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CHARACTERIZATION OF ARBITRAGE-FREE MARKETS!

By EVA STRASSER
Vienna University of Technology

The present paper deals with the characterization of no-arbitrage prop-
erties of a continuous semimartingale. The first main result, Theorem 2.1,
extends the no-arbitrage criterion by Levental and Skorobfauh.[ Appl.
Probab. 5 (1995) 906—-925] from diffusion processes to arbitrary continuous
semimartingales. The second main result, Theorem 2.4, is a characterization
of a weaker notion of no-arbitrage in terms of the existence of supermartin-
gale densities. The pertaining weaker notion of no-arbitrage is equivalent to
the absence of immediate arbitragpportunities, a carept introduced by
Delbaen and Schachermay@np. Appl. Probab. 5 (1995) 926-945].

Both results are stated in terms of conditions for any semimartingales
starting at arbitrary stopping times The necessity parts of both results are
known for the stopping time = 0 from Delbaen and SchachermayAni.

Appl. Probab. 5 (1995) 926-945]. The contribution of the present paper is the
proofs of the corresponding sufficiency parts.

1. Introduction. In a discrete-time model, the usual definition of the no-
arbitrage property (NA-property) can be characterized by the existence of an
equivalent martingale measure for the underlying price process; see Harrison and
Pliska (1981) and Dalang, Morton and Willinger (1990). Within the setting of a
continuous-time model, Kreps (1981) associates the existence of an equivalent
martingale measure with a stronger no-arbitrage property, the so-called property
of no free lunch (NFL-property). In a series of detailed studies, Delbaen and
Schachermayer (1994, 1995) show that the NFL-property is equivalent to the ap-
parently weaker property of no free lunch with vanishing risk (NFLVR-property),
clarifying the situation with various versions of the NA-property.

The focus of this paper is on the characterization of weaker notions of no-
arbitrage than the NFL-property and the NFLVR-property, respectively. In this
regard, we extend criteria going back to Levental and Skorohod (1995) and
Schweizer (1995), applying results by Delbaen and Schachermayer (1995).

Fix a finite time horizonT > 0 and a stochastic bas&, 7, P; F), where
the filtrationF = (¥7)o</<r IS assumed to satisfy the usual conditions. The set of
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R?-valued semimartingales is denoteddynd forS € 8, the setL(S) is defined

to be the set oR?-valued, predictables-integrable processes. Moreover, recall
that a locally square integrable semimartingale has a canonical decomposition,
S =S80+ M + A, into a locally square integrable martingaewith Mo = 0 and

a predictable process of finite variatidnwith Ag = 0.

In the context of mathematical finance, a market model is a vectdr-fl
assets, one bond antstocks. The price process of the bond is assumed to be
constant (i.e., we choose the bond as numeraire) and the price processiof the
stocks is assumed to be &f-valued semimartingalé. A portfolio is a pair
(x, H), wherex € R is the initial wealth andH e L(S) specifies the number
of shares in each asset held in the portfolio. The corresponding (self-financing)
wealth-proces¥ is given byX = x + H - S. Let us denote byX the family of
wealth-processes, that is,

X:={X=x+H-S:xeR, HeL(S)).

A wealth-processX € X is called admissible if it is uniformly bounded from
below. Let us denote b, € X the family of admissible wealth-processes and
by X, C X, the family of nonnegative wealth-processes.

For a semimartingalé and a stopping timer < T we define®S to be the
semimartingale§ starting ato, that is,%S; := S41a7, 0 <t < T. Note that’S
is adapted to the filtratioAF = (?%;)o<;<7, Where’s; := Foinar, 0=t <T.
Accordingly, we define’X to be the set of wealth-processes given 4% =
x+ H -%,wherex e RandH € L(°S).

Let us recall some basic concepts of no-arbitrage theory. We say tadisfies
the NA-property, if for everyX € X, we have

(NA) Xo=0 and Xy >0 = Xy=0.
Moreover, we say tha satisfies the NA-property, if for everyX € X, we have
(NAT) Xo=0 and X>0 — X=0.

Recall that by Delbaen and Schachermayer [(1995), Lemma 3.1], for a
continuous semimartingale the NAproperty is equivalent to the absence of so-
called immediate arbitrage opportunities.

