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FAST SIMULATION OF NEW COINS FROM OLD

BY ŞERBAN NACU AND YUVAL PERES1

University of California, Berkeley

Let S ⊂ (0,1). Given a known functionf :S → (0,1), we consider the
problem of using independent tosses of a coin with probability of headsp

(wherep ∈ S is unknown) to simulate a coinwith probability of headsf (p).
We prove that ifS is a closed interval andf is real analytic onS, thenf has
a fast simulation onS (the number ofp-coin tosses needed has exponential
tails). Conversely, if a functionf has a fast simulation on an open set, then it
is real analytic on that set.

1. Introduction. We consider the problem of using a coin with probability of
headsp (p unknown) to simulate a coin with probability of headsf (p), wheref is
some known function. By this we mean the following: we are allowed to toss the
original p-coin as many times as we want. We stop at some (almost surely) finite
stopping timeN , and depending on the outcomes of the firstN tosses, we declare
heads or tails. We want the probability of declaring a head to be exactlyf (p).

This problem goes back to von Neumann’s 1951 article [13], where he describes
an algorithm which simulates the constant functionf (p) ≡ 1/2. It is natural to
ask whether this is possible for other functions, and in 1991 Asmussen raised the
question for the functionf (p) = 2p, where it is known thatp ∈ (0,1/2) (see [8]).
The same question was raised independently but later by Propp (see [10]).

In 1994, Keane and O’Brien [8] obtained a necessary and sufficient condition
for such a simulation to be possible. Considerf :S → [0,1], whereS ⊂ (0,1).
Then it is possible to simulate a coin with probability of headsf (p) for all p ∈ S

if and only if f is constant, orf is continuous and satisfies, for somen ≥ 1,

min
(
f (p),1− f (p)

) ≥ min(p,1− p)n ∀p ∈ S.(1)

In particular,f (p) = 2p cannot be simulated on(0,1/2), since the inequal-
ity (1) cannot hold forp close to 1/2. However, if we are givenε > 0, then an
algorithm exists to simulate a 2p-coin from tosses of ap-coin forp ∈ (0,1/2−ε).

The methods in [8] do not provide any estimates on the numberN of p-coin
tosses needed to simulate anf (p)-coin. The stopping timeN will typically be
unbounded, and for fast algorithms it should have rapidly decaying tails. For
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94 Ş. NACU AND Y. PERES

example, in von Neumann’s algorithm [13], the tail probabilities satisfyPp(N >

n) ≤ (p2 + (1− p)2)�n/2	, so they decay exponentially inn.

DEFINITION 1. A function f has afast simulation on S if there exists an
algorithm which simulatesf on S, and for anyp ∈ S there exist constants
C > 0, ρ < 1 (which may depend onp) such that the numberN of required inputs
satisfiesPp(N > n) ≤ Cρn.

REMARK. If S is closed andf has a fast simulation onS, then we can choose
constantsC,ρ not depending onp ∈ S. See Proposition 21 for a proof.

THEOREM 1. For any ε > 0, the function f (p) = 2p has a fast simulation on
[0,1/2− ε].

Building on this result, we prove:

THEOREM 2. If f : I → (0,1) is real analytic on the closed interval
I ⊂ (0,1), then it has a fast simulation on I . Conversely, if a function has a fast
simulation, then it is real analytic on any open subset of its domain.

As the results stated above indicate, there is a correspondence between
properties of simulation algorithms and classes of functions. Table 1 summarizes
the results of [8, 10] and the present paper on this correspondence. For simplicity,
in this table we restrict attention to functionsf :S 
→ T whereS,T are closed
intervals in(0,1). We do not know whether the one-sided arrows in the table can
be reversed.

We prove Theorem 1 in Sections 2 and 3. In Section 2 we show that simulating
f is equivalent to finding sequences of certain Bernstein polynomials which
approximatef from above and below. If the approximations are good, then
the simulations are fast. In Section 3 we use this to construct a fast simulation

TABLE 1

Simulation type Function class Ref.

Terminating a.s. ⇔ f continuous [8]
With finite expectation ⇒ f Lipshitz Proposition 23
With finite kth moment ⇒ f ∈ Ck Proposition 22

(and uniform tails)
Fast (with exponential tails) ⇔ f real analytic Theorem 2
Via pushdown automaton ⇒ f algebraic overQ [10]
Via finite automaton ⇔ f rational overQ [10]

andf ((0,1)) ⊂ (0,1)
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for the function 2p. We can do this because the Bernstein polynomials provide
exponentially convergent approximations for linear functions.

In Section 4 we prove the sufficient (constructive) part of Theorem 2. This
is done in several steps. First, once we have a fast simulation for 2p, it is
easy to construct fast simulations for polynomials. Using an auxiliary geometric
random variable, we also obtain fast simulations for functions which have a series
expansion around the origin. This proves Theorem 2 for real analytic functions that
extend to an analytic function on a disk centered at the origin. For a general real
analytic function, we use Möbius maps of the form(az + b)/(cz + d) to map a
subset of their domain to the unit disk. Since we have fast simulations for Möbius
maps, this leads to fast simulations for the original function.

In particular, Theorem 2 guarantees fast simulations for any rational functionf ,
over any subset of(0,1) whereε ≤ f ≤ 1− ε. This generalizes a result from [10],
where the authors prove that any rational functionf : (0,1) → (0,1) has a
simulation by a finite automaton, which is fast.

In Section 5 we prove the necessary part of Theorem 2, and in Section 6 we
describe a very simple algorithm that gives a good approximate simulation for the
function 2p (the error decreases exponentially in the number of steps). In Section 7
we give a simple proof of the fact that any continuous function bounded away from
0 and 1 has a simulation. Finally, in Section 8 we mention some open problems.

2. Simulation as an approximation problem. In this section we show that
a functionf can be simulated if and only if it can be approximated by certain
polynomials, both from below and from above, and the approximations converge
to f . Furthermore, the speed of convergence of the approximations determines the
speed of the simulation (i.e., the distribution of the number of coin tosses needed).

Let Pp be the law of an infinite sequenceX = (X1,X2, . . .) of i.i.d. coin
tosses with probability of headsp. By a slight abuse of notation, we also denote
by Pp the induced law of the firstn tossesX1, . . . ,Xn, so for A ⊂ {0,1}n,
Pp(A) = Pp((X1, . . . ,Xn) ∈ A).

Fix n and consider the firstn tosses. Either the algorithm terminates after at
mostn inputs (and in that case, it outputs a 1 or a 0), or it needs more thann

inputs. LetAn ⊂ {0,1}n be the set of inputs where the algorithm terminates and
outputs 1, and letBn be the set of inputs where either the algorithm terminates and
outputs 1, or needs more thann inputs. Then clearly

Pp(An) ≤ Pp(algorithm outputs 1) ≤ Pp(Bn).

