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HEAVY TRAFFIC ANALYSIS OF OPEN PROCESSING NETWORKS
WITH COMPLETE RESOURCE POOLING: ASYMPTOTIC
OPTIMALITY OF DISCRETE REVIEW POLICIES

By BARIS ATA AND SUNIL KUMAR
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We consider a class of open stochastic processing networks, with
feedback routing and overlapping server capabilities, in heavy traffic. The
networks we consider satisfy the so-called complete resource pooling
condition and therefore have one-dimensional approximating Brownian
control problems. We propesa simple discrete restiv policy for controlling
such networks. Assuming 2 ¢ moments on the interarrival times and
processing times, we provide a conceptually simple proof of asymptotic
optimality of the proposed policy.
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1. Introduction. Stochastic processing networks have been extensively used
to model manufacturing systems, computer systems, telecommunication networks
and call-centers (see, e.g., [2, 9, 25, 40, 54]). One approach to designing
control policies for such networks is the heavy traffic approximation approach
pioneered by Harrison [14, 17]. This approach can be summarized by the following
procedure; see [7, 15, 51]. (a) Formulate a stochastic network model and a notion
of heavy traffic. (b) Formulate an approximating Brownian control problem for the
network control problem, and reduce the dimension of this problem by deriving an
equivalent workload formulation. (c) Analyze the Brownian control problem (or its
equivalent workload formulation) and “interpret” its solution as a control policy for
the original network. (d) Investigate the performance of the policy proposed in (c).
In particular, determine whether it is asymptotically optimal in the heavy traffic
limit.

Eventhough the heavy traffic approach has proved successful in many particular
examples, [10, 21, 22, 29-32, 37, 38, 46—49], the complete procedure outlined
above has not been resolved in general. The steps (a) and (b) have been resolved
quite generally in the literature [7, 14, 17, 18, 20, 24, 32]. Steps (c) and (d) present
several difficulties. First, the approximating Brownian control problem is not
always analytically tractable. Second, even when the Brownian control problem
is tractable, it is not easy to interpret its solution as a control policy for the original
processing network. Finally, there are very few proofs of asymptotic optimality of
the interpreted policy even when such an interpretation has been advanced [1, 16,
27, 28, 30, 35, 38, 42].

In this paper we will carry out all four steps (a)—(d) for a large class of
open network models. The crucial assumption for our analysis is what Harrison
and Lopez [19] called complete resource pooling (CRP), extended to a more
general network setting similar to that considered by Bramson and Williams [8].
Roughly speaking, the CRP assumption requires enough overlap in the processing
capabilities of the various servers to ensure that their capacities are exchangeable
or transferable in the heavy traffic limit. Another way of saying this is that the
equivalent workload formulation (EWF) of the approximating Brownian control
problem referred to in (b) is one dimensional. The CRP assumption can be verified
apriori by solving a linear program involving the first-order data of the stochastic
network. We have linear holding cost function as the only economic element of
our general model.

For networks that satisfy the CRP condition, the associated Brownian control
problem is essentially trivial to solve. But, its solution, which prescribes keeping
all but one buffer level at zero while keeping all servers busy, is not easy
to interpret in the original stochastic network. We provide an interpretation
based on the discrete review approach of Harrison [15] and Maglaras [33, 34].
Our interpretation provides a policy that reviews the contents of the buffers
at discrete points in time, computes a processing plan based on the observed
contents (interpreting zeros in the Brownian problem as small safety stocks), and
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implements this plan in open loop fashion. Moreover, even though the heavy

traffic assumption is necessary for the formal analysis, the policy proposed can
be adapted for the case where the system is near heavy traffic as well. This point
will be elaborated on later.

All discrete review policies described to date in the literature of heavy traffic
network control [15, 33, 34, 39] require the system manager to solve a new linear
programming poblem at each review poi. However, by fully exploiting the
special structure of CRP networks, we arrive at a far simpler type of policy, as
follows. First, one solves a single linear program “off-line,” this being essentially
the static planning problem that one uses to verify the CRP assumption, and
computes the inverse of a square matrix derived from its optimal basis matrix.
Then, to determine the optimal processing plan at each review point, one simply
multiplies a vector of observed buffer contents by that inverse matrix. Given the
very simple structure of this policy, and fully exploiting the CRP assumption, we
are able to prove asymptotic optimality in a conceptually simple fashion. Our proof
uses the roadmap given by Bramson and Williams [5, 52, 53], but it does not invoke
fluid limits. Rather, the proof establishes state space collapse (i.e., all buffer levels
but one are zero in the diffusion limit) directly, and then uses the continuity of the
one-dimensional reflection map to establish convergence to the desired limiting
diffusion.

