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THE EXIT PROBLEM FOR DIFFUSIONS WITH TIME-PERIODIC
DRIFT AND STOCHASTIC RESONANCE
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Université Henri Poincaré Nancy I and Humboldt-Universität zu Berlin

Physical notions of stochastic resonance for potential diffusions in
periodically changing double-well potentials such as the spectral power
amplification have proved to be defective. They are not robust for the
passage to their effective dynamics: continuous-time finite-state Markov
chains describing the roughfeatures of transitions between different domains
of attraction of metastable points. In the framework of one-dimensional
diffusions moving in periodically changing double-well potentials we design
a new notion of stochastic resonance which refines Freidlin’s concept of
quasi-periodic motion. It is based on exact exponential rates for the transition
probabilities between the domains of attraction which are robust with respect
to the reduced Markov chains. The quality of periodic tuning is measured
by the probability for transition during fixed time windows depending on a
time scale parameter. Maximizing it in this parameter produces the stochastic
resonance points.

0. Introduction. One of the simplest and earliest stochastic climate models
goes back to [1] and [17]. It intends to give a qualitative explanation of glacial
cycles and is based on a deterministic differential equation for the global mean
temperature expressed through a balance between the albedo-driven absorbed
and the black-body type emitted radiative energies. A periodic exterior forcing
comes from the slowly fluctuating solar constant and is due to Milankovich
cycles caused by the gravitation of big planets. Only the addition of a stochastic
term as a second forcing makes spontaneous transitions between the otherwise
isolatedmetastable statesof temperature possible. The resulting stochastically
and periodically perturbed differential equation was capable of describing at least
one characteristic aspect of experience: the typically short and abrupttransitions,
observed before by Kramers [14] in reaction-diffusion phenomena. The model
was soon strongly disputed. Despite its lack of realistic assumptions, the concepts
underlying the model brought to light the phenomenon ofstochastic resonance.
Roughly speaking, a periodic (input) system subject to random perturbations is in
stochastic resonance, if the noise intensity is tuned in such a way that the random
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periodic output is optimal. A very lively research field developed around this
concept, drawing numerous examples from a wide spectrum of areas (see [9, 10]
for a survey).

The mathematically precise understanding of the phenomenon is still under
discussion at the time this paper is written. The first approach is done in [7],
where the deep large deviations’ theory of [8] is employed to produce a notion
of stochastic resonance explaining the phenomenon in the small noise limit as
approximating the periodic hopping between the energetically most favorable
states in the landscape provided by a periodically weakly perturbed potential with
finitely many local minima. In this sense stochastic resonance can be understood
as the ability of the system to undergo quasi-periodic motion in the limit of
small noise intensity. Let us briefly recall this interpretation more precisely. If
noise intensity isε, in the absence of periodic exterior forcing, the exponential
order of times at which successive transitions between metasable states occur
corresponds to the work to be done against the potential gradient to leave a
well. This fact, heuristically derived by Kramers and Eyring (Kramers’ time), is
shown with mathematical accuracy in [8]. The attractor basins are subdivided into
a hierarchy of cycles with main states corresponding to the deepest among the
cycle states. In the presence of periodic forcing with period time scaleeµ/ε, in the
limit ε → 0 transitions between (the main states of ) cycles with critical hopping
work close toµ will be periodically observed. Transitions with smaller critical
work may happen, but are negligible in the limit. Those with larger critical work
are forbidden. In the simplest case of two minima of potential depthV and v,
v < V , the role of which switches periodically at timeT , for T larger thanev/ε

the diffusion will be quasi-deterministic, that is, close to the deterministic periodic
function following the location of the deepest well.

Quasi-periodicity captures an important aspect of stochastic resonance, as it
provides conditions under which stochastic trajectories are able to exhibit periodic
behavior. Yet, physics literature (see [9, 10]) stipulates that stochastic resonance
not only explains conditions forstochastically periodic behaviorbut comprises its
optimality in a sense quite similar to theresonance notions of wave dynamics. In
classical optics resonance is understood as the optimal amplitude of the response
of the system to periodic excitation. In the same way, a stochastic resonance
point is claimed to explainoptimal periodic tuningof the stochastic trajectories
of the diffusion responding to deterministic periodic excitation. Amplitude as
a measure ofquality of periodic tuning is replaced bysignal-to-noise ratioor
spectral power amplification(see below). Numerical simulations as, for example,
in [16] clearly support the optical evidence that beyond the threshold described by
Freidlin [7] at which quasi-deterministic behavior becomes possible, for different
noise intensities quite different qualitiesof periodicity of the random trajectories
can be observed. There are parameter ranges forT in which random trajectories
follow quite well the deterministic shapes of excitation curves. But asT gets
even bigger, many short excursions to the wrong well during one period may
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occur. They will not count on the exponential scale on which quasi-periodic
motion is measured, but trajectories will look less and less periodic. Physicists’
quality measures for tuning therefore cannot be explained on the basis of quasi-
deterministic motion alone.

The thesis by Pavlyukevich [13] and [18] presents an attempt to provide a
mathematically sound underpinning of physical notions of stochastic resonance
based on optimality of periodic tuning—as opposed to the trajectorial analysis
of Berglund and Gentz [2] containing very fine estimates on relaxation times.
The physical concepts are mostly based on comparisons of trajectories of the
noisy system and the deterministic periodic curve describing the location of
the relevant metasable states, averaged with respect to the equilibrium measure.
In the simple one-dimensional situation considered above the system switches
between a double-well potential stateU(x) with two wells of unequal depths
V andv, v < V, during the first half period, andU(−x) for the second half period.
The total period length isT , and stochastic perturbation comes from the coupling
to a white noise of intensityε. The most important measures of quality studied are
thespectral power amplification, the relatedsignal-to-noise ratioor theentropy of
the equilibrium distribution. In particular, the first two mentioned play an eminent
role in the physical literature. They mainly contain theL2 average in equilibrium
of the spectral component of the solution trajectories corresponding to the input
periodT , normalized in different ways. These measures of quality are functions of
ε andT , and the problem of finding the resonance point, for example, consists in
optimizing them inε for fixed (large)T .

Let us briefly explain a striking shortcoming of these concepts of optimal
periodic tuning which made us look for different ones. The first step to find
optimal tuning intensitiesε(T ) for largeT consists in reducing the dynamics of the
diffusion to theinterwell motion, that is, the pure transitions between the potential
minima. In the physics literature, this corresponds to the reduction given, for
example, by [15]. One ends up with continuous-time two-state Markov chains with
transition probabilities corresponding to the inverses of the diffusions’ Kramers–
Eyring times. The mathematical analysis of stochastic resonance then proceeds
along the following lines. One first determines the optimal tuning parameters
ε(T ) for large T for the approximating Markov chains, a rather simple task.
To see that the Markov chain’s behavior approaches the diffusion’s in the small
noise limit, spectral theory of the infinitesimal generator is used. Its spatial part
is seen to possess a spectral gap between the second and third eigenvalues, and
therefore the closeness of equilibrium distributions of the Markov chain on the
one hand and diffusion on the other hand can be well controlled. Surprisingly,
however, the notion of spectral power amplification is not robust for the passage
from the Markov chain to the diffusion. Subtle dependencies on the geometrical
fine structure of the potential functionU in the minima beyond the expected
curvature properties lead to quite unexpected counterintuitive effects. For example,
a subtle drag away from the other well caused by the sign of the third derivative



42 S. HERRMANN AND P. IMKELLER

of U in the deep well suffices to make the spectral power amplification curve
strictly increasing in the parameter range in which the approximating Markov
chain has its resonance point. This dramatic deviation from expected behavior is
due to the significance the spectral power amplification attributes to smallintrawell
fluctuations.

