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OPTIMALITY OF DISCRETE REVIEW POLICIES
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We consider a class of open stochastic processing networks, with
feedback routing and overlapping server capabilities, in heavy traffic. The
networks we consider satisfy the so-called complete resource pooling
condition and therefore have one-dimensional approximating Brownian
control problems. We propose a simple discrete review policy for controlling
such networks. Assuming 2+ ε moments on the interarrival times and
processing times, we provide a conceptually simple proof of asymptotic
optimality of the proposed policy.
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1. Introduction. Stochastic processing networks have been extensively used
to model manufacturing systems, computer systems, telecommunication networks
and call-centers (see, e.g., [2, 9, 25, 40, 54]). One approach to designing
control policies for such networks is the heavy traffic approximation approach
pioneered by Harrison [14, 17]. This approach can be summarized by the following
procedure; see [7, 15, 51]. (a) Formulate a stochastic network model and a notion
of heavy traffic. (b) Formulate an approximating Brownian control problem for the
network control problem, and reduce the dimension of this problem by deriving an
equivalent workload formulation. (c) Analyze the Brownian control problem (or its
equivalent workload formulation) and “interpret” its solution as a control policy for
the original network. (d) Investigate the performance of the policy proposed in (c).
In particular, determine whether it is asymptotically optimal in the heavy traffic
limit.

Even though the heavy traffic approach has proved successful in many particular
examples, [10, 21, 22, 29–32, 37, 38, 46–49], the complete procedure outlined
above has not been resolved in general. The steps (a) and (b) have been resolved
quite generally in the literature [7, 14, 17, 18, 20, 24, 32]. Steps (c) and (d) present
several difficulties. First, the approximating Brownian control problem is not
always analytically tractable. Second, even when the Brownian control problem
is tractable, it is not easy to interpret its solution as a control policy for the original
processing network. Finally, there are very few proofs of asymptotic optimality of
the interpreted policy even when such an interpretation has been advanced [1, 16,
27, 28, 30, 35, 38, 42].

In this paper we will carry out all four steps (a)–(d) for a large class of
open network models. The crucial assumption for our analysis is what Harrison
and Lopez [19] called complete resource pooling (CRP), extended to a more
general network setting similar to that considered by Bramson and Williams [8].
Roughly speaking, the CRP assumption requires enough overlap in the processing
capabilities of the various servers to ensure that their capacities are exchangeable
or transferable in the heavy traffic limit. Another way of saying this is that the
equivalent workload formulation (EWF) of the approximating Brownian control
problem referred to in (b) is one dimensional. The CRP assumption can be verified
a priori by solving a linear program involving the first-order data of the stochastic
network. We have linear holding cost function as the only economic element of
our general model.

For networks that satisfy the CRP condition, the associated Brownian control
problem is essentially trivial to solve. But, its solution, which prescribes keeping
all but one buffer level at zero while keeping all servers busy, is not easy
to interpret in the original stochastic network. We provide an interpretation
based on the discrete review approach of Harrison [15] and Maglaras [33, 34].
Our interpretation provides a policy that reviews the contents of the buffers
at discrete points in time, computes a processing plan based on the observed
contents (interpreting zeros in the Brownian problem as small safety stocks), and
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implements this plan in open loop fashion. Moreover, even though the heavy
traffic assumption is necessary for the formal analysis, the policy proposed can
be adapted for the case where the system is near heavy traffic as well. This point
will be elaborated on later.

All discrete review policies described to date in the literature of heavy traffic
network control [15, 33, 34, 39] require the system manager to solve a new linear
programming problem at each review point. However, by fully exploiting the
special structure of CRP networks, we arrive at a far simpler type of policy, as
follows. First, one solves a single linear program “off-line,” this being essentially
the static planning problem that one uses to verify the CRP assumption, and
computes the inverse of a square matrix derived from its optimal basis matrix.
Then, to determine the optimal processing plan at each review point, one simply
multiplies a vector of observed buffer contents by that inverse matrix. Given the
very simple structure of this policy, and fully exploiting the CRP assumption, we
are able to prove asymptotic optimality in a conceptually simple fashion. Our proof
uses the roadmap given by Bramson and Williams [5, 52, 53], but it does not invoke
fluid limits. Rather, the proof establishes state space collapse (i.e., all buffer levels
but one are zero in the diffusion limit) directly, and then uses the continuity of the
one-dimensional reflection map to establish convergence to the desired limiting
diffusion.

The class of network control problems whose equivalent workload formulation
is one dimensional has received considerable research attention, see [1, 16, 19,
36, 44]. Two recent and major contributions to this area are the papers by
Stolyar [44] and Mandelbaum and Stolyar [36]. These papers consider parallel
server systems under the complete resource pooling assumption and establish
the asymptotic optimality of the max-weight scheduling rule and the generalized
cµ rule, respectively. Furthermore, the policies proposed in those papers do not
require the knowledge of the external arrival rates. Our paper extends the body of
knowledge in this area in several ways. First, we consider discretionary feedback
routing which extends the network topology considered in [1, 19, 36]. Second,
as mentioned above, the policy proposed is simple enough to be implementable
on-line, since it only involves multiplication with a precomputed matrix at every
review point. It is also simpler, if less elegant, than continuous review policies
that require constant monitoring of the state; see [1, 35]. Third, we consider linear
holding costs, which makes the translation in (c) harder since the optimal controls
tend to achieve “corner solutions” in the state space rather than “interior solutions”
as in [36, 44]. Therefore, one has to worry about interpreting zeros in the optimal
Brownian prescriptions. Finally, our proof of asymptotic optimality is conceptually
very simple, and only requires moments of order 2+ ε for the interarrival and
service times, rather than exponential moments as is usually assumed in the
literature; see [1, 16, 35, 39].
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2. Description of the network model. We assume that there arep servers
andm buffers. The terms buffer and class will be used interchangeably. We assume
that customers arrive to each buffer either from outside the network or from another
buffer in the network. We assume that there aren activities. Each activity is
associated with a unique server and a unique buffer. When the server has expended
sufficient time on an activity, a job either moves from the corresponding buffer to
any of then buffers in a probabilistic manner or exits the system. Our model is
a restricted version of the general processing network model of Harrison [17], as
well as that of Bramson and Williams [8]. The stochastic assumptions will be made
precise shortly. We lets(j), b(j) denote the server and the buffer associated with
activity j , for j = 1, . . . , n.

We describe the association between activities and resources by the capacity
consumption matrixA, and the association between activities and buffers by the
constituency matrixC. A is ap × n matrix such that

Akj =
{

1, if s(j) = k,

0, otherwise.
(1)

C is anm × n matrix such that

Cij =
{

1, if b(j) = i,

0, otherwise.
(2)

In our modelA,C are matrices of zeros and ones such that each contains exactly
one nonzero entry in each column and at least one nonzero entry in each row. For
an example of a network that fits in our modeling framework; see [26].

2.1. Stochastic primitives. Following the exposition of Bramson and Dai [6],
we associate with each bufferk = 1, . . . ,m a sequence of independent and
identically distributed strictly positive random variablesūk = {ūk(i), i ≥ 1} and
a λk ≥ 0, where it is assumed thatE(ūk(1)) = 1 for k = 1, . . . ,m. We allow
λk = 0 for some buffers but not all, and setA = {k = 1, . . . ,m :λk �= 0}. We let
uk(i) = ūk(i)/λk for k ∈ A be the interarrival time between the(i − 1)st and the
ith externally arriving job at bufferk for k ∈ A, andi = 1,2, . . . so thatλk is the
external arrival rate to classk.

Similarly, for each activityj = 1, . . . , n, we associate a sequence of strictly pos-
itive independent and identically distributed random variablesv̄j = {v̄j (i), i ≥ 1}
and a positive real numbermk . For eachi, j we letvj (i) = mj v̄j (i) be the service
time for theith job processed by activityj . We also assume thatE(v̄j (1)) = 1
for j = 1, . . . , n so that for each activityj , mj is the mean service time of a job
processed by activityj .

For each activityj = 1, . . . , n, we also associate a sequence of independent and
identically distributedm-dimensional random (routing) vectorsφj = {φj(i), i ≥1}.
We let φj (i) be the routing vector of theith job processed by activityj and as-
sume that it takes values in{e0, e1, . . . , em}, wheree0 is them-dimensional vector
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of zeros andel is them-dimensional vector withlth component 1 and other com-
ponents 0. Whenφj(i) = e0, the ith job served by activityj leaves the network,
and whenφj(i) = el for l = 1, . . . ,m, it next moves to bufferl. We letPjl denote
the probability thatφj(1) = el for j = 1, . . . , n andl = 1, . . . ,m and we define the
n × m activity-based routing matrixP of our network asP = (Pjl).

We assume that the 2n + m random sequences, the stochastic increments,

ū1, . . . , ūm, v̄1, . . . , v̄n, φ1, . . . , φn,(3)

are all defined on the same probability space and they are mutually independent.
We specify the moment assumptions on the stochastic increments precisely as
follows.

MOMENT ASSUMPTIONS. We assume that there exists anε1 > 0 such that

E|ūk(1)|2+2ε1 < ∞ for k = 1, . . . ,m,(4)

and

E|v̄j (1)|2+2ε1 < ∞ for j = 1, . . . , n.(5)

Our moment assumptions are weaker than the assumptions [16], Maglaras
[33, 34] and Bell and Williams [1] used in analyzing asymptotically optimal
policies.

We define the stochastic primitive processes of our network as the cumulative
arrival, cumulative service and cumulative routing processes, which are, in turn,
defined by the sums

Uk(l) =
l∑

i=1

uk(i), Vj (l) =
l∑

i=1

vj (i), �j(l) =
l∑

i=1

φj(i),(6)

wherej = 1, . . . , n, k = 1, . . . ,m andl = 1,2, . . . .

For each activityj , Vj (k) is the total amount of service required for the first
k jobs processed by that activity. We also define the renewal processesEk =
{Ek(t), t ≥ 0} andSj = {Sj (t), t ≥ 0} associated with the external input process
for classk and service completion process for activityj , respectively, fork ∈ A
andj = 1, . . . , n as follows:

Ek(t) = max

{
l ≥ 0 :

l∑
i=1

uk(i) ≤ t

}
for k ∈ A,(7)

Sj (t) = max

{
l ≥ 0 :

l∑
i=1

vj (i) ≤ t

}
for j = 1, . . . , n.(8)

We complete the definition of the first-order network data by introducing the input–
output matrixR. First defineM as the diagonal matrix with entriesm1, . . . ,mn,
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andM−1 as its inverse. Next define the service rate for activityj asµj = 1/mj

for j = 1, . . . , n and define them × n input–output matrix as

R = (C − P ′)M−1.(9)

One can interpret the entryRkj as the average amount of materialk consumed
by one unit of activityj , and negative values can be interpreted as production of
material; see [14, 17].

2.2. Assumptions on the first-order network data. In the setting of conven-
tional multiclass queueing networks, a queueing network is said to be in heavy
traffic when all stations have utilizationone. However, in the presence of dynamic
routing decisions, the definition of heavy traffic is more subtle. Harrison [17] de-
scribed the heavy traffic condition for such networks via a linear program, called
static planning problem, involving the first-order network data. Along the same
lines, we consider the static planning problem below:

STATIC PLANNING PROBLEM.

minimizeρ(10)

subject toRx = λ,Ax ≤ ρe, x ≥ 0.(11)

One can interpretxj as the long-run average rate at which activityj is undertaken,
expressed in units of activity per unit of time, andρ as a uniform upper bound
on the utilization rates for the various resources under the processing planx. In
the static planning problem one seeks to minimize the maximal utilization rateρ

subject to the requirement that average rates be nonnegative and that exogenously
generated inputs be processed to completion without other inventories being
generated.

Having introduced the static planning problem, we articulate the heavy traffic
condition via static planning problem as follows:

HEAVY TRAFFIC ASSUMPTION. The static planning problem has a unique
solution (ρ∗, x∗). Moreover, that solution hasρ∗ = 1 andAx∗ = e.

We will assume hereafter that the heavy traffic assumption is satisfied. One can
interpret the heavy traffic assumption as follows: There is just one way of splitting
arrivals in each input stream among available alternate routes so that no server is
loaded beyond its capacity by the resultant flows, and each resource is critically
loaded under this way of splitting the input streams.

In the solution of the static planning problem the activities for whichx∗
j > 0

are called the basic activities and those for whichx∗
j = 0 are called the nonbasic

activities. We letb denote the number of basic activities and relabel the activities
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so that activities 1,2, . . . , b are the basic ones. If there is degeneracy in the solution
of the static planning problem, then the set of basic variables as defined above is
not the same as the “basic” solution as understood in linear programming theory;
see [3]. We partitionx∗ as

x∗ =
[
x∗
B

x∗
N

]
,(12)

wherex∗
B is theb-dimensional vector of nominal basic activity levels andx∗

N = 0.
It will be also convenient for our later purposes to partition the input–output
matrix R and the capacity consumption matrixA as follows:

R = [H J ] and A = [B N ],(13)

whereH andB both haveb columns and they correspondto the basic activities.
We also make the following natural assumption which simply says that each

customer class is served by at least one basic activity.

ASSUMPTION BAB (Basic activity for each buffer). In the solution of the
static planning problem, for each bufferi there is at least one basic activityj such
thatHij > 0.

In this paper, we only consider networks that satisfy the complete resource
pooling (CRP) condition below.

COMPLETE RESOURCE POOLING ASSUMPTION. We assume that there is a
full set of basic activities in the solution of the static planning problem. To be
more specific, we assume thatp + m − b = 1, where, as before,p is the number
of servers,m is the number of buffers, andb is the number of basic activities.

Analyzing a formal Brownian analog of the model in this section, Bramson
and Williams [8] establish that (cf. Corollary (6.2) of [8]) the state descriptor
is d-dimensional, whered = p + m − b. Thus, under the complete resource
pooling assumption, the state descriptor is one dimensional and we exploit this
fact significantly in our analysis.

We will also consider the dual linear program of the static planning problem
which is given below.

DUAL OF THE STATIC PLANNING PROBLEM.

maximizey′λ(14)

subject toy′R ≤ π ′A,π ′e = 1 and π ≥ 0.(15)
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LEMMA 1. There exist an m-dimensional vector y and a p-dimensional
vector π such that y and π are both strictly positive and they satisfy the conditions
below:

y′H = π ′B,(16)

π ′N ≥ y′J.(17)

This lemma is simply a restatement of Lemmas (7.2) and (7.6) of [8]. One can
interpretyi as the workload contribution, or total work content, per classi job
andπk as the relative capacity of serverk. Detailed interpretations of the vectors
y andπ are given in Section 4 of [17].