The class of network control problems whose equivalent workload formulation
is one dimensional has received considerable research attention, see [1, 16, 19,
36, 44]. Two recent and major contributions to this area are the papers by
Stolyar [44] and Mandelbaum and Stolyar [36]. These papers consider parallel
server systems under the complete resource pooling assumption and establish
the asymptotic optimality of the max-weight scheduling rule and the generalized
cu rule, respectively. Furthermore, the policies proposed in those papers do not
require the knowledge of the external arrival rates. Our paper extends the body of
knowledge in this area in several ways. First, we consider discretionary feedback
routing which extends the network topology considered in [1, 19, 36]. Second,
as mentioned above, the policy proposed is simple enough to be implementable
on-line, since it only involves multiplication with a precomputed matrix at every
review point. It is also simpler, if less elegant, than continuous review policies
that require constant monitoring of the state; see [1, 35]. Third, we consider linear
holding costs, which makes the translation in (c) harder since the optimal controls
tend to achieve “corner solutions” in the state space rather than “interior solutions”
as in [36, 44]. Therefore, one has to worry about interpreting zeros in the optimal
Brownian prescriptions. Finally, our proof of asymptotic optimality is conceptually
very simple, and only requires moments of ordet 2 for the interarrival and
service times, rather than exponential moments as is usually assumed in the
literature; see [1, 16, 35, 39].
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2. Description of the network model. We assume that there apeservers
andm buffers. The terms buffer and class will be used interchangeably. We assume
that customers arrive to each buffer either from outside the network or from another
buffer in the network. We assume that there aractivities. Each activity is
associated with a unique server and a unique buffer. When the server has expended
sufficient time on an activity, a job either moves from the corresponding buffer to
any of then buffers in a probabilistic manner or exits the system. Our model is
a restricted version of the general processing network model of Harrison [17], as
well as that of Bramson and Williams [8]. The stochastic assumptions will be made
precise shortly. We let(j), b(j) denote the server and the buffer associated with
activity j,for j=1,...,n.

We describe the association between activities and resources by the capacity
consumption matrixA, and the association between activities and buffers by the
constituency matrixC. A is a p x n matrix such that

1 if s(j) =k,
1 A =
@ ki {O, otherwise.
C is anm x n matrix such that

1,  ifb() =i,
2 Cii= .
@) / {O, otherwise.

In our modelA, C are matrices of zeros and ones such that each contains exactly
one nonzero entry in each column and at least one nonzero entry in each row. For
an example of a network that fits in our modeling framework; see [26].

2.1. Sochastic primitives. Following the exposition of Bramson and Dai [6],
we associate with each buffégr=1,...,m a sequence of independent and
identically distributed strictly positive random variablgs = {ii; (i), > 1} and
a Ar > 0, where it is assumed th&i(u; (1)) =1 for k =1,...,m. We allow
A = 0 for some buffers but not all, and sdt={k =1, ..., m:x; # 0}. We let
ur(i) = ur(i)/ 1 for k € A be the interarrival time between tlie— 1)st and the
ith externally arriving job at buffek for k € A, andi =1, 2, ... so thati; is the
external arrival rate to clags

Similarly, for each activityj = 1, ..., n, we associate a sequence of strictly pos-
itive independent and identically distributed random variables {v;(i),i > 1}
and a positive real number,. For each, j we letv; (i) =m;v;(i) be the service
time for theith job processed by activity. We also assume th&i(v;(1)) =1
for j =1,...,n so that for each activity, m; is the mean service time of a job
processed by activity.

For each activityj =1, ..., n, we also associate a sequence of independent and
identically distributedr-dimensional random (routing) vectafs = {¢; (i), i > 1}.

We let¢; (i) be the routing vector of thih job processed by activity and as-
sume that it takes values {ag, e1, . . ., e, }, Whereeq is them-dimensional vector
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of zeros and; is them-dimensional vector witlith component 1 and other com-
ponents 0. Whew; (i) = eg, theith job served by activityj leaves the network,
and whenp;(i) =¢; forl =1, ..., m, it next moves to buffet. We let P;; denote
the probability thaty; (1) =¢; for j =1,...,nandl =1,..., m and we define the
n x m activity-based routing matri® of our network asP = (P;).

We assume that the:2+ m random sequences, the stochastic increments,

(3) lzl""vlzm’ 517"'751’17 ¢)1’---’¢n’

are all defined on the same probability space and they are mutually independent.
We specify the moment assumptions on the stochastic increments precisely as
follows.

MOMENT ASSUMPTIONS We assume that there existsan> 0 such that

(4) Elig(D)?%1 <00 fork=1,...,m,
and
(5) E|5;(DI**1 <00 forj=1,...,n.

Our moment assumptions are weaker than the assumptions [16], Maglaras
[33, 34] and Bell and Williams [1] used in analyzing asymptotically optimal
policies.

We define the stochastic primitive processes of our network as the cumulative
arrival, cumulative service and cumulative routing processes, which are, in turn,
defined by the sums

! / /
6) U= wm@), Vih=) vi(), @;()=) ¢;),
i=1 i=1 i=1

wherej=1,...,n,k=1...,mandl=1,2,....

For each activityj, V;(k) is the total amount of service required for the first
k jobs processed by that activity. We also define the renewal procégses
{Ex(t),t = 0} andS; = {S;(z),t > O} associated with the external input process
for classk and service completion process for activityrespectively, fok € A
andj=1,...,n as follows:

!
@) Ei(t) :max[l zO:Zuk(z‘) §t} fork e A,
i=1

!
(8) Sj(l):maX[lzo:ZUj(i)St} forj=1,...,n.
i=1

We complete the definition of the first-order network data by introducing the input—
output matrixR. First defineM as the diagonal matrix with entries, ..., m,,
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and M1 as its inverse. Next define the service rate for actiyigspu; =1/m;
for j =1,...,n and define the: x n input—output matrix as

(9) R=(C-P)mM™L

One can interpret the entrg;; as the average amount of matertatonsumed
by one unit of activityj, and negative values can be interpreted as production of
material; see [14, 17].