Our main motivation in writing this paper was to investigate concepts by which
on the one hand the physical intuition of optimal periodic tuning of random
trajectories with a simple periodic input can be interpreted in a mathematically
sound way, and which on the other hand fail to have this unfortunate defect of
robustness. We deal with the framework of one-dimensional potential diffusions.
The notion of quality of periodic tuning we shall investigate completely excludes
the effect of small intrawell fluctuations and purely relies on the transition
mechanism between domains of attraction given by the potential. At the same time
it generalizes the previously known results to potential functions which may vary
periodically in time in a continuous, but otherwise quite general way, and whose
growth at±∞ may just be linear. More precisely, we study diffusion processes
driven by a Brownian motion of intensityε given by the stochastic differential
equation (SDE)

dXt = − ∂

∂x
U

(
t

T
,Xt

)
dt + √

2ε dWt, t ≥ 0.

The underlying potential landscape (see Figure 1) is described by a function
U(t, x), t ≥ 0, x ∈ R, which is periodic in time with period 1, and its temporal
variation, by the rescaling with very largeT , acts on the diffusion at a very small
frequency.U is supposed to have exactly two wells located at±1, separated by
a saddle at 0. The depth (measured in positive quantities) ofU(t, ·) at ±1 is
given by the 1-periodic depth functionsD±1(t) which are assumed to never fall

FIG. 1. Potential landscape.
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FIG. 2. Definition ofa−1
µ .

below zero. We shall throughout look at time scalesT = exp(µ
ε
), for which the

Kramers–Eyring formula indicates that transitions, for example, from the domain
of attraction of−1 to the domain of attraction of 1 will occur as soon asD−1
becomes less thanµ, that is, at time (see Figure 2)

a±1
µ = inf{t ≥ 0 :D±1(t) ≤ µ}.

This triggers periodic behavior of the diffusion trajectories on long time scales.
The modern theory of metastability intime-homogeneous diffusion processes
complements the fundamental large deviations’ theory presented by [8] to produce
the exponential decay rates of transition probabilities between different domains
of attraction of a potential landscape together with very sharp multiplicative error
estimates, uniformly on compacts in system parameters. Their sharpest forms
are presented in some papers by Bovier, Eckhoff, Gayrard and Klein [3, 4],
improving Day’s previous results obtained in [5, 6]. They are derived from deep
relationships of large deviations’ theory with the spectral and capacity theory of
the infinitesimal generator. We shall make use of this powerful machinery to obtain
very precise estimates of the exponential tails of the laws of the transition times
between domains of attraction. In fact, we have to extend the estimates by Bovier,
Gayrard and Klein [4] to the framework oftime-inhomogeneous diffusions. In
the underlying one-dimensional situation, this is roughly achieved by freezing
the time dependence of the potential on small time intervals to define lower
and upper bound time-homogeneous potentials not differing very much from the
original one. Consequently, comparison theorems are used to control the transition
behavior from above and below by the behavior of the corresponding time-
homogeneous diffusions. This allows very precise estimates on the probabilities
with which the diffusion at time scaleT = exp(µ

ε
) transits from the domain of

attraction of−1 to the domain of attraction of 1 or vice versa within time windows
[(a±1

µ − h)T , (a±1
µ + h)T ] for smallh > 0. If τx(X) denotes the transit time tox,

it is shown to be given by

lim
ε→0

ε ln
(
1− M(ε,µ)

) = max
i=±1

{µ − Di(a
i
µ − h)},

with

M(ε,µ) = min
i=±1

Pi

(
τ−i(X) ∈ [(ai

µ − h)T , (ai
µ + h)T ]), ε > 0,µ ∈ IR,
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FIG. 3. Resonance interval.

and whereIR is the resonance interval(Figure 3), that is, the set of scale
parameters for which trivial or chaotic transition behavior of the trajectories is
excluded (Figure 4).

The stated convergence isuniform in µ on compact subsets ofIR. This allows
us to takeM(ε,µ) as our measure of periodic tuning, compute the scaleµ0(h)

for which the transition rate is optimal, and define thestochastic resonance point
as the eventually existing limit ofµ0(h) as h → 0. This notion of stochastic
resonance is strongly related to the notions of periodic tuning based oninterspike
intervals(see Figure 5 and [11]), which describe the probability distribution for
transitions as functions of time with exponentially decayingspikesnear the integer
multiples of the forcing periods. As opposed to the physics notions based on
spectral decomposition of the statistics of the solution trajectories investigated in
[13] or [18] it has the big advantage of being robust for the passage from the
diffusion to the two-state Markov chain reducing its behavior to the features of
pure transitions between the two domains of attractions of metasable points.

Here is an outline of the organization of the material in the paper. Section 1
presents a review of results from the asymptotic theory of time-homogeneous
diffusions and their metasable sets needed for our purposes (Theorem 1.1). In
Section 2 we bring to work the tools of comparison theorems to deduce the
sharp exponential transition rates for our time-periodic diffusions from the time-
homogeneous results (Theorem 2.1). Section 3 is devoted to applying these sharp
estimates to identify stochastic resonance points for diffusions (Theorem 3.2),
compare them to their counterparts for the reduced Markov chains and prove
robustness of our notion of resonance (Theorem 3.4).

FIG. 4. Chaotic and trivial transition behavior of the trajectories.
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FIG. 5. Length distribution of the interspike intervals in a simplified model(two-state Markov
chain).

1. Exponential distribution of transition times for time-homogeneous
diffusions. It will turn out to be crucial for our approach of periodic tuning
to be discussed later to obtain large deviation type estimates for the exponential
decay rate of the law of transition times uniformly in a time scale parameter.
We shall make use of a technique of freezing time-dependent potentials on small
subintervals of the periodicity interval[0, T ] on their states taken at fixed times in
the intervals, to be able to use known results for time-homogeneous diffusions. In
this setting, the uniformity problem translates into uniformity of the convergence
to exponential decay rates in compact subsets of the domain of attraction the
diffusion starts in and in time. It is clear that we are led directly into large
deviations’ estimates for exit time distributions oftime-homogeneous diffusions
such as presented in the pioneering book by Freidlin and Wentzell [8]. But for
obtaining uniformity in space and time, one has to use sharpened versions of these
estimates developed later for controlling in particular the exponential errors in the
estimates. The purpose of this section is to summarize what we shall need from
this fine well-established theory.

We shall refer to the most recent and advanced development of sharp estimates
for transition times presented in [3, 4]. They are valid far beyond our modest
framework, both in the multidimensional case and for any finite number of local
minima of the potential. Their quality comes from a detailed analysis of the
relationship between transition times and low-lying eigenvalues of the spectrum
of the infinitesimal generator of the diffusion. We shall state them in the simple
one-dimensional setting given here. A more complex multidimensional version
can also be found in [5]. For this purpose, suppose thatQ is a purely space-
dependentC2 potential function (see Figure 6) possessing only−1,1 as local

FIG. 6. Potential.



46 S. HERRMANN AND P. IMKELLER

minima, separated by the saddle point 0 at whichQ takes the value 0. Suppose that
the curvature ofQ at −1 is strictly positive, that is,Q′′(−1) > 0. As for ultra- or
hypercontractivity type properties forQ, we shall assume that it has exponentially
tight level sets; that is, there isa0 > 0 such that for anya ≥ a0 there exists a
constantC(a) such that forε ≤ 1,∫

{y:Q(y)≥a}
exp

(
−Q(z)

ε

)
dz < C(a)exp

(
−a

ε

)
.(1)

We shall concentrate in this situation on a transition out of the domain of attraction
of the stable point−1 for the diffusion associated with the SDE

dY ε
t = −Q′(Y ε

t ) dt + √
2ε dWt,

Y ε
0 = y.