2.3. Notation. For each positive integerk, thek-dimensional Euclidean space
will be denotedRk ; whenk = 1, the superscript will be suppressed.[x] denotes the
integer part of a nonnegative real numberx. Vectors will be column vectors unless
indicated otherwise. Inequalities between vectors inRk should be interpreted
componentwise. Fora, b ∈ Rk , we shall usea ∨ b to denote the vector whose
ith component is the maximum ofai and bi for i = 1, . . . , k. Similarly, a ∧ b

will denote the componentwise minimum ofa andb. The superscript′ will be
used to denote the operation of taking the transpose of a vector or matrix. For
x = (x1, . . . , xk)

′ ∈ Rk , we will use the norm|x| = maxki=1 |xi|, and for the norm
of ank × l matrix A, we will use|A| = maxki=1

∑l
j=1 |Aij |. For a vectorx ∈ Rk,

the k × k diagonal matrix whose diagonal entries are given by the components
of x will be denoted by diag(x). We define the “ball” around a pointz ∈ Rm of
radiusa via

Ba(z) = {q ∈ Rm :q1 > z1 − a, |qi − zi| < a for i = 2, . . . ,m}.(18)

Let (�,F ,P ) be a probability space. We denote filtrations on(�,F ) by
{Ft , t ≥ 0}. For each positive integerk, let Dk be the space of all functions
ω : [0,∞) → Rk that are right continuous on[0,∞) and have finite left limits
on (0,∞). The identically zero function inDk will be denoted by0. Forω ∈ Dk

andT ≥ 0, we let‖ω‖T = supt∈[0,T ] |ω(t)|. ConsiderDk to be endowed with the
usual Skorohod (J1) topology (see [4, 11]). LetMk denote the Borelσ -algebra
on Dk associated with this topology. This is the sameσ -algebra generated by
the coordinate maps, that is,Mk = σ {ω(s) : 0 ≤ s < ∞}. Each continuous-time
(stochastic) process in this paper will be assumed to be a measurable function
from some probability space (�,F ,P ) into (Dk,Mk). A sequence of processes
{Wi}∞i=1 is said to be tight if and only if theprobability measures induced by the
sequence on (Dk,Mk) form a tight sequence. The notation “Wi ⇒ W ” will mean
that the probability measures induced by theWi on (Dk,Mk) converge weakly
to the probability measure induced on (Dk,Mk) by W as i → ∞. For more on
tightness and weak convergence of processes taking values inDk see [4, 11, 50].
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3. Scheduling controls and network dynamics. We specify a scheduling
policy or control by ann-dimensional continuous stochastic processT =
{T (t), t ≥ 0}, whereTj (t) can be interpreted as the amount of service time devoted
to activity j by servers(j) in [0, t] for j = 1, . . . , n.

Having introduced the scheduling controlsT (·), we define the performance
related processes which will be driven byT (·). Let Zi(t) denote the number
of classi jobs in the network at timet for i = 1, . . . ,m; and Ik(t) denote the
cumulative idleness experienced by serverk up to timet for k = 1, . . . , p. Also
define the vector valued processesZ,E,S associated with job-counts, external
arrivals and service completions, respectively, in the obvious way. We also define
cumulative idleness process as

I (t) = te − AT (t),(19)

and the vector-valued deviation control processY (t) as

Y (t) = x∗t − T (t).(20)

3.1. Admissible policies and network dynamics. In the literature of dynamic
scheduling, most of the existing models deal only with work-conserving (or,
nonidling) policies (see, e.g., [5, 27, 42, 52]). However, we will allow policies that
may require the servers go idle even when there is work for them in the system.
Indeed, the policy we will propose in the sequel will require idling the servers
occasionally.

In this paper we restrict attention to so-calledhead-of-line policies. Loosely
speaking, in these policies, when the server works on an activity, server effort
is delivered solely to the job at the head of the line in the buffer corresponding
to that activity. This assumption does preclude some policies such as processor
sharing, but it is mathematically convenient. In particular, it allows us to describe
the evolution of the buffer contents in the system by just specifying the cumulative
time allocation processT = {T (t), t ≥ 0}. For purposes of our analysis, it is
sufficient to think of the head-of-line assumption as requiringT to be admissible
as defined below.

We call a scheduling policyT = {T (t), t ≥ 0} admissible if it maps stochastic
primitive processes of our network(E,S,�1, . . . ,�n) to Dn[0,∞), and the
conditions below are satisfied. These conditions merely require that our model
has reasonable system dynamics:

T (·) is nondecreasing andT (0) = 0,(21)

A
(
T (t) − T (s)

)≤ e(t − s) for all 0 ≤ s ≤ t < ∞,(22)

Z(t) = Z(0) + E(t) +
n∑

j=1

�j

(
Sj

(
Tj (t)

))− CS(T (t)),(23)

Z(t) ≥ 0 for all t ≥ 0.(24)
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We note that the class of admissible policies is quite large. In particular, an
admissible policy does not even have to be adapted to the natural filtration
generated by the stochastic primitives. The conditions (21), (22) and (24) are quite
natural in the sense that for any physical system, they have to be satisfied, and
condition (22) can also be stated asI (·) is nondecreasing.The condition (23)
reflects the fact that we only consider the head-of-the-line policies, and that we
restrict attention to preemptive-resume policies.

3.2. Objective. Ideally, the objective of the system manager is to find the
“optimal” scheduling controls. Assuming linear holding costs, a natural objective
of such policy design is to find a nonanticipating controlT = {T (t), t ≥ 0} that
minimize the expected infinite horizon total discounted holding cost of the form

JT = E
(∫ ∞

0
e−γ sh · Z(s) ds

)
,(25)

whereZ(s) is the buffer content vector at times, h is the vector of holding cost
rates, andγ is the interest rate.

Another natural objective is to minimize the long-run average holding cost

JT = lim sup
t→∞

E
(

1

t

∫ t

0
h · Z(s) ds

)
.(26)

An even more ambitious objective is to find a nonanticipating policy that
minimizes

P (h · Z(s) > x) for all s > 0, x > 0(27)

among all admissible policies.
It is almost impossible in dynamic scheduling theory for stochastic processing

networks to find solutions which can be described by a few parameters and
are exactly optimal. However, lowering the aspirations in accordance with the
general program laid out by Harrison [15] and Williams [7, 51], we relax the
objective and seek “good” policies that are “asymptotically optimal.” Namely, we
construct a simple discrete review policy in the next section which turns out to be
asymptotically optimal in a very strong sense. By asymptotically optimal, we mean
that our policy achieves a lower bound on the system performance asymptotically;
the precise definition of this statement and its proof will be provided in Section 5.

4. Policy description. In this section we describe our policy. To implement
the policy, the system manager reviews the system status at discrete points in
time and observes the buffer content levels. At each such review point, a nominal
processing plan is derived for the ensuing period by a simple matrix computation
and the resulting plan is implemented in open-loop fashion over the ensuing
period. It is important to point out that we only use the first-order network data
in specifying our policy. Even though performance of the policy depends critically
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on higher moments of the stochastic increments of the network, they are not used
in describing the policy. Before describing our policy, we first present a policy-
dependent performance bound in the next subsection to motivate our policy.

4.1. A policy dependent performance bound. We first define the workload
processW = {W(t), t ≥ 0} as follows:

W(t) =
m∑

i=1

yiZi(t) for all t ≥ 0,(28)

wherey is given by Lemma 1. Without loss of generality (by simply relabeling
buffers), we can assume that

h1

y1
≤ h2

y2
≤ · · · ≤ hm

ym

.(29)

Clearly, we have the following lower bound on the instantaneous cost rate:
m∑

i=1

hiZi(t) ≥ h1

y1
W(t).(30)

One can interpret the term on the right-hand side as the cost rate achieved by
keeping all the workload in the “cheapest” buffer. Clearly, this lower bound is
policy dependent becauseW(t) depends on the policy employed. That is, we do
not have a useful bound that works for all policies. However, we will provide an
asymptotic bound that works for all policies (see Proposition 2).

4.2. Description of the discrete review policy. To motivate our choice of
policy, we begin with an informal discussion of the policy in an idealized
deterministic system in heavy traffic. The discrete review policy reviews the state
of the system periodically. Consider the system at one such review point. Letq

denote the contents of the buffers at this review point. Based onq, we compute a
processing planx to be implemented until the next review point, that is, over the
nextl time units. Given the processing planx, servers(j) will spendxj l time units
on activityj , serving bufferb(j). We will choosex so as to drive the state of the
system at the end of the review period towards a target statez. Since the system is
in heavy traffic, the workload cannot be decreased by any policy. So given (30), we
would like to do two things with our choice ofx andz. First, we would likeAx = e

so as to ensure that the servers are fully utilized and thus prevent the workload
from increasing. Second, we would likez to be such thatz2 = z3 = · · · = zm = 0.
Of course, given an arbitraryq, it will not always be possible to achieve these
objectives with a fixed period lengthl. But we would like to ensure that if the
system started in a desirable state, that is,q2 = q3 = · · · = qm = 0, then it would
continue to remain in a desirable state. In the idealized deterministic system, ifx is
used as the processing plan forl time units, the target state resulting is

z = q + λl − Rxl,
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whereR is given by (9). Let

� =
[
H e1

B 0

]
,(31)

where H and B are given by (13), and suppose for now that�−1 exists. If
we used a processing planx = [x′

B, x′
N ]′, wherexN = 0 and a target statez =

(z1,0,0, . . . ,0) such thatxB andz1 are given by[
xBl

z1

]
= �−1

[
q + λl

el

]
,

then we would havez = q andAx = e. That is, we would continue to stay in the
desirable state and would have fully utilized the servers. In fact, the processing
plan used would be the nominal processing planx∗ from the solution of static
planning problem [see (10) and (11)].

The prescription in the idealized system of keepingq2 = · · · = qm = 0, while
processing activities that drain these buffers according to the planx, is not
necessarily implementable in the original stochastic system. One way to adapt
the policy is to specify a small safety stockθk for each bufferk and to modify the
processing plan and target state to[

xBl

z1 − θ1

]
= �−1

[
q + λl − θ

el

]
.(32)

This way, if we started in a desirable stateq2 = θ2, q3 = θ3, . . . , qm = θm and
q1 ≥ θ1, we would end up in a desirable state while fully utilizing the servers.

Finally, we need to specify about what to do ifq is far from a desirable state.
Note that the processing plan in (32) tends to correct for deviations ofq from θ .
So if q2, . . . , qm were close toθ2, . . . , θm, we could still implement the plan
from (32) and achieve target statez that is closer to a desired state. However,
the resulting processing planx would deviate fromx∗, the solution of the static
planning problem. Therefore, ifq were very far fromθ , thex computed via (32)
may be infeasible, that is, it may have negative components, capacity constraints
may be violated, or may result in some components ofz being negative. In this
case we need to stretch the length of the review period so that a feasible processing
plan would still be able to achieve the desired target state. In fact, stretching the
review period sufficiently long, we can achieve a desired state using only small
perturbations of the nominal processing planx∗.

We now make these heuristic ideas precise for the stochastic network model
described in Section 2. Define constants

C0 = min
1≤j≤b,1≤i≤m

x∗
j

|(�−1
(
ei
0

)
)j |

,(33)

C1 = C0

(
m

max
j=1

{
yj

y1

})
(34)
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and

θ∗ = n

[
(2+ C1 + C0)

(
1∨ n

max
j=1

{µj }
)

+ 1
]
e.(35)

Givenl, we choose the safety stock parametersθ as

θ = θ∗l,(36)

and pick a perturbation constantδ > 0 such that

δ <
C0

2m[1+ (
∑m

i=1 yi)(maxmk=1 λk)] ,(37)

wherey is given by Lemma 1.
At the beginning of a review period, the system manager reviews the system

status and observesq, the queue length vector, then determines the actual length of
the planning period,T exe which may be different from the nominal lengthl, and
the processing planx for the review period according to the prescription below.
Then the servers start working in open-loop fashion by undertaking each (basic)
activity for xj l time units or until the number of jobs processed using activityj

exceedsqb(j)/n in the review period. At the end of the review period, a new review
period starts and the same procedure is repeated. We now describe the mechanics
in a given review period.

We consider two cases: the first case corresponds to the case where the observed
state and the target state are not too far apart, and the second to the case when they
are.

CASE 1. q ∈ Bδl(θ). First, the system manager idles all the servers for
[y′(θ − q)]+ to make sure that there is enough work in the system to be processed.
All the processing activities are done in the nextl units of time. Therefore, we let
the actual length of the review period be

T exe = l + [y′(θ − q)]+.(38)

We also setxN = 0, zk = θk for k = 2, . . . ,m and determine the basic activity rates
xB and target level for the first bufferz1 by[

xBl

z1 − θ1

]
= �−1

[
q + λT exe − θ

el

]
.(39)

Lemmas 2 and 3 establish that� is indeed invertible, and thatx and z1 are
well defined. Recall that we focus attention on preemptive-resume policies. The
associated servers(j) spendsxj l units of time on activityj during the review
period, for j = 1, . . . , b. Further we specify that for any basic activityj , the
servers(j) is not allowed to process more thanqb(j)/n jobs from bufferb(j) via
activity j , wheren is the number of activities. This ensures that one activity does
not overly drain a buffer and thus prevent other activities from being carried out. In
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caseqb(j)/n jobs are processed by activityj before the end of the review period,
the server will simply go idle for the remaining time dedicated to activityj . By
selectingθ large enough as in (35) and (36), we will see that this event will occur
only with a small probability.

CASE 2. q /∈ Bδl(θ). In this case the observed stateq is far enough from a
desirable state so as to render the plan given by (39) infeasible, that is,x does not
satisfyx ≥ 0, andAx ≤ e. We construct a feasible plan by first idling to accumulate
work if necessary and then by “stretching” the length of the review period as
follows. The system manager idles all the servers for[y′(θ −q)]+ to make sure that
there is enough work in the system to be processed. We setq̃ = q + λ[y′(θ − q)]+
and introduce stretching coefficientCs , which will tell us by what factor we need
to increase the length of the review period, given by

Cs = max
j=1,...,b

|(1/l)[I,0]�−1[ θ−q̃
0

]
)j |

x∗
j

∨ 1,(40)

whereI is theb×b identity matrix. We let the actual length of the review period be

T exe = [y′(θ − q)]+ + Csl.(41)

We also setxN = 0 andzk = θk for k = 2, . . . ,m. We then determine the target
level for the first buffer and the basic activity rates, which will be undertaken for
the lastCsl time units of the review period, as

z1 = y′(q̃ − θ)

y1
+ θ1,(42)

xB = x∗
B

(
1− 1

Cs

)
+ 1

Csl
[I,0]�−1

[
q̃ + λl − θ

el

]
,(43)

whereI is theb × b identity matrix. Lemma 4 establishes that the processing plan
just described is implementable in a deterministic setting.

As before, the policy now specifies that servers(j) spendsCsxj l time units
on activity j . If this results in bufferb(j) emptying before the end of the review
period, then the server simply idles for the remaining time devoted to activityj .
This completes description of our discrete review policy. Case 2 is only needed
for the sake of completeness, because it turns out that the probability that Case 2
ever arises under our policy vanishes in the heavy traffic limit. This observation,
of course, simplifies our proofs significantly.

Having described the policy, we now state results showing that the policy is,
indeed, well defined, and that it results in meaningful nominal allocations.

LEMMA 2. The policy matrix � is invertible.
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For the proof see Section A.1.

LEMMA 3. Given q ∈ Bδl(θ), T exe = l +[y′(θ −q)]+ and if xB, z1 is given by[
xBl

z1 − θ1

]
= �−1

[
q + λT exe − θ

el

]
(44)

and z is given by

z = q + λT exe − Rxl,(45)

then

xB ≥ 1
2x∗

B(46)

and

z = θ + 1

y1
e1[y′(θ − q)]+.(47)

For the proof see Section A.1.

LEMMA 4. Given q̃ ≥ 0 such that y′q̃ ≥ y′θ , and Cs, z1, xB as in (40),
(42) and (43),respectively, if z = q̃ + λCsl − RxCsl, where x = (x′

B,0)′, then

x ≥ 0,Ax ≤ e and zk = θk for k ≥ 2.

For the proof see Section A.1.