The middle term isf (p). Any sequence in{0,1}n has probabilitypk(1 − p)n−k ,
wherek is the number of 1’s in the sequence, so the lower and upper bounds are
polynomials of the form

∑
k ckp

k(1 − p)n−k , with ck nonnegative integers. The
probability that the algorithm needs more thann inputs isPp(Bn) − Pp(An), so if
the polynomials are good approximations forf , then the number of inputs needed
has small tails.
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It is less obvious that a converse also holds: given a functionf and a sequence
of approximating polynomials with certain properties, there exists an algorithm
which generatesf , so that the probabilities ofAn andBn as defined above are
given by the approximating polynomials. We prove this in the rest of this section.

In order to state our result in a compact form, we introduce the following.

DEFINITION 2. Let q(x, y), r(x, y) be homogeneous polynomials of equal
degree with real coefficients. If all coefficients ofr − q are nonnegative, then we
write q  r . If in additionq �= r , then we writeq ≺ r .

This defines a partial order on the set of homogeneous polynomials of two
variables. Ifq  r , then clearlyq(x, y) ≤ r(x, y) for all x, y ≥ 0. The converse
does not hold; for example,xy ≤ x2 + y2 for all x, y ≥ 0, butxy � x2 + y2.

PROPOSITION3. If there exists an algorithm which simulates a function f on
a set S ⊂ (0,1), then for all n ≥ 1 there exist polynomials

gn(x, y) =
n∑

k=0

(
n

k

)
a(n, k)xkyn−k, hn(x, y) =

n∑
k=0

(
n

k

)
b(n, k)xkyn−k

with the following properties:

(i) 0 ≤ a(n, k) ≤ b(n, k) ≤ 1.
(ii)

(n
k

)
a(n, k) and

(n
k

)
b(n, k) are integers.

(iii) lim n gn(p,1− p) = f (p) = limn hn(p,1− p) for all p ∈ S.
(iv) For all m < n, we have (x + y)n−mgm(x, y)  gn(x, y) and hn(x, y) 

(x + y)n−mhm(x, y).

Conversely, if there exist such polynomials gn(x, y), hn(x, y) satisfying (i)–(iv),
then there exists an algorithm which simulates f on S, such that the number N of
inputs needed satisfies Pp(N > n) = hn(p,1− p) − gn(p,1− p).

PROOF. ⇒ Suppose an algorithm exists, consider its firstn inputs, and define
as aboveAn ⊂ {0,1}n to be the set of inputs where the algorithm outputs 1,
and Bn ⊂ {0,1}n to be the set where the algorithm outputs 1 or needs more
thann inputs. We also partitionAn = ⋃

An,k andBn = ⋃
Bn,k according to the

numberk of 1’s in each word. Then every element inAn,k or Bn,k has probability
pk(1− p)n−k , so if we define

a(n, k) = |An,k|
/(

n

k

)
, b(n, k) = |Bn,k|

/(
n

k

)
,

then

gn(p,1− p) = Pp(An), hn(p,1− p) = Pp(Bn).
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Conditions (i) and (ii) are clearly satisfied, and (iii) also follows easily. As
discussed above, we havegn(p,1− p) ≤ f (p) ≤ hn(p,1− p) andPp(N > n) =
hn(p,1 − p) − gn(p,1 − p); since the algorithm terminates almost surely, the
difference must converge to 0. From the definition ofAn andBn, it is clear that
gn(p,1− p) is an increasing sequence, andhn(p,1− p) is decreasing.

Condition (iv) must hold because of the structure of the setsAn andBn. Indeed,
let m < n and assume(X1, . . . ,Xm) ∈ Am. Then (X1, . . . ,Xn) ∈ An, whatever
valuesXm+1, . . . ,Xn take. To make this formal, forE ⊂ {0,1}m define

Tm,n(E) = {
(X1, . . . ,Xn) ∈ {0,1}n : (X1, . . . ,Xm) ∈ E

}
.

That is, Tm,n(E) is the set obtained by taking each element inE and
adding at the end all possible combinations ofn − m zeroes and ones. Partition
Tm,n(E) = ⋃

T k
m,n(E), so that all words inT k

m,n(E) have exactlyk 1’s. We have
Tm,n(Am) ⊂ An, soT k

m,n(Am) ⊂ An,k, so

|An,k| ≥ |T k
m,n(Am)| =

k∑
i=0

(
n − m

k − i

)
|Am,i|,

which is the same as
(

n

k

)
a(n, k) ≥

k∑
i=0

(
n − m

k − i

)(
m

i

)
a(m, i);(2)

this is equivalent togn(x, y) � (x + y)mgm(x, y). A similar observation holds for
the setsBn, and this completes the proof of (iv).

⇐ Given the numbersa(n, k), b(n, k) satisfying (i)–(iv), we shall define
inductively setsAn = ⋃

An,k, Bn = ⋃
Bn,k with

An,k ⊂ Bn,k, |An,k| =
(

n

k

)
a(n, k), |Bn,k| =

(
n

k

)
b(n, k).

We also want the extra property that ifm < n, then Tm,n(Am) ⊂ An and
Tm,n(Bm) ⊃ Bn. Then we can construct an algorithm simulatingf as follows:
at stepn, output 1 if inAn, output 0 if inBc

n, continue if inBn − An.
We defineA1,0 = {0} if a(1,0) = 1, and∅ otherwise. We defineA1,1 = {1} if

a(1,1) = 1, and∅ otherwise. Similarly forB1,0 andB1,1. Sincea(1, k) ≤ b(1, k),
we haveA1,k ⊂ B1,k for k = 0,1. Condition (iv) guarantees that if

|Am,k| =
(

m

k

)
a(m,k) and |Bm,k| =

(
m

k

)
b(m,k)

for all k, then

|T k
m,n(Am)| ≤

(
n

k

)
a(n, k) ≤

(
n

k

)
b(n, k) ≤ |T k

m,n(Bm)|.(3)
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Hence we can construct the setsAn,Bn from the setsAm,Bm as follows. We
want to have

T k
m,n(Am) ⊂ An,k ⊂ Bn,k ⊂ T k

m,n(Bm).(4)

In view of (3), this can be done by simply choosing any total ordering of the set
of binary words of lengthn with k 1’s. We buildAn,k by starting withT k

m,n(Am)

and then adding elements ofT k
m,n(Bm) in increasing order until we obtain the

desired cardinality
(n
k

)
a(n, k). Then we add

(n
k

)
b(n, k) − (n

k

)
a(n, k) extra elements

to obtainBn,k . Of course,An = ⋃
An,k and Bn = ⋃

Bn,k . It is immediate that
the sets thus defined have the desired properties, so the induction step fromm to
n = m + 1 works and the proof is complete.�

REMARK A. Condition (iv) in Proposition 3 implies that the sequence
(gn(p,1−p))n≥1 is increasing, and the sequence(hn(p,1−p))n≥1 is decreasing
( just setx = p,y = 1− p).