Let C be a closed interval of the form[d,∞[ with d �= 0. To state our aim in a
slightly different version, we will be interested in the asymptotics of the entrance
time ofY ε into C:

τ ε
C = inf{t > 0 :Y ε

t ∈ C}.
Then we obtain the following result (see [4] or [5]).

THEOREM 1.1. Letλε denote the principal eigenvalue of the linear operator

Lεu = εu′′ − Q′u′

with Dirichlet boundary conditions on∂C. Then for every compactK ⊆]−∞,0[
there is a constantc > 0 such that

Py(τ
ε
C > t) = e−λεt

(
1+ OK(e−c/ε)

)
,(2)

whereOK denotes an error term which is uniform iny ∈ K , t ≥ 0. Moreover, for
the asymptotic behavior of the eigenvalueλε the following holds:

λε
Ey[τ ε

C] → 1 uniformly on compactsK ⊆]−∞,0[(3)

asε → 0.

PROOF. There are two small issues which deserve comments.
First, the uniformity over compacts in]−∞,0[ claimed in the main statements.

Day [5] tackles it. But he considers only exits from bounded domains. Bovier,
Gayrard and Klein [4] have a version for unbounded domains, but uniformity over
compacts of the domain of attraction in which the diffusion starts is not explicitly
proved. It is, however, hidden in their method of proof of Theorem 1.3 ([4], pages
30 and 31) which makes use of an eigenfunction expansion. But due to regularity
results on the eigenfunctions (see [4], pages 16–18) they must be bounded on
compacts in the domain of attraction]−∞,0[ . This implies the desired uniformity.
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The second comment concerns our assumptions onC. Translated into our
setting, in [4] the target setC is assumed to be closed, to contain a neighborhood
of 1 if the potential is deeper there than at−1, and to have a positive distance
from the saddle 0. Since we are in a one-dimensional setting, we may reduce these
conditions to the simple oned �= 0. If necessary, we may always cut out ofC a
small open neighborhood of 0 without changing the law ofτC if starting from the
domain of attraction of−1. �

2. Exponential transition rates between moving domains of attraction.
We shall now consider a potential diffusion given by the one-dimensional SDE

dXt = −∂U

∂x

(
t

T
,Xt

)
dt + √

2ε dWt.(4)

The time-periodic potentialU of period 1 is supposed to fulfill the following
conditions. First of all, its global rough geometry is the one of a double-well
potential with temporally moving wells, but time-independent critical points. For
simplicity we suppose that its local minima are given by±1, and its only saddle
point by 0, independently of time. So±1 are the only metastable states of the
potential on the whole time axis. Outside of 0,±1, ∂U

∂x
is supposed to be continuous

in (t, x). Our main concern will be the asymptotics of the transition times from the
domain of attraction]−∞,0[ of −1 to the domain of attraction]0,∞[ associated
with 1 of thetime-inhomogeneous diffusionin the small noise limitε → 0. More
precisely, we will be interested in describing the exponential transition rate from
the domain of−1 to the domain of 1. Our potential not being time-homogeneous,
we shall make use of comparison arguments with diffusions possessing time-
independent potentials in order to find a careful reduction of the inhomogeneous
exit problem to the homogeneous one, and use the asymptotic results stated in
Theorem 1.1 in this framework. This will be achieved by freezing the driving force
derived from the potential on small time intervals on the mimimal or maximal level
it takes there. To be more precise, for each intervalI ⊂ R+ let

VI (x) = sup
t∈I

∂U

∂x
(t, x) and RI (x) = inf

t∈I

∂U

∂x
(t, x).(5)

See Figure 7. The regularity conditions valid forU imply that V and R are
continuous functions. Moreover,VI (−1) = RI (−1) = 0. If I = [a, b], we denote
by X

I
the solution of the SDE onR+

dX
I

t = −RI (X
I

t ) dt + √
2ε dBt,

(6)
X

I

0 = XaT .

XI is defined in the same way, replacingRI by VI . These twotime-homogeneous
diffusions are used to control thetime-inhomogeneousdiffusionX as long as time
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FIG. 7. Definition ofVI andRI .

runs in the intervalI . In fact, we have,P -a.s.,

XI
tT ≤ X(t+a)T ≤ X

I

tT , t ∈ [0, b − a].

Of course, to make use of the asymptotic results stated in the previous section,
we need ultra- or hypercontractivity properties for the frozen potentials. To
formulate a hypothesis which is both not too restrictive and easy to handle for
time-dependent potentials, let us give the following easy sufficient criterion for
exponential tightness of levels of a time independent potentialQ.

LEMMA 2.1. Assume thatQ is a real-valued differentiable function onR, and
that there are constantsK1,K2 > 0 such that

Q′(x) ≤ −K2 for x ≤ −K1,
(7)

Q′(x) ≥ K2 for x ≥ K1.

ThenQ has exponentially tight level sets.

PROOF. It is obviously enough to argue onR+. Due to (7), we know that
near∞, Q is strictly increasing with inverseQ−1. So fora > 0 big enough and
ε > 0 we have∫

{y : Q(y)≥a}
exp

(
−Q(z)

ε

)
dz =

∫ ∞
a

exp
(
− t

ε

)
1

Q′(Q−1(t))
dt

≤ 1

K2

∫ ∞
a

exp
(
− t

ε

)
dt

= ε

K2
exp

(
−a

ε

)
.

This clearly implies exponential tightness.�
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Conditions like (7) are practical in our setting for the following reason: if we
assume them to be satisfied uniformly fort ∈ [0,1], it is clear that all frozen
potential functions will inherit the property. We will therefore assume throughout
that there exist constantsK1,K2 > 0 such that

sup
t≥0

∂U

∂x
(t, x) ≤ −K2 for x ≤ −K1,

(8)

inf
t≥0

∂U

∂x
(t, x) ≥ K2 for x ≥ K1.

We measure periodsT on the logarithmic scaleµ given byT = Tε = exp(µ
ε
).

The reason for this is hidden in the classical formula of Kramers–Eyring. It states
that in the small noise limitT is the time it takes the diffusing particle to climb
a heightµ in a potential landscapeU . This formula has the following intuitive
consequences. Assume the diffusion faces an obstacle of constant potential height
U+ > µ for exiting if it diffuses on time scaleT . Then asymptotically it never
exits on this scale. On the other hand, if it faces an obstacle of heightU− < µ

diffusing at time scaleT , it has to exit immediately in the small noise limit. We
introduce the depth function atx ∈ R by

Dx(t) = U(t,0) − U(t, x), t ≥ 0.

The maximal well depthsD−1 andD1 will be of particular importance. We shall
assume that they satisfy the assumption (see Figure 2)

all local extrema ofD1, D−1 are global and the
functions are strictly monotonous between the extrema.

(9)

Forµ ≥ 0 let now

aµ = inf{t ≥ 0 :D−1(t) ≤ µ}.
This is the same function asa−1

µ defined above. Here we omit the superscript since
we always concentrate on transitions from−1 to 1. The interval

I−1 =
]
inf
t≥0

D−1(t),sup
t≥0

D−1(t)

[
(10)

contains all possible depths the potential minimum located at−1 takes during one
period of time. Note thataµ = 0 for µ strictly above the upper boundary ofI−1,

andaµ = ∞ for µ strictly below the lower boundary. Ifµ ∈ I−1, then for times
beyondaµ, the barrier height between−1 and 0 has dropped below the critical
level so that on time scaleT the diffusion exits immediately. According to this
heuristic, the diffusion running on time scaleT should exit the domain of attraction
]−∞,0[ through 0 and then transit to the other well immediately afterT D−1(t)

drops belowµ. We shall be interested in the exponential rate at which this happens,
uniformly in starting points taken from a compact in]−∞,0[. For this purpose,



50 S. HERRMANN AND P. IMKELLER

for a regular diffusionY onR anda ∈ R, we denote byτa(Y ) the first hitting time
of a by Y .