REMARK. It can be verified that the discrete review policy described above
can still be implemented even if the heavy traffic assumption is not satisfied. To be
more specific, suppose we perturb the arrival ratesλ to λ̃ and consider the static
planning problem with̃λ. If this new static planning problem has a unique solution
(ρ̃, x̃) with ρ̃ < 1, andAx̃ = ρ̃e, and if λ̃ is sufficiently close toλ so that the same
basis as in (10)–(13) is optimal, then the discrete review policy described above
is still well defined for this case with the following minor change. One needs to
replace the term “el” in (39) and (43) with the term “̃ρel.” Then, since Lemmas 2–4
only use the uniqueness assumption and not the assumption thatρ = 1, they can
be modified to justify the validity of the policy. Furthermore, we can significantly
improve the performance of this policy by using the excess capacity available.
In particular, one could use the excess capacity to achieve complete state space
collapse, where all the buffer levels are zero in the diffusion limit. We do not
attempt a formal analysis of this case.
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4.3. Probability estimates for the discrete review policy. In describing the
discrete review policy, we only used the first-order network data. Even though
description of the discrete review policy does not use anything but the first
moments of the stochastic increments, its performance depends critically on the
moments of higher order. As stated earlier in Section 2.1, we assume moments of
order 2+ 2ε1 for someε1 > 0. In analyzing the performance of discrete review
policies, Maglaras [33, 34] and Harrison [16] have imposed exponential moment
assumptions on the stochastic increments, which is a strong assumption but it
results in the tighter control of buffer content levels. On the other hand, we will
need to take longer review periods because of the weaker moment assumptions,
which will become apparent below. Our moment assumptions, along with the
“long” review periods, simplifies the analysis.

In implementing the discrete review policy, system status is reviewed at discrete
points in time, sayτ0, τ1, τ2, . . . , whereτ0 = 0 and the elements in this random
sequence can be determined inductively.

We assume

Z(0) = θ,(48)

and that there are no partially completed jobs in the system at time zero and
the arrival processes have no residual time at time 0. We define the setNk for
k = 0,1,2, . . . as

Nk = Ak ∩ Bk ∩ Cc
k ∩ Dk ∩ Ek,(49)

where

Ak = {Z(τk) ∈ Bδl(θ),Z(τk+1) ∈ Bδl(θ)},(50)

Bk =
{

m
max
i=2

sup
τk≤s≤τk+1

Zi(s) ≤ [2θ∗ + n(2|µ| + 1) + 2|λ|(1+ y′θ∗)]l
}
,(51)

Ck = {Sj

(
Tj (τk+1)

)− Sj (Tj (τk)) ≥ (2µj + 1)l for somej
}

(52)
∩ {Z(τk) ∈ Bδl(θ)},

Dk = {ṽ(k+1)
j ≤ δ

√
l for j = 1, . . . , n

}∩ {ũ(k+1)
i ≤ δ

√
l ∀ i ∈ A

}
,(53)

Ek =
{∫ τk+1

τk

1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l} dIW(s) = 0
}
,(54)

whereṽ
(k)
j is the residual service time for activityj at timeτk for j = 1, . . . , n,

andk = 1,2, . . . , andũ
(k)
i is the residual interarrival time for classi at timeτk for

i ∈ A, andk = 1,2, . . . , and

IW (s) = π ′I (s), s ≥ 0.(55)

Ak tells us that we are in case 1 at the beginning and end of review periodk,
andBk specifiesZ2 throughZm have not grown too much during any part of the
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review period. If the number of jobs completed in a review period via activity
j—where the initial queue length vectorq ∈ Bδl(θ)—exceeds(2µj + 1)l, we will
announce that to be a “coordination problem.” That is, the event of coordination
problems,Ck , in periodk is given by (52). This definition is, indeed, more stringent
than necessary, because it might well be the case that for a sample path in this set,
the servers are able to undertake their prescribed activity levels. However, it is
quite cumbersome to enumerate all the possibilities which may lead to problems
in undertaking the processing plan; and neither is it necessary.Dk controls the
overshoot of the residual interarrival and service times. Finally,Ek helps us control
the idleness incurred in a review period, and it is essential to observe for our future
purposes that∫ τk+1

τk+[y′(θ−Z(τk))]+
1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l} dIW(s) = 0,

on the setCc
k ∩ Nk−1 ∩ · · · ∩ N0, which is a consequence of the fact that

IW(τk + [y′(θ − Z(τk))]+) = IW (τk+1) on that set. The latter assertion follows
because the servers work continuously during[τk +[y′(θ −Z(τk))]+, τk+1] by our
policy description. (As we restrict attention on the setCc

k ∩ Nk−1 ∩ · · · ∩ N0, the
servers will have enough input to work on during[τk + [y′(θ − Z(τk))]+, τk+1].)

PROPOSITION1. We fix an ε1 ∈ (0,1) such that (4) and (5) holds. Then

P(Nk,Nk−1, . . . ,N0) ≥
(
1− C

l1+ε1

)k+1

for all l ≥ C,k = 0,1,2, . . . ,(56)

where C is a constant independent of l; see (138).

For the proof see Section A.3.

5. Asymptotic analysis. It is almost impossible in dynamic scheduling theory
for stochastic processing networks to find solutions which can be described by
a few parameters and are exactly optimal. However, lowering the aspirations in
accordance with the general program laid out by Harrison [15] and Williams
[7, 51], we relax the objective and seek “good” policies that are “asymptotically
optimal” in the heavy traffic limit under diffusion scaling. In particular, we will
establish the asymptotic optimality of the discrete review policy introduced earlier,
provided its parameters are chosen correctly. The discrete review policy introduced
in Section 4 will be denoted byDR(l, θ,�), wherel is the (nominal) length of a
review period,θ is the vector of safety stock levels, and� is the policy matrix.
We will consider a sequence of systems indexed by the parameterr , and we will
attach a superscript to note the dependence onr . The initial conditions and the
parametersl andθ will be varied withr as below.
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Choice of policy parameters. We fix anε2 > 0 such thatε2 < ε1/3, and choose
the parametersl, θ of DR(l, θ,�) for ther th system as follows:

l(r) = r1−ε2,(57)

θ(r) = θ∗l(r).(58)

Initial conditions under scaling. We assume for ther th system that

Zr(0) = θ(r),(59)

and that there are no partially completed jobs in the system at time zero.
In order to analyze the asymptotic performance of the sequence of discrete

review policies {DR(l(r), θ(r),�)}∞r=1, we introduce the following diffusion
scaled processes. Diffusion (or CLT) scaling is indicated by placing a hat over
the process. We extend the definition of the scaled routing processes to all
nonnegative times by making them piecewise constant. In defining the diffusion
scaled quantities, we first center the processes, then accelerate the time by a factor
of r2 and normalize the space by a factor ofr . A possible intuitive way to think
about this type of scaling is to imagine that performance-relevant time spans are of
orderr2 in ther th system and the natural units of measurement for queue lengths
over such time spans are of orderr .

Diffusion scaled processes.

Êr(t) = 1

r
[E(r2t) − r2λt], t ≥ 0,(60)

Ŝr (t) = 1

r
[S(r2t) − r2µt], t ≥ 0,(61)

�̂r
j (t) = 1

r

[
�j([r2t]) − P ′

j [r2t]], t ≥ 0,(62)

Ẑr (t) = 1

r
Z(r2t), t ≥ 0,(63)

Ŵ r(t) = 1

r
W(r2t), t ≥ 0,(64)

Ŷ r (t) = 1

r
Y (r2t), t ≥ 0,(65)

Î r (t) = 1

r
I (r2t), t ≥ 0,(66)

where (62) defines the scaled routing vector for activityj , for j = 1, . . . , n.
Having introduced the diffusion scaled quantities, we now give a precise

meaning to the term “asymptotic optimality.”
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Asymptotic optimality. A sequence of admissible policies{T r∗ (·)}∞r=1 is called
asymptotically optimal if for anyt > 0, x > 0,

lim sup
r→∞

P
(
h · Ẑr

T∗(t) > x
)≤ lim inf

r→∞ P
(
h · Ẑr

T (t) > x
)

(67)

for any other sequence of admissible policies{T r(·)}∞r=1.
As an aside for the reader familiar with heavy traffic literature, we note that the

meaning of asymptotic optimality is different from, say, that considered by Bell
and Williams [1]. In our setting the traffic intensity is always 1; it is with respect
to policy parameters that we perform asymptotic analysis.

5.1. Network dynamics under scaling. To describe the evolution of system in
terms of scaled processes, we need to introduce two additional scaled processes
for which the time is accelerated byr2 and the state space is normalized byr2:

�T r(t) = 1

r2T (r2t), t ≥ 0,

�Sr(t) = 1

r2S(r2t), t ≥ 0.

It is now straightforward to derive

Ẑr (t) = X̂r (t) + RŶ r(t), t ≥ 0,(68)

Î r (t) = AŶ r(t), t ≥ 0,(69)

where

X̂r (t) = Ẑr (0) + Êr(t) +
n∑

j=1

�̂r
j

(�Sr
j

(�T r
j (t)
))− RMŜr(�T r(t)), t ≥ 0,(70)

M = diag(m).(71)

We define(n − b)-dimensional vectorη such that

η′ = π ′N − y′J(72)

and note thatη ≥ 0 by Lemma 1. Then observe that by premultiplying (68) byy′
and using (16), we have

Ŵ r(t) = X̂r
W (t) + Î r

W (t) + Î r
N (t), t ≥ 0,(73)

where

X̂r
W (t) = y′X̂r (t), t ≥ 0,(74)

Î r
W (t) = π ′Î r (t), t ≥ 0,(75)

Î r
N (t) = −η′Ŷ r

N (t), t ≥ 0.(76)
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5.2. Convergence results. In this section we present three convergence results
regarding the scaled processes underDR(l(r), θ(r),�) with l(r), θ(r) given by
(57) and (58), respectively. These results are not only required to prove our main
result [see Theorem 3], but also are interesting on their own right.

THEOREM 1 (State space collapse).For any fixed time T > 0,

sup
0≤s≤T

Ẑr
k(s) ⇒ 0 as r → ∞ for k = 2, . . . ,m

under {DR(l(r), θ(r),�)}∞r=1.

PROOF. We define the sequence of sets indexed byr as

N r =
�r2T /l(r)�⋂

k=0

N r
k .

We then have by Proposition 1 that

P (N r ) ≥
(

1− C

l(r)1+ε1

)�r2T /l(r)�
.

Substitutingl(r) = r1−ε2 [see (57)], gives

P (N r ) ≥
(

1− C

(r(1−ε2))1+ε1

)�(r1+ε2)T �
.

We note that

P (N r ) → 1 asr → ∞,

because
C

(r1−ε2)1+ε1
T r1+ε2 = T C

rε1−2ε2−ε1ε2
→ 0 asr → ∞.

We then observe that for each fixedr , on the setN r , we have

max
k=2,...,m

sup
0≤s≤r2T

Zk(s) ≤ [2θ∗ + n(2|µ| + 1) + 2|λ|(1+ y′θ∗)]l(r).

Or, in terms of diffusion-scaled quantities, we have

max
k=2,...,m

sup
0≤s≤T

Ẑr
k(s) ≤ [2θ∗ + n(2|µ| + 1) + 2|λ|(1+ y′θ∗)] l(r)

r
.(77)

Clearly, for everyε > 0, we have

P

(
max

k=2,...,m
sup

0≤s≤T

Ẑr
k(s) > ε

)

≤ P
(
(N r )C

)+ P

(
max

k=2,...,m
sup

0≤s≤T

Ẑr
k(s) > ε,N r

)
.



DISCRETE REVIEW POLICIES 351

We can bound the right-hand side by using (77), which gives

P

(
max

k=2,...,m
sup

0≤s≤T

Ẑr
k(s) > ε

)

≤ P
(
(N r )C

)+ P

(
2θ∗ + n(2|µ| + 1) + 2|λ|(1+ y′θ∗)

rε2
> ε

)
.

Therefore, we have

P

(
max

k=2,...,m
sup

0≤s≤T

Ẑr
k(s) > ε

)
→ 0 asr → ∞.

Or, equivalently,

sup
0≤s≤T

Ẑr
k(s) ⇒ 0 asr → ∞ for k = 2, . . . ,m. �

Before we state our next result, we first introduce the one-dimensional regulator
map(ψ,ϕ) :D[0,∞) → D[0,∞) by letting

ψ(x)(t) = − inf
0≤s≤t

x(s),

ϕ(x)(t) = x(t) + ψ(x)(t),

for all x ∈ D[0,∞).

THEOREM 2 (Convergence of scaled workload).

(Ŵ r , Î r
W , X̂r

W ) ⇒ (W ∗, I ∗,X∗
W) as r → ∞

under {DR(l(r), θ(r),�)}∞r=1, where X∗
W is a (0, σ 2) Brownian motion starting

at the origin, I ∗ = ψ(X∗
W ), and W ∗ = ϕ(X∗

W). That is, W ∗ is one-dimensional
regulated Brownian motion. The variance parameter is σ 2 = y�y′ with � =
�0 +∑n

j=1x∗
j �j , and �0,�1, . . . ,�n are m × m covariance matrices defined as

�0
jk = λk Var(uk(1))1{k=l},

�j = 1

mj

[�j + (RjR
′
j )Var(vj (1))] for j = 1, . . . , n,

where

�
j
kl = Pjk

(
1{k=l} − Pjl

)
.

PROOF. We fix T > 0 and analyzeDR(l(r), θ(r),�) over[0, r2T ] for r = 1,

2, . . . . As defined in the proof of Theorem 1, we let

N r =
�r2T /l(r)�⋂

k=0

N r
k ,
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and observe that for every sample path in the setN r , we have that∫ r2T

0
1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l(r)} dIW(s) = 0.(78)

This follows immediately by construction of the setsNk, k = 0,1, . . . , �r2T/l(r)�.
To be more specific, the setEk [see (54)], is constructed to make sure that we
have (78) on the setN r .

One can equivalently represent (78) in terms of scaled quantities as follows:∫ T

0
1{Ŵ r (s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l(r)/r} dÎ r

W (s) = 0.(79)

Recall that [see (73)] under any admissible policy, we have that

Ŵ r(t) = X̂r
W (t) + Î r

W (t) + Î r
N (t).

Moreover, underDR(l(r), θ(r),�), on the setN r , we have that

Î r
N = 0 for all t ∈ [0, T ].

This follows becauseDR(l(r), θ(r),�) never uses the nonbasic activities. Conse-
quently, underDR(l(r), θ(r),�) we always have

Ŵ r(t) = X̂r
W (t) + Î r

W (t).(80)

Having (79) and (80), we can invoke Lemma 7 which is stated and proved in
Section A.2 to get, on the setN r ,

ψ
(
X̂r

W (s)
)≤ Î r

W (s)
(81)

≤ ψ
(
X̂r

W (s)
)+ (y′θ∗ + mn|y|(2|µ| + 1) + 2|y|my′θ∗|λ|)

rε2
,

ϕ
(
X̂r

W (s)
)≤ Ŵ r(s)

(82)

≤ ϕ
(
X̂r

W (s)
)+ (y′θ∗ + mn|y|(2|µ| + 1) + 2|y|my′θ∗|λ|)

rε2
,

for all s ∈ [0, T ].
The next step is to prove that�T r(·) ⇒ x∗(·) asr → ∞ underDR(l(r), θ(r),�),

wherex∗(t) = x∗t . To this end, we define the sequence processes�Xr
W , �Wr , �I r

W ,
�Xr , �Zr , �I r , �Y r as follows:

�Xr
W (t) = 1

r
X̂r (t), t ≥ 0,

�Wr(t) = 1

r
Ŵ r(t), t ≥ 0,

�I r
W (t) = 1

r
Î r
W (t), t ≥ 0,
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�Xr(t) = 1

r
X̂r (t), t ≥ 0,

�Zr(t) = 1

r
Ẑr(t), t ≥ 0,

�I r(t) = 1

r
Î r (t), t ≥ 0,

�Y r(t) = 1

r
Ŷ r(t), t ≥ 0.

We note that�T (s) ≤ s, for all t ∈ [0, T ], by (22). We also recall [see (70)] that

X̂r (t) = Ẑr (0) + Êr(t) +
n∑

j=1

�̂r
j

(�Sr
j

(�T r
j (t)
))− RMŜr

(�T r(t)
)
.