REMARK B. It is enough to define the numbersa(n, k) andb(n, k) whenn

takes values along an increasing subsequenceni ↑ ∞. Indeed, assume (iv) holds
for m = ni, n = ni+1. Then just like above, we can construct the setsAn,Bn

from the setsAm,Bm so that (4) holds. Thus we can construct inductively the
setsAni

,Bni
. The algorithm is allowed to stop only at someni ; if ni < n < ni+1,

it just continues. This amounts to definingAn = Tni,n(Ani
),Bn = Tni,n(Bni

) for
ni < n < ni+1. In terms of the polynomials, this means

gn(x, y) = (x + y)n−nigni
(x, y), hn(x, y) = (x + y)n−ni hni

(x, y)

for ni < n < ni+1. This is the same as

a(n, k) = (k/n)a(n − 1, k − 1) + (1− k/n)a(n − 1, k),

b(n, k) = (k/n)b(n − 1, k − 1) + (1− k/n)b(n − 1, k),

for ni < n < ni+1 and all 0≤ k ≤ n. In the next section we will use this for
the subsequence of powers of 2,ni = 2i . Note that it is enough to check (iv) for
m = ni, n = ni+1, because then the algorithm is well defined and (iv) must hold
for all m,n. Similarly, it is enough to check (iii) forn = ni , because the sequences
(gn(p,1− p))n≥1 and(hn(p,1− p))n≥1 are monotone.

REMARK C. Finally, condition (ii) in Proposition 3 is not essential. Indeed,
suppose we find numbersα(n, k) and β(n, k) satisfying all conditions in the
proposition, except for (ii). Then if we define

a(n, k) =
⌊
α(n, k)

(
n

k

)⌋/(
n

k

)
, b(n, k) =

⌈
β(n, k)

(
n

k

)⌉/(
n

k

)
,(5)
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conditions (i) and (ii) are trivially satisfied, and (iv) is satisfied because, for
arbitraryxi nonnegative reals andci nonnegative integers,

⌊∑
cixi

⌋
≥ ∑

ci�xi	,
⌈∑

cixi

⌉
≤ ∑

ci�xi�.(6)

Finally, (iii) still holds for p �= 0,1 because the error introduced ingn andhn is at
most

∑n
k=0 2pk(1− p)n−k , which is exponentially small.

3. Simulating linear functions. Let ε > 0, and letf (p) = (2p) ∧ (1 − 2ε).
Since we are only interested in smallε, we also assumeε < 1/8. We will use
Proposition 3 to construct an algorithm which simulatesf . As explained in
Remark B of the previous section, it is enough to definea(n, k) andb(n, k) when
n is a power of 2. Then the compatibility equations in (iv) are equivalent to

a(2n, k)

(
2n

k

)
≥

k∑
i=0

a(n, i)

(
n

i

)(
n

k − i

)
,(7)

b(2n, k)

(
2n

k

)
≤

k∑
i=0

b(n, i)

(
n

i

)(
n

k − i

)
.(8)

These can be nicely expressed in terms of the hypergeometric distribution.

DEFINITION 3. We say a random variableX has hypergeometric distribution
H(2n, k,n) if

P(X = i) =
(

n

i

)(
n

k − i

)/(
2n

k

)
.(9)

We require 0≤ k ≤ 2n. If we have an urn with 2n balls of whichk are red, and
we select a sample ofn balls uniformly without replacement, thenX is the number
of red balls in the sample.

In terms of the hypergeometric, the compatibility equations (7) and (8) become

a(2n, k) ≥ Ea(n,X),(10)

b(2n, k) ≤ Eb(n,X).(11)

We will need some properties of this distribution.

LEMMA 4. If X has distribution H(2n, k,n), then:

(i) E(X/n) = k/(2n).
(ii) Var(X/n) = k(2n − k)/(4(2n − 1)n2) ≤ 1/(2n).
(iii) If a > 0, then P(|X/n − k/(2n)| > a) ≤ 2 exp(−2a2n).
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Both (i) and (ii) are standard facts; (iii) is a standard large deviation estimate.
For a proof, see, for example, [7].

Finally, we need a way to find good approximations forf . Proposition 3(iii)
suggests we can use the Bernstein polynomials. We recall their definition and main
property. See [12], Chapter 1.4 for more details.

DEFINITION 4. For any functionf : [0,1] → R and any integern > 0, thenth
Bernstein polynomial off is Qn(x) = ∑n

k=0 f (k/n)
(n
k

)
xk(1− x)n−k .

PROPOSITION5. If f is continuous, then Qn(x) → f (x) uniformly on [0,1].
If a function is linear on some interval, the Bernstein polynomials provide a

very good approximation to it; this suggests we could use them to construct a
fast algorithm for functions such asf (p) = (2p) ∧ (1 − 2ε). To prove that the
compatibility equations (10), (11) hold, we will need the following.

LEMMA 6. Let X be hypergeometric with distribution H(2n, k,n) as defined
in (9), and let f : [0,1] → R be any function with |f | ≤ 1. Then:

(i) If f is Lipschitz, with |f (x) − f (y)| ≤ C|x − y|, then |Ef (X/n) −
f (k/(2n))| ≤ C/

√
2n.

(ii) If f is twice differentiable, with |f ′′| ≤ C, then |Ef (X/n)−f (k/(2n))| ≤
C/(4n).

(iii) If f is linear on a neighborhood of k/(2n), so f (t) = Ct + D if
|t − k/(2n)| ≤ a, then |Ef (X/n) − f (k/(2n))| ≤ (2|C| + 4)exp(−2a2n).

PROOF. If (i) holds, then we get∣∣Ef (X/n) − f
(
k/(2n)

)∣∣ ≤ E
∣∣f (X/n) − f

(
k/(2n)

)∣∣
≤ CE|X/n − k/(2n)|
≤ C

(
E|X/n − k/(2n)|2)1/2

= C Var(X/n)1/2 ≤ C/
√

2n.

If (ii) holds, then Taylor’s expansion forf gives∣∣f (X/n) − f
(
k/(2n)

) − (
X/n − k/(2n)

)
f ′(k/(2n)

)∣∣
≤ (1/2)

(
X/n − k/(2n)

)2 sup|f ′′|
andE(X/n − k/(2n))f ′(k/(2n)) = 0, so∣∣Ef (X/n) − f

(
k/(2n)

)∣∣
= ∣∣E(

f (X/n) − f
(
k/(2n)

) − (
X/n − k/(2n)

)
f ′(k/(2n)

))∣∣
≤ (C/2)E

(
X/n − k/(2n)

)2

= (C/2)Var(X/n) ≤ C/(4n).
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If (iii) holds, then let g(t) = f (t) − Ct − D. We haveg = 0 on [k/(2n) −
a, k/(2n) + a] and |g(t) − g(s)| ≤ |f (t) − f (s)| + |C||t − s| ≤ 2 + |C| ∀ t, s ∈
[0,1]. Hence ∣∣Ef (X/n) − f

(
k/(2n)

)∣∣
= ∣∣Eg(X/n) − g

(
k/(2n)

)∣∣
≤ E

∣∣g(X/n) − g
(
k/(2n)

)∣∣
= E

∣∣g(X/n) − g
(
k/(2n)

)∣∣1|X/n−k/2n|>a

≤ (2+ |C|)P(|X/n − k/(2n)
∣∣ > a

)
≤ 2(2+ |C|)exp(−2a2n).