2.2. Assumptions on the first-order network data. In the setting of conven-
tional multiclass queueing networks, a queueing network is said to be in heavy
traffic when all stations have utilizatiamne. However, in the presence of dynamic
routing decisions, the definition of heavy traffic is more subtle. Harrison [17] de-
scribed the heavy traffic condition for such networks via a linear program, called
static planning problem, involving the first-order network data. Along the same
lines, we consider the static planning problem below:

STATIC PLANNING PROBLEM.
(10) minimize p
(12) subjecttoRx = A, Ax < pe,x > 0.

One can interpret; as the long-run average rate at which activiig undertaken,
expressed in units of activity per unit of time, apdas a uniform upper bound

on the utilization rates for the various resources under the processing plan

the static planning problem one seeks to minimize the maximal utilizatiorprate
subject to the requirement that average rates be nonnegative and that exogenously
generated inputs be processed to completion without other inventories being
generated.

Having introduced the static planning problem, we articulate the heavy traffic
condition via static planning problem as follows:

HEAVY TRAFFIC ASSUMPTION. The static planning problem has a unique
solution (p*, x*). Moreover, that solution has" = 1 andAx™ =e.

We will assume hereafter that the heavy traffic assumption is satisfied. One can
interpret the heavy traffic assumption as follows: There is just one way of splitting
arrivals in each input stream among available alternate routes so that no server is
loaded beyond its capacity by the resultant flows, and each resource is critically
loaded under this way of §fiing the input streams.

In the solution of the static planning problem the activities for Wh:i¢h> 0
are called the basic activities and those for whi¢h= 0 are called the nonbasic
activities. We leth denote the number of basic activities and relabel the activities
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so that activities 12, ..., b are the basic ones. If there is degeneracy in the solution
of the static planning problem, then the set of basic variables as defined above is
not the same as the “basic” solution as understood in linear programming theory;
see [3]. We partitionc* as

(12) v,

wherex}, is theb-dimensional vector of nominal basic activity levels arfd= 0.
It will be also convenient for our later purposes to partition the input—output
matrix R and the capacity consumption matexas follows:

whereH and B both haveb columns and they correspotmthe basic activities.
We also make the following natural assumption which simply says that each
customer class is served by at least one basic activity.

ASSUMPTION BAB (Basic activity for each buffer). In the solution of the
static planning problem, for each buffethere is at least one basic activitysuch
thatHij > 0.

In this paper, we only consider networks that satisfy the complete resource
pooling (CRP) condition below.

COMPLETE RESOURCE POOLING ASSUMPTION We assume that there is a
full set of basic activities in the solution of the static planning problem. To be
more specific, we assume thatt m — b = 1, where, as befores is the number
of serversm is the number of buffers, ardis the number of basic activities.

Analyzing a formal Brownian analog of the model in this section, Bramson
and Williams [8] establish that (cf. Corollary (6.2) of [8]) the state descriptor
is d-dimensional, wherel = p + m — b. Thus, under the complete resource
pooling assumption, the state descriptor is one dimensional and we exploit this
fact significantly in our analysis.

We will also consider the dual linear program of the static planning problem
which is given below.

DUAL OF THE STATIC PLANNING PROBLEM
(14) maximizey’A

(15) subjecttoyR <7’A,n’e=1 and = >0.
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LEMMA 1. There exist an m-dimensional vector y and a p-dimensional
vector it suchthat y and 7 are both strictly positive and they satisfy the conditions
below:

(16) v'H =n'B,
(17) 7'N>y'J.

This lemma is simply a restatement of Lemmas (7.2) and (7.6) of [8]. One can
interprety; as the workload contribution, or total work content, per clagsb
andm; as the relative capacity of servierDetailed interpretations of the vectors
y ands are given in Section 4 of [17].

2.3. Notation. For each positive integét, thek-dimensional Euclidean space
will be denotedr*; whenk = 1, the superscript will be suppressgd. denotes the
integer part of a nonnegative real numbekectors will be column vectors unless
indicated otherwise. Inequalities between vectorskin should be interpreted
componentwise. Fou, b € R¥, we shall usez v b to denote the vector whose
ith component is the maximum af andb; for i = 1,..., k. Similarly, a A b
will denote the componentwise minimum afandb. The superscript will be
used to denote the operation of taking the transpose of a vector or matrix. For
x = (x1,...,xx) € R¥, we will use the normx| = ma>§:l |x;|, and for the norm
of ank x I matrix A, we will use|A| = ma>{.‘:1 Z[,-zl |A;j|. For a vector R¥,
the k x k diagonal matrix whose diagonal entries are given by the components
of x will be denoted by diagx). We define the “ball” around a pointe R™ of
radiusa via

(18) B,(z)={geR":q1>z1—a,|qi —zi|<afori=2,...,m}.