Using these, it is straightforward to derive

‖X̂r‖T ≤ ‖Ẑr (0)‖ + ‖Êr‖T +
∥∥∥∥∥

n∑
j=1

�̂r
j (

�Sr
j )

∥∥∥∥∥‖�Sr
j‖T

+ |RM|‖Ŝr‖T .

It is also straightforward to show that the right-hand side converges in distribution
to a nondegenerate limit. This can be proved by using the continuous mapping
theorem, random time change theorem (cf. [4]) and the fact that�Sr

j (s) → µjs

as r → ∞ for every s ∈ [0, T ] (cf. [23] for a proof ). On the other hand, since
�Xr = 1

r
X̂r , we have that

‖�Xr‖T ⇒ 0 asr → ∞.

We also conclude by (74) that

‖�Xr
W‖T ⇒ 0 asr → ∞.

Since the one-dimensional regulator map commutes with scaling (see [50]), we
immediately have, on the setN r , that

ψ
(�Xr

W (s)
)≤ �I r

W (s) ≤ ψ
(�Xr

W (s)
)+ (y′θ∗ + mn|y|(2|µ| + 1) + 2|y|my′θ∗|λ|)

rε2
,

ϕ
(�Xr

W (s)
)≤ �Wr(s) ≤ ϕ

(�Xr
W (s)

)+ (y′θ∗ + mn|y|(2|µ| + 1) + 2|y|my′θ∗|λ|)
rε2

for all s ∈ [0, T ]; and sinceψ,ϕ are continuous under Skorohod topology
(cf. page 153 of [11]) and thatP (N r ) → 1 asr → ∞, we immediately have

�I r
W ⇒ 0 asr → ∞,

�Wr ⇒ 0 asr → ∞.
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Since we haveπ > 0, andy > 0 (cf. Lemma 1), we also have that

�I r ⇒ 0 asr → ∞,

�Zr ⇒ 0 asr → ∞.

We now prove that�Y r(·) ⇒ 0 as r → ∞. Or, equivalently,�T r(·) ⇒ x∗(·) as
r → ∞. We first note that

Y =
[
YB

YN

]
and T =

[
TB

TN

]
,

whereYN = TN = 0 underDR(l(r), θ(r),�), because our policy never uses the
nonbasic activities. Also, we have for any admissible policy that, by dividing both
sides of (68) and (69) byr ,

�Zr(s) = �Xr(s) + R�Y r(s),

�I r (s) = A�Y r(s).

Moreover, underDR(l(r), θ(r),�) these reduce to the following:

�Zr(s) = �Xr(s) + H�Y r
B(s),

�I r (s) = B�Y r
B(s).

We can rewrite this in matrix notation as follows:[
H

B

]
�Y r

B(s) =
[�Zr(s) − �Xr(s)

�I r(s)

]
.

Or, we can write [
H −e1
B 0

][�Y r
B(s)

0

]
=
[�Zr(s) − �Xr(s)

�I r (s)

]
.

It is immediate from this and Lemma 2 that[�Y r
B(s)

0

]
= �−1

[�Zr(s) − �Xr(s)
�I r (s)

]
.

Since(�Zr, �Xr,�I r) ⇒ (0,0,0) asr → ∞, we conclude by the continuous mapping
theorem that�Y r

B(·) ⇒ 0 asr → ∞, which in turn implies that

�T r(·) ⇒ x∗(·) asr → ∞.

We now immediately conclude by the representation (70) and the definition ofX̂r
W

[see (74)] and by the continuous mapping theorem, random time change theorem
and functional central limit theorem for renewal processes (see [4]) that

X̂r
W (·) ⇒ X∗

W asr → ∞,
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whereX∗
W is a one-dimensional (0,σ 2) Brownian motion. Deriving the expression

for σ 2 is straightforward but tedious. It is outlined in [14] and so we will not repeat
here.

We also conclude by the continuous mapping theorem that

ψ(X̂r
W ) ⇒ ψ(X∗

W ) asr → ∞,

ϕ(X̂r
W ) ⇒ ϕ(X∗

W) asr → ∞,

becauseψ,ϕ are continuous under Skorohod topology; see [11].
Finally, sinceP (N r) → 1 asr → ∞ and (81), (82) holds on the setN r , we

conclude by Skorohod representation theorem (see [4]) that

Î r
W ⇒ ψ(X∗

W ) asr → ∞,

Ŵ r ⇒ ϕ(X∗
W) asr → ∞. �

COROLLARY 1 (Convergence of scaled queue lengths).

Ẑr ⇒ Z∗ as r → ∞
under {DR(l(r), θ(r),�)}∞r=1, where

Z∗(t) =
(

W ∗(t)
y1

,0, . . . ,0
)
.

PROOF. By (28) we have

Ẑr
1(s) = 1

y1

[
Ŵ r(s) −

m∑
i=2

yiẐ
r
i (s)

]
.

We also have by Theorem 1 that

m∑
i=2

yiẐ
r
i ⇒ 0 asr → ∞,

and by Theorem 2 that

Ŵ r(·) ⇒ W ∗ asr → ∞.

Therefore, the result follows by the convergence together lemma (see [4]).�

5.3. An asymptotic performance bound. In this section we develop an asymp-
totic lower bound on the cost rate for admissible sequence of policies. The follow-
ing result provides an asymptotic bound on the cost rate:
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PROPOSITION 2. Given an arbitrary sequence of admissible poli-
cies {T r(·)}∞r=1, for each t > 0, x > 0, one has that

lim inf
r→∞ P

(
h · Ẑr

T (t) > x
)≥ P

(
h1

y1
W ∗(t) > x

)
= 2N

( −xy1

h1σ
√

t

)
,

where N(·) is the cumulative distribution function for a standard normal random
variable.

For the proof see Section A.4.
Therefore, the processh1

y1
W ∗(·) gives an asymptotic lower bound on the

achievable cost rate.

5.4. Asymptotic optimality of the discrete review policy. Consider the se-
quence of discrete review policies{DR(l(r), θ(r),�)} with l(r) = r1−ε2, θ(r) =
θ∗l(r). Let T∗ = {T r∗ (·)}∞r=1 denote the sequence of cumulative time allocations
under{DR(l(r), θ(r),�)}∞r=1. Our main result can then be stated as follows.

THEOREM 3 (Asymptotic optimality of the discrete review policy).For each
t > 0 and x > 0, we have

lim
r→∞P

(
h · Ẑr

T∗(t) > x
)= P

(
h1

y1
W ∗(t) > x

)
.

Therefore, {DR(l(r), θ(r),�)}∞r=1 is asymptotically optimal.

PROOF. By Corollary 1 we have

h · Ẑr
T∗ ⇒ h1

y1
W ∗ asr → ∞.

Given Proposition 2, the result follows (see [4]).�

APPENDIX: TECHNICAL PROOFS

A.1. Proofs in Section 4.2. We now present the proofs of technical results
presented in the text. We start by stating and proving a lemma which will be useful
in proving Lemma 2.

LEMMA 5. The matrix
[
H 0
B −e

]
is invertible.

PROOF. Suppose it is not invertible, then there existsxB ∈ Rb,α ∈ R such that[
H 0
B −e

][
xB

α

]
= 0,(83)

[
xB

α

]
�= 0.(84)
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Clearly, HxB = 0, BxB = αe and using (16), we immediately concludeα = 0.
Therefore, we have [

H 0
B −e

][
xB

0

]
= 0.(85)

Recall that we denote the solution of the static planning problem byx∗, where

x∗ =
[
x∗
B

0

]
,

andx∗
B > 0. Therefore, without loss of generality we can assume that

x∗
B + xB ≥ 0.(86)

Also by using the heavy traffic assumption and (85), (86), we write[
H 0
B −e

][
x∗
B + xB

0

]
=
[

λ

e

]
,

[
x∗
B + xB

0

]
≥ 0.

This implies
[
x∗
B+xB

0

]
, ρ = 1 is an optimal solution to the static planning problem.

However, by the heavy traffic assumption, the solution of static planning problem
is unique. That is,xB = 0, which contradicts (84).�

PROOF OFLEMMA 2. We consider solving the following equation:[
H 0
B −e

][
x

ρ

]
=
[
e1
0

]
,(87)

which has a unique solution by Lemma 5. By Cramér’s rule (see page 233 of [45]),
we conclude

ρ =
det
[
H e1
B 0

]
det
[
H 0
B −e

] .
We can write (87) as

Hx = e1,(88)

Bx = eρ.(89)

Premultiplying (88) byy′ givesy′Hx = y1, and also by (89), (16) we have that

y′Hx = π ′Bx = π ′eρ = ρ.



358 B. ATA AND S. KUMAR

Therefore, we haveρ = y1 and we concludeρ > 0, becausey > 0 by Lemma 1.
Clearly, by (87),ρ > 0 implies

det
[
H e1
B 0

]
�= 0,

which in turn implies� is invertible. �

The following lemma is needed to prove Lemma 3:

LEMMA 6. Given q ∈ BC0/(2m)l(θ), if xB, z1 is given by[
xBl

z1 − θ1

]
= �−1

[
q + λl − θ

el

]
,(90)

then
[
xB
z1

]
> 0. More precisely,

[
xB
z1

]≥ 1
2

[
x∗
B

θ1

]
.

PROOF. We letα, q̃ be such thatα ≥ 0,

q = q̃ + αe1

and

|q̃i − θi | < C0

2m
l for i = 1, . . . ,m.

Recall thatθ > C1le. We first prove the following two facts:

�−1
[
e1
0

]
=
[

0
1

]
,(91)

(
�−1

[
ei

0

])
b+1

= yi

y1
.(92)

Equation (91) follows from Lemma 2 and the fact that

�

[
0
1

]
=
[
e1
0

]
.

To prove (92), we letx,β be such that[
x

β

]
= �−1

[
ei

0

]
.

We want to prove thatβ = yi

y1
. It follows from the equation immediately above and

Lemma 2 that

Bx = 0,(93)

Hx + βe1 = ei .(94)
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By (16) and (93), premultiplying (94) byy′ gives

βy1 = yi.

Thus,β = yi

y1
.

We now note that[
xBl

z1 − θ1

]
= �−1

([
λl

el

]
+
[
q̃ − θ

0

]
+ α

[
e1
0

])
.

We then have, by the heavy traffic assumption, Lemma 2 and (91) that[
xBl

z1 − θ1

]
=
[
x∗
Bl

0

]
+ �−1

[
q̃ − θ

0

]
+ α

[
0
1

]
.

Sinceα ≥ 0, we also have[
xBl

z1 − θ1

]
≥
[
x∗
Bl

0

]
+

m∑
i=1

(q̃i − θi)

(
�−1

[
ei

0

])
.

We now rewrite the inequality for each component; we first consider

z1 − θ1 ≥
m∑

i=1

(q̃i − θi)

(
�−1

[
ei

0

])
b+1

.

We immediately conclude by (92) and choice ofq̃, α that

z1 − θ1 ≥ −
m∑

i=1

|q̃i − θi |
(

yi

y1

)
≥ − C0

2m
l

m∑
i=1

yi

y1
≥ −C0

2
l

m
max
i=1

{
yi

y1

}
= −C1

2
l.

Therefore,

z1 ≥ θ1 − C1

2
l ≥ θ1

2
> 0.

The second inequality follows becauseθ > C1le.
Also, we have forj = 1, . . . , b,

xj l ≥ x∗
j l +

m∑
i=1

(q̃i − θi)

(
�−1

[
ei

0

])
j

.

Clearly, we also have

xj l ≥ x∗
j l −

m∑
i=1

|q̃i − θi |
∣∣∣∣(�−1

[
ei

0

])
j

∣∣∣∣≥ x∗
j l − m

C0

2m
l
x∗
j

C0
= x∗

j

2
l > 0,

where the second inequality follows by the choice ofq̃ and definition ofC0
[see (33)]. �
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PROOF OF LEMMA 3. We let q̃ = q + λ[y′(θ − q)]+. To prove xB ≥
1
2x∗

B , it suffices by Lemma 6 to check thatq̃ ∈ BC0/(2m)l(θ). We check this
componentwise, first consideri = 2, . . . ,m,

|q̃i − θi | ≤ |qi − θi | + λi[y′(θ − q)]+ ≤ δl +
(

m
max
k=1

λk

) m∑
i=1

yi|θi − qi|.

Or, we can write

|q̃i − θi | ≤ δl

(
1+
(

m
max
k=1

λk

) m∑
i=1

yi

)
≤ C0

2m
l.

The last inequality follows by the choice ofδ [cf. (37)]. To complete the proof
of the first part of the lemma, we also establish a similar inequality for the first
component of̃q, which indeed holds trivially:

q̃1 = q1 + λ1[y′(θ − q)]+ ≥ q1 ≥ θ1 − δl,

where the last inequality follows from the fact thatq ∈ Bδl(θ).
To provez = θ + 1

y1
[y′(q − θ)]+e1, we first observe by (44) and Lemma 2 that

HxBl + e1(z1 − θ1) = q + λT exe − θ,(95)

BxBl = el.(96)

We observe that premultiplying (95) byy′ gives

y′(HxBl + e1(z1 − θ1)
)= y′[q + λl + λ[y′(θ − q)]+ − θ

]
.

Using (16), we write

π ′BxBl + y1(z1 − θ1) = y′q + y′λl + (y′λ)[y′(θ − q)]+ − y′θ.

We further simplify this by using (96), the heavy traffic assumption and Lemma 1
to get

y1(z1 − θ1) = y′(q − θ) + [y′(θ − q)]+.

Therefore, we have

z1 = θ1 + [y′(q − θ)]+
y1

.

Finally, by (45) and (95) we have

z = q + λT exe − Rxl = q + λT exe − HxBl = θ + (z1 − θ1)e1,

and we conclude the proof by observing that

zk = θk for k = 2, . . . ,m. �
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PROOF OFLEMMA 4. We first argue thatx ≥ 0. For j = 1, . . . , b, one can
expressxj as follows [from (43)]:

xj = x∗
j

(
1− 1

Cs

)
+ 1

Csl

(
[I,0]�−1

(
q̃ + λl − θ

el

))
j

= x∗
j

(
1− 1

Cs

)
+ 1

Csl

(
[I,0]�−1

(
λl

el

)
+ [I,0]�−1

(
q̃ − θ

0

))
j

= x∗
j

(
1− 1

Cs

)
+ 1

Csl

(
x∗
Bl + [I,0]�−1

(
q̃ − θ

0

))
j

= x∗
j − x∗

j

Cs

+ x∗
j

Cs

+ 1

Cs

(
1

l
[I,0]�−1

(
q̃ − θ

0

))
j

≥ x∗
j + 1

Cs

(−x∗
j Cs),

where the last inequality follows from the definition ofCs .
To complete the proof, we first observe that

CslxB = [I,0]�−1
(

q̃ + λCsl − θ

Csel

)
.(97)

Also, one can show by using (92), (13) and the heavy traffic assumption that

z1 − θ1 = [y′(q̃ − θ)]+
y1

= [e′
b+1]�−1

(
q̃ + λCsl − θ

Csel

)
,(98)

whereeb+1 is a(b + 1)-vector whose firstb entries are zeros and last entry is one.
By combining (97) and (98), we arrive at the following:[

xBCsl

z1 − θ1

]
= �−1

[
q̃ + λCsl − θ

eCsl

]
,

which can equivalently be written as[
H e1
B 0

][
xBCsl

z1 − θ1

]
=
[
q̃ + λCsl − θ

eCsl

]
.