This completes the proof of the lemma.�

If we specialize the lemma tof (p) = (2p) ∧ (1− 2ε), which is Lipschitz with
C = 2 and also piecewise linear, we obtain:

PROPOSITION 7. Let f (p) = (2p) ∧ (1 − 2ε), where ε < 1/2. For X

satisfying (9), we have:

(i) |Ef (X/n) − f (k/(2n))| ≤ √
2/

√
n ∀ k,n,

(ii) |Ef (X/n) − f (k/(2n))| ≤ 8 exp(−2ε2n) if k/(2n) ≤ 1/2− 2ε.

Now we are ready to construct the algorithm. We start by defining numbers
α(n, k), β(n, k) which satisfy assumptions (i), (iii) and (iv) in Proposition 3 [but
not (ii)]. First we prove the compatibility equations (10) and (11):

LEMMA 8. Define

α(n, k) = f (k/n) = (2k/n) ∧ (1− 2ε).(12)

Then for X satisfying (9), α(2n, k) ≥ Eα(n,X).

PROOF. This follows from Jensen’s inequality, sincef is concave. �

The upper bound is more complicated. We would likeβ(n, k) to be close
to α(n, k), so that the algorithm is fast. Ideally, the difference should be
exponentially small. This cannot be done over the whole interval[0,1], since the
Bernstein polynomials do not approximatef well near 1/2 − ε, where it is not
linear. To account for this, we also need a term of order 1/

√
n, to be added if

k/n > 1/2− 3ε. Finally, to control the speed of the algorithm for smallp, we also
wantβ(n, k) andα(n, k) to be in fact equal ifk/n is small.

To achieve this, consider the following auxiliary functions:

r1(p) = C1
(
p − (1/2− 3ε)

)
+, r2(p) = C2(p − 1/9)+.
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The positive constantsC1 andC2 will be determined later. Both functions are
constant, equal to zero forp below a certain threshold, and increase linearly above
the threshold. They are continuous and convex.

LEMMA 9. Define

β(n, k) = f (k/n) + r1(k/n)
√

2/n + r2(k/n)exp(−2ε2n).(13)

If ε < 1/8 and X satisfies (9), then β(2n, k) ≤ Eβ(n,X) ∀ k,n.

PROOF. This amounts to proving

f
(
k/(2n)

) − Ef (X/n)

≤ Er1(X/n)
√

2/n − r1
(
k/(2n)

)
/
√

2/(2n)

+ Er2(X/n)exp(−2ε2n) − r2
(
k/(2n)

)
exp(−4ε2n).

Sincer1 andr2 are convex,r1(k/(2n)) ≤ Er1(X/n) andr2(k/(2n)) ≤ Er2(X/n),
so it is enough to show∣∣f (

k/(2n)
) − Ef (X/n)

∣∣
≤ r1

(
k/(2n)

)(
1− 1/

√
2

)√
2/n

+ r2
(
k/(2n)

)
exp(−2ε2n)

(
1− exp(−2ε2n)

)
.

If k/2n ≤ 1/8, thenX/n ≤ k/n ≤ 1/4 ≤ 1/2 − ε, sof (X/n) = 2X/n for all
values ofX, so the left-hand side is in fact zero and the inequality holds.

If 1/8 ≤ k/(2n) ≤ 1/2− 2ε, then we use the second part of Proposition 7 (the
large deviation result). Thus, it suffices to show that

8≤ r2
(
k/(2n)

)(
1− exp(−2ε2n)

)
.

But r2(k/(2n)) ≥ C2(1/8− 1/9) = C2/72, so it is enough to choose

C2 = 72
(
1− exp(−2ε2)

)−1
.

If k/2n > 1/2 − 2ε, we use the first part of Proposition 7. It is enough then to
show that 1≤ r1(k/(2n))(1 − 1/

√
2). But r1(k/(2n)) ≥ C1ε, so it is enough to

chooseC1 = ε−1(1− 1/
√

2)−1. This completes the proof of the lemma.�

We can now restate and prove:

THEOREM 1. For ε ∈ (0,1/8), the function f (p) = 2p ∧ (1 − 2ε) has a
simulation on [0,1], so that the number of inputs needed, N , satisfies Pp(N >

n) ≤ Cρn, for all n ≥ 1 and p ∈ [0,1/2− 4ε]. The constants C and ρ depend on
ε but not on p, and ρ < 1.
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PROOF. We use Proposition 3. First we prove that forα(n, k) and β(n, k)

defined in (12) and (13) and

gn(x, y) =
n∑

k=0

(
n

k

)
α(n, k)xkyn−k, hn(x, y) =

n∑
k=0

(
n

k

)
β(n, k)xkyn−k,

conditions (i), (iii) and (iv) are satisfied for the subsequenceni = 2i . We have
already proven (iv), and as discussed in the previous section, this implies that
gn(p,1 − p) is increasing andhn(p,1 − p) is decreasing. By Proposition 5,
the Bernstein polynomialsgn(p,1 − p) converge tof . Clearly,hn(p,1 − p) −
gn(p,1 − p) ≤ supk(β(n, k) − α(n, k)) → 0 asn → ∞, so hn(p,1 − p) also
converges tof and we have proven (iii). Condition (i) clearly holds forn large
enough.

The remaining condition (ii) does not hold forα(n, k), β(n, k), but as discussed
in the previous section, we can get around this by defining

a(n, k) =
⌊
α(n, k)

(
n

k

)⌋/(
n

k

)
, b(n, k) =

⌈
β(n, k)

(
n

k

)⌉/(
n

k

)
.(14)

Note that fork/n < 1/9, we haveα(n, k) = β(n, k) = 2k/n so α(n, k)
(n
k

) =
2
(n−1
k−1

)
is an integer, whencea(n, k) = b(n, k).

The sequencesa(n, k), b(n, k) satisfy conditions (i)–(iv), and the tail probabil-
ities Pp(N > n) = hn(p,1− p) − gn(p,1− p) satisfy

Pp(N > n) ≤
n∑

k=0

(
β(n, k) − α(n, k)

)(
n

k

)
pk(1− p)n−k +

n∑
k=n/9

2pk(1− p)n−k

(15)

≤ C1

√
2/n

n∑
k=n/2−3εn

(
n

k

)
pk(1− p)n−k + C2e

−2ε2n + 2pn/9

1− p
.