Our first aim is to prove the precise estimate

lim
ε→0

ε ln Px

(
τ1(X) ≤ (aµ − h)T

) = µ − D−1(aµ − h)(11)

for x < 0, uniformly in µ on compact subintervals� of (10) and for 0< h <

infµ∈� aµ. Note that given such a compact�, due to the continuity ofD−1 we have
infµ∈� aµ > 0. Fix �,x andh from now on. Our approach proceeds in essentially
two steps.

2.1. Upper bound for the exponential exit rate.In the first step we shall find
upper bounds for the exponential rates. For this purpose we shall partition the
relevant time intervals[0, aµ − h]. Fix someδ > 0 such thatδ < |x|. Since ∂U

∂x

is continuous, we may choose an equidistant partition 0= r0 < r1 < · · · < rn =
aµ − h of [0, aµ − h] with meshγ small enough to ensure

sup
s,t∈[rj ,rj+1]

sup
x∈[−1,0]

∣∣∣∣∂U

∂x
(t, x) − ∂U

∂x
(s, x)

∣∣∣∣ ≤ δ.(12)

DenoteIj = [rj−1, rj ], 1 ≤ j ≤ n. Though the choice of the intervals depends
on h and �, their number will be bounded by a universal constant. Using this
partition, we may start our search for an upper bound by freezing the time-
dependent potential onIj at its valueRIj

, 1 ≤ j ≤ n, and then comparing the

diffusion X there withX
Ij

. There is a little difficulty with this procedure. The

drift coefficientsRIj
which govern the SDE forX

Ij were defined by taking infima
over time intervals. This operation may destroy their differentiability properties in
the spatial variable. Therefore it may be necessary to compareX on the intervalsIj

with smoother diffusions still dominating it. But this can be done at no extra cost.
For each 1≤ j ≤ n we may chooseRj ∈ C1(R) satisfying

Rj ≤ RIj
≤ Rj + δ,

there aremj ∈]−1 − δ,−1+ δ[ , sj ∈]−δ, δ[ ,mj ∈]1− δ,1+ δ[
such thatRj |]−∞,mj [∪ ]sj ,mj [ < 0,Rj |]mj ,sj [∪ ]mj ,∞[ > 0,

R′
j (mj ) > 0,

there are constantsK1,K2 > 0 such thatRj (x) ≤ −K2 for x ≤ −K1,

Rj (x) ≥ K2 for x ≥ K1.

(13)

Let Xj be the diffusion associated withRj , 1≤ j ≤ n. Let us choose a partition
x = x0 < x1 < · · · < xn = −δ of the interval[x,−δ] which will typically not be
supposed to be equidistant. In the following inequality the diffusionsX andXj
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on Ij are compared and the Markov property is employed. We have

Px

(
τ1(X) ≤ (aµ − h)T

)

≤
n−1∑
j=1

Px

(
τxj−1(X) ≥ rj−1T, τxj

(X) ≤ rjT
)

+ Px

(
τxn−1(X) ≥ rn−1T, τ1(X) ≤ rnT

)

≤
n−1∑
j=1

Px

[{
τxj

(
X·+rj−1T

) ≤ γ T
} ∩ {

τxj−1(X) ≥ rj−1T
}]

(14)
+ Px

[{
τ1

(
X·+rn−1T

) ≤ γ T
} ∩ {

τxn−1(X) ≥ rn−1T
}]

≤
n−1∑
j=1

Ex

[
PXrj−1T

(
τxn(X

j) ≤ γ T
)
1{τxj−1(X)≥rj−1T }

]

+ Ex

[
PXrn−1T

(
τ1(X

n) ≤ γ T
)
1{τxn−1(X)≥rn−1T }

]

≤
n−1∑
j=1

Pxj−1

(
τxj

(Xj) ≤ γ T
) + Pxn−1

(
τ1(X

n) ≤ γ T
)
.

Let us now fix 1≤ j ≤ n and continue estimating the termsPxj−1(τxj
(Xj ) ≤ γ T )

andPxn−1(τ1(X
n) ≤ γ T ) individually. For this purpose we apply Theorem 1.1 for

Q = Rj, d = xj to obtain that

Pxj−1

(
τxj

(Xj ) ≤ γ T
)

≤ 1− e
−λε

j γ T
(1− e−c/ε) ≤ 1− e

−λε
j γ T + e−c/ε,

(15)
Pxn−1

(
τ1(X

n) ≤ γ T
)

≤ 1− e−λε
nγ T (1− e−c/ε) ≤ 1− e−λε

nγ T + e−c/ε,

uniformly in T , hence uniformly inµ. Hereλε
j denotes the principal eigenvalue of

the operatorLε
j defined by

Lε
ju = εu′′ − Rju

′

with Dirichlet boundary conditions atxj . We now come to the crucial part of
the derivation of an upper estimate. We shall use precise asymptotics of the
eigenvaluesλε

j .

LEMMA 2.2. There existsC > 0 such that for1 ≤ j ≤ n,∣∣∣∣ lim
ε→0

ε lnλε
j − [U(rj , xj ) − U(rj ,−1)]

∣∣∣∣ ≤ Cδ.(16)



52 S. HERRMANN AND P. IMKELLER

PROOF. Fix 1 ≤ j ≤ n. Define the pseudopotential corresponding to the
drift Rj by

Vj(x, z) = inf
{

1

2

∫ t

0

(
φ′

s + Rj

2
(φs)

)2

ds,φ0 = x,φt = z, t > 0
}
,

whereφ stands for absolutely continuous functions defined on the time inter-
val [0, t]. Since due to our assumptionsmj is the only local minimum of the
potential corresponding toRj on ]−∞,0[, the sharpened form of the exit time
theorem of Freidlin–Wentzell (see [4], Theorem 1.1) implies that

lim
ε→0

ε lnλε
j = −Vj (mj , xj ).

Let us estimate the pseudopotential. We have

Vj(mj , xj ) =
∫ xj

mj

Rj (θ) dθ

=
∫ xj

−1

∂U

∂x
(rj , θ) dθ +

∫ xj

mj

(
Rj (θ) − ∂U

∂x
(rj , θ)

)
dθ

−
∫
[−1,mj ]

∂U

∂x
(rj , θ) dθ.

Continuity of ∂U
∂x

in (t, x) entails the existence ofC1 < 0 such that∣∣∣∣
∫
[−1,mj ]

∂U

∂x
(rj , θ) dθ

∣∣∣∣ ≤ C1δ.

To estimate the second remainder term, recall that the meshγ was chosen to
produce at mostδ as modulus of continuity of∂U

∂x
[see (12)], and thatRj is also at

most a distanceδ away [see (13)]. We therefore obtain∣∣∣∣
∫ xj

mj

(
Rj(θ) − ∂U

∂x
(rj , θ)

)
dθ

∣∣∣∣ ≤ 2δ.

Hence ∣∣∣∣ lim
ε→0

ε lnλε
j − [U(rj , xj ) − U(rj ,−1)]

∣∣∣∣ ≤ (2+ C1)δ.(17)

The asserted asymptotic result follows.�

As a consequence we obtain an upper bound for the exponential convergence
rate for the exit time from the domain of attraction of the potential well at−1.

PROPOSITION 2.1. Let x < 0 and let� be a compact subset of(10). Then
there exists0 < h0 < infµ∈� aµ such that forh ≤ h0,

lim sup
ε→0

ε ln Px

(
τ1(X) ≤ (aµ − h)T

) ≤ µ − D−1(aµ − h)(18)

uniformly forµ ∈ �.
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PROOF. According to what has been proved, there are constantsε0 > 0 and
K > 0 such that forε ≤ ε0,µ ∈ �,

Px

(
τ1(X) ≤ (aµ − h)T

)

≤
n−1∑
j=1

Pxj−1

(
τxj

(Xj ) ≤ γ T
) + Pxn−1

(
τ1(X

n) ≤ γ T
)

(19)

≤ KγT

n∑
j=1

λε
j + ne−c/ε.