One can further write this as follows:

HxBCsl + e1(z1 − θ1) = q̃ + λCsl − θ,(99)

BxBCsl = Csle.(100)

BecausexN = 0, it is immediate from (100) thatAx = e. Finally, by using (99)
and thatxN = 0, one has the following:

z = q̃ + λCsl − RxCsl

= q̃ + λCsl − HxBCsl
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= q̃ + λCsl − (q̃ + λCsl − θ − e1(z1 − θ1)
)

= θ + (z1 − θ1)e1,

which can also be written aszk = θk for k = 2, . . . ,m. �

A.2. An auxiliary lemma for Theorem 2. We now state a technical lemma
which is crucial for proving Theorem 2. The first part of this lemma is proved on
pages 14 and 15 of [53] (cf. equation (8) of [53]), and the proof of the second part
is very similar to that of first part; but we state and prove it—which is essentially
the same as the proof given by Williams [53]—here for the sake of completeness.

LEMMA 7. We let w,x, y ∈ D([0, T ],R) and δ > 0 be such that:

(i) w(t) = x(t) + y(t) ∀ t ∈ [0, T ],
(ii) w(t) ≥ 0 ∀ t ∈ [0, T ],
(iii) (a) y(0) = 0,

(b) y is nondecreasing,
(c)
∫
[0,T ] 1(δ,∞)(w(t)) dy(t) = 0.

For z ∈ R, we let z− = max{0,−z} = −min{0, z}. Then we define for all
t ∈ [0, T ], that

ŷ(t) = sup{(x(s))− : 0 ≤ s ≤ t},
ỹ(t) = ŷ(t) + δ.

Then we have

y(t) ≤ ỹ(t) ∀ t ∈ [0, T ],(101)

ŷ(t) ≤ y(t) ∀ t ∈ [0, T ].(102)

REMARK ON CONDITION (iii)(c) OF LEMMA 7. One needs to be careful in
interpreting the Lebesgue–Stieltjes integral, because the jumps inx(·) makes the
interpretation quite subtle. We refer the interested reader to the remark on page 12
of [53] for a discussion of these issues.

PROOF OFLEMMA 7. We first present the proof of (101), which is, indeed,
taken directly from [53]. We letε > 0 andτε = inf{t ∈ [0, T ] :y(t) > ỹ(t) + ε}
with inf ∅ = ∞. If τε < ∞, theny(τε) ≥ ỹ(τε) + ε by the right continuity of
paths, and

w(τε) = x(τε) + y(τε) ≥ x(τε) + ỹ(τε) + ε = x(τε) + ŷ(τε) + δ + ε ≥ δ + ε.

However, by definition ofτε and (iii)(a) and (b),y must either have a positive
jump at timeτε or y must have a point of increase to the right there. In either case,
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sincew(τε) > δ, this contradicts (iii)(c). Thus,τε = ∞ for eachε > 0, and, hence,
y(t) ≤ ỹ(t) ∀ t ∈ [0, T ] as desired.

We now prove (102). To this end, we first definêw(t) = x(t) + ŷ(t) for
t ∈ [0, T ]. It is well known that (cf. [41])ŵ, x, ŷ jointly satisfy:

(i) ′ ŵ(t) = x(t) + ŷ(t) ∀ t ∈ [0, T ],
(ii) ′ ŵ(t) ≥ 0 ∀ t ∈ [0, T ],

(iii) ′ (a) ŷ(0) = 0,

(b) ŷ is nondecreasing,
(c)
∫
[0,T ] 1(0,∞)(w(t)) dŷ(t) = 0.

We letε > 0, andτε = inf{t ∈ [0, T ] : ŷ(t) > y(t)+ ε} with inf ∅ = ∞. If τε < ∞,
thenŷ(τε) ≥ y(τε) + ε by the right continuity of paths, and

ŵ(τε) = x(t) + ŷ(τε) ≥ x(t) + y(τε) + ε = w(τε) + ε ≥ ε > 0.

However, by definition ofτε and (iii)′(a) and (b), either̂y must have a positive
jump at τε or ŷ must have a point of increase to the right there. In either case,
sinceŵ(τε) > 0, this contradicts (iii)′(c). Thus,τε = ∞ for eachε > 0 and, hence,
ŷ(t) ≤ y(t) for all t ∈ [0, T ] as desired. �

A.3. Proof of Proposition 1. We now present the lemmas below which will be
useful in proving Proposition 1.

LEMMA 8. Given a sequence {Yi}∞i=1 of independent and identically distrib-
uted random variables with mean zero and

E|Y1|2+2ε1 < ∞ for some ε1 > 0,

we have

E

∣∣∣∣∣
N∑

i=1

Yi

∣∣∣∣∣
2+2ε1

≤
[(

18(2+ 2ε1)
3/2

(1+ 2ε1)1/2

)2+2ε1

E|Y1|2+2ε1

]
N1+ε1.

PROOF. The result follows from Hölder’s and Burkholder’s inequalities. For
a derivation of this result (indeed, a more general version) see equation (3.67)
of [12]. �

We now prove a lemma regarding renewal processes associated with the external
arrival and service processes.

LEMMA 9. Given ε > 0 and t > 2/ε, we have

P

(
sup

0≤s≤t

|E(s) − λs| ≥ εt

)
≤ C2(ε)

t1+ε1
,(103)

P

(
sup

x≥0,|x|≤1
|S(xt) − M−1xt| ≥ εt

)
≤ C3(ε)

t1+ε1
,(104)
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where

C2(ε) = 2+ 2ε1

2ε1 + 1

[
18(2+ 2ε1)

3/2

(1+ 2ε1)
1/2

]2+2ε1

×∑
k∈A

E|uk(1) − Euk(1)|2+2ε1

[(
4λ2

k(λk + ε)

ε2

)1+ε1

+
(

4λ3
k

ε2

)1+ε1
]
,

C3(ε) = 2+ 2ε1

2ε1 + 1

[
18(2+ 2ε1)

3/2

(1+ 2ε1)1/2

]2+2ε1

×
n∑

j=1

E|vj (1) − Evj (1)|2+2ε1

[(4µ2
j (µj + ε)

ε2

)1+ε1

+
(4µ3

j

ε2

)1+ε1
]
.

PROOF. We will only present the proof of (103), because the proof of (104) is
essentially the same. It is straightforward to arrive at the following:

P

(
sup

0≤s≤t

|E(s) − λs| ≥ εt

)
≤∑

k∈A

P

(
sup

0≤s≤t

|Ek(s) − λks| ≥ εt

)
.

Letting σk = inf{s ∈ [0, t] : |Ek(s) − λks| ≥ εt}, where inf∅ = ∞, observe that

P

(
sup

0≤s≤t

|Ek(s) − λks| ≥ εt

)
= P (σk ≤ t), k ∈ A.

On the other hand, it is easy to see the following:

{|Ek(s) − λks| ≥ εt} = {Ek(s) − λks ≥ εt} ∪ {Ek(s) − λks ≤ −εt}
= {Ek(s) ≥ λks + εt} ∪ {Ek(s) ≤ λks − εt}
⊂ {Ek(s) ≥ �λks + εt�} ∪ {Ek(s) ≤ �λks − εt�}
= {Uk(�λks + εt�) ≤ s} ∪ {Uk(�λks − εt�) ≥ s},

whereU(−k) = 0 for k ≥ 0.
Defining

σ
(1)
k = inf{s ∈ [0, t] :Uk(�λks + εt�) ≤ s}, k ∈ A,

σ
(2)
k = inf{s ∈ [0, t] :Uk(�λks − εt�) ≥ s}, k ∈ A,

we can writeσk ≥ σ
(1)
k ∧ σ

(2)
k . Therefore,

P (σk ≤ t) ≤ P
(
σ

(1)
k ∧ σ

(2)
k ≤ t

)≤ P
(
σ

(1)
k ≤ t

)+ P
(
σ

(2)
k ≤ t

)
.

We now analyze each of these terms separately. First,σ
(1)
k can be re-expressed as

follows:

σ
(1)
k = inf

{
s ∈ [0, t] :Uk(�λks + εt�) − �λks + εt�

λk

≤ s − �λks + εt�
λk

}
.
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Next, defining

σ̃
(1)
k = inf

{
s ∈ [0, t] :Uk(�λks + εt�) − �λks + εt�

λk

≤ − εt

2λk

}
,

one has that̃σ (1)
k ≤ σ

(1)
k . This follows becauseεt > 2, and that in turn implies that

− εt
2λk

> s − �λks+εt�
λk

. Therefore,

P
(
σ

(1)
k ≤ t

)≤ P
(
σ̃

(1)
k ≤ t

)
.

It follows that

P
(
σ̃

(1)
k ≤ t

)≤ P

(
sup

i=0,1,...,�λkt+εt�

∣∣∣∣Uk(i) − i

λk

∣∣∣∣≥ εt

2λk

)
.

It is straightforward to conclude by Markov’s inequality (cf. page 39 of Ross [43])
that

P
(
σ̃

(1)
k ≤ t

)≤ E(supi=0,1,...,�λkt+εt� |Uk(i) − i/λk|)2+2ε1

(εt/(2λk))
2+2ε1

.

We then use Doob’s inequality (cf. page 15 of [12]) to get the following:

P
(
σ̃

(1)
k ≤ t

)≤ 2+ 2ε1

1+ 2ε1

E|Uk(�λkt + εt�) − �λkt + εt�/λk|2+2ε1

(εt/(2λk))
2+2ε1

.

Finally, invoking Lemma 8 gives the following:

P
(
σ̃

(1)
k ≤ t

)≤ 2+ 2ε1

1+ 2ε1

[
18(2+ 2ε1)

3/2

(1+ 2ε1)1/2

]2+2ε1

(105)

× E|uk(1) − Euk(1)|2+2ε1

[
4(λk + ε)λ2

k

ε2

]1+ε1 1

t1+ε1
.

Similarly, we rewriteσ (2)
k as follows:

σ
(2)
k = inf

{
s ∈ [0, t] :Uk(�λks − εt�) − �λks − εt�

λk

≥ s − �λks − εt�
λk

}
.

Defining

σ̃
(2)
k = inf

{
s ∈ [0, t] :Uk(�λks − εt�) − �λks − εt�

λk

≥ εt

2λk

}
,

one has that̃σ (2)
k ≤ σ

(2)
k . This follows becauseεt > 2, and that, in turn, implies

εt
2λk

≤ s − �λks−εt�
λk

. Therefore,

P
(
σ

(2)
k ≤ t

)≤ P
(
σ̃

(2)
k ≤ t

)
.
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It follows that

P
(
σ̃

(2)
k ≤ t

)≤ P

(
sup

i=0,1,...,�λkt−εt�

∣∣∣∣Uk(i) − i

λk

∣∣∣∣≥ εt

2λk

)
.

Then by Markov’s inequality, one has that

P
(
σ̃

(2)
k ≤ t

)≤ E(supi=0,1,...,�λkt−εt� |Uk(i) − i/λk|)2+2ε1

(εt/(2λk))
2+2ε1

.

One can further use Doob’s inequality to arrive at the following:

P
(
σ̃

(2)
k ≤ t

)≤ 2+ 2ε1

1+ 2ε1

E|Uk(�λkt − εt�) − �λkt − εt�/λk|2+2ε1

(εt/(2λk))
2+2ε1

.

Also, invoking Lemma 8 gives

P
(
σ̃

(2)
k ≤ t

) ≤ 2+ 2ε1

1+ 2ε1

[
18(2+ 2ε1)

3/2

(1+ 2ε1)1/2

]2+2ε1

(106)

× E|uk(1) − Euk(1)|2+2ε1

(
4λ3

k

ε2

)1+ε1 1

t1+ε1
.

Finally, combining (105) and (106), fork ∈ A, gives (103). �

The next lemma provides a similar probability estimate for our routing vectors,
�j(·) for j = 1, . . . , n.

LEMMA 10. Given ε > 0 and for j = 1, . . . , n, we have

P

(
sup

i=0,1,...,N

|�j(i) − P ′
j i| ≥ εN

)
≤ C4j (ε)

N1+ε1
,

where

C4j (ε) = 2+ 2ε1

2ε1 + 1

[
18(2+ 2ε1)

3/2

(1+ 2ε1)1/2

]2+2ε1 m∑
k=1

E|�jk(1) − P ′
jk|2+2ε1

[
1

ε2+2ε1

]
.

PROOF. We first note that

P

(
sup

i=0,1,...,N

|�j(i) − P ′
j i| ≥ εN

)
≤

m∑
k=1

P

(
sup

i=0,1,...,N

|�jk(i) − P ′
jki| ≥ εN

)
.

By Markov’s inequality (cf. page 39 of [43]), we write

P

(
sup

i=0,1,...,N

|�j(i) − P ′
j i| ≥ εN

)
≤

m∑
k=1

E(supi=0,1,...,N |�jk(i) − iP ′
jk|)2+2ε1

(εN)2+2ε1
.
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We then write by Doob’s inequality (cf. page 15 of [12]),

P

(
sup

i=0,1,...,N

|�j(i) − P ′
j i| ≥ εN

)
≤ 2+ 2ε1

2ε1 + 1

m∑
k=1

E|�jk(N) − NP ′
jk|2+2ε1

N2+2ε1
,

and the result follows by Lemma 8.�

PROOF OFPROPOSITION 1. We first review some essential notation.τ0, τ1,

τ2, . . . are the review points withτ0 = 0. τk marks the beginning of thekth period
for k = 0,1,2, . . . ; x

(i)
j denotes rate of activityj in period i for j = 1,2, . . . , n,

andi = 0,1,2, . . . . In particular, during review periodi, servers(j) (nominally)
undertakes activityj for x

(i)
j l time units in Case 1, andCsx

(i)
j l time units in

Case 2; and there are no partially completed jobs at time zero. Therefore, we have
x(0) = x∗, wherex∗ is the solution of the static planning problem, andτ1 = l.

We first prove that

P (N0) ≥ 1− C

l1+ε1
for l > C,

where C is a constant, which depends onε but not on l, given by (138).
Equivalently, we prove the following:

P (N c
0 ) ≤ C

l1+ε1
.

SinceN C
0 = AC

0 ∪ BC
0 ∪ C0 ∪ DC

0 ∪ EC
0 , we have

P (N C
0 ) ≤ P (C0) + P (DC

0 ) + P (BC
0 ∩ CC

0 ) + P (AC
0 ∩ CC

0 ) + P (EC
0 ∩ CC

0 ).

We first considerP (C0):

P (C0) = P
(
Sj (x

∗
j l) ≥ (2µj + 1)l for somej

)
≤ P
(
Sj (l) ≥ (2µj + 1)l for somej

)
≤ P
(|S(el) − µl| ≥ l

)
.

Therefore, by Lemma 9, we have that

P (C0) ≤ C3(1)

l1+ε1
for l > 2.(107)

We now considerP (AC
0 ∩ CC

0 ). It follows that [recall thatZ(0) = θ ]

Z(l) − θ = E(l) − λl

+
n∑

j=1

[�j(Sj (x
∗
j l)) − P ′

j Sj (x
∗
j l)] − RM[S(x∗l) − M−1x∗l].
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Fix anε > 0 such thatδ/6 < ε < δ/3; and observe that

P (AC
0 ∩ CC

0 ) ≤ p0
I + p0

II + p0
III,(108)

where

p0
I = P

(|E(l) − λl| ≥ εl
)
,

p0
II = P

(
n∑

j=1

|�j(Sj (x
∗
j l)) − P ′

j Sj (x
∗
j l)| ≥ εl, Sj (x

∗
j l) ≤ (2µj + 1)l ∀j

)
,

p0
III = P

(|RM||S(x∗l) − M−1x∗l| ≥ εl
)
.

We will bound each ofp0
I ,p

0
II,p

0
III separately. We first observe by Lemma 9

p0
I = P

(|E(l) − λl| ≥ εl
)≤ C2(ε)

l1+ε1
for l >

12

δ
.(109)

Then note that

p0
II ≤

n∑
j=1

P

(
|�j(Sj (x

∗
j l)) − P ′

jSj (x
∗
j l)| ≥ εl

n
, Sj (x

∗
j l) ≤ (2µj + 1)l

)

≤
n∑

j=1

P

(
sup

i=1,...,�(2µj+1)l�
|�j(i) − iP ′

j | ≥
εl

n

)

≤
n∑

j=1

P

(
sup

i=1,...,�(2µj+1)l�
|�j(i) − iP ′

j | ≥
ε

n(2µj + 2)
�(2µj + 1)l�

)
.