Let (2, F, P) be a probability space. We denote filtrations &, ) by
(%:,1 > 0}. For each positive integek, let D* be the space of all functions
w: [0, 00) — R¥ that are right continuous of0, co) and have finite left limits
on (0, 00). The identically zero function iD* will be denoted by0. Forw € D*
and7 > 0, we let|w|7 = SUR¢(o 7 l@ (D)]. ConsiderD* to be endowed with the
usual Skorohod /1) topology (see [4, 11]). Let* denote the Boreb-algebra
on D¥ associated with this topology. This is the samelgebra generated by
the coordinate maps, that i8(* = o {w(s):0 < s < oo}. Each continuous-time
(stochastic) process in this paper will be assumed to be a measurable function
from some probability spac&( #, P) into (D*, M*). A sequence of processes
{W"}?il is said to be tight if and only if therobability measures induced by the
sequence onlf*, M¥) form a tight sequence. The notatioW* = W” will mean
that the probability measures induced by #é on (DX, M*) converge weakly
to the probability neasure induced o, M%) by W asi — oo. For more on
tightness and weak convergence of processes taking valu#ssee [4, 11, 50].
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3. Scheduling controls and network dynamics. We specify a scheduling
policy or control by ann-dimensional continuous stochastic proceBs=
{T(¢),t = 0}, whereT; (¢) can be interpreted as the amount of service time devoted
to activity j by servers(j) in[0,¢] for j =1,...,n.

Having introduced the scheduling contrdl¥-), we define the performance
related processes which will be driven [#(-). Let Z;(¢#) denote the number
of classi jobs in the network at time for i =1,...,m; and I;(¢r) denote the
cumulative idleness experienced by servarp to timer for k=1,..., p. Also
define the vector valued processéskE, S associated with job-counts, external
arrivals and service completions, respectively, in the obvious way. We also define
cumulative idleness process as

(19) 1(1) =te— AT (1),
and the vector-valued deviation control proc&sgs) as
(20) Y(t)=x*t—T(t).

3.1. Admissible policies and network dynamics. In the literature of dynamic
scheduling, most of the existing models deal only with work-conserving (or,
nonidling) policies (see, e.g., [5, 27, 42, 52]). However, we will allow policies that
may require the servers go idle even when there is work for them in the system.
Indeed, the policy we will propose in the sequel will require idling the servers
occasionally.

In this paper we restrict attention to so-calleehd-of-line policies. Loosely
speaking, in these policies, when the server works on an activity, server effort
is delivered solely to the job at the head of the line in the buffer corresponding
to that activity. This assumption does preclude some policies such as processor
sharing, but it is mathematically convenient. In particular, it allows us to describe
the evolution of the buffer contents in the system by just specifying the cumulative
time allocation proces§ = {T'(¢),t > 0}. For purposes of our analysis, it is
sufficient to think of the head-of-line assumption as requifihp be admissible
as defined below.

We call a scheduling polic§’ = {T'(+),t > 0} admissible if it maps stochastic
primitive processes of our networkt, S, ®4,..., ®,) to D"[0, c0), and the
conditions below are satisfied. These conditions merely require that our model
has reasonable system dynamics:

(21) T(-) is nondecreasing and7 (0) =0,

(22) A(T(t) —T(s)) <e(r—s) forall0<s <t < oo,

(23) ZO=ZO) +EW®+ Y ®;(S;(T;j(1)) — CS(T (1)),
j=1

(24) Z() >0 forallr > 0.
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We note that the class of admissible policies is quite large. In particular, an
admissible policy does not even have to be adapted to the natural filtration
generated by the stochastic primitives. The conditions (21), (22) and (24) are quite
natural in the sense that for any physical system, they have to be satisfied, and
condition (22) can also be stated &6) is nondecreasinglhe condtion (23)
reflects the fact that we only consider the head-of-the-line policies, and that we
restrict attention to preemptive-resume policies.

3.2. Objective. Ideally, the objective of the system manager is to find the
“optimal” scheduling controls. Assuming linear holding costs, a natural objective
of such policy design is to find a nonanticipating contfok {T'(¢),r > 0} that
minimize the expected infinite horizon total discounted holding cost of the form

(25) Jr = E(/OOO e Vh-Z(s) ds),

whereZ(s) is the buffer content vector at tinwe 4 is the vector of holding cost
rates, and is the interest rate.
Another natural objective is to minimize the long-run average holding cost

. 1t
(26) Jr :IlmsupE<—/ h-Z(s)ds).
t—>00 tJo
An even more ambitious objective is to find a nonanticipating policy that
minimizes
27) P(h-Z(s)>x) foralls >0,x >0

among all admissible policies.

It is almost impossible in dynamic scheduling theory for stochastic processing
networks to find solutions which can be described by a few parameters and
are exactly optimal. However, lowering the aspirations in accordance with the
general program laid out by Harrison [15] and Williams [7, 51], we relax the
objective and seek “good” policies that are “asymptotically optimal.” Namely, we
construct a simple discrete review policy in the next section which turns out to be
asymptotically optimal in a very strong sense. By asymptotically optimal, we mean
that our policy achieves a lower bound on the system performance asymptotically;
the precise definition of this statement and its proof will be provided in Section 5.

4. Policy description. In this section we describe our policy. To implement
the policy, the system manager reviews the system status at discrete points in
time and observes the buffer content levels. At each such review point, a nominal
processing plan is derived for the ensuing period by a simple matrix computation
and the resulting plan is implemented in open-loop fashion over the ensuing
period. It is important to point out that we only use the first-order network data
in specifying our policy. Even though performance of the policy depends critically
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on higher moments of the stochastic increments of the network, they are not used
in describing the policy. Before describing our policy, we first present a policy-
dependent performance bound in the next subsection to motivate our policy.