An equivalent (absolutely continuous) probability meas@re- P (Q < P)
is called an equivalent (absolutely continuous) local martingale measure for the
semimartingales if S is a localQ-martingale with respect to the filtratidh

2. Main results. It is a well-known fact that the existence of an equivalent
local martingale measure implies the NA-property. The reverse implication is not
true in general. However, for special classes of semimartingales one can achieve a
characterization. This is the topic of our first main result, Theorem 2.1.

Levental and Skorohod (1995) prove in their Theorem 1 a kind of prototype
of our Theorem 2.1 under the additional assumption that the local martingale
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part M of the continuous semimartingale is of the formM = X - W. Here,

W is anR?-valued Brownian motion defined on its natural filtration afds

an adapted matrix-valued process such that €aclis invertible, O<r < T.

Within this framework, the martingale representation property holds true and
thus the proof can be based on explicit representations of the local martingale
measures. Delbaen and Schachermayer (1995) consider in their Theorem 1.4 the
more general case of arbitrary continuous semimartingales and show that the
NA-property implies the existence of an absolutely continuous local martingale
measure. The proof relies on the fundamental theorem of asset pricing by Delbaen
and Schachermayer (1994). Recently, Kabanov and Stricker (2003) extend this
result, dropping the continuity assumption for the semimartingales.

Theorem 2.1 is an extension of the criterion by Levental and Skorohod (1995) to
arbitrary continuous semimartingales, using the result by Delbaen and
Schachermayer (1995). In the meantime, after the submission of the present pa-
per, Kabanov and Stricker (2003) extended Theorem 2.1 to the case of markets
with countably many assets.

THEOREM 2.1. The continuous semimartingale S satisfies the NA-property
iff for every stopping time o < T there exists an absolutely continuous local
martingale measure °Q < P satisfying °Q|#, ~ P|#, for the ssmimartingale °S
startingat o.

For a detailed proof we refer to Section 3. The author thanks Y. Kabanov for
pointing out a lacuna in a preliminary version of the proof.

Before we present our second main result, Theorem 2.5, we give a reformulation
of Theorem 1 in Levental and Skorohod (1995). For this purpose, let us recall an
important structure condition, which can be characterized in terms of a very weak
notion of no-arbitrage.

THEOREM 2.2. Let S be a locally square integrable semimartingale. Then
every nonnegative, predictable wealth-process X € X of bounded variation is
constant iff the structure condition dA <« d{(M, M) is valid, that is, there exists
a predictable process A with valuesin R? such that dA = d (M, M)x.

This theorem is proved using the same arguments as in the proof of Theorem 3.5
in Delbaen and Schachermayer (1995). A direct proof is given in Strasser (2003).

A semimartingaleS as used by Levental and Skorohod (1995) always satisfies
the structure conditio@d A < d{(M, M). In this case, the absolutely continuous
local martingale measures used in Theorem 2.1 can be derived from a particular
process. To be explicit, such a semimartingglgatisfies the NA-property iff for
every stopping time < T the density process

(2.1) GZ = 8(—/)»7]]6’“] dM)
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satisfiesE(°Zy) = 1. The relation between our Theorem 2.1 and Levental and
Skorohod (1995), Theorem 1, is then established by deffi@g="Zyd P.

Now we are in a position to present our second main result. Recall that for an
arbitrary continuous semimartingafesatisfyingd A « d{M, M), the condition
E(°Z7) = 1 implies the existence of an absolutely continuous local martingale
measure fofS. In general, ifE(°Z7) < 1, °Z is not the density of an absolutely
continuous local martingale measure, but sometimes a so-called supermartingale
density, a notion we adopt from Kramkov and Schachermayer [(1999), Section 2].
Note that this notion of a supermartingale density is slightly stronger than that
introduced by Kabanov and Stricker (2003).

DEFINITION 2.3. A nonnegative (strictly positive) proce¥sis a (strict)
supermartingale density fat if Y is a supermartingale witkip = 1 such that the
productY X is a supermartingale for evel e X ..

It is easy to see that the existence of a strict supermartingale density implies
the NAT-property. Our second main theorem shows that it is even possible to
characterize the NA-property by means of the existence of supermartingale
densities. The key idea is similar to that of Theorem 2.1, that is, we impose
conditions on the semimartingalé$ starting at arbitrary stopping times. For
a proof as well as further equivalent assertions see Theorem 3.5 in Section 3.