Therefore, we conclude by Lemma 10 that

p0
II ≤ 1

l1+ε1

n∑
j=1

C4j (ε/(n(2µj + 2)))

(2µj + 1)1+ε1
.(110)

Finally, we considerp0
III :

p0
III ≤ P

(
sup

‖x̃‖≤1,x̃≥0
|S(x̃l) − M−1x̃l| ≥ εl

|RM|
)
.

We then conclude by Lemma 9 that

p0
III ≤ C3(ε/|RM|)

l1+ε1
for l >

12|RM|
δ

.(111)

Combining (108)–(111), we write

P (AC
0 ∩ CC

0 ) ≤
[
C2(ε) + C3

(
ε

|RM|
)

+
n∑

j=1

C4(ε/(n(2µj + 2)))

(2µj + 1)1+ε1

]
1

l1+ε1
,

(112)

l >
12

δ
(1∨ |RM|).
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We now considerP (DC
0 ) and note that

DC
0 =

n⋃
j=1

{
ṽ

(1)
j > δ

√
l
}∪ ⋃

i∈A

{
ũ

(1)
i > δ

√
l
}
.

Observe that fori ∈ A, one has that

P
(
ũ

(1)
i > δ

√
l
)= P

(
Ei

(
l + δ

√
l
)= Ei(l)

)
=

∞∑
k=0

P
(
Ei

(
l + δ

√
l
)= k,Ei(l) = k

)

=
∞∑

k=0

P
(
Ui(k) < l,Ui(k + 1) > l + δ

√
l
)

≤
∞∑

k=0

P
(
Ui(k) < l,ui(k + 1) > δ

√
l
)

=
∞∑

k=0

P
(
ui(k + 1) > δ

√
l
)
P
(
Ei(l) = k

)

= P
(
ui(1) > δ

√
l
) ∞∑
k=0

P
(
Ei(l) = k

)
= P
(
ui(1) > δ

√
l
)
.

Therefore, we conclude by the Markov inequality that

P
(
ũ

(1)
i > δ

√
l
)≤ P

(
ui(1) > δ

√
l
)≤ E|ui(1)|2+2ε1

δ2+2ε1

1

l1+ε1
.(113)

Also, observe that forj = 1, . . . , n, one has that

P
(
ṽ

(1)
j > δ

√
l
)= P

(
Sj

(
x∗
j l + δ

√
l
)= Sj (x

∗
j l)
)

=
∞∑

k=0

P
(
Sj

(
x∗
j l + δ

√
l
)= k,Sj (x

∗
j l) = k

)

=
∞∑

k=0

P
(
Vj(k) ≤ x∗

j l, Vj (k + 1) > x∗
j l + δ

√
l
)

≤
∞∑

k=0

P
(
Vj(k) ≤ x∗

j l, vj (k + 1) > δ
√

l
)

=
∞∑

k=0

P
(
vj (k + 1) > δ

√
l
)
P
(
Sj (x

∗
j l) = k

)
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= P
(
ui(1) > δ

√
l
) ∞∑
k=0

P
(
Sj (x

∗
j l) = k

)
= P
(
vj (1) > δ

√
l
)
.

Therefore, we conclude by the Markov inequality that

P
(
ṽ

(1)
j > δ

√
l
)≤ P

(
vj (1) > δ

√
l
)≤ E|vj (1)|2+2ε1

δ2+2ε1

1

l1+ε1
.(114)

We then conclude by (113) and (114) that

P (DC
0 ) ≤ 1

δ2+2ε1

[
n∑

j=1

E|vj (1)|2+2ε1 +∑
i∈A

E|ui(1)|2+2ε1

]
1

l1+ε1
.(115)

Next, we considerP (BC
0 ∩CC

0 ). SinceZ(0) = θ , we haveτ1 = l; and we have, for
0 ≤ s ≤ τ1, that

Z(s) ≤ θ + E(l) +
n∑

j=1

�j

(
Sj (xj l)

)≤ θ + E(l) +
(

n∑
j=1

Sj (xj l)

)
e.

Therefore, on the setCC
0 , we have, fork = 2, . . . ,m, that

sup
0≤s≤τ1

Zk(s) ≤ θk + Ek(l) + n(2µj + 1)l.

Therefore, we note that

P (BC
0 ∩ CC

0 ) ≤ P
(|E(l) − λl| > |λ|l).

Hence, by Lemma 9, it is straightforward to conclude that

P (BC
0 ∩ CC

0 ) ≤ C2(|λ|)
l1+ε1

for l >
2

|λ| .(116)

Finally, we considerP (EC
0 ∩ CC

0 ). However, by definition of the policy on the
setCC

0 , the servers are never idled during[τ0, τ1], and, hence,IW(l) = IW(0) = 0
on that set. The last assertion follows because the servers work continuously during
[0, l] by our policy description. (As we restrict attention on the setCC

0 , the servers
will have enough input to work on during[0, l].) Hence, trivially,∫ τk+1

τk

1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l} dIW(s) = 0 onCC
0 .

Therefore,

P (EC
0 ∩ CC

0 ) = 0.(117)

Combining (107), (112), (115)–(117), we conclude that

P (N C
0 ) ≤ C

l1+ε1
for l > 2∨ 12

δ
∨ 12|RM|

δ
∨ 2

|λ| ,
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where the constant

C ≥ C3(1) +
[
C2(ε) + C3

(
ε

|RM|
)

+
n∑

j=1

C4(ε/(n(2µj + 2)))

(2µj + 1)1+ε1

]

+
[

n∑
j=1

E|vj (1)|2+2ε1 +∑
i∈A

E|ui(1)|2+2ε1

]
+ C2(|λ|)

[see (138)]. This provides the induction basis for proving Proposition 1. We now
assume that (56) holds fori = 0,1, . . . , k − 1, and prove that it holds fori = k to
complete the proof. It suffices to prove

P (N c
k ,Nk−1, . . . ,N0) ≤ C

l1+ε1
P (Nk−1, . . . ,N0),(118)

because

P (Nk,Nk−1, . . . ,N0) = P (Nk−1, . . . ,N0) − P (N c
k ,Nk−1, . . . ,N0).

Therefore, we will show (118). Clearly,N c
k = Ac

k ∪ Bc
k ∪ Ck ∪ Dc

k ∪ EC
k , and we

have that

P (N C
k ,Nk−1, . . . ,N0) ≤ P (Dc

k,Nk−1, . . . ,N0) + P (Ck,Nk−1, . . . ,N0)

+ P (Bc
k,C

c
k,Nk−1, . . . ,N0)

+ P (Ac
k,C

c
k,Nk−1, . . . ,N0)

+ P (Ec
k,C

c
k,Nk−1, . . . ,N0).

On the setN0 ∩ N1 ∩ · · · ∩ Nk−1, we haveZ(τi) ∈ Bδl(θ) for i = 1, . . . , k.
Therefore, in each of these periods the system manager implements the Case 1
of DR(l(r), θ(r),�). In particular,

T exe(i) = τi − τi−1 = l + [y′(θ − Z(τi)
)]+ for i = 1,2, . . . , k,(119) [

x
(i)
B l

z
(i)
1 − θ1

]
= �−1

[
Z(τi) + λT exe(i) − θ

el

]
,(120)

andx
(i)
N = 0, andx

(i)
B ≥ (1/2)x∗

B by Lemma 3.
Therefore, to calculate the probability of an eventF ∩ N0 ∩ N1 ∩ · · · ∩ Nk−1

for i = 1, . . . , k, we first further partition this event with respect to the values
of Z(τi) = qi ∈ Bδl(θ), i = 1, . . . , k. That is, we fixZ(τi) = qi ∈ Bδl(θ) for
i = 1, . . . , k. It is important to observe that once we fixZ(τi) = qi ∈ Bδl(θ) for
i = 1, . . . , k, we also fixτ1, . . . , τk andx(1), . . . , x(k) on the setN0 ∩ N1 ∩ · · · ∩
Nk−1 by (119) and (120). In other words, once we partition the event in question
further with respect to values taken byZ(τi) for i = 1, . . . , k, τi and x(i), for
i = 1, . . . , k, are determined by (119) and (120), and their values are deterministic
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(but different on each partition set) on each of these partition events whose union
constitute the event in question. We then have

P (F,Nk−1, . . . ,N0)

= ∑
(q1,...,qk)∈Bδl(θ)×···×Bδl(θ)∩Zm×k

P
(
F,Nk−1, . . . ,N0,

Z(τi) = qi, i = 1, . . . , k
)
.

Therefore, to simplify the notational burden, we will just pretend thatτk,
x(i) are deterministic in the derivations below. However, we implicitly do the
partitioning above to justify the calculations. We will illustrate this approach in
estimatingP (Dc

k,Nk−1, . . . ,N0), but this detailed approach will not be repeated
in the interest of brevity. Nevertheless, one needs to go through the same
steps to rigorously justify the calculations we will present. We first consider
P (Dc

k,Nk−1, . . . ,N0):

P (Dc
k,Nk−1, . . . ,N0) ≤

n∑
j=1

P
(
ṽ

(k+1)
j > δ

√
l,N0, . . . ,Nk−1

)
+∑

i∈A

P
(
ũ

(k+1)
i > δ

√
l,N0, . . . ,Nk−1

)
,

where

P
(
ũ

(k+1)
i > δ

√
l,N0, . . . ,Nk−1

)
= P
(
Ei

(
τk+1 + δ

√
l
)= Ei(τk+1),N0, . . . ,Nk−1

)
= ∑

(q1,...,qk)∈Bδl(θ)×···×Bδl(θ)

P
(
Ei

(
τk+1 + δ

√
l
)= Ei(τk+1),

N0, . . . ,Nk−1,Z(τj ) = qj , j = 1, . . . , k
)

= ∑
(q1,...,qk)

P

(
Ei

(
(k + 1)l +

k∑
j=1

[y′(θ − qj )]+ + δ
√

l

)

= Ei

(
(k + 1)l +

k∑
j=1

[y′(θ − qj )]+
)

N0, . . . ,Nk−1,Z(τj ) = qj , j = 1, . . . , k

)
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≤ ∑
(q1,...,qk)

∞∑
α=0

P
(
ui(α + 1) > δ

√
l
)

× P

[
Ei

(
(k + 1)l +

k∑
j=1

[y′(θ − qj )]+
)

= α,

N0, . . . ,Nk−1,Z(τj ) = qj , j = 1, . . . , k

]

= P
(
ui(1) > δ

√
l
)

× ∑
(q1,...,qk)

∞∑
α=0

P
(
Ei(τk+1) = α,N0, . . . ,Nk−1,Z(τj ) = qj , j = 1, . . . , k

)
.

Therefore, we have that

P
(
ũ

(k+1)
i > δ

√
l,N0, . . . ,Nk−1

)≤ P
(
ui(1) > δ

√
l
)× P (N0, . . . ,Nk−1)

≤ E|ui(1)|2+2ε1

δ2+2ε1

1

l1+ε1
P (N0, . . . ,Nk−1).

Similarly, we write

P
(
ṽ

(k+1)
j > δ

√
l,N0,N1, . . . ,Nk−1

)
= P

(
Sj

(
k∑

i=0

x
(i)
j l + δ

√
l

)
= Sj

(
k∑

i=0

x
(i)
j l

)
,N0,N1, . . . ,Nk−1

)

=
∞∑

α=0

P

(
Sj

(
k∑

i=0

x
(i)
j l + δ

√
l

)
= α,Sj

(
k∑

i=0

x
(i)
j l

)
= α,N0,N1, . . . ,Nk−1

)

≤
∞∑

α=0

P
(
vj (α + 1) > δ

√
l
)× P

(
Sj

(
k∑

i=0

x
(i)
j l

)
= α,N0,N1, . . . ,Nk−1

)

= P
(
vj (1) > δ

√
l
) ∞∑
α=0

P

(
Sj

(
k∑

i=0

x
(i)
j l

)
= α,N0,N1, . . . ,Nk−1

)
.

Therefore, we have that

P
(
ṽ

(k+1)
j > δ

√
l,N0, . . . ,Nk−1

)
≤ P
(
vj (1) > δ

√
l
)× P (N0, . . . ,Nk−1)

≤ E|vj (1)|2+2ε1

δ2+2ε1

1

l1+ε1
P (N0, . . . ,Nk−1).
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Combining these, we conclude

P (Dc
k,Nk−1, . . . ,N0)

(121)

≤ P (N0, . . . ,Nk−1)

δ2+2ε1

[∑
i∈A

E|ui(1)|2+2ε1 +
n∑

j=1

E|vj (1)|2+2ε1

]
1

l1+ε1
.

We now considerP (Ck,Nk−1, . . . ,N0):

P (Ck,Nk−1, . . . ,N0)

= P

(
Nk−1, . . . ,N0,

Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

)
≥ (2µj + 1)l for somej

)

≤
n∑

j=1

P

(
ṽ

(k)
j +

Sj (
∑k−1

i=0 x
(i)
j l)+�(2µj +1)l�∑

i=Sj (
∑k−1

i=0 x
(i)
j l)+2

vj (i) ≤ x
(k)
j l,Nk−1, . . . ,N0

)

≤
n∑

j=1

∞∑
α=0

P

(α+�(2µj+1)l�∑
i=α+2

vj (i) ≤ l, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α,Nk−1, . . . ,N0

)

≤
n∑

j=1

∞∑
α=0

[
P

(α+�(2µj+1)l�∑
i=α+2

vj (i) ≤ l

)

× P

(
Sj

(
k−1∑
i=0

x
(i)
j l

)
= α,Nk−1, . . . ,N0

)]

≤ P (Nk−1, . . . ,N0)

n∑
j=1

P
(
Vj(�(2µj + 1)l�) ≤ l

)

≤
n∑

j=1

P
(|S(el) − µl| ≥ l

)
for l > max

j=1,...,n
{1/µj }.

Therefore, we conclude by Lemma 9 that

P (Ck,Nk−1, . . . ,N0) ≤ nC3(1)

l1+ε1
P (Nk−1, . . . ,N0)

(122)
for l > 2∨ max

j=1,...,n
{1/µj }.
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Next, we considerP (Bc
k,C

c
k,Nk−1, . . . ,N0):

P (Bc
k,C

c
k,Nk−1, . . . ,N0)

≤
m∑

i=2

P

(
sup

τk≤s≤τk+1

Zi(s) > [2|θ∗| + n(2|µ| + 1) + 2|λ|(1+ y′θ∗)]l,

N0, . . . ,Nk−1, Sj

(
k∑

i=1

x
(i)
j l

)
− Sj

(
k∑

i=1

x
(i)
j l

)
≤ (2µj + 1)l ∀ j

)
.

For τk ≤ s ≤ τk+1, i = 2, . . . ,m, we have on the setN0 ∩ · · · ∩ Nk−1 ∩ Cc
k that

Zi(s) ≤ Zi(τ1) + Ei(τk+1) − Ei(τk) +
n∑

j=1

�ji

(
Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

))

≤ 2θi + n(2|µ| + 1)l + Ei(τk+1) − Ei(τk).