4.1. A policy dependent performance bound. We first define the workload
processW = {W(t),t > 0} as follows:

m
(28) W) => yiZi(ty forallz>0,

i=1
wherey is given by Lemma 1. Without loss of generality (by simply relabeling
buffers), we can assume that

hi_ha _

(29) < =< <=
y1 y2 Ym

Clearly, we have the following lower bound on the instantaneous cost rate:
m hl

(30) Y hiZi() = L.

i=1
One can interpret the term on the right-hand side as the cost rate achieved by
keeping all the workload in the “cheapest” buffer. Clearly, this lower bound is
policy dependent becaud®(r) depends on the policy employed. That is, we do
not have a useful bound that works for all policies. However, we will provide an
asymptotic bound that works for all policies (see Proposition 2).

4.2. Description of the discrete review policy. To motivate our choice of
policy, we begin with an informal discussion of the policy in an idealized
deterministic system in heavy traffic. The discrete review policy reviews the state
of the system periodically. Consider the system at one such review poing. Let
denote the contents of the buffers at this review point. Basefl e compute a
processing plan to be implemented until the next review point, that is, over the
next/ time units. Given the processing planservers(j) will spendx ;! time units
on activity j, serving bufferb(j). We will choosex so as to drive the state of the
system at the end of the review period towards a target st&mce the system is
in heavy traffic, the workload cannot be decreased by any policy. So given (30), we
would like to do two things with our choice afandz. First, we would likeAx = e
S0 as to ensure that the servers are fully utilized and thus prevent the workload
from increasing. Second, we would likeo be such thaty =z3=--- =z, =0.

Of course, given an arbitrary, it will not always be possible to achieve these
objectives with a fixed period length But we would like to ensure that if the
system started in a desirable state, thagiss= g3 =--- = ¢, = 0, then it would
continue to remain in a desirable state. In the idealized deterministic syster, if
used as the processing plan fdime units, the target state resulting is

z=¢qg + Al — Rxl,
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whereRr is given by (9). Let

(4 2]

where H and B are given by (13), and suppose for now that?! exists. If
we used a processing plan= [x}, x\]', wherexy =0 and a target state =
(z1,0,0,...,0) such thatcg andz; are given by

|:xBl] _ 1_[_1|:q +)\l:|’
71 el

then we would have = ¢ and Ax = e. That is, we would continue to stay in the
desirable state and would have fully utilized the servers. In fact, the processing
plan used would be the nominal processing ptdnfrom the solution of static
planning problem [see (10) and (11)].

The prescription in the idealized system of keepiag=--- = ¢,, = 0, while
processing activities that drain these buffers according to the jplais not
necessarily implementable in the original stochastic system. One way to adapt
the policy is to specify a small safety stogkfor each buffek and to modify the
processing plan and target state to

xpl | _1[g+Al—0
(32) [11—91}_1_[ [ el ]

This way, if we started in a desirable state= 6>, g3 =03,...,9x = 6,, and
q1 > 61, we would end up in a desirable state while fully utilizing the servers.
Finally, we need to specify about what to dajifis far from a desirable state.
Note that the processing plan in (32) tends to correct for deviatiogsfiam 6.
So if g2,...,qn Were close tofs,...,6,, we could still implement the plan
from (32) and achieve target stagethat is closer to a desired state. However,
the resulting processing planwould deviate fromx™, the solution of the static
planning problem. Therefore, if were very far fromp, thex computed via (32)
may be infeasible, that is, it may have negative components, capacity constraints
may be violated, or may result in some components b&ing negative. In this
case we need to stretch the length of the review period so that a feasible processing
plan would still be able to achieve the desired target state. In fact, stretching the
review period sufficiently long, we can achieve a desired state using only small
perturbations of the nominal processing pian
We now make these heuristic ideas precise for the stochastic network model
described in Section 2. Define constants

*

X .
(33) Co= N T a
1=j<b.1si=m |(1-1(%));|
=11y
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and
(35) o* :n[(2+C1+C0)(1vm"alx{Mj}) +li|e.
]:
Givenl, we choose the safety stock parametees
(36) 0 = 6%,
and pick a perturbation constaht- O such that
C
(37) °

I} ,
= 2m[1+ (0 v (maX'_; Aol

wherey is given by Lemma 1.

At the beginning of a review period, the system manager reviews the system
status and observesthe queue length vector, then determines the actual length of
the planning period7“*¢ which may be different from the nominal lengthand
the processing plan for the review period according to the prescription below.
Then the servers start working in open-loop fashion by undertaking each (basic)
activity for x;/ time units or until the number of jobs processed using actiyity
exceedsg;,(jy/n in the review period. At the end of the review period, a new review
period starts and the same procedure is repeated. We now describe the mechanics
in a given review period.

We consider two cases: the first case corresponds to the case where the observed
state and the target state are not too far apart, and the second to the case when they
are.

CAse 1. g € Bs(9). First, the system manager idles all the servers for
[y/(6 —q)]" to make sure that there is enough work in the system to be processed.
All the processing activities are done in the nexnits of time. Therefore, we let
the actual length of the review period be

(38) T =1+1[y'® —I*.

