude the proof of Theorem 2.4.

LEMMA 5.3. For all f ∈ C(A) and for all k = 2,3, . . . , we have λ−k/2〈f k,

ck
λ〉 = O(‖f ‖k∞λ(2−k)/2).

PROOF. We need to estimate

λ−k/2
∫
Ak

f (v1) · · ·f (vk) dck
λ(v1, . . . , vk).

Let �k denote the diagonal inWk , that is, v1 = v2 = · · · = vk. For all v :=
(v1, . . . , vk) ∈ Ak , let Dk(v) denote the distance to the diagonal.

Let �(k) be all partitions of{1,2, . . . , k} into two subsetsS andT . For all
such partitions consider the subsetσ(S,T ) of AS × AT having the property that
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v ∈ σ(S,T ) impliesd(x(v), y(v)) ≥ Dk(v)/k, wherex(v) = v ∩ AS andy(v) =
v ∩ AT . Since for everyv := (v1, . . . , vk) ∈ Ak , there is a splittingx := x(v) and
y := y(v) of v such thatd(x, y) ≥ Dk(v)/k, it follows thatAk is the union of the
setsσ(S,T ), (S,T ) ∈ �(k). The key to the proof of Lemma 5.3 is to evaluate the
cumulantck

λ over eachσ(S,T ). We then use Lemma 5.1 and adjust our choice of
semi-clusters there to the particular choice of(S,T ).

By Lemma 5.1, the cumulant measuredck
λ(v1, . . . , vk) on σ(S,T ) is a linear

combination of(S,T ) semi-cluster measures of the form∑
(S1,T1),(S2,T2)

α
(
(S1, T1), (S2, T2)

)
US1,T1M |S2|M |T2|,

where the sum ranges over all partitions of{1, . . . , k} consisting of pairings
(S1, T1), (S2, T2), where S1, S2 ⊂ S and T1, T2 ⊂ T , and whereα((S1, T1),

(S2, T2)) are integer-valued prefactors.
Let x andy denote elements ofAS andAT , respectively. Let̃x and ỹ denote

elements ofAS1 andAT1, respectively, and let̃xc denote the complement ofx̃ with
respect tox and likewise withỹc. The integral off against an(S,T ) semi-cluster
measure has the form

λ−k/2
∫
σ(S,T )

f (v1) · · ·f (vk) d
(
M

|S2|
λ (x̃c)U

i+j
λ (x̃, ỹ)M

|T2|
λ (ỹc)

)
.

Letting uλ(x̃, ỹ) := mλ(x̃, ỹ) − mλ(x̃)mλ(ỹ), and recalling (5.3), the above is
bounded by

λ−k/2
∫
σ(S,T )

f (v1) · · ·f (vk)mλ(x̃
c)uλ(x̃, ỹ)mλ(ỹ

c)

k∏
i=1

κ(vi) d(λvi).(5.7)

Decompose the product measure
∏k

i=1 κ(vi) d(λvi) into two measures, one
supported by the diagonal�k and the other not. Off the diagonal, the integral (5.7)
is bounded by

D‖f ‖k∞λ−k/2
∫ λ1/d

0
exp(−Ct)P [Dk > t]dt = O(λ−k/2λ),

sinceuλ decays exponentially with the distance to the diagonal (Lemma 5.2),
the mixed momentsmλ are uniformly bounded, and since the differential of
a volume element of points at a distance greater thant from the diagonal is
bounded by the Lebesgue measure of the diagonal. Integrating over the diagonal
measureλκ(v1) dv1, and using the boundedness off , we thus bound (5.7)
by D‖f ‖k∞λ−k/2λ for some constantD. Since this estimate holds for all
σ(S,T ), (S,T ) ∈ �(k), whereAk is the finite union of setsσ(S,T ), Lemma 5.3
holds. �
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6. De-Poissonization: proof of Theorem 2.5. De-Poissonization involves a
significant modification of de-Poissonization arguments for CLTs for translation-
invariant functionals (Section 4 of [24]) defined over homogeneous point sets and
thus we provide the details.

Before de-Poissonizing, we need the following definition. For anyX ⊂ A and
f ∈ C(A), let

Hf
n (X) := ∑

x∈X

f (x)ξn(x;X).(6.1)

Letting Xm be a point process consisting ofm i.i.d. random variables with
densityκ onA, setRm,n := H

f
n (Xm+1) − H

f
n (Xm).

The following coupling lemma is inspired by and follows closely Lemma 4.2
in [24].