The second term in (15) decays exponentially, and so does the third (we can use
4 · 2−n/9 as an upper bound). For the first term, ignore the square root factor and
look at the sum; it is equal toP(Y/n > 1/2 − 3ε), whereY has binomial(n,p)

distribution. Sincep ≤ 1/2 − 4ε, a standard large deviation estimate (see [7])
guarantees that the first term in (15) is bounded above by exp(−2ε2n), so it also
decays exponentially inn.

Thus we do havePp(N > n) ≤ Cρn if n is a power of 2. For generaln, write

2k ≤ n < 2k+1. ThenPp(N > n) ≤ Pp(N > 2k) ≤ Cρ2k ≤ C(ρ1/2)n. The proof is
complete. �

REMARK. Most of the proof works for a general linear functionf (p) =
(ap)∧ (1−aε), for anya > 0. For integera the whole proof works (with different
constants). Ifa is not an integer, then the only problem comes from rounding
the coefficients; the rounding error introduced is bounded by

∑n
k=0 pk(1− p)n−k ,
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which still decays exponentially, but the rate of decay approaches 1 asp

approaches 0. In the next section we deduce a slightly weaker version of the result
for generala as a consequence of the casea = 2.

Proposition 3 and Lemma 6 can also be used to obtain simulations for more
general functions. The simulations are no longer guaranteed to be fast, but we do
obtainsome bounds for the tails ofN :

PROPOSITION10. Assume f satisfies ε < f < 1− ε on (0,1). Then:

(i) If f is Lipschitz, then it can be simulated with Pp(N > n) ≤ D/
√

n for
some uniform D > 0.

(ii) If f is twice differentiable, then it can be simulated with Pp(N > n) ≤ D/n

for some uniform D > 0.

REMARK. Neither of these conditions guarantees thatN has finite expecta-
tion, though we do believe that this should be possible to achieve, at least forC2

functions.

PROOF OF PROPOSITION 10. As in the proof of Theorem 1, it is enough
to define numbersα(n, k), β(n, k) which satisfy assumptions (i), (iii) and (iv) in
Proposition 3; assumption (ii) can then be achieved by rounding as described in
Remark C. We set

α(n, k) = f (k/n) − δn, β(n, k) = f (k/n) + δn,

with δn → 0. Then (i) holds as soon asδn < ε and (iii) holds becausegn(p,1 −
p) = Qn(p) − δn, hn(p,1 − p) = Qn(p) + δn, where Qn are the Bernstein
polynomials. It remains to check (iv), and as in the proof of Theorem 1, it is enough
to do it for m,n powers of 2, which amounts to checking that for hypergeometric
X satisfying (9), we haveα(2n, k) ≥ Eα(n,X) andβ(2n, k) ≤ Eβ(n,X). From
Lemma 6,

α(2n, k) − Eα(n,X) ≥ δn − δ2n − C/
√

2n

if f is Lipschitz with constantC, and

α(2n, k) − Eα(n,X) ≥ δn − δ2n − C/(4n)

if f is twice differentiable and|f ′′| ≤ C. The exact same inequalities hold for
Eβ(n,X) − β(2n, k). Hence we can chooseδn = (1+ √

2)C/
√

n in the Lipschitz
case, andδn = C/(2n) in the twice differentiable case, and the proof is complete.

�
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4. Fast simulation for other functions. We start with some facts about
random variables with exponential tails.

PROPOSITION 11. Let X ≥ 0 be a random variable. Then the following are
equivalent:

(i) There exist constants C > 0, ρ < 1 such that P(X > x) ≤ Cρx ∀x > 0.
(ii) E exp(tX) < ∞ for some t > 0.

If these hold, we say X has exponential tails.

PROOF. Straightforward. �

PROPOSITION12. Let Xi ≥ 0 be i.i.d. with exponential tails, and let N ≥ 0 be
an integer-valued random variable with exponential tails. Then Y = X1+· · ·+XN

has exponential tails.

PROOF. Taket > 0 such thatE exp(tX1) < ∞. Then we can findk > 0 such
thatρ = E exp(t (X1 − k)) < 1. LetSn = ∑n

i=1 Xi . Then

P(SN > kn) ≤ P(N > n) + P(Sn > kn).

The first term on the right-hand side decreases exponentially fast. To evaluate
the second term, we use a standard large deviation estimate,

P(Sn > kn) ≤ exp(−tkn)E exp(tSn) = (
E exp

(
t (X1 − k)

))n = ρn,

so the second term also decreases exponentially fast and we are done.�

REMARK. We do not assume thatN is independent from theXi ’s.

PROPOSITION 13. Constant functions f (p) = c ∈ [0,1] have a fast simula-
tion on (0,1).

PROOF. Forf (p) = 1/2, we can use von Neumann’s trick: toss coins in pairs,
until we obtain 10 or 01; in the first case output 1, otherwise output 0 (if we obtain
11 or 00, we toss again). We need 2N tosses, whereN has geometric distribution
with parameterp2+ (1−p)2; this clearly has exponential tails (unlessp is 0 or 1).

For any other constantc, write it in base 2:c = ∑∞
n=1 cn2−n with cn ∈ {0,1},

generate fair coins using von Neumann’s trick, and toss them until we get a 1.
Output cM , whereM is the number of fair coin tosses. This scheme generates
f (p) = c, and requiresX1 + · · · + XM p-coin tosses, whereXi is the number of
p-coin tosses needed to generate theith fair coin. All Xi have exponential tails
and so doesM , so Proposition 12 completes the proof. Note that the rate of decay
of the tails depends onp but not onc; this will be used below. �
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PROPOSITION14. Let S,T ⊂ [0,1].
(i) If f,g have fast simulations on S, then the product f · g has a fast

simulation on S.
(ii) If f has a fast simulation on T and g has a fast simulation on S, where

g(S) ⊂ T , then f ◦ g has a fast simulation on S.
(iii) If f,g have fast simulations on S and f + g < 1− ε on S for some ε > 0,

then f + g has a fast simulation on S.
(iv) If f,g have fast simulations on S and f − g > ε on S for some ε > 0, then

f − g has a fast simulation on S.

PROOF. (i) Let Nf ,Ng be the number of inputs needed to simulate each
function. We simulatef andg separately; if both algorithms output 1, we also
output 1; otherwise, we output 0. This simulatesf · g using Nf + Ng inputs,
which has exponential tails by Proposition 12.

(ii) We simulateg using its algorithm, then feed the results to the algorithm
for f . We needX1 + · · · + XNf

inputs, whereXi are i.i.d. with the same
distribution asNg . This has exponential tails by Proposition 12.