We also seky =0,z =6 fork =2, ..., m and determine the basic activity rates
xp and target level for the first buffex by

xpl — q+ 1T -6
(39) [ | = [,

Lemmas 2 and 3 establish that is indeed invertible, and that and z; are

well defined. Recall that we focus attention on preemptive-resume policies. The
associated server(j) spendsx;/ units of time on activityj during the review
period, for j = 1,...,b. Further we specify that for any basic activijy the
servers(j) is not allowed to process more thag ;)/n jobs from bufferb(j) via
activity j, wheren is the number of activities. This ensures that one activity does
not overly drain a buffer and thus prevent other activities from being carried out. In



344 B. ATA AND S. KUMAR

casegy(j)/n jobs are processed by activijybefore the end of the review period,
the server will simply go idle for the remaining time dedicated to actiyityy
selecting? large enough as in (35) and (36), we will see that this event will occur
only with a small probability.

CASE 2. ¢ ¢ Bsi(0). In this case the observed statds far enough from a
desirable state so as to render the plan given by (39) infeasible, thaddgs not
satisfyx > 0, andAx < e. We construct a feasible plan by firstidling to accumulate
work if necessary and then by “stretching” the length of the review period as
follows. The system manager idles all the server$fa —g)]* to make sure that
there is enough work in the system to be processed. Weg=set+ A[y' (6 — g)]™
and introduce stretching coefficie@, which will tell us by what factor we need
to increase the length of the review period, given by

/D[, 0|1~ [¢=4));
(40) Cy, = max /D [ 0 Dl

i=1,....b *
J x5

v,

wherel is theb x b identity matrix. We let the actual length of the review period be
(41) T =1y 0 — )" + Cl.

We also setcy =0 andzg = 6; for k = 2,..., m. We then determine the target
level for the first buffer and the basic activity rates, which will be undertaken for
the lastC,/ time units of the review period, as

"(Gg—6
(42) 212M+91,
i
1 1 5 _
ok o+ = 1 q—i—ll 0
(43) xB_xB<1 CS>+CSI[I,O]H |: ol ]

wherel is theb x b identity matrix. Lemma 4 establishes that the processing plan
just described is implementable in a deterministic setting.

As before, the policy now specifies that seryef) spendsCyx ;! time units
on activity j. If this results in buffeb(j) emptying before the end of the review
period, then the server simply idles for the remaining time devoted to acjivity
This completes description of our discrete review policy. Case 2 is only needed
for the sake of completeness, becauseritgwout that the mbability that Case 2
ever arises under our policy vanishes in the heavy traffic limit. This observation,
of course, simplifies our proofs significantly.

Having described the policy, we now state results showing that the policy is,
indeed, well defined, and that it results in meaningful nominal allocations.

LEMMA 2. Thepolicy matrix IT isinvertible.
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For the proof see Section A.1.

LEMMA 3. Giveng € Bs;(0), T*¢ =1+[y'(0 —q)]" andif xp, z1 isgiven by

xgl | q+AT¢ -0

(44) [21—91] =0 |: el
and z is given by
(45) z=¢q + AT — Rxl,
then
(46) xp > 32
and

1 , "
(47) 7=0+ Eel[y O -]

For the proof see Section A.1.

LEMMA 4. Given ¢ > 0 such that y’'g > y’0, and C,, z1,xp as in (40),
(42) and (43), respectively, if z =g + 1Csl — RxC,l, where x = (x5, 0)’, then

x>0,Ax<e and z;=0; for k > 2.
For the proof see Section A.1.

REMARK. It can be verified that the discrete review policy described above
can still be implemented even if the heavy traffic assumption is not satisfied. To be
more specific, suppose we perturb the arrival ratés 2 and consider the static
planning problem with.. If this new static planning problem has a unique solution
(0, %) with § < 1, andA% = pe, and if 1 is sufficiently close to. so that the same
basis as in (10)—(13) is optimal, then the discrete review policy described above
is still well defined for this case with the following minor change. One needs to
replace the termé!” in (39) and (43) with the termgel.” Then, since Lemmas 2—4
only use the uniqueness assumption and not the assumption that they can
be modified to justify the validity of the policy. Furthermore, we can significantly
improve the performance of this policy by using the excess capacity available.
In particular, one could use the excess capacity to achieve complete state space
collapse, where all the buffer levels are zero in the diffusion limit. We do not
attempt a formal analysis of this case.
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4.3. Probability estimates for the discrete review policy. In describing the
discrete review policy, we only used the first-order network data. Even though
description of the discrete review policy does not use anything but the first
moments of the stochastic increments, its performance depends critically on the
moments of higher order. As stated earlier in Section 2.1, we assume moments of
order 2+ 2¢1 for someeq > 0. In analyzing the performance of discrete review
policies, Maglaras [33, 34] and Harrison [16] have imposed exponential moment
assumptions on the stochastic increments, which is a strong assumption but it
results in the tighter control of buffer content levels. On the other hand, we will
need to take longer review periods because of the weaker moment assumptions,
which will become apparent below. Our moment assumptions, along with the
“long” review periods, simplifies the analysis.

In implementing the discrete review policy, system status is reviewed at discrete

points in time, sayt, 71, 72, ..., Wheretg = 0 and the elements in this random
sequence can be determined inductively.