Taking logarithms on both sides, multiplying byε and using the equation

lim
ε→0

ε ln
(
f (ε) + g(ε)

) = max
[

lim
ε→0

ε ln(f (ε)), lim
ε→0

ε ln(g(ε))

]

for two positive functionsf andg, we may apply Lemma 2.2 to get

lim sup
ε→0

ε ln Px

(
τ1(X) ≤ (aµ − h)T

)
≤ [

max
[
µ − [U(rj , xj ) − U(rj ,−1)] : 1 ≤ j ≤ n

] + Cδ
] ∨ (−c)

≤ [
max

[
µ − [U(rj , x1) − U(rj ,−1)] : 1 ≤ j ≤ n

] + Cδ
] ∨ (−c).

Recalling the definition ofaµ and thatx1 < 0 is arbitrary, we may conclude

lim sup
ε→0

ε lnPx

(
τ1(X) ≤ (aµ − h)T

)
≤ [

max[µ − D−1(rj ) : 1 ≤ j ≤ n] + Cδ
] ∨ (−c)

≤ [(
µ − D−1(aµ − h)

) + Cδ
] ∨ (−c)

uniformly for µ ∈ �. Now chooseh0 > 0 small enough so that forh ≤ h0 we have

inf
µ∈�

(
µ − D−1(aµ − h)

)
> −c.

Finally, sinceδ is arbitrary, we may letδ tend to zero. This way we obtain the
desired upper bound for the exponential rate.�

2.2. Lower bound for the exponential exit rate.In the second step of our
approach, we shall establish lower bounds for the exponential rates at which the
diffusion exits from the basin of attraction of−1. Let us first prove an auxiliary
result. It states that the probability of exiting the interval[l,0] via l is exponentially
small with exponential order increasing in|l|, due to hypercontractivity. Recall the
constantsK1 andK2 from (8).
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LEMMA 2.3. There exist positive constantsC andε0 such that forε ≤ ε0 and
l < x ∧ −K1 andµ > 0 we have

Px

(
τl(X) ≤ T

) ≤ C

ε
exp

(
2K2(l − x ∧ (−K1)) + µ

ε

)
.(20)

PROOF. We give arguments for the casex < −K1, the other case being
easier. Recalling that by (8) the gradient ofU is bounded below by−K2 on
R+×]−∞,−K1], we may compare the diffusionX with the diffusionZ on the
interval ]−∞, x] reflected atx with constant drift equal toK2. It can be given by
the SDE

dZt = K2dt + dLt + √
2ε dWt,

whereZ0 = x andL is an increasing process satisfying
∫ t
0(Zs −x) dLs = 0, t ≥ 0.

See, for example, [19]. The comparison clearly yields

Px

(
τl(X) ≤ T

) ≤ Px

(
τl(Z) ≤ T

)
.(21)

By Chebyshev’s inequality,

Px

(
τl(Z) ≤ T

) ≤ eEx

[
exp

(
− 1

T
τl(Z)

)]
.(22)

Let ϕ(y) = Ey[exp(− 1
T

τl(Z))], l ≤ y ≤ x. Our task consists in an estimation
of ϕ(x). According to the Feynman–Kac and Dynkin formulaeϕ solves the
boundary value problem

εϕ′′ + K2ϕ
′ − 1

T
ϕ = 0 on]l, x[ ,

ϕ′(x) = 0, ϕ(l) = 1.

The eigenvalues of the differential equation are determined by the equation

ελ2 + K2λ − 1

T
= 0,

hence byλ± = 1
2ε

[−K2 ±
√

K2
2 + 4ε

T
]. Taking the boundary conditions into

account leads to the equation

ϕ(y) = λ+eλ+x+λ−y − λ−eλ−x+λ+y

λ+eλ+x+λ−l − λ−eλ−x+λ+l
, y ∈ [l, x].

Neglecting the second term in the denominator of the fraction, we obtain

ϕ(x) ≤
√

K2
2 + 4ε/T

ελ+eλ−(l−x)
.
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Now for ε small enough,λ+ ≥ 1
K2T

andλ− ≤ −K2
ε

. Therefore, forε small enough
there exists a constantC0 > 0 independent ofε andT such that

ϕ(x) ≤ C0K
2
2
T

ε
exp

[
K2(l − x)

ε

]
= C0K

2
2

ε
exp

[
K2(l − x) + µ

ε

]
.

This implies the desired inequality (20).�

We shall continue to use the partition(Ij : 1 ≤ j ≤ n) of the interval[0, aµ − h]
of the preceding section. This time, we shall compare with homogeneous
diffusions by freezing the potential derivative at an upper level, which results in
working with the driftsV Ij and the diffusionsXIj . Again, these drifts may fail to
possess the regularity properties required to apply Theorem 1.1. For this reason we
may choose smoothed versionsVj ∈ C1(R) of the potentials with corresponding
diffusion processesY j satisfying

Vj ≥ VIj
≥ Vj + δ,

there aremj ∈]−1− δ,−1+ δ[ , sj ∈]−δ, δ[ ,mj ∈]1− δ,1+ δ[
such thatVj |]−∞,mj [∪ ]sj ,mj [ < 0,Vj |]mj ,sj [∪ ]mj ,∞[ > 0,

V ′
j (mj ) > 0,

there are constantsK1,K2 > 0 such thatVj(x) ≤ −K2 for x ≤ −K1,

Vj (x) ≥ K2 for x ≥ K1.

(23)

To deduce a lower estimate, we shall compareX via XIn with Yn on the interval
In in the scaleT . We may write forl < x

Px

(
τ1(X) ≤ (aµ − h)T

)
≥ Px

(
τ1(X) ≤ rnT , τ1(X) ∧ τl(X) ≥ rn−1T

)
(24)

≥ Ex

(
1{τ1(X)∧τl(X)≥rn−1T }PXrn−1T

(
τ1

(
X·+rn−1T

) ≤ γ T
))

≥ Pl

(
τ1(Y

n) ≤ γ T
) × Px

(
τ1(X) ∧ τl(X) ≥ rn−1T

)
.

As a consequence ofµ − D−1((aµ − h)T ) < 0 and the arguments presented in
Section 2.1, we note that uniformly on our compact set�

lim
ε→0

Px

(
τ1(X) ≤ rn−1T

) = 0.

This clearly implies that there isε0 > 0 and a constantC > 1
2 such that forε ≤ ε0,

Px

(
τ1(X) ≥ rn−1T

) ≥ C.(25)

Moreover, by Lemma 2.3, forl small enough, there existsε1 > 0 such that
for ε ≤ ε1,

Px

(
τ1(X) ≥ rn−1T

) ≥ C.
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Hence forε small enough we have

Px

(
τ1(X) ∧ τl(X) ≥ rn−1T

) ≥ C − 1
2 > 0.

It therefore remains to find lower bounds forPl(τ1(Y
n) ≤ γ T ).