(iii) We write f + g = h ◦ ψ , whereh(p) = 2p andψ(p) = (f (p) + g(p))/2.
We proved in the previous section thath has a fast simulation on[0, (1− ε)/2]. To
simulateψ , we simulatef andg separately to obtain binary variablesBf andBg ,
then toss a fair coin; if the coin is heads, we outputBf , otherwise we outputBg . So
ψ can be simulated usingNf + Ng + N inputs, whereN is the number of inputs
needed to simulate a fair coin. Henceψ also has a fast simulation, so (iii) follows
from (ii).

(iv) Clearly f has a (fast) simulation iff 1− f has one, so we can look at
1− (f − g) = (1− f ) + g < 1− ε. The conclusion then follows from (iii). �

PROPOSITION15. If a > 0, ε > 0, the function f has a fast simulation on S,
and af (p) < 1− ε on S, then a · f has a fast simulation on S.

PROOF. By Theorem 1, 2p has a fast simulation on[0,1/2 − ε). By the
composition rule Proposition 14(ii), 2np has a fast simulation on[0,1/2n − ε).
For generala > 0, find n with a < 2n and write ap = 2n(a/2n)p. We know
multiplication by 2n has a fast simulation; so does multiplication bya/2n, because
constants smaller than 1 have a fast simulation. Hence their compositionap has a
fast simulation on[0,1/a − ε). We apply the composition rule Proposition 14(ii)
again to complete the proof.�

PROPOSITION16. Let f (p) = ∑∞
n=0anp

n with an ≥ 0 for all n. Let t ∈ (0,1]
such that f (t) < 1. Then f has a fast simulation on [0, t − 2ε], ∀ ε > 0.
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PROOF. Write

ε

t
f (p) =

∞∑
n=0

(ant
n)

(
p

t − ε

)n(
t − ε

t

)n ε

t
.

Since the terms((t − ε)/t)n(ε/t) are the probabilities of a geometric distri-
bution, we can generate an(ε/t)f (p)-coin as follows. First we obtainN with
geometric distribution, soPp(N = n) = ((t − ε)/t)n(ε/t). Then we generateN
i.i.d. p/(t − ε)-coins (by Proposition 15, this can be done by a fast simulation),
and we generate oneaNtN -coin [sincef (t) < 1, aN tN < 1]. Finally, we multiply
theN + 1 outputs as in Proposition 14(i).

The number of coin tosses we need isX + Y1 + · · · + YN + Z, whereX is
the number of tosses required to obtainN , Yi is the number of tosses required to
generate theith p/(t − ε)-coin, andZ is the number of tosses required to generate
one (constant)aNtN -coin.Yi have exponential tails by Proposition 15, andZ has
exponential tails (whose rate of decay does not depend on the value ofN ) by
Proposition 13.

The way we obtainN is we toss(t − ε)/t-coins until we obtain a zero; hence
X can itself be written asX = W1 + · · · + WN , whereWi is the number of tosses
required to generate a constant(t −ε)/t-coin. Hence by Proposition 12,(ε/t)f (p)

has a fast simulation.
Finally, f = (t/ε)(ε/t)f has a fast simulation by Proposition 15. �

PROPOSITION 17. Let f (p) = ∑∞
n=0 anp

n have a series expansion with
arbitrary coefficients an ∈ R and radius of convergence R > 0. Let ε > 0 and
S ⊂ (0,1) so that ε < f < 1−ε on S, and supS < R. Then f has a fast simulation
on S.

PROOF. Separating the positive and negative coefficients, we can writef =
g − h whereg,h are analytic with radius of convergence at leastR, and have
nonnegative coefficients. They must also be bounded:g ≤ M andh ≤ M , with
M = ∑∞

n=0 |an|(supS)n < ∞. Theng/(2M), h/(2M) must have fast simulations
on S by Proposition 16, so by Proposition 14, so does 2M(g/(2M) − h/(2M)).

�

PROPOSITION18. If f , g have fast simulations on S, are both bounded on S,
g > ε on S, and f/g < 1− ε on S for some ε > 0, then f/g has a fast simulation
on S.

PROOF. Let M = supg. Let C ∈ (0,1) andh(p) = C/(1 − p) = ∑∞
n=0 Cpn.

By Proposition 16, this has a fast simulation on(0,1 − C − ε/(4M)). We can
replace 1− p with p by switching heads and tails; henceψ(p) = C/p has a fast
simulation on(C + ε/(4M),1). SetC = ε/(4M). Thenψ has a fast simulation
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on (ε/(2M),1) and so doesg/(2M) ∈ (ε/(2M),1), so ψ ◦ g = ε/(2g) has a
fast simulation onS. So does the productf · (ψ ◦ g) = (ε/2)(f/g), and by
Proposition 15 so doesf/g, since we know it is bounded above by 1− ε. �

THEOREM 19. Let f be a real analytic function on a closed interval [a, b] ⊂
(0,1), so f is analytic on a domain D containing [a, b], and assume that f (x) ∈
(0,1) for all x ∈ [a, b]. Then f has a fast simulation on [a, b].

PROOF. If D is the open disk of radius 1 centered at the origin, thenf

has a series expansion with radius of convergence 1 and the result follows from
Proposition 17. For a generalD, the idea of the proof is to map one of its
subdomains to the unit disk, using a map which has a fast simulation. See Figure 1.

Using a standard compactness argument, it is easy to show we can find a domain
E so that[a, b] ⊂ E ⊂ D andE is the intersection of two large open disks of
equal radius. The centers of both disks are on the line Re(z) = (a + b)/2, located
symmetrically above and below the real axis. The boundaries of the disks intersect
on the real axis at the pointsa − t andb + t for some smallt > 0. If we make the
radius of the disks large enough, we may assume that the angle between the disks
is π/n for some large integern.

We shall use a Möbius map of the form(pz + q)/(rz + s) to map those disks
into half-planes. Fixc > 0. The map

g1(z) = c

z − (a − t)
− c

(b + t) − (a − t)
(16)

maps the boundaries of the disks into lines going through the origin, so it mapsE to
the domain between those two lines contained in the positive half-plane Re(z) > 0.
The angle between the two lines isπ/n, so the mapgn

1 mapsE to the positive half-
plane.

FIG. 1. The map g1.
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The mapg2(z) = 1 − 2/(1 + z) maps the positive half-plane to the unit disk,
sog2 ◦ gn

1 mapsE to the unit disk. Hencef ◦ (gn
1)−1 ◦ (g2)

−1 is real analytic on
the unit disk (it is easy to check that the inverses ofgn

1 andg2 are analytic on their
respective domains), so it has a fast simulation on any closed interval contained in
(0,1). It remains to check thatg2 ◦ gn

1 maps[a, b] to such an interval, and that it
has a fast simulation. Then it follows from Proposition 14(i) thatf also has a fast
simulation.