We assume
(48) Z(0) =9,

and that there are no partially completed jobs in the system at time zero and
the arrival processes have no residual time at time 0. We define thej skt
k=0,1,2,...as

(49) NkZAkﬂBkﬂclgﬂDkﬂEk,
where
(50)  Ax ={Z(w) € Bs1(9), Z(tk+1) € Bs1(9)},

(51) Bk={rﬁ“éx sup Zi(S)5[29*+n(2lul+1)+2|k|(1+y/9*)]l},

i=2 g <s<ti1
Cr = {S;(Tj(tkt1)) — Sj(Tj(tx)) = (2uj + 1)I for some;}
N{Z(w) € B51(0)},
(53) D= {0 <sviforj=1....n}n{al*P <sViVie

(52)

Tk+1
(54) Er= {/ LW (5)> (/6% +-mn|y| 2|+ D)+2)yImy'o*apiy d Iw () = 0},
T

Whereﬁﬁk) is the residual service time for activity at timet; for j =1,...,n,

andk=1,2, ..., andﬁgk) is the residual interarrival time for classt timer; for
ieAd,andk=1,2,..., and
(55) Iw(s)=7"1(s), s> 0.

Ay tells us that we are in case 1 at the beginning and end of review period
and By, specifiesZ, throughZ,, have not grown too much during any part of the
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review period. If the number of jobs completed in a review period via activity
Jj—Wwhere the initial queue length vecige Bs;(6)—exceedg2u ; + 1)/, we will
announce that to be a “coordination problem.” That is, the event of coordination
problems(y, in periodk is given by (52). This definition is, indeed, more stringent
than necessary, because it might well be the case that for a sample path in this set,
the servers are able to undertake their prescribed activity levels. However, it is
quite cumbersome to enumerate all the possibilities which may lead to problems
in undertaking the processing plan; and neither is it necesgargontrols the
overshoot of the residual interarrival and service times. FinAl\helps us control

the idleness incurred in a review period, and it is essential to observe for our future
purposes that

Tk+1
/T Oz SO0l @D+ 2y d I () =0,
on the setC; N N;—1 N --- N Ny, Which is a consequence of the fact that
Iw(ti + [V (0 — Z(ti))]") = Iw(tx41) on that set. The latter assertion follows
because the servers work continuously dufing+ [y’ (0 — Z(tx))]™, tx1] by our
policy description. (As we restrict attention on the 6§tN N;,_1 N --- N N, the
servers will have enough input to work on during + [y'(0 — Z(u)], trr1].)

PropPosITION1. Wefixane; € (0, 1) suchthat (4) and (5) holds. Then
C k+1
(56) P(MNg, Mi—1,...,No) > (1— —) foralll>C,k=0,1,2,...,
ll+81
where C is a constant independent of /; see (138).
For the proof see Section A.3.

5. Asymptoticanalysis. Itis almostimpossible in dynamic scheduling theory
for stochastic processing networks to find solutions which can be described by
a few parameters and are exactly optimal. However, lowering the aspirations in
accordance with the general program laid out by Harrison [15] and Williams
[7, 51], we relax the objective and seek “good” policies that are “asymptotically
optimal” in the heavy traffic limit under diffusion scaling. In particular, we will
establish the asymptotic optimality of the discrete review policy introduced earlier,
provided its parameters are chosen correctly. The discrete review policy introduced
in Section 4 will be denoted bRR(/, 6, IT), wherel is the (nominal) length of a
review period is the vector of safety stock levels, aftis the policy matrix.

We will consider a sequence of systems indexed by the parameded we will
attach a superscript to note the dependence.drhe initial conditions and the
parameters ando will be varied withr as below.
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Choiceof policy parameters. We fix ane> > 0 such that, < ¢1/3, and choose
the parameterk 6 of DR(, 6, IT) for therth system as follows:

(57) I(r) =ri*2,
(58) 0(r) =0"1(r).

Initial conditionsunder scaling. We assume for theth system that
(59) Z"(0)=0(r),

and that there are no partially completed jobs in the system at time zero.

In order to analyze the asymptotic performance of the sequence of discrete
review policies {DR(I/(r), 6(r), I)}72,, we introduce the following diffusion
scaled processes. Diffusion (or CLT) scaling is indicated by placing a hat over
the process. We extend the definition of the scaled routing processes to all
nonnegative times by making them piecewise constant. In defining the diffusion
scaled quantities, we first center the processes, then accelerate the time by a factor
of 2 and normalize the space by a factorrofA possible intuitive way to think
about this type of scaling is to imagine that performance-relevant time spans are of
orderr2 in therth system and the natural units of measurement for queue lengths
over such time spans are of order

Diffusion scaled processes.

(60) E"(1)= ;1 (E(r?t) — rat), >0,
(61) S"(t) = ;1 [S(r?t) — r?ur), >0,
(62) 5ﬂn=%@ﬂv%n—wv%n t>0,
(63) 7' (1) = ;1 Z(r%), >0,
(64) W’ (1) = %W(rzt), t>0,
(65) Y (1) = ;1 Y (r1), >0,
(66) 17 (t) = %I(rzt), t>0,

where (62) defines the scaled routing vector for actiyitfor j =1, ..., n.
Having introduced the diffusion scaled quantities, we now give a precise
meaning to the term “asymptotic optimality.”
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Asymptotic optimality. A sequence of admissible polici¢g] (-)}72 , is called
asymptotically optimal if for any > 0, x > 0,

(67) limsupP (k- Z}. (t) > x) <liminf P(h - Z}-(1) > x)
r—00 * r—>00
for any other sequence of admissible polici&s(-)}2° ;.
As an aside for the reader familiar with heavy traffic literature, we note that the
meaning of asymptotic optimality is different from, say, that considered by Bell

and Williams [1]. In our setting the traffic intensity is always 1; it is with respect
to policy parameters that we perform asymptotic analysis.