We may now apply the same arguments as those developed in Section 2.1. We
just have to use Lemma 2.2 for the eigenvalues of the operator

Lεu = εu′′ − Vnu
′

with Dirichlet boundary conditions at 0 in the sense of lower bounds uniformly
on the compact�. As a consequence we obviously obtain, with a constantC > 0
independent of�,

lim inf
ε→0

ε ln Pl

(
τ1(Y

n) ≤ γ T
) ≥ (

µ − D−1(aµ − h) − Cδ
) ∨ (−c),

uniformly for µ ∈ �. Let us now chooseh0 > 0 andδ0 > 0 small enough such that
for h ≤ h0, δ ≤ δ0 we haveµ − D−1((aµ − h)T ) − Cδ ≥ −c. Sinceδ is arbitrary,
we obtain

lim inf
ε→0

ε ln Pl

(
τ1(Y

n) ≤ γ T
) ≥ (

µ − D−1
(
(aµ − h)T

))
,

uniformly for µ ∈ �. Recalling (24) and (25), we finally obtain

lim inf
ε→0

ε ln Px

(
τ1(X) ≤ (aµ − h)T

) ≥ µ − D−1
(
(aµ − h)T

)
,

uniformly on�. With this result we have established the desired lower bound for
the exponential exit rate.

PROPOSITION 2.2. Let x < 0, and let� be a compact subset of(10). Then
there exists0 < h0 < infµ∈� aµ such that forh ≤ h0,

lim
ε→0

ε lnPx

(
τ1(X) ≤ (aµ − h)T

) ≥ µ − D−1(aµ − h)(26)

uniformly forµ ∈ �.

2.3. The exponential smallness of the rate of too long transitions.Having
proved (11) in the preceding two propositions, the second aim of this section is
to show that the exponential rate at whichτ1(X) exceeds(aµ + h)T is arbitrarily
small. In fact, we shall make precise that the rate at which transitions happen which
take at least as long as(aµ + h)T vanishes to all exponential orders, forh > 0
arbitrary.

PROPOSITION 2.3. Let x < 0, and let � be a compact subset of(10) not
containingD−1(0). Then there existsh0 > 0 such that for all0 < h ≤ h0 and
µ ∈ � we have

lim sup
ε→0

ε ln Px

(
τ1(X) ≥ (aµ + h)T

) = −∞.
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PROOF. Let δ > 0 andh > 0 be given. Let� be a compact subset of (10).
First, for l < x we may write

Px

(
τ1(X) ≥ (aµ + h)T

) ≤ Px

(
τ1(X) ∧ τl(X) ≥ (aµ + h)T

)
(27)

+ Px

(
τl(X) ≤ (aµ + h)T

)
.(28)

To estimate the second term on the right-hand side of (27), we employ Lemma 2.3.
In fact, for l < x ∧ (−K1) we have

lim sup
ε→0

ε ln Px

(
τl(X) ≤ (aµ + h)T

) ≤ 2K2
(
l − x ∧ (−K1)

) + sup
µ∈�

µ.

Therefore

lim
l→−∞

[
lim sup

ε→0
ε ln Px

(
τl(X) ≤ (aµ + h)T

)] = −∞.

It therefore remains to estimate the first term on the right-hand side of (27) forl

small but fixed. Let 0= r0 < r1 < · · · < rn = aµ + h be an equidistant partition of
the interval[0, aµ +h] of meshγ < h

2 and denoteIj = [rj−1, rj ],1 ≤ j ≤ n. Then
we have

Px

(
τ1(X) ∧ τl(X) ≥ (aµ + h)T

)
= Px

(
τ0(X) ∧ τl(X) ≥ rn−1T, τ1

(
X·+rn−1T

) ∧ τl

(
X·+rn−1T

) ≥ γ T
)

≤ Ex

(
1{τ0(X)∧τl(X)≥rn−1T }PXrn−1T

(
τ1(XIn) ≥ γ T

))
(29)

≤ max
y∈ ]l,0[ Py

(
τ1(XIn) ≥ γ T

)
= Pl

(
τ1(XIn) ≥ γ T

)
≤ Pl

(
τ1(X

n) ≥ γ T
)
.

Here, we compare the inhomogeneous diffusionX on In with the time-homoge-
neous oneXIn corresponding to driftRIn and finally withXn subject to driftRn

to be described below, and we use monotonicity of

y �→ Py

(
τ1(XIn) ≥ γ T

)
.

We assumeγ to be small enough to ensure

sup
s,t∈[rn−1,rn]

sup
x∈[l,0]

∣∣∣∣∂U

∂x
(t, x) − ∂U

∂x
(s, x)

∣∣∣∣ ≤ δ.(30)

We may choose the driftRn to satisfy

Rn ≤ RIn ≤ Rn + δ,

there aremn ∈]−1 − δ,−1+ δ[ , sn ∈]−δ, δ[ ,mn ∈]1− δ,1+ δ[
such thatRn|]−∞,mn[∪ ]sn,mn[ < 0,Rn|]mn,sn[∪ ]mn,∞[ > 0,

R′
n(mn) > 0,

there are constantsK1,K2 > 0 such thatRn(x) ≤ −K2 for x ≤ −K1,

Rn(x) ≥ K2 for x ≥ K1.

(31)
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We are ready to apply Theorem 1.1, this time forQ = Rn,d = −δ to obtain that

Pl

(
τ1(X

n) ≥ γ T
) ≤ e−λε

nγ T (1+ e−c/ε)(32)

uniformly on �. Hereλε
n stands for the principal eigenvalue of the operatorLε

n

defined by

Lε
nu = εu′′ − Rnu

′

with Dirichlet boundary conditions at−δ. The asymptotic properties ofλε
n can

be deduced in a similar way to Lemma 2.2. We estimate the pseudopotential
corresponding toRn taking (30) into account. We obtain that there existsC > 0
such that ∣∣∣∣ lim

ε→0
ελε

nT − (
µ − D−1(rn)

)∣∣∣∣ ≤ Cδ(33)

uniformly on �. Now recall that due to the choice ofγ , we haveaµ + h
2 < rn,

hence

µ − D−1(rn) > 0, µ ∈ �,

and by compactness of� even,

inf
µ∈�

[µ − D−1(rn)] > 0.

This in turn implies that

lim
ε→0

λε
nT = ∞

uniformly on�. But due to (32) we are allowed to conclude

lim
ε→0

Pl

(
τ1(X

n) ≥ γ T
) = −∞

uniformly in �. According to (29), this completes the proof.�

Finally, we may summarize the results of Sections 2.1 and 2.2, and state the
main result on asymptoticexponential decay rates of transitionprobabilities.

THEOREM 2.1. Let x < 0, and let� be a compact subset of(10).For ε > 0,
µ ≥ 0 let T = exp(µ

ε
). Then there existsh0 > 0 such that forh ≤ h0,

lim
ε→0

ε ln Px

(
τ1(X) /∈ [(aµ − h)T , (aµ + h)T ]) = µ − D−1(aµ − h)(34)

uniformly forµ ∈ �.

PROOF. This is an immediate consequence of Propositions 2.1–2.3.�
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3. Stochastic resonance in a double-well potential. Let us now turn to the
main subject of this paper, a characterization of the notion ofstochastic resonance.
Let us recall that we look for a characterization of the concept ofoptimal periodic
tuning which is extensively studied in the physics literature by notions such as
the signal-to-noise ratio or the spectral power amplification (see [18]). Let us
also remark that this concept implicitly uses and refines the concept of stochastic
resonance studied by Freidlin [7] which paraphrases the ability of periodically
perturbed stochastic systems to follow the periodic excitation in the small noise
limit, and exhibit quasi-periodic motion. In more mathematical terms and the
notation introduced before, we aim at choosing the noise intensity parameterε

such that in thelarge period limit T → ∞ the diffusion trajectories follow the
periodic excitation of the system hidden inU in an optimal way to be made
precise. In Section 3.1 we shall show that a quality measure of goodness of periodic
tuning is given by the exponential rate at which the first transition to the other well
happens within a fixed interval aroundaµT . In Section 3.2 we establish robustness
of this notion of quality: we show that in the small noise limit the diffusion and its
reduced model, a Markov chain living on a two-point state space, have the same
resonance pattern.