For sufficiently largec, the function g1 maps the interval[a, b] to the
interval [g1(b), g1(a)] where 1< g1(b). Hence 1/g1 maps[a, b] to some closed
subinterval of(0,1), and by Proposition 18 it has a fast simulation (as the ratio
of two linear functions). Clearly, so does 1/gn

1. Finally, we can writeg2 ◦ gn
1 =

g3 ◦ (1/gn
1), whereg3(z) = g2(1/z) = 1− (2z)/(1+ z) also has a fast simulation,

by the same Proposition 18. This completes the proof.�

5. Necessary conditions for fast simulations.

PROPOSITION20. Assume f has a fast simulation on an open set S ⊂ (0,1).
Then f is real analytic on S.

PROOF. Consider a fast algorithm, fixp and letfn(p) be the probability that
it outputs 1 after exactlyn steps. Thenf = ∑∞

n=1fn and

0≤ f (p) −
n∑

i=1

fi(p) =
∞∑

i=n+1

fi(p) ≤ Cρn ∀n ≥ 0

for some constantsC > 0, ρ < 1. Pick anyB with 1 < B < 1/ρ. Sincefn are
polynomials,fn(z) is well defined for any complexz. We shall prove below that
we can findε > 0 so that for any complexz and positive integern,

|fn(z)| ≤ Bnfn(p) if |z − p| < ε.(17)

Then for anym > n andz ∈ B(p, ε) (the open ball with centerp and radiusε), we
have ∣∣∣∣∣

m∑
i=n+1

fi(z)

∣∣∣∣∣ ≤
m∑

i=n+1

|fi(z)| ≤
m∑

i=n+1

Bifi(p)

≤
∞∑

i=n+1

BiCρi−1 = (Bρ)nBC/(1− Bρ).

Hence the sequence{∑n
i=1 fi} is Cauchy onB(p, ε), so it converges uniformly

on B(p, ε) to a limit which is analytic by a standard theorem (see [1], page 176,
Theorem 1). Hencef is real analytic.
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To prove (17), note thatfn can be written asfn(z) = ∑n
k=0 an,kz

k(1 − z)n−k

with an,k ≥ 0. Since|z − p| < ε, we have|z| < p + ε and |1 − z| < 1 − p + ε.
Chooseε sop + ε < Bp and 1− p + ε < B(1− p). Then

|zk(1− z)n−k| ≤ (p + ε)k(1− p + ε)n−k ≤ Bnpk(1− p)n−k

and∣∣∣∣∣
n∑

k=0

an,kz
k(1− z)n−k

∣∣∣∣∣ ≤
n∑

k=0

an,k|zk(1− z)n−k| ≤ Bn
n∑

k=0

an,kp
k(1− p)n−k

as desired. �

PROPOSITION 21. Assume S ⊂ [0,1] is closed and f has a fast simulation
on S. Then the number of inputs N has uniformly bounded tails: there exist
constants C,ρ which do not depend on p, so Pp(N > n) ≤ Cρn, ∀p ∈ S.

PROOF. Let gn(p) = Pp(N > n). Just as in Proposition 20,gn can be written
asgn(z) = ∑n

k=0 an,kz
k(1 − z)n−k with an,k ≥ 0, so for anyp ∈ (0,1) andB > 1

we can findε > 0 so

|gn(z)| ≤ Bngn(p) if |z − p| < ε.(18)

For anyp ∈ S ∩ (0,1) we havegn(p) ≤ Cpρn
p for someCp > 0, ρp < 1. Setting

B = ρ
−1/2
p in (18), we obtain that there existsεp > 0 so

gn(z) ≤ Cpρn/2
p if z ∈ (p − εp,p + εp).

The intervals(p − εp,p + εp) coverS. SinceS is closed, it is compact, so we
can find a finite subcover(pi − εpi

,pi + εpi
), 1≤ i ≤ N . Then we can set

C = maxCpi
, ρ = maxρ1/2

pi
. �

REMARK. This also shows that if a function has a simulation on some
S ⊂ (0,1), then the set ofp where the simulation is fast is open inS.

PROPOSITION 22. Assume f has a simulation on an open set S ⊂ (0,1),
such that the number of inputs needed N has finite kth moment on S, and
furthermore the tails of the moments decrease uniformly: limn→∞ EpNk1(N >

n) = 0 uniformly in p ∈ S. Then f ∈ Ck(S) (i.e., f has k continuous derivatives
on S).

PROOF. Let fn be defined as in Proposition 20. Sincef = ∑∞
n=1fn, it is

enough to prove that the series
∑∞

n=1 f
(k)
n converges uniformly onS. We shall

prove that|f (k)
n | ≤ Cnkfn for a uniform constantC. Then

∞∑
n=m

∣∣f (k)
n

∣∣ ≤
∞∑

n=m

Cnkfn = CEpNk1(N > m − 1)
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converges to zero uniformly asm → ∞, so the series is Cauchy and we are done.
To prove the required inequality, recall thatfn(p) = ∑n

i=0 an,ip
i(1 − p)n−i with

an,i ≥ 0. Write [i]j = i(i − 1) · · · (i − j + 1). From Leibniz’s formula for the
derivative of a product,

∣∣(pi(1− p)n−i
)(k)∣∣ =

∣∣∣∣∣
k∑

j=0

(
k

j

)
(pi)(j)

(
(1− p)n−i

)(k−j)

∣∣∣∣∣

=
∣∣∣∣∣

k∑
j=0

(
k

j

)
[i]j pi−j [n − i]k−j (1− p)n−i−(k−j)(−1)k−j

∣∣∣∣∣

≤
k∑

j=0

(k!)nkpi(1− p)n−i/min(p,1− p)k

≤ Cnkpi(1− p)n−i

for C = k(k!)/ infq∈B min(q,1 − q)k , where the inf is taken over some small

neighborhoodB of p. It follows that|f (k)
n | ≤ Cnkfn onS. �

PROPOSITION23. Assume f has a simulation on a closed interval I ⊂ (0,1),
such that the number of inputs needed N has supp∈I Ep(N) < ∞. Then f is
Lipschitz over I .

PROOF. We are given thatEpN = ∑∞
n=1 nfn ≤ C < ∞. SinceI is closed,

I ⊂ (ε,1 − ε) for someε. As in the previous proposition, we obtain|f ′
n| ≤

nfn/min(ε,1− ε). Hence|∑n
i=1 f ′

i | ≤ C/min(ε,1− ε) so
∣∣∣∣∣

n∑
i=1

fi(p) −
n∑

i=1

fi(q)

∣∣∣∣∣ ≤ |p − q|C/min(ε,1− ε).

Lettingn → ∞ completes the proof.�

6. An approximate algorithm for doubling. The methods described in the
previous sections are essentially constructive. Proposition 3 gives a recipe for
constructing an algorithm, given an approximation; all that is needed is an ordering
of all binary words of lengthn with k 1’s.