LEMMA 6.1. Suppose ξ is exponentially stabilizing for κ , and suppose H

is strongly stabilizing. Let ε > 0. Then there exists δ > 0 and n0 ≥ 1 such
that for all n ≥ n0 and all m,m′ ∈ [(1 − δ)n, (1 + δ)n] with m < m′, there
exist random variables X,X′ with density κ and a coupled family of variables
D := D(X), D′ := D(X′),R := R(X,X′),R′ := R′(X,X′) with the following
properties:

(i) D and D′ each have the same distribution as f (X)�ξ (X,κ(X));
(ii) D and D′ are independent;
(iii) (R,R′) have the same joint distribution as (Rm,n,Rm′,n);
(iv) P [{|D − R| > ε} ∪ {|D′ − R′| > ε}] < ε.

PROOF. We will modify the proof of Lemma 4.2 of [24]. Suppose we are
givenn. Let X,X′, Y1, Y2, . . . be i.i.d. random variables with densityκ on A. On
the probability space(�,F ,P ), let P := Pnκ and P ′ := P ′

nκ be independent
Poisson processes onA with intensity measurenκ(x) dx.

Let P ′′ be the point process consisting of those points ofP which lie closer
to X than toX′ (in the Euclidean norm), together with those points ofP ′ which
lie closer toX′ than toX. ClearlyP ′′ is a Poisson process also having intensity
measurenκ(x) dx onA and, moreover, it is independent ofX and ofX′.

Let N denote the number of points ofP ′′ (a Poisson variable with mean
n · volA). Choose an ordering on the points ofP ′′, uniformly at random from
all N ! possible such orderings. Use this ordering to list the points ofP ′′ as
W1,W2, . . . ,WN . Also, setWN+1 = Y1,WN+2 = Y2,WN+3 = Y3 and so on.

Let

R := R(X,X′) := Hf
n ({W1, . . . ,Wm,X}) − Hf

n ({W1, . . . ,Wm})
and

R′ := R′(X,X′) := Hf
n ({W1, . . . ,Wm′−1,X,X′}) − Hf

n ({W1, . . . ,Wm′−1,X}).
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X,X′,W1,W2,W3, . . . are i.i.d. variables onA with densityκ , and therefore the
pairs(R,R′) and(Rm,n,Rm′,n) have the same joint distribution as claimed.

For all x ∈ R
d andτ > 0, letB(x, τ ) denote a stabilization ball forξ at x with

respect toPτ . Recalling�x(X) := H(X ∪ x) − H(X) we put

D(x) := f (x)�x

(
Pκ(x) ∩ B

(
x, κ(x)

))
and

D′(x′) := f (x′)�x′
(
P ′

κ(x′) ∩ B
(
x′, κ(x′)

))
.

Let D := D(X), D′ := D′(X′). Then D and D′ are independent, and by
strong stabilization ofH , given (X,X′) = (x, x′), have the same distribution as
f (x)�ξ (x, κ(x)) and f (x′)�ξ (x′, κ(x′)), respectively. It remains to show that
P [{|D − R| > ε} ∪ {|D′ − R′| > ε}] < ε.

Without loss of generality, we may couplePκ(x) andn1/dPnκ such that for all
Borel setsB ⊂ A

P
[
Pnκ(B) 	= Pnκ(x)(B)

] ≤ n

∫
B

|κ(y) − κ(x)|dy.

Given(X,X′) = (x, x′), for everyK > 0 andn = 1,2, . . . , let FK,n := FK,n(x)

be the event thatB(n1/dx, κ(x)) ⊂ BK(n1/dx) and thatPκ(x) and n1/dPnκ

coincide on the ballBK(n1/dx). As in the proof of the limit (2.3), we have by the
uniform continuity ofκ and the Lebesgue point property ofx that forK andn large
enough,P [F c

K,n] < ε/9 uniformly in x. Similarly, let FK,n := F ′
K,n(x

′) be the

event thatB(n1/dx′, κ(x′)) ⊂ BK(n1/dx′) and thatPκ(x′) andn1/dP ′
nκ coincide

onBK(n1/dx′). ForK andn large enoughP [(F ′
K,n)

c] < ε/9 uniformly in x′.
Thus given(X,X′) = (x, x′), on setsFK,n and F ′

K,n of probability at least
1− ε/9, we have

D(x) = f (x)�n1/dx

(
n1/dPnκ ∩ B

(
n1/dx, κ(x)

))
and

D′(x′) = f (x′)�n1/dx′
(
n1/dP ′

nκ ∩ B
(
n1/dx′, κ(x′)

))
.