3.1. Transition probabilities as a measure of quality.The local extrema of the
depth functionsD±1 of U are supposed to be global, andD±1 is strictly increasing
between its extrema. Recall that we work with exponential time scalesµ related to
the natural timeT by the equationT = exp(µ

ε
). In this section, we have to work

with scale functions depending on the starting well and eventually on arbitrary
starting times. So we let

ai
µ(s) = inf{t ≥ s :Di(t) ≤ µ}, i = ±1,µ ≥ 0.

The relevant time scalesµ will be chosen from the intervals

Ii =
]

inf
t≥0

Di(t),sup
t≥0

Di(t)

[
, i = ±1.

Our aim is to observe periodic behavior of the diffusion. This will in principle
mean that the process can travel from one well to the other and back on the time
scales in which we let the diffusion run, but not instantaneously. So, on the one
hand, we have to work on time scales on which itdoes not get stuck in one of the
wellsof the potential. On the other hand, the time scales we are concentrating on
should alsonot allow for chaotic behavior, that is, immediate re-bouncing after
changing the well.

To make these conditions mathematically precise, recall that transitions become
possible as soon as the potential barrierD±1 becomes smaller than the time scale
parameterµ. Hence ifµ > inft≥0 Di(t), there is a time range during which the
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diffusion can leave the well centered ati. To not get stuck in one of them, the
diffusion has to be able to leave both. This is guaranteed if

µ > max
i=±1

inf
t≥0

Di(t).(35)

To avoid immediate re-bouncing, we have to assure that the diffusion cannot
leave the domain of attraction of−i at the moment it reaches it, coming fromi.
Suppose we consider the dynamics after times ≥ 0, and the diffusion is neari at
that time. Its first transition to the well at−i occurs at timeai

µ(s)T , and it stays
there for at least a little while ifD−i (a

i
µ(s)) is bigger thanµ. This is equivalent

to stating that for alls ≥ 0 there existsδ > 0 such that on[ai
µ(s), ai

µ(s) + δ] we
haveµ < D−i . But for t shortly afterai

µ(s), we always haveDi(t) ≤ µ by the very
definition ofai

µ. Hence our condition becomes equivalent to the following: for all
s ≥ 0 there existsδ > 0 such that on[ai

µ(s), ai
µ(s) + δ] we haveµ < maxi=±1 Di.

This in turn is more elegantly expressed by

µ < inf
t≥0

max
i=±1

Di(t).(36)

See Figure 8.
We may summarize our search for an appropriate set of scale parametersµ

for which periodicity in the diffusion behavior will occur. We call this set the
“resonance interval” to indicate that we have to look for the scale of optimal
periodicity, theresonance scale, in this interval. See [11] for the definition of the
corresponding interval in the case of two-state Markov chains. The interval

IR =
]

max
i=±1

inf
t≥0

Di(t), inf
t≥0

max
i=±1

Di(t)

[

is called theresonance interval(see Figure 3). Let us pause for a moment at
this point to compare our approach with Freidlin’s [7] understanding of stochastic
resonance by quasi-deterministic motion. In Freidlin’s terms, stochastic resonance
is given if the parameterµ exceeds the lower boundary of our resonance interval.
Our concept of resonance stipulates to look for an optimalµ in the resonance
interval at which in a sense to be made precise the quality of periodic tuning is
optimal.

FIG. 8. Depth functions in phase.
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Let us now come to the discussion of the quality of periodic response of the
stochastic system given by the diffusion, in dependence on the noise parameterε

and the time scale parameterµ which according to the remarks made above has to
be chosen in the resonance interval. To simplify things a little, let us assume that
the depth functions are related by a phaseφ ∈]0,1[ , that is,

D−1(t) = D1(t + φ), t ≥ 0.

Moreover, we assume that the diffusion starts in−1. There are many ways
to describe optimality of periodic tuning. Imkeller and Pavlyukevich [12, 13]
consider different measures of quality such as thespectral power amplification,
the energy, the energy-to-noise ratio, the out-of-phase measure, theentropyand
the relative entropy. The detailed study of the physicists’ favorite measure, the
spectral power amplification, based on the energy of the spectral component of the
mean trajectory in equilibrium corresponding to the forcing frequency2π

T
, shows

one surprising defect: it is not robust as one passes from the diffusion to a reduced
model described by a two-state Markov chain jumping with rates corresponding
to the transition rates between the metasable states±1 of the diffusion given by
the potential minima. In fact, while the Markov chain’s spectral power coefficient
shows a pronounced peak forµ near an average well depth, the overwhelming
influence of the diffusion’s fluctuations in small neighborhoods of the potential
wells, discovering very subtle details of the potential’s geometry there, destroys
this picture completely. Here we propose a notion of quality of periodic tuning
which is based on the pure transition mechanism of the system between the
domains of attraction of the double-well potential. Generalizing the approach
of a study of optimal tuning for two-state Markov chain models (see [11]), we
measure the quality of tuning by computing for varying time scale parametersµ

the probability that, starting ini, the diffusion is transferred to−i within the time
window [(ai

µ − h)T , (ai
µ + h)T ] of width 2hT . To find thestochastic resonance

point for largeT we have to maximize this measure of quality inµ ∈ IR. The
probability for transition within this window will be computed by the estimates
of the preceding section. Uniformity of convergence to the exponential rates will
enable us to maximize inµ. Let us now make these ideas precise.

To make sure that the transition window makes sense at least for smallh, we
have to suppose thatai

µ > 0, i = ±1 for µ ∈ IR. This will be guaranteed if

Di(0) > inf
t≥0

max
i=±1

Di(t), i = ±1.(37)

If this is not granted from the beginning, it suffices to start the diffusion a little
later, in order to be sure that (37) is satisfied. Under (37), we call

M(ε,µ) = min
i=±1

Pi

(
τ−i(X) ∈ [(ai

µ − h)T , (ai
µ + h)T ]), ε > 0,µ ∈ IR,(38)

the transition probability for a timewindow of widthh.
We are prepared to state our main resonance result.
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THEOREM 3.1. Let � be a compact subset ofIR , and let h0 > 0 be given
according to Theorem2.1.Then

lim
ε→0

ε ln
(
1− M(ε,µ)

) = max
i=±1

{µ − Di(a
i
µ − h)}(39)

uniformly forµ ∈ �.

PROOF. This proposition is an obvious consequence of Propositions 2.1–2.3.
�

It is clear that forh small the eventually existing global minimizerµR(h) of

IR � µ �→ max
i=±1

{µ − Di(a
i
µ − h)}

is a good candidate for our resonance point. But it still depends onh. To get rid of
this dependence, we shall consider the limit ofµR(h) ash → 0.

DEFINITION 3.1. Suppose that

IR � µ �→ max
i=±1

{µ − Di(a
i
µ − h)}

possesses a global minimumµR(h). Suppose further that

µR = lim
h→0

µR(h)

exists inIR. We call µR the stochastic resonance pointof the diffusionX with
time-periodic potentialU .

We shall now show that the stochastic resonance point exists if one of the depth
functions, and thus both, due to the phase lag, has a unique point of maximal
decrease on the interval where it is strictly decreasing. See Figure 9.

THEOREM 3.2. Suppose thatD1 is twice continuously differentiable and has
its global maximum att1, and its global minimum att2, wheret1 < t2. Suppose
further that there is a unique pointt1 < s < t2 such thatD1|]t1,s[ is strictly concave,
andD1|]s,t2[ is strictly convex. ThenµR = D1(s) is the stochastic resonance point.

FIG. 9. Point of maximal decrease.
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PROOF. First of all, note that there isψ ∈]0,1[ such thatD1 = D−1(· + ψ).

As a consequence of this,

max
i=±1

{µ − Di(a
i
µ − h)} = {µ − D1(a

1
µ − h)}.