Therefore,

P (Bc
k,C

c
k,Nk−1, . . . ,N0)

≤
m∑

i=2

P
(
Ei(τk+1) − Ei(τk) ≥ 2|λ|(1+ y′θ∗)l,N0, . . . ,Nk−1

)

≤
m∑

i=2

P
(
Ei

(
τk + l(1+ y′θ∗)

)− Ei(τk) ≥ 2|λ|(1+ y′θ∗)l,N0, . . . ,Nk−1
)

≤
m∑

i=2

P

(
ũ

(k)
i +

Ei(τk)+�2|λ|l(1+y′θ∗)�∑
α=Ei(τk)+2

ui(α) ≤ (1+ y′θ∗)l,N0, . . . ,Nk−1

)

≤
m∑

i=2

P

(Ei(τk)+�2|λ|l(1+y′θ∗)�∑
α=Ei(τk)+2

ui(α) ≤ (1+ y′θ∗)l,N0, . . . ,Nk−1

)

≤ P (N0, . . . ,Nk−1)

m∑
i=2

P
(
Ui

(�2|λ|(1+ y′θ∗)l�)≤ (1+ y′θ∗)l
)

≤ P (N0, . . . ,Nk−1)

m∑
i=2

P

(
|E(1+ y′θ∗)l − λ(1+ y′θ∗)l| ≥ |λ|(1+ y′θ∗)

2
l

)
,

for l > 1/|λ|. We then have by Lemma 9 that

P (Bc
k,C

c
k,Nk−1, . . . ,N0)

≤ mC2((|λ|(1+ y′θ∗))/2)

(1+ y′θ∗)1+ε1
P (N0, . . . ,Nk−1)

1

l1+ε1
,(123)

l >
1

|λ|
[

4

1+ y′θ∗ ∨ 1
]
.
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Next, we considerP (Ec
k,C

c
k,Nk−1, . . . ,N0). On the setCc

k ∩ Nk−1 ∩ · · · ∩ N0,
one has that∫ τk+1

τk

1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l} dIW(s) = I1 + I2,

where

I1 =
∫ τk+[y′(θ−Z(τk))]+

τk

1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l} dIW(s)

and

I2 =
∫ τk+1

τk+[y′(θ−Z(τk))]+
1{W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l} dIW(s).

It is essential to observe thatI2 = 0 on the setCc
k ∩ Nk−1 ∩ · · · ∩ N0, which is

a consequence of the fact thatIW (τk + [y′(θ − Z(τk))]+) = IW (τk+1) on that
set. The latter assertion follows because the servers work continuously during
[τk + [y′(θ − Z(τk))]+, τk+1] by our policy description. (As we restrict attention
on the setCc

k ∩ Nk−1 ∩ · · · ∩ N0, the servers will have enough input to work on
during[τk + [y′(θ − Z(τk))]+, τk+1].) Notice also that

1{I1>0} ≤ 1{supτk≤s≤τk+[y′(θ−Z(τk ))]+ W(s)>(y′θ∗+mn|y|(2|µ|+1)+2|y|my′θ∗|λ|)l}.(124)

Without loss of generality, we can assumey′θ > y′Z(τk) = W(τk). (Otherwise,
I1 = 0.) Fors ∈ [τk, τk + [y′(θ − Z(τk))]+], it is easy to see that

Zi(s) − Zi(τk) ≤ Ei(s) − Ei(τk) +
n∑

j=1

�ji

(
Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

))
,

i = 1, . . . ,m.

Then it is straightforward to arrive at the following:

W(s) ≤ W(τk) + |y|
m∑

i=1

[Ei(s) − Ei(τk)] + mn|y|(2|µ| + 1)l

≤ y′θ∗l + mn(2|µ| + 1)l + |y|
m∑

i=1

[Ei(s) − Ei(τk)].

Therefore, we immediately have the following:

P

(
sup

τk≤s≤τk+[y′(θ−Z(τk))]+
W(s) >

(
y′θ∗ + mn|y|(2|µ| + 1) + 2|y|my′θ∗|λ|)l)

≤ P

(
m∑

i=1

[Ei(τk + y′θ∗l) − Ei(τk)] ≥ 2mly′θ∗|λ|
)
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≤∑
i∈A

P
([Ei(τk + y′θ∗l) − Ei(τk)] ≥ 2mly′θ∗|λ|)

=∑
i∈A

P

(
ũ

(k)
i +

Ei(τk+�2ly′θ∗|λ|�)∑
α=Ei(τk)+2

ui(α) ≤ y′θ∗l
)

≤∑
i∈A

P

(Ei(τk+�2ly′θ∗|λ|�)∑
α=Ei(τk)+2

ui(α) ≤ y′θ∗l
)

=∑
i∈A

P
(
Ui(�2ly′θ∗|λ|�) ≤ y′θ∗l

)
≤∑

i∈A

P
(
Ei(y

′θ∗l) ≥ 2ly′θ∗|λ| − 1
)

≤∑
i∈A

P

(
|Ei(y

′θ∗l) − y′θ∗lλi | ≥ ly′θ∗λi

2

)

≤
[∑

i∈A

C2

(
λi

2

)]
1

(y′θ∗
)1+ε1

1

l1+ε1
for l > max

i∈A

{
4

y′θ∗λi

}
,

where the last inequality follows from Lemma 9. Therefore, it is straightforward
to conclude by (124) that

P (Ec
k,C

c
k,Nk−1, . . . ,N0) ≤

[∑
i∈A

C2

(
λi

2

)]
1

(y′θ∗
)1+ε1

1

l1+ε1

(125)

for l > max
i∈A

{
4

y′θ∗λi

}
.

Finally, we considerP (Ac
c,C

c
k,Nk−1, . . . ,N0):

P (Ac
k,C

c
k,Nk−1, . . . ,N0) ≤ pk

I + pk
II + pk

III,(126)

where

pk
I = P

(|E(τk+1) − E(τk) − λ(τk+1 − τk)| ≥ εl,Nk−1, . . . ,N0
)
,

pk
II = P

(
n∑

j=1

∣∣∣∣∣�j

(
Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

))

− P ′
j

(
Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

))∣∣∣∣∣≥ εl,Nk−1, . . . ,N0,C
c
k

)
,

pk
III =

(
|RM|

∣∣∣∣∣Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

)
− M−1x(k)l

∣∣∣∣∣≥ εl,Nk−1, . . . ,N0

)
.
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We first considerpk
II , and immediately write

pk
II ≤

n∑
j=1

P

(
sup

i=1,...,�(2µj+1)l�
|�j(i) − iP ′

j | ≥
εl

n
,N0,N1, . . . ,Nk−1

)
.

Therefore, we have by Lemma 10 that

pk
II ≤
[

n∑
j=1

C4j (ε/(n(2µj + 2)))

(2µj + 1)1+ε1

]
1

l1+ε1
.(127)

We now considerpk
I :

pk
I ≤∑

i∈A

[P k
I,a(i) + P k

I,b(i)],(128)

where

P k
I,a(i) = P

(
Ei(τk+1) − Ei(τk) ≤ λi(τk+1 − τk) − εl,N0, . . . ,Nk−1

)
,

P k
I,b(i) = P

(
Ei(τk+1) − Ei(τk) ≥ λi(τk+1 − τk) + εl,N0, . . . ,Nk−1

)
.

We analyze each of these terms separately below:

P k
I,a(i) = P

(
ũ

(k)
i +

Ei(τk)+�λi(τk+1−τk)−εl�∑
j=Ei(τk)+2

ui(j) ≥ (τk+1 − τk),N0, . . . ,Nk−1

)

≤ P

(
δ
√

l +
Ei(τk)+�λi(τk+1−τk)−εl�∑

j=Ei(τk)+2

ui(j) ≥ (τk+1 − τk),N0, . . . ,Nk−1

)
.

By partitioning the event in question, first with respect to the values taken byZ(τk)

and then with respect to the values taken byEi(τk), we write

P k
I,a(i) ≤ ∑

qk∈Bδl(θ)

∞∑
α=0

P

(
δ
√

l +
α+�λi (l+[y′(θ−qk)]+)−εl�∑

j=α+2

ui(j) ≥ (l + [y′(θ − qk)]+),
N0, . . . ,Nk−1,Z(τk) = qk,Ei(τk) = α

)

= ∑
qk∈Bδl(θ)

∞∑
α=0

P
(
Ui

(�λi(l + [y′(θ − qk)]+ − εl�)
≥ (l + [y′(θ − qk)]+ − δ

√
l
))

× P
(
N0, . . . ,Nk−1,Z(τk) = qk,Ei(τk) = α

)
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≤ ∑
qk∈Bδl(θ)

P
(
Ei

(
l + [y′(θ − q)]+ − δ

√
l
)≤ λi

(
l + [y′(θ − qk)]+− εl − 1

)
× P
(
N0, . . . ,Nk−1,Z(τk) = qk

)
≤ ∑

qk∈Bδl(θ)

P

(
sup

0≤s≤l+y′θ
|Ei(s) − λis| ≥ εl

2

)

× P
(
N0, . . . ,Nk−1,Z(τk) = qk

)
for l > 144

≤ P

(
sup

0≤s≤l+y′θ
|Ei(s) − λis| ≥ εl

2

) ∑
qk∈Bδl(θ)

P
(
N0, . . . ,Nk−1,Z(τk) = qk

)
.

Hence, we have by Lemma 9 that

P k
I,a(i) ≤ C2(ε/(2(1+ y′θ∗)))

(1+ y′θ∗)1+ε1
P (N0, . . . ,Nk−1)

1

l1+ε1

(129)

for l >
24

δ
∨ 144.

Next, we considerP k
I,b(i):

P k
I,b(i) = P

(
Ei(τk+1) − Ei(τk) ≥ λi(τk+1 − τk) + εl,N0, . . . ,Nk−1

)
≤ P

(
ũ

(k)
i +

Ei(τk)+�λi(τk+1−τk)+εl�∑
j=Ei(τk)+2

ui(j) ≤ (τk+1 − τk),N0, . . . ,Nk−1

)

≤ P

(Ei(τk)+�λi(τk+1−τk)+εl�∑
j=Ei(τk)+2

ui(j) ≤ (τk+1 − τk),N0, . . . ,Nk−1

)
.

It follows similarly that

P k
I,b(i) ≤ C2(ε/(2(1+ y′θ∗)))

(1+ y′θ∗)1+ε1
P (N0, . . . ,Nk−1)

1

l1+ε1
for l >

24

δ
.(130)

By combining (128)–(130), we have

P k
I ≤ 2m

C2(ε/(2(1+ y′θ∗)))
(1+ y′θ∗)1+ε1

P (N0, . . . ,Nk−1)
1

l1+ε1

(131)

for l >
24

δ
∨ 144.

To complete the proof we only need an estimate forP k
III(i). Observe that

P k
III ≤

n∑
j=1

[P k
III,a(j) + P k

III,b(j)],(132)
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where

P k
III,a(j) = P

(
Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

)
≥ µjx

(k)
j l + εl

|RM|n,

N0, . . . ,Nk−1

)
,

P k
III,b(j) = P

(
Sj

(
k∑

i=0

x
(i)
j l

)
− Sj

(
k−1∑
i=0

x
(i)
j l

)
≤ µjx

(k)
j l − εl

|RM|n,

N0, . . . ,Nk−1

)
.

First considerP k
III,a(j):

P k
III,a(j) ≤ P

(
ṽ

(k)
j +

Sj (
∑k−1

i=0 x
(i)
j l)+�µj x

(k)
j l+εl/(|RM |n)�∑

i=Sj (
∑k−1

i=0 x
(i)
j l)+2

vj (i) ≤ x
(k)
j l,

N0, . . . ,Nk−1

)

≤
∞∑

α=0

P

(α+�µjx
(k)
j l+εl/(|RM |n)�∑
i=α+2

vj (i) ≤ x
(k)
j l,

N0, . . . ,Nk−1, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α

)

≤
∞∑

α=0

P

(
Sj

(
x

(k)
j l
)≥ ⌊µjx

(k)
j l + εl

|RM|n
⌋)

× P

(
N0, . . . ,Nk−1, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α

)

≤
∞∑

α=0

P

(
sup

‖x̃‖≤1,x̃≥0
|S(x̃l) − M−1x̃l| ≥ εl

2|RM|n
)

× P

(
N0, . . . ,Nk−1, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α

)
.
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Therefore, we conclude by Lemma 9 that

P k
III,a(j) ≤ C3(ε/(2|RM|n))

l1+ε1
P (N0, . . . ,Nk−1) for l >

24|RM|n
δ

.(133)

We now considerP k
III,b(j):

P k
III,b(j) = P

(
ṽ

(k)
j +

Sj (
∑k−1

i=0 x
(i)
j l)+�µj x

(k)
j l+εl/(|RM |n)�∑

i=Sj (
∑k−1

i=0 x
(i)
j l)+2

vj (i) ≥ x
(k)
j l,

N0, . . . ,Nk−1

)

≤
∞∑

α=0

P

( α+�µjx
(k)
j l+εl/(|RM |n)�∑
i=α+2

vj (i) ≥ x
(k)
j l − δ

√
l,

N0, . . . ,Nk−1, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α

)

≤
∞∑

α=0

P

(
Sj

(
x

(k)
j l − δ

√
l
)≤ µjx

(k)
j l − εl

|RM|n
)

× P

(
N0, . . . ,Nk−1, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α

)
.

For l > 144(|RM|n)2, we have that

P k
III,b(j) ≤

∞∑
α=0

P

(
sup

‖x̃‖≤1,x̃≥0
|S(x̃l) − µx̃l| ≥ εl

2|RM|n
)

× P

(
N0, . . . ,Nk−1, Sj

(
k−1∑
i=0

x
(i)
j l

)
= α

)
.

Therefore, by Lemma 9 we conclude that

P k
III,b(j) ≤ C3(ε/(2|RM|n))

l1+ε1
P (N0, . . . ,Nk−1)

(134)

for l >
24|RM|n

δ
∨ 144(|RM|n)2.

By combining (132)–(134), we conclude

P k
III ≤ 2nC2

(
ε

2|RM|n
)
l1+ε1P (N0, . . . ,Nk−1)

(135)

for l >
24|RM|n

δ
∨ 144(|RM|n)2.
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Then by combining (127), (131) and (135), we conclude

P (Ac
k,C

c
k,Nk−1, . . . ,N0) ≤ CA

l1+ε1
P (N0, . . . ,Nk−1),(136)

for l > (24/δ) ∨ 144∨ (24|RM|n/δ) ∨ 144(|RM|n2), where

CA = 2m

1+ y′θ∗ C2

(
ε

2(1+ y′θ∗)

)
+ 2nC3

(
ε

2|RM|n
)

+
n∑

j=1

C4j (ε/(n(2µj + 2)))

(2µj + 1)1+ε1
.

Finally, by combining (121)–(123), (125) and (136), we conclude

P (N c
k ,N0, . . . ,Nk−1) ≤ C

l1+ε1
P (N0, . . . ,Nk−1),(137)

where

C = C̃ ∨ lmin,(138)

and

C̃ ≥ CA + m
C2(|λ|(1+ y′θ∗)/2)

(1+ y′θ∗)1+ε1
+ nC3(1) +

[∑
i∈A

C2

(
λi

2

)]
1

(y′θ∗)1+ε1

+ 1

δ2+2ε1

[∑
i∈A

E|ui(1)|2+2ε1 +
n∑

j=1

E|vj (1)|2+2ε1

]
,

and

lmin = 24

δ
∨ 144∨ 24|RM|n

δ
∨ 144(|RM|n)2

∨ max
j=1,...,n

{
1

µj

}
∨ 1

|λ|
[

4

1+ y′θ∗ ∨ 1
]

∨ max
i∈A

{
4

y′θ∗λi

}
. �

A.4. Proof of Proposition 2. The following lemma will play an important role
in proving Proposition 2.

LEMMA 11. Given positive natural numbers J,M,L, let g, {gr}∞r=1 be
functions from RJ to RM , where g is continuous, such that

gr → g uniformly over compact sets as r → ∞.

Similarly, let f , {fr}∞r=1 be functions from RM to RL, where f is continuous, such
that

fr → f uniformly over compact sets as r → ∞.