THEOREM2.4. A continuous semimartingale S satisfies the NA™-property iff
for every stoppingtimeo < T the process®Z definedin (2.1)isa supermartingale
density for °S.

3. Proof of themain results. Let us begin with the proof of Theorem 2.1. For
this purpose, we state and prove an auxiliary lemma, which isolates the basic idea
of the proof of Theorem 2.1.

LEMMA 3.1. Let S be a continuous semimartingale and suppose that there
exists an absolutely continuous local martingale measure Q « P satisfying
Olg, ~ Plg,- Let X € X, suchthat Xo=0and X7 > 0 and define

T:=inf{r > 0:X, #0}.
Thenwe havet > 0.
PrRooOF Denote byZ the density process ap with respect toP. The local
martingaleZ X is bounded from below by a multiple of the martinga@end thus

ZX is a supermartingale. The nonnegativity f X yields ZX = 0 and thus
XY =0, where the stopping timeis defined by

0 :=inf{tr >0:Z,=00rZ,_ =0}
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satisfyingé > 0. For a more detailed proof we refer to Strasser (2003).

PROOF OFTHEOREM 2.1. Necessity: Fix a stopping timer < T and observe
that the NA-property ofS implies the NA-property ofS. Applying Delbaen and
Schachermayer [(1995), Theorem 1.4], we get the existence of an absolutely
continuous local martingale measui@ « P satisfying°Q|g, ~ P|g, for °S.
A recent discussion of this result can be found in Kabanov and Stricker (2003).
Sufficiency: Let X € X, with Xog =0 andXy > 0. Define the stopping time

o:=inf{t >0: X, A0} AT

and assumé (o < T) > 0. It is easy to see thdX € ?X, satisfies’Xg =0 and
°Xr > 0. Moreover,

%7 :=inf{r > 0:°X; #£ 0}

is a stopping time with respect to the filtrati6R satisfying®s =0 on{o < T}.

By assumption, there exists an absolutely continuous probability measure
°Q K P satisfying°Q|g, ~ P|g, for °S. Applying Lemma 3.1 t@S and’X yields
°c > 0 on{o < T}. This is a contradiction. Hence, = T and the assertion is
proved. O

Let us turn to the discussion of Theorem 2.4. For this purposerF lee a
cadlag, predictable and increasing process Wih= 0 such thatA = gd F and
d{M,M)=vdF.Here,g andv denote predictable Radon—Nikodym derivatives.
Using this notation, the structure conditidm <« d(M, M) can equivalently be
stated as follows: there exists a predictable prozesih values inR¢ such that

3.1 g=vA, F ® P-a.e.

This structure condition is frequently used in the literature; see, for example,
Ansel and Stricker (1992) and Schweizer (1995). Karatzas and Shreve (1998)
consider positive continuous semimartingales and naturally use a logarithmic
version of (3.1).

Let us define the notion of the mean-variance trade-off, similar to
Schweizer [(1995), Section 2].

DEFINITION 3.2. AssumedA « d{M,M) and letx be any predictable
process satisfying condition 2 of Theorem 2.2 [or equivalently equation (3.1)].
The family

t
(3.2) K! :=/ MNvAdF, O<s<t<T,
N

is called the mean-variance trade-off (MVT).
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Clearly, the MVT is not necessarily finite. Finiteness of the MVT, that is,
KOT < 0o, simplifies the situation considerably. The following assertion follows
from Theorem 2.2 and Corollary 3 in Schweizer (1995).

COROLLARY 3.3. Let S bea continuoussemimartingale and assume K/ <oo.
Then S satisfies the NA*-property iff dA < d(M, M).

The question arises whether it is possible to characterize the-paperty
without assumingKOT < 00. This problem is settled by our second main result,
Theorem 2.4. For completion, we will prove a more detailed assertion in
Theorem 3.5 containing that of Theorem 2.4. For this we need the following
notion, going back to Delbaen and Schachermayer (1995) and Levental and
Skorohod (1995).

DEFINITION 3.4. We say that the MVT does not jumpdo, if the stopping
time o defined by

a:=inf{r >0: K" =00 Vhel0, T —1]}

satisfiesx = oo.

Obviously, KOT < oo implies ¢ = oo, whereas the converse is not true in
general. For reasons of proof, we equivalently reformulate the assertion of
Theorem 2.4 in the following theorem.