Write aµ = a1
µ and recall that on the interval of decrease ofD1, aµ = D−1

1 (µ).

Therefore, the differentiability assumption yields

1 = D′
1(aµ − h) · a′

µ = D′
1(aµ − h) · 1

D′
1(aµ)

.

Our hypothesis concerning convexity and concavity ofD1 essentially means that
D′′

1(s) = 0, andD′′
1|]t1,s[ < 0,D′′

1|]s,t2[ > 0; in other words, thatµ �→ D′
1(aµ) has

a local maximum ataµ = s. Hence forh small there exists a unique pointaµ(h)

such that

D′
1
(
aµ(h) − h

) = D′
1
(
aµ(h)

)
and

lim
h→0

aµ(h) = s.

To show thataµ(h) corresponds to a minimum of the function

µ �→ [µ − D1(aµ − h)],
we take the second derivative of this function ataµ(h), which is given by

D′
1(aµ(h) − h)D′′

1(aµ(h)) − D′′
1(aµ(h) − h)D′

1(aµ(h))

D′
1(aµ(h))

.

But D′
1(aµ(h)),D′

1(aµ(h)−h) < 0, whereasD′′
1(aµ(h)−h) > 0,D′′

1(aµ(h)) < 0.

This clearly implies thataµ(h) corresponds to a minimum of the function. But
by definition, ash → 0, aµ(h) → s. Therefore, finally,D1(s) is the stochastic
resonance point.�

To illustrate our results, we next discuss an example.

EXAMPLE. Let us consider the double-well potential

U(t, x) = x6

6
− cos

{
2π

(
t − 1

4
+ ψsgn(x)

)}(
x5

5
− x3

3

)
− x2

2
,

with T = exp(µ
ε
) andψ ∈ [0, 1

4[. See Figures 10 and 11.
U satisfies all the assumptions required for potentials above, in particular

∂U

∂x
(t, x) = 0 iff x ∈ {−1,0,1}.
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FIG. 10. Double-well potential(case: ψ = 0).

FIG. 11. Level sets of the potential.
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−1 and 1 are the metasable states of the potential, and 0 is the saddle point. We
can then compute the barrier height of the two wells. Fori ∈ {−1,1},

Di(t) = 2

3
− i

4

15
cos

(
2πt + i2πψ − π

2

)
.

Let us note thatD1(t) = D−1(t + 2ψ + 1
2). Sinceψ ∈ [0, 1

4[, we are in the phase
case withφ = 2ψ + 1/2. The resonance interval is then given by

IR =
]

2

5
,

2

3
− 4

15
cos

(
π

2
− 2πψ

)[
.

In the symmetric case, that is, ifψ = 0, we obtainIR =]2/5,2/3[. Let us now
compute the optimal tuning scale applying Theorem 2.1. We obtain

a−1
µ = 1

2π
arccos

(
15

2

(
µ

2
− 1

3

))
+ ψ + 1

4
.

Hence, forh > 0 small enough,

F(µ) = µ − D−1(a
−1
µ − h)

= µ − 2

3
− 4

15
cos

(
arccos

{
15

2

(
µ

2
− 1

3

)}
− 2πh

)

=
(
µ − 2

3

)
(1− cos2πh) − 4

15
sin(2πh)

√
1−

(
15

2

(
µ

2
− 1

3

))2

.

Let us recall thatF does not depend on the phase which implies

µ − D−1
(
(a−1

µ − h)T
) = µ − D1

(
(a1

µ − h)T
)
.

Hence, to obtain optimal tuning, it suffices to compute the minimum ofF for
µ ∈ IR. DifferentiatingF , we obtain

F ′(µ) = 1− cos(2πh) + 15

2
sin(2πh)

µ/2− 1/3√
1− (15µ/4− 15/6)2

.

HenceF attains its minimum for

µR(h) = 2
3 − 2

√
2

15

√
1− cos(2πh)

and

µR = lim
h→0

µR(h) = 2
3.

Thus we obtain thatµR is the stochastic resonance point ifµR ∈ IR, that is, if the
phase is near to12, that is, ifψ is close to 0. In the other case, the optimal tuning
rate on every interval[a, b] ⊂ IR is given by the upper boundb.
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3.2. The robustness of stochastic resonance based on transition windows.In
the small noise limitε → 0, it seems reasonable to assume that the periodicity
properties of the diffusion trajectories caused by the periodic forcing due to the
potential, are essentially captured by a simpler, reduced stochastic process: a
continuous-time Markov chain which just jumps between two states representing
the bottoms of the wells of the double-well potential at rates corresponding to the
transition mechanism of the diffusion. This is just the reduction idea ubiquitous
in the physics literature, and explained, for example, in [15]. In [13] it is found
that this idea may conflict with the intrawell fluctuations of the diffusion if the
quality of periodic tuning is measured by concepts using spectral decompositions
of the trajectories. We shall now show that in the small noise limit both models,
diffusion and Markov chain, produce the same resonance picture, if quality of
periodic tuning is measured by transition rates as discussed in Section 3.1.

We first have to describe the reduced model. LetU be a time-dependent
potential function generating the potential diffusions of the preceding section.
Recall that the depth functions of the potential minima satisfyD1(t) = D−1(t +φ),
t ≥ 0, with phase shiftφ ∈]0,1[ . So, let us consider a time-continuous Markov
chain{Yt , t ≥ 0} taking values in the state space{−1,1} with initial dataY0 = −1.
Suppose the infinitesimal generator is given by

G =




−ϕ

(
t

T

)
ϕ

(
t

T

)

ψ

(
t

T

)
−ψ

(
t

T

)

 ,

whereψ(t) = ϕ(t + φ), t ≥ 0, andϕ is a 1-periodic function describing a rate
which just produces the transition dynamics of the diffusion between the potential
minima±1, that is,

ϕ(t) = exp
(
−D−1(t)

ε

)
, t ≥ 0.(40)

Note that by choice ofφ,

ψ(t) = exp
(
−D1(t)

ε

)
, t ≥ 0.(41)

Transition probabilities for the Markov chain thus defined are easily computed.
See ([11], Section 2). For example, the probability density of the first transition
time σi(Y ) is given by

p(t) = ϕ(t)exp
(
−

∫ t

0
ϕ(s) ds

)
if i = −1,

q(t) = ϕ(t + φ)exp
(
−

∫ t

0
ϕ(s + φ)ds

)
if i = 1,
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t ≥ 0. Equation (42) can be used to obtain results on exponential rates of the
transition timesσi(Y ) if starting from−i, i = ±1. We summarize them and apply
them to the measure of quality of periodic tuning in case (37):

N(ε,µ) = min
i=±1

Pi

(
σ−i(Y ) ∈ [(ai

µ −h)T , (ai
µ +h)T ]), ε > 0,µ ∈ IR,(42)

which is calledtransition probability for a time window of widthh for the Markov
chain.

Here is the asymptotic result obtained from a slight modification of Theorems
3 and 4 of [11] which consists of allowing more general depth functions than the
sinusoidal ones used there and requires just the same proof.

THEOREM 3.3. Let � be a compact subset ofIR and let h0 < sup(a−1
µ ,

T /2− a−1
µ ). Then for0 < h ≤ h0,

lim
ε→0

ε ln
(
1− N(ε,µ)

) = max
i=±1

{µ − Di(a
i
µ − h)}(43)

uniformly forµ ∈ �.

It is clear from Theorem 3.3 that the reduced Markov chainY and the diffusion
processX have exactly the same resonance behavior. Of course, we may define
the stochastic resonance pointfor Y just as we did forX. So the following final
robustness result holds true.

THEOREM 3.4. The resonance points ofX with periodic potentialU and ofY
with exponential transition rate functionsD±1 coincide.
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