In the particular case of the functionf (p) = 2p, there exists an extremely
simple algorithm. It also works for anyp ∈ (0,1/2); there is no need to bound
the function away from 1. The catch is that it is approximate: it outputs 1
with probability very close to 2p, with the error decaying exponentially in the
number of steps. This must be, of course; the Keane–O’Brien results show that we
could not have anexact algorithm with these properties. However, in practice, an
approximate result may suffice.
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PROPOSITION 24. Let p < 1/2 and consider an asymmetric simple random
walk Sn = X1 + · · · + Xn, with Pp(Xi = 1) = p = 1 − Pp(Xi = −1). Let An be
the event that max(S1, . . . , Sn) ≥ 0. Then Pp(An) = ∑n

k=0(2k/n ∧ 1)
(n
k

)
pk(1 −

p)n−k = Qn(p), where Qn is the nth Bernstein polynomial of the function f (p) =
2p ∧ 1.

PROOF. We need to show that the number of paths withk positive steps among
the firstn steps, and max(S1, . . . , Sn) ≥ 0, is (2k/n ∧ 1)

(n
k

)
. For k > n/2, this is

obvious. Fork ≤ n/2,(2k/n)
(n
k

) = 2
(n−1
k−1

)
and the result follows from the reflection

principle (see, e.g., [3], page 197).�

Sincef is piecewise linear, its Bernstein polynomials converge to it exponen-
tially fast (except atp = 1/2), so we obtain the following.

ALGORITHM. Run an asymmetric simple random walkSn = X1 + · · · + Xn,
with Pp(Xi = 1) = p = 1 − Pp(Xi = −1) for at mostn steps. If the walk ever
reaches nonnegative territory (Sk ≥ 0 for some 1≤ k ≤ n), output 1. Otherwise,
stop aftern steps, output 0.

A standard large deviation estimate (see [7]) shows that ifp < 1/2, the
probability of outputting 1 is 2p − ε, where 0≤ ε ≤ 2 exp(−2n(1/2− p)2).

See [5] for another construction of an approximate doubling algorithm.

7. Continuous functions revisited. In this section we use Proposition 3 to
simulate any continuous functionf that satisfiesε < f ≤ 1− ε on (0,1) for some
ε > 0. Our proof is simpler than the original proof of [8]. However, their argument
is more general since it does not assume thatf is bounded away from 0 and 1. We
will use the following theorem of Pólya:

THEOREM 25. Let q(x, y) be a homogeneous polynomial with real coeffi-
cients satisfying q(x, y) > 0, ∀x > 0, y > 0. Then for some nonnegative integer n,
all coefficients of (x + y)nq(x, y) are nonnegative.

See [6], pages 57–59, for a proof. This clarifies the connection between the
partial order in Definition 2 and the pointwise partial order. It says that if
q(x, y) < r(x, y) for all x, y > 0, then(x + y)nq(x, y) ≺ (x + y)nr(x, y) for
somen.

THEOREM 26 ([8]). Let ε > 0 and suppose that f : (0,1) 
→ [ε,1 − ε] is
continuous. Then f admits a terminating simulation.
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PROOF. Let i satisfy 2−i < ε/4. By Proposition 5, we can approximate
f − 3 · 2−i by a Bernstein polynomialqmi

of sufficiently high degreemi with
error smaller than 2−i . More precisely,

qmi
(x, y) =

mi∑
k=0

(
mi

k

)(
f (k/mi) − 3 · 2−i

)
xkymi−k

will satisfy f (p) − 4 · 2−i < qmi
(p,1− p) < f (p) − 2 · 2−i for all p ∈ (0,1).

The sequenceqmi
(p,1− p) is increasing ini, so

qmi
(x, y)(x + y)mi+1−mi < qmi+1(x, y) ∀x, y > 0.

By Theorem 25,

qmi
(x, y)(x + y)mi+1−mi+si ≺ qmi+1(x, y)(x + y)si

for some integersi ≥ 0. Thus if we definen1 = m1 and more generally,ni =
mi + (s1 + · · · + si−1), then the homogeneous polynomials

gni
(x, y) = qmi

(x, y)(x + y)ni−mi

satisfy conditions (i), (iii) and (iv) in Proposition 3 along the subsequence{ni}.
Condition (ii) is easily obtained by the rounding process described in Remark C.
By Remark B, once we havegn for the subsequencen = ni , we can define it for
all n. A similar construction can be used to define approximations from abovehn.
(In fact, these approximations will require another sequence{s′

i} analogous to{si}
above, and for consistency we need to use max{si, s′

i} in both approximations.)
Hence by Proposition 3,f has a terminating simulation algorithm.�

8. Open problems. Theorem 2 does not settle the issue of what happens
near 0 and 1, or on the boundary of the domain of analyticity of a function. An
interesting example is the square root functionf (p) = √

p. Our methods provide
fast simulations on any interval(ε,1], but if p is allowed to take any value in(0,1),
the best result we are aware of is the one in [10], where the authors construct a
simulation using a random walk on a ladder graph. Estimates for the tails of the
number of inputs neededN are then given by return probabilities for a simple
random walk, soPp(N > n) decays liken−1/2. We do not know whether one can
do better.

QUESTION 1. Is there an algorithm that simulates
√

p on(0,1), for which the
number of inputs needed has finite expectation for allp?

REMARK. Entropy considerations (see [2], page 43) imply that if an algorithm
as in Question 1 exists, then the expectation of the number of inputs cannot
be uniformly bounded on(0,1). Indeed, this expectation must be at least
H(

√
p )/H(p), whereH(p) = −p log(p) − (1 − p) log(1 − p) is the entropy

function.
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QUESTION 2. Let J ⊂ (0,1) be a closed interval and letf :J 
→ (0,1) be
continuous. Suppose that we have a simulation algorithm that takes as input a
sequence{Xi} of i.i.d. p-coins and produces a sequence of i.i.d.f (p)-coins. The
rate of the algorithm (when it exists) is defined to be the limit asn → ∞ of 1/n

times the expected number off (p) coins produced from the firstn inputs. The
rate can never exceed the entropy ratioH(p)/H(f (p)); see [2]. GivenJ andf ,
are there simulation algorithms with rates arbitrarily close to the entropy ratio,
uniformly for all p ∈ J?

A positive answer is known for constantf : for f (p) ≡ 1/2 variants of the von
Neumann scheme (see [4, 11]) will do, and other constants follow from combining
these with [9]. However, for nonconstantf [except the identity andf (p) = 1−p]
the situation is unclear; a good example to ponder isf (p) = p2.

We would also like to know whether Proposition 22 can be improved.

QUESTION 3. Is it true (possibly subject to some technical conditions) that a
function has a simulation where the number of inputs has uniformly boundedkth
moment, if and only if it hask continuous derivatives?

Acknowledgments. We are grateful to Jim Propp for suggesting the simula-
tion problem to us, and to Omer Angel and Elchanan Mossel for helpful discus-
sions.
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