Thus given(X,X′) = (x, x′), we need only show that

P
[∣∣f (x)�n1/dx

(
n1/dPnκ ∩ B

(
n1/dx, κ(x)

)) − R(x, x′)
∣∣ > ε

]
< ε

and

P
[∣∣f (x′)�n1/d x′

(
n1/dPnκ ∩ B

(
n1/dx′, κ(x′)

)) − R′(x, x′)
∣∣ > ε

]
< ε.

We will show the first bound only; the proof of the second bound is identical.
We now follow [24], page 1018. ChooseK large enough such thatP [S >

K] < ε/9. For all w ∈ R
d and r > 0, let Qr(w) = [−r, r]d + w be the cube

centered atw. Let tf denote the modulus of continuity off ∈ C(A) and findb(n)
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such thatb(n)tf (K/n1/d) → 0. Givenε andK as above, letn ≥ n(ε,K) be so
large that

sup
x

b(n) · tf (K/n1/d)E|ξ(n1/dW1;n1/dPnκ ∪ n1/dx)| < ε2/72(6.2)

and

b(n) · tf (K/n1/d)E|ξ(n1/dW1;n1/dPnκ)| < ε2/72.(6.3)

Taken so large that except on an event (denotedE0) of probability less thanε/9,
the positions ofn1/dx andn1/dx′ are sufficiently far from the boundary ofn1/dA

and from each other, that the cubesQK(n1/dx) and QK(n1/dx′) are contained
entirely within n1/dA (possible by the regularity of∂A), and also are such that
every point ofQK(n1/dx) lies closer ton1/dx than ton1/dx′ and every point of
QK(n1/dx′) lies closer ton1/dx′ than ton1/dx.

Setδ := ε(2K)−d/18. We assume|m − n| ≤ δn and|m′ − n| ≤ δn. Forn large
enough, except on an event (denotedE1) of probability at mostε/9, we have
|N − m| ≤ 2δn = ε(2K)−dn/9, and likewise|N − m′| ≤ ε(2K)−dn/9.

Let E be the event that the set of points ofn1/d{W1, . . . ,Wm} lying in
QK(n1/dx) is not the same as the set of points ofP lying in QK(n1/dx). This will
happen either if one or more of the(N −m)+ “discarded” points ofn1/dP ′′ or one
or more of the(m − N)+ “added” points ofn1/d{Y1, Y2, . . .} lies in QK(n1/dx).
For each added or discarded point, the probability of lying inQK(n1/dx) is at
most(2K)d/n, and so the probability ofE, given thatE1 does not occur, is less
thanε/9.

We now compute

P [|D(x) − R(x, x′)| > ε]
≤ P

[|D(x) − R(x, x′)|1FK,n∩Ec
0∩Ec

1∩Ec∩{S<K} > ε/2
]

+ P
[|D(x) − R(x, x′)|1(FK,n∩Ec

0∩Ec
1∩Ec∩{S<K})c > ε/2

]
≤ P

[|D(x) − R(x, x′)|1FK,n∩Ec
0∩Ec

1∩Ec∩{S<K} > ε/2
]

+ P [F c
K,n] + P [E0] + P [E1] + P [E \ E1] + P [S > K].

The last five terms are bounded byε/9 for large n. Now consider the first
probability. On the setFK,n ∩ Ec

0 ∩ Ec
1 ∩ Ec ∩ {S < K} the difference|D(x) −

R(x, x′)| equals∣∣f (x)�n1/dx

(
n1/dPnκ ∩ B

(
n1/dx, κ(x)

)) − R(x, x′)
∣∣,

which by strong stabilization ofH is bounded by (sinceS < K)

≤ ∑
n1/dWi∈QK(n1/dx)

|f (Wi) − f (x)||ξ(n1/dWi;n1/dPnκ ∪ n1/dx)|

+ ∑
n1/dWi∈QK(n1/dx)

|f (Wi) − f (x)||ξ(n1/dWi;n1/dPnκ)|.
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By definition of tf , the above is bounded by

≤ tf (K/n1/d)
∑

n1/dWi∈QK(n1/dx)

|ξ(n1/dWi;n1/dPnκ ∪ n1/dx)|

+ tf (K/n1/d)
∑

n1/dWi∈QK(n1/dx)

|ξ(n1/dWi;n1/dPnκ)|.