THEOREM 3.5. Let S be a continuous semimartingale. The following are
equivalent:

1. The semimartingale S satisfies the NA™-property.

2. Thestructure conditiondA <« d (M, M) isvalid and the MVT does not jump to
.

3. For everystoppingtimeo < T theprocess®Z definedin (2.1)isa supermartin-
gale density for °S.

4. For every stoppingtimeo < T thereexistsa supermartingale density °Y for °S.

The proof of the implication & 2 is a straightforward extension of Delbaen
and Schachermayer [(1995), Section 3]. Below, we prove implications
2=3and 4= 1.

In the setting of Levental and Skorohod (1995), the Ngroperty implies
a = 0o. Our Theorem 2.4 shows that under the assumptibrg d (M, M), which
is weaker than the setting of Levental and Skorohod (1995), the conditiono
is even equivalent to the NiAproperty.
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PROOF OFTHEOREM3.5. 2= 3: Fix a stopping timer with P(c < T) > 0.
It is easy to see thaP (K" = oo Vh €]0, T — o]) = 0 and that the stopping
time

(3.3) T:=1(c):=inf{h >0 K" =} AT, ceRy,
o +

satisfiest > o on {0 < T}, since the MVT(Kg+h)he]O,T—a]] is continuous,
starts at zero and does not jumpca Moreover, [ va]lﬂo,,]] dF < oo and thus
[ A1y4,;1dM is alocally square integrable martingale.

Note that the continuous semimartingdle has a canonical decomposition
%S = %S0 + °M + °A with respect to the filtratiod F. Moreover, the predictable
characteristic§g and”v of °S satisfy’g = (g7, )rejo,r) andv = (v )ref0,71-
Finally, dA <« d{(M, M) obviously impliesd°A <« d{°M,°M) and thus we have
%¢ =%\, PQ® F-a.e.

Definep := p(c) := t — o, wherer is as in (3.3), and note that> 0 as well
asp >0 on{o < T}. In general,p is not a stopping time with respect to the
filtration F, but it is a stopping time with respect to the filtratidR. Indeed, since
o andrt are stopping times with respect to the filtratiéywe obtain

p<t={r—o=<1
= (1< @+ AT} € F: N Fioiorr C°F: Vi[O T,

Define
(3.4) 7 = e(— / %) d”M).

Since [°A'd(°M)” is a locally square integrable martingale, it follows that
0<(°2)P=1—[°Z°) d(°M)* is a locally square integrable martingale, too,
and that

(3.5) (°A)” :fogl]]oyp] d°F = /%"uuo,p] d°F :/‘Wd("M,“M)p.

Straightforward computations as in Schweizer (1995) prove the local mar-
tingale property of(°Z°S)”. Consequently(°Z°X)* is a supermartingale for
every’X € °X ;.
Definep(o0) := t(c0) — o, where
T(00) :=inf{h >0 :KIT" = o0} A T.

Observe lim_. p(c) = p(o0) and °Z1[,(),r] = 0. In particular, we have
07 = (°Z)*>) as well as”Z°X = (°Z°X)*(>®), Together with Fatou’s lemma,
this implies

ECZX,|F) < lim E(°Z,X,)PO1F) < lim (°Z,°X,)P© =°Z,°X4,
cC—>0Q0 cC—>0Q0

O0<s <t <T,since the choice of € R, in (3.3) was arbitrary. HencéZ is a
supermartingale density f6§.
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4= 1:LletX € X4 with Xg= 0. Define the stopping time
(3.6) o:=inf{t >0:X, #0} AT

and assumeP (o < T) > 0. It is easy to see th&X € X satisfies’Xg = 0.
Moreover,

‘r:=inf{t >0:°X, A0} AT

is a stopping time with respect to the filtratif satisfying’c =0 on{o < T}.
By assumption, there exists a supermartingale defigityor °S. Define the
stopping time

0 :=inf{r >0:°Y, =00r°Y;_ =0}

and note that > 0 on {o < T} since?Yy = 1. Since’Y’°X is a nonnegative
supermartingale, it follows th&¥°X = 0 and(°X)? = 0. We obtain in particular
that°c > 6 > 0 on {oc < T}. This is a contradiction. Hence; = T and the
assertion is proved.O]
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