Then it follows that

fr ◦ gr → f ◦ g uniformly over compact sets as r → ∞.
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PROOF. Let K ⊂ RJ be an arbitrary compact set. We want to prove that

lim
r→∞ sup

x∈K

∣∣fr

(
gr (x)

)− f (g(x))
∣∣= 0.

Let ε > 0. First note thatg(K) = {g(x) :x ∈ K ⊂ RJ } ⊂ RM is compact. This
follows becauseg is continuous, andK is compact. Becauseg(K) is compact,
andgr → g uniformly onK asr → ∞, there existsR1,N > 0, such that

gr(x) ∈ K̃ ∀x ∈ K,r ≥ R1 whereK̃ = {y ∈ RM : |y| ≤ N}.
Then observe that forr ≥ R1, one has that

sup
x∈K

∣∣fr

(
gr(x)

)− f
(
gr(x)

)∣∣≤ sup
y∈K̃

|fr(y) − f (y)|.

BecausẽK ⊂ RM is compact,fr → f uniformly onK̃ asr → ∞; and, therefore,
there existsR2 ≥ R1 such that

sup
x∈K

∣∣fr

(
gr(x)

)− f
(
gr(x)

)∣∣≤ sup
y∈K̃

|fr(y) − f (y)| <
ε

2
for r ≥ R2.(139)

On the other hand, becausẽK is compact,f is uniformly continuous onK̃ .
Therefore, there exists aδ > 0 such that

|f (y1) − f (y2)| <
ε

2
whenever|y1 − y2| < δ.

Moreover, becausegr → g uniformly onK asr → ∞, there existsR3 ≥ R2 such
that

sup
x∈K

|gr(x) − g(x)| < δ for r ≥ R3.

Therefore,

sup
x∈K

∣∣f (gr (x)
)− f

(
g(x)
)∣∣< ε

2
for r ≥ R3.(140)

Finally, observe that combining (139) and (140) gives the result.�

PROOF OF PROPOSITION 2. Fix t > 0 andx > 0. Let {T r} be an arbitrary
sequence of admissible policies. Let{T rj } be a subsequence such that

lim
j→∞P

(
h · Ẑrj

T (t) > x
)= lim inf

r→∞ P
(
h · Ẑr

T (t) > x
)
.

SinceT r corresponds to cumulative time allocations,T r is uniformly Lipschitz
continuous with Lipschitz constant less than or equal to 1 for eachr , and this
property is preserved by the fluid scaled processes�T r(·). It follows from this, and
the functional central limit theorem for renewal processes (see [23]) and the fact
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that�TDR ⇒ x∗(·) asr → ∞, wherex∗(s) = x∗s, s ≥ 0 (and the fact that this limit
is deterministic), that{(

Êrj (·), Ŝrj (·), �̂rj
1 (·), . . . , �̂rj

n (·), �T rj (·), �T rj
DR(·))}

is tight and any weak limit of this sequence has continuous paths almost surely
(cf. Theorem 15.1 of [4]). In particular, the limit is of the following form:(

E∗(·), S∗(·),�∗
1(·), . . . ,�∗

n(·), �T (·), x∗(·)),(141)

whereE∗(·), S∗(·),�∗
1(·), . . . ,�∗

n(·) are driftless Brownian motions of appropriate
dimension, and�T (·) is a nondecreasing process with

A
(�T (s2) − �T (s1)

)≤ (s2 − s1)e for 0 ≤ s1 ≤ s2 almost surely.(142)

Let {T r ′ } be a further subsequence of{T rj } which converges weakly to a limit as
in (141). By appealing to the Skorohod representation theorem, we may choose
an equivalent distributional representation (which we will denote by putting a “˜”
above the symbols) such that the sequence random processes{(˜̂E r ′

(·), ˜̂S r ′
(·), ˜̂�r ′

1 (·), . . . , ˜̂�r ′
n (·), �̃T r ′

(·), �̃T r ′
DR(·))},

as well as the limit(
Ẽ∗(·), S̃∗(·), �̃∗

1(·), . . . , �̃∗
n(·),�̃T (·), x∗(·)),

are defined on a new probability space, say(�̃, F̃ , P̃ ), so thatP̃ almost surely(˜̂E r ′
(·), ˜̂S r ′

(·), ˜̂�r ′
1 (·), . . . , ˜̂�r ′

n (·),�̃T r ′
(·),�̃T r ′

DR(·))
(143)

→ (
Ẽ∗(·), S̃∗(·), �̃∗

1(·), . . . , �̃∗
n(·), �̃T (·), x∗(·))

uniformly over compact time intervals asr ′ → ∞.

REMARK. Two processes are said to be equal in distribution if they have the
same finite-dimensional distributions. This is also referred to as one is a version of
the other; see page 50 of [11].

We define the following processes on this new probability space:

�̃E r ′
(s) = 1

r ′
˜̂E r ′

(s) + λs, s ≥ 0,(144)

�̃S r ′
(s) = 1

r ′
˜̂S r ′

(s) + µs, s ≥ 0,(145)

�̃�r ′
j (s) = 1

r ′
˜̂�r ′

j (s) + P ′
j s, s ≥ 0, j = 1, . . . , n,(146)

˜̂Zr ′
(0) = θ(r ′)

r ′ .(147)
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We note that these processes have the same joint distribution as the corresponding
processes in the old probability space. We also define the following processes

associated with the sequence of (scaled) policies{�̃T r ′
(·)} on the new probability

space:

˜̂T r ′
(s) = r ′ �̃T r ′

(s), s ≥ 0,(148)

˜̂Y r ′
T (s) = r ′x∗s − ˜̂T r ′

(s), s ≥ 0,(149)

˜̂I r ′
T (s) = r ′es − A ˜̂T r ′

(s), s ≥ 0,(150)

˜̂Xr ′
T (s) = ˜̂Zr ′

(0) + ˜̂E r ′
(s)

(151)

+
n∑

j=1

˜̂�r ′
j

(�̃S r ′(�̃T r ′
(s)
))− RM˜̂S r ′(�̃T r ′

(s)
)
, s ≥ 0,

˜̂Z r ′
T (s) = ˜̂Xr ′

T (s) + R ˜̂Y r ′
T (s), s ≥ 0,(152)

˜̂I r ′
W,T (s) = π ′˜̂I r ′

T (s), s ≥ 0,(153)

˜̂I r ′
N,T (s) = −η′˜̂Y r ′

T,N (s), s ≥ 0,(154)

where˜̂Y r ′
T,N is the lastn − b components of̂̃Y

r ′
T . Furthermore,

˜̂Xr ′
W,T (s) = y′ ˜̂Xr ′

T (s), s ≥ 0,(155)

˜̂W r ′
T (s) = ˜̂Xr ′

W,T (s) + ˜̂I r ′
W,T (s) + ˜̂I r ′

W,N(s), s ≥ 0,(156)

�̃Z r ′
T (s) = 1

r ′
˜̂Z r ′

T (s), s ≥ 0,(157)

�̃Wr ′
T (s) = 1

r ′
˜̂W r ′

T (s), s ≥ 0.(158)

It follows from these, Lemma 1 and definition ofη (by purely algebraic

and straightforward manipulations) that̂̃W
r ′
T (·) has the following equivalent

representation:

˜̂W r ′
T (s) = y′˜̂Zr ′

T (s), s ≥ 0.(159)

It is crucial to observe that these processes defined by (144)–(158) have the same
joint distribution as the corresponding scaled processes in the old probability space
for eachr .

Because in the old space we have that almost surely�T r ′
(·) is nondecreasing,

and�̃T r ′
(·) and�T r ′

(·) are equal in distribution inDn[0,∞), we have that (in the
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new probability space)

�̃T r ′
(·) is nondecreasing almost surely.(160)

Similarly, we conclude that almost surely (in the new probability space)

A
(�̃T r ′

(s2) −�̃T r ′
(s1)
)≤ (s2 − s1)e, 0 ≤ s1 ≤ s2,(161)

˜̂T r ′
(·) is nondecreasing,(162)

˜̂I r ′
T (·) is nondecreasing.(163)

We also define the sequence of processes{˜̂Xr ′
DR(·)} associated with our discrete

review policy as follows:˜̂Xr ′
DR(s) = ˜̂Zr ′

(0) + ˜̂Er ′
(s)

(164)

+
n∑

j=1

˜̂�r ′
j

( �̃S r ′(�̃T r ′
DR(s)

))− RM˜̂S r ′( �̃T r ′
DR(s)

)
, s ≥ 0.

[It is essential to observe that the processes defined by (144)–(158) and (164),

as well as the processes(˜̂E r ′
(·), ˜̂S r ′

(·), ˜̂�r ′
1 (·), . . . , ˜̂�r ′

n (·),�̃T r ′
(·),�̃T r ′

DR(·)), have
the same joint distribution as the corresponding processes defined on the old
probability space.]

First, becausêZr ′
T (·) is a nonnegative process almost surely on the old space,

andẐr ′
T (·) and˜̂Z r ′

T (·) are equal in distribution, it follows that̂̃Z
r ′
T (·) is nonnegative

almost surely. Similarly, we argue that̂̃W
r ′
T (·) is nonnegative almost surely too. It

also follows from (149), (153), (154), (162) and (163) that˜̂I r ′
W,T (·) and˜̂I r ′

W,N(·) are
nondecreasing processes. Therefore, it follows from these, (156) and (159) that

h · ˜̂Z r ′
T (t) ≥ h1

y1

˜̂W r ′
T (t)

≥ h1

y1

( ˜̂Xr ′
W,T (t) + ˜̂I r ′

W,T (t) + ˜̂I r ′
W,N(t)

)
(165)

≥ h1

y1
ϕ
(˜̂Xr ′

W,T

)
(t),

where the last statement follows because˜̂W r ′
T (·) is a nonnegative process, and˜̂I r ′

W,T (·) and˜̂I r ′
W,N(·) are nondecreasing processes; see Appendix B of [1].

From (144) we immediately conclude thatP̃ almost surely asr ′ → ∞,(�̃S r ′
(·), �̃E r ′

(·), �̃�r ′
1 (·), . . . , �̃�r ′

n (·))
(166)

→ (
µ(·), λ(·),P1(·), . . . ,Pn(·)) u.o.c.,
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where

λ(s) = λs, s ≥ 0,

µ(s) = µs, s ≥ 0,

Pj (s) = P ′
j s, s ≥ 0, j = 1, . . . , n,

and u.o.c. means uniformly over compact time intervals. Furthermore,

�̃Z r ′
T (·) → �̃ZT (·) = λ(·) − R�̃T (·) u.o.c.,(167)

�̃Wr ′
T (·) → �̃WT (·) = y′ �̃ZT (·) u.o.c.,(168)

and it follows by Lemma 11 that

˜̂Xr ′
T → X̃(·) = Ẽ∗(·) −

n∑
j=1

�̃∗
j

(
µ
( �̃T (·)))− RMS̃∗( �̃T (·)) u.o.c.,(169)

˜̂Xr ′
DR → X̃∗(·) = Ẽ∗(·) −

n∑
j=1

�̃∗
j

(
µ
(
x∗(·)))− RMS̃∗(x∗(·)) u.o.c.,(170)

and

˜̂Xr ′
W,T (·) → X̃W (·) = y′X̃(·) u.o.c.,(171)

˜̂Xr ′
W,DR(·) → X̃W,DR(·) = y′X̃∗(·) u.o.c.(172)

The following conclusions are immediate from (161) and (162):

A
(�̃T (s2) − �̃T (s1)

)≤ (s2 − s1)e, 0≤ s1 ≤ s2,(173)

�̃T (·) is nondecreasing.(174)

Let�̃T N denote the lastn − b components of̃�T (·). We expand (168) by using (167),

and use (13), (16) and the definition ofη in (72) to obtaiñ�WT (s) = s −π ′A�̃T (s)+
η�̃T N(s), s ≥ 0. Lemma 1 ensures thatη ≥ 0 and (174) ensures that̃�T N(·) is
nondecreasing. Therefore, for anyt2 ≥ t1 ≥ 0, one has that

�̃WT (t2) − �̃WT (t1) = (t2 − t1) − π ′A
( �̃T (t2) − �̃T (t1)

)+ η
( �̃T N(t2) − �̃T N(t1)

)
≥ (t2 − t1) − π ′A

( �̃T (t2) − �̃T (t1)
)
.

From (15),π ≥ 0 andπ ′e = 1. Combining this with (173) yields

�̃WT (t2) − �̃WT (t1) ≥ 0 for all t2 ≥ t1 ≥ 0.(175)

That is, �̃WT (·) is nondecreasing.
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Next, we fix t > 0 and defineUt = {ω ∈ �̃ : �̃ZT (t,ω) = 0}. For P̃ a.e.ω ∈ Ut ,
we have that̃�WT (t) = 0. [This follows becausẽ�WT (t) = y′ �̃ZT (t), cf. (168).]
It follows from this and (175) that̃�WT (s) = 0, s ∈ [0, t]. Combining this with
the fact thaty′ > 0, we conclude that

�̃ZT (s) = 0, s ∈ [0, t].
Then we conclude by (167) thatλs − R�̃T (s) = 0, s ∈ [0, t]. Combining this
with (173), we see that( �̃T (s)/s,1) is an optimal solution to the static planning
problem by the heavy traffic assumption. By the uniqueness of this solution (also
by the heavy traffic assumption), we see that�̃T (s) = x∗s, s ∈ [0, t]. Combining
this with (169) and (170), we have that

X̃(s) = X̃∗(s), s ∈ [0, t] for P̃ a.e.ω ∈ Ut .

Also, by (171) and (172) we have that

X̃W (s) = X̃∗
W(s), s ∈ [0, t] for P̃ a.e.ω ∈ Ut.

Combining this with (165), (171) and continuity of the one-dimensional regulator
mapϕ(·), we conclude that

lim inf
r ′→∞ h · ˜̂Z r ′

T (t) ≥ h1

y1
ϕ(X̃∗

W)(t) for P̃ a.e.ω ∈ Ut.(176)

On the other hand, for̃P a.e.ω ∈ UC
t , we have that̃�ZT (t) �= 0. Therefore, for

P̃ a.e. ω ∈ UC
t , we haveh · �̃ZT (t) > 0. Since h · ˜̂Zr ′

T (t) = r ′h · �̃Zr ′
T (t) and

limr ′→∞ r ′h · �̃Z r ′
T (t) = ∞ [the last statement follows because limr ′→∞ h · �̃Z r ′

T (t) =
h · �̃ZT (t) > 0], we have that

lim inf
r ′→∞ h · ˜̂Z r ′

T (t) = ∞ for P̃ a.e.ω ∈ UC
t .

Combining this with (176), we have that

lim inf
r ′→∞ h · ˜̂Z r ′

T (t) ≥ h1

y1
ϕ(X̃∗

W)(t) for P̃ a.e.ω ∈ �̃.(177)

To conclude the proof we observe that

lim
r ′→∞P

(
h · Ẑr ′

T (t) > x
)= lim

r ′→∞ P̃
(
h · ̂̃Z r ′

T (t) > x
)

= lim
r ′→∞ Ẽ

[
1{h·˜̂Zr′

T (t)>x}
]

≥ Ẽ

[
lim inf
r ′→∞ 1{h·˜̂Zr′

T (t)>x}

]
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≥ Ẽ
[
1{h1/y1ϕ(X̃∗

W )(t)>x}
]

= P̃

(
h1

y1
ϕ(X̃∗

W)(t) > x

)
,

where the third step follows from Fatou’s lemma. Moreover,

P̃
(
ϕ(X̃∗

W)(t) ≥ x
)= 2N

( −xy1

h1σ
√

t

)
,

whereN(·) is the standard normal cumulative distribution function; see [13].�
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