Let NK := card(n1/d{Wi} ∩ QK(n1/dx)). Then the first term in the above is
bounded by

tf (K/n1/d)
∑

n1/dWi∈QK(n1/dx)

|ξ(n1/dWi;n1/dPnκ ∪ n1/dx)|1NK≤b(n)

+ tf (K/n1/d)
∑

n1/dWi∈QK(n1/dx)

|ξ(n1/dWi;n1/dPnκ ∪ n1/dx)|1NK>b(n),

with a similar bound for the second term. Therefore, combining all of the above
bounds

P [|D(x) − R(x, x′)| > ε]
≤ 5ε/9+ P

[|D(x) − R(x, x′)|1FK,n∩Ec
0∩Ec

1∩Ec∩{S<K} > ε/2
]

≤ 5ε/9+ P

[
tf (K/n1/d)

b(n)∑
i=1

|ξ(n1/dWi;n1/dPnκ ∪ n1/dx)| > ε/8

]

+ P

[
tf (K/n1/d)

b(n)∑
i=1

|ξ(n1/dWi;n1/dPnκ)| > ε/8

]
+ 2P [N > b(n)].

(6.4)

Using Chebyshev and the bounds (6.2) and (6.3), the second and third terms
in (6.4) are bounded byε/9 for n large enough. Forn large, the last term in (6.4)
is bounded byε/9, sinceN is a.s. finite.

Now integrate over all pairs(x, x′) to obtain the desired result.�

The next lemma extends Lemma 4.3 of [24].

LEMMA 6.2. Suppose ξ is exponentially stabilizing and satisfies (2.2) for
all p > 0. Suppose H is strongly stabilizing and satisfies the bounded moments
condition for κ . Let (h(n))n≥1 be a sequence with h(n)/n → 0 as n → ∞. Then

lim
n→∞ sup

n−h(n)≤m≤n+h(n)

∣∣ERm,n − E
[
f (X)�ξ

(
X,κ(X)

)]∣∣ = 0.(6.5)

Also

lim
n→∞ sup

n−h(n)≤m<m′≤n+h(n)

∣∣ERm,nRm′,n − E
[
f (X)�ξ (

X,κ(X)
)]2∣∣ = 0(6.6)
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and

lim
n→∞ sup

n−h(n)≤m≤n+h(n)

|ER2
m,n| < ∞.(6.7)

PROOF. We will follow the proof of Lemma 4.3 of [24]. Letm be an arbitrary
integer satisfyingn−h(n) ≤ m ≤ n+h(n). Let ε > 0. Providedn is large enough,
by Lemma 6.1 we can find coupled variablesD andR, with D having the same
distribution asf (X)�ξ (X,κ(X)), with R having the same distribution asRm,n,
and withP [|D − R| > ε] < ε. Then

ERm,n = ER = E[D] + E
[
(R − D)1|R−D|>ε

] + E
[
(R − D)1|R−D|≤ε

]
.

By Cauchy–Schwarz, the moments condition (2.2), and the fact that the bounded
moment condition impliesE[D2] < ∞ (Lemma 4.1 of [24]), we have

E
∣∣(R − D)1|D−R|>ε

∣∣ ≤ Cε1/2.

Since ε is arbitrarily small, (6.5) follows. The proof of (6.7) is similar and is
omitted.

Next we considerm,m′ with n − h(n) ≤ m < m′ ≤ n + h(n). By Lemma 6.1,
there are coupled variablesD,D′,R,R′ such thatD andD′ are independent and
each has the same distribution asf (X)�ξ (X,κ(X)), (R,R′) have the same joint
distribution as(Rm,n,Rm′,n), and

P [{|D − R| > ε} ∪ {|D′ − R′| > ε}] < ε.

Now E[RR′]−E[DD′] = E[R(R′ −D′)]+E[D′(R −D)]. By Cauchy–Schwarz,
we again obtain the boundsE[R|R′ − D′|] < Cε1/2 andE[D′|R − D|] ≤ Cε1/2.

It follows that the differenceE[RR′] − E[DD′] can be made arbitrarily small
and (6.6) follows. �

PROOF OFTHEOREM 2.5. We first prove the limit (2.18). Givenf ∈ C(A),
X ⊂ A and recalling (6.1), letHf

n := H
f
n (Xn) andH ′f

n := H
f
n (Pnκ). Assume

that Pnκ is coupled toXn by settingPnκ := {X1,X2, . . . ,XNn}, with Nn an
independent Poisson variable with meann.

To prove (2.18), it is enough to show for allf ∈ C(A) that

H
f
n − EH

f
n

n1/2
→ N(0, τ2

f ),(6.8)

whereN(0, τ2
f ) denotes a mean zero normal random variable with variance

τ2
f :=

∫
A

f 2(x)V ξ (
x, κ(x)

)
κ(x) dx

−
(∫

A
f (x)E

[
�ξ

(
x, κ(x)

)]
κ(x) dx

)2

.

(6.9)
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Lettingα := E[f (X)�ξ (X,κ(X))], the first step is to prove that asn → ∞,

E
[
n−1/2(H ′f

n − Hf
n − (Nn − n)α

)2] → 0.(6.10)

To do this, we employ the coupling Lemma 6.1 and follow pages 1019 and 1020
of [24] verbatim. The second step is to prove that

lim
n→∞

VarHf
n

n
= τ2

f .(6.11)

However, this follows from the identity

n−1/2H ′f
n = n−1/2Hf

n + n−1/2(Nn − n)α + n−1/2(H ′f
n − Hf

n − (Nn − n)α
)
.

The third term in the above has variance tending to zero by (6.10); the second
term has varianceα2 and is independent of the first term. Lettingσ 2

f :=∫
A f 2(x)V ξ (x, κ(x))κ(x) dx, it follows that

σ 2
f = lim

n→∞
Var(H ′

n
f
)

n
= lim

n→∞
Var(Hf

n )

n
+ α2,

that is, (6.11) holds. The limit (6.8) follows as on page 1020 of [24], thus
establishing (2.18).

Let us now show (2.19). The above shows that the sequence of distributions
n−1/2〈ρ̄ξ

n, f 〉 tends to a limiting normal random variableN(0, τ2
f ) for every

f ∈ C(A). Takingf = f1 + f2 and using simple algebra shows that the limiting
Gaussian field has the desired covariance matrix (2.19). This completes parts
(i) and (ii) of Theorem 2.5.

To prove Theorem 2.5(iii), it suffices to show that

lim
n→∞

Var[Hn(Xn)]
n

=
∫
A

V ξ
(
x, κ(x)

)
κ(x) dx −

(∫
A

E
[
�ξ

(
x, κ(x)

)]
κ(x) dx

)2

> 0.

(6.12)

We accomplish this by modifying the approach in Section 5 of [24].
We write Hn(Xn) − EHn(Xn) as a sum of martingale differences as follows.

Let Fi = σ(X1,n, . . . ,Xi,n) and writeEi for conditional expectation givenFi .
Define martingale differencesDi := EiHn(Xn) − Ei−1Hn(Xn). ThenHn(Xn) −
EHn(Xn) = ∑n

i=1 Di and

Var[Hn(Xn)] =
n∑

i=1

E[D2
i ].

It suffices to show that there exists a constantC > 0 such that for all 1≤ i ≤ n,
E[D2

i ] > C.
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Given i ≤ m, let Gi,m = Hn(Xm) − Hn(Xm \ {Xi}). Let G̃i,m = Hn(Xm+1 \
{Xi})−Hn(Xm \{Xi}). ThenDi = Ei[Gi,n − G̃i,n]. We setα := E[�ξ(X,κ(X))]
and using nondegeneracy, takeδ > 0 such thatP [�ξ(X,κ(X)) > α + 4δ] > 4δ.

Definef :R → R by f (x) = 0 for x ≤ α + δ andf (x) = 1 for x ≥ α + 2δ,
interpolating linearly betweenα + δ and α + 2δ. Let Yi := f (Ei[Gi,n]). The
remainder of the proof consists in showing that forn large and fori ≥ (1 − ε3)n,
we have

E[(Gi,n − α)Yi] ≥ 4δ2 and E[(G̃i,n − α)Yi] ≤ 2δ2.

These inequalities follow from Lemma 6.1 and pages 1021 and 1022 of [24]. Taken
together, this implies for largen andi ≥ (1− ε3)n, thatE[(Gi,n − G̃i,n)Yi] ≥ 2δ2.

Using the fact thatYi is Fi-measurable and lies in the range[0,1], we obtain

2δ2 ≤ E[YiEi (Gi,n − G̃i,n)] ≤ E[|Ei (Gi,n − G̃i,n)|] = E[|Di |],
and hence,E[D2

i ] ≥ [E|Di |]2 ≥ 4δ4 > 0. Thus (6.12) holds, completing the proof
of Theorem 2.5. �
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