5.1. Network dynamics under scaling. To describe the evolution of system in
terms of scaled processes, we need to introduce two additional scaled processes
for which the time is accelerated by and the state space is normalized-y

— 1

T' (1) = ST (%), >0,
r

<r 1 2

ST () = —2S(r 1), t>0.
r

It is now straightforward to derive

(68) Z')=X"(t)+ RY' (1), >0,
(69) I"(t) = AY" (1), t>0,
where

(70) X'(1)=Z" O+ E () + Y ) (S}(T} (1)) — RMS (T"(t)),  t=0,
j=1

(71) M =diagm).

We define(n — b)-dimensional vecton such that

(72) n=rn'N-yJ

and note thah > 0 by Lemma 1. Then observe that by premultiplying (68)by
and using (16), we have

(73) W't =Xpy) + Iy +I5(1), 120,
where

(74) Xy (1) =y'X" (1), >0,

(75) I () =a'T" (1), t>0,

(76) It =—n'Yi @), t>0.
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5.2. Convergenceresults. In this section we present three convergence results
regarding the scaled processes und®(i(r), 6(r), IT) with I(r), 6(r) given by
(57) and (58), respectively. These results are not only required to prove our main
result [see Theorem 3], but also are interesting on their own right.

THEOREM 1 (State space collapse)For any fixedtime T > 0,

sup Z;(s)=0 asr—oofork=2,....m
O<s<T

under {DR{(r), 0(r), T1)}2,.
PrROOF We define the sequence of sets indexed bg
Lr2T /1(r))
N= [ M.
k=0

We then have by Proposition 1 that

C \IPT/I
- l(r)1+51) ’

Substituting (r) = r1—¢2 [see (57)], gives

P(N") > (1

C [r+*e2)17
P(NT) > (1 - m) :
We note that

PN)—1 asr — oo,

because

C i TC

(rl—82)1+81 r81—282—8182 asr — oo.
We then observe that for each fixedon the setv”, we have

max  sup Zg(s) < [20" +n(2ul +1) + 2A[(1+ y'O)1(r).

k:Z,..,,m 0§s§r2T
Or, in terms of diffusion-scaled quantities, we have
~ l
(77)  max  sup Zi(s) < (20" +n@ul + 1)+ 201+ o)
k=2,....m 0<s<T r

Clearly, for everye > 0, we have
P( max sup Zi(s) > 8)
k=2,..., mQ<s<T

< P((NHC) + P(k max sup Zi(s) > e, ,N’).

=Z,....,m OSSST
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We can bound the right-hand side by using (77), which gives

P( max sup Z£(s)>e)

k=2,...,m 0§S§T

- P((,/V’)C) n P(Z@* +n2ul+ 1)+ 2/A[(1+ y'6%) - e).

ré2

Therefore, we have

P( max sup Zj(s) > e) —~0  asr— oo.

k=2,...mo<s<T
Or, equivalently,

sup Z;(s)=0 asr—oofork=2...,m.
0<s<T 0

Before we state our next result, we first introduce the one-dimensional regulator
map (¥, ¢) : D[0, oo) — D[0, co) by letting

Y (x)(@) =— inf x(s),
O<s<t

p(x)(1) =x(@) + Y (x)(1),
for all x € D[O, 00).

THEOREM 2 (Convergence of scaled workload).
(W', T, X)) = (WA, T%,X3,)  asr— oo
under {DR(/(r),0(r), ID)}2,, where X7y, isa (0, o2) Brownian motion starting
at the origin, I* = ¥ (Xj,), and W* = ¢(X7,). That is, W* is one-dimensional

regulated Brownian motion. The variance parameter is 02 =yI'y with T =
ro+ >y xiT7, and rorl ..., arem x m covariance matrices defined as

rj.’k = J Var(ug (1) L=y,
1
[ =—[Q/ + (R;R)) Var(v;(1))] forj=1,...,n,
m;
where

Q= Pix(Ly=r) — Pji)-
PROOFR We fix T > 0 and analyz®R((r), 6(r), I1) over[0, r2T] for r = 1,
2,.... As defined in the proof of Theorem 1, we let

Lr2T /1(r))
N'= [ M,
k=0
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and observe that for every sample path in theétwe have that

2

r<T
(78) /o Liw (5)> (y'0*+mn|y|2lul+D+2lylmy'o* i)y d w (s) = 0.

This follows immediately by construction ofthe se\s, k =0, 1, ..., erT/l(r)J .
To be more specific, the sdét; [see (54)], is constructed to make sure that we
have (78) on the sev”.

One can equivalently represent (78) in terms of scaled quantities as follows:

(79) /OT L7 (51> (/0 maly| 4D+ 2y pmy0* iy ) AT (8) = 0.
Recall that [see (73)] under any admissible policy, we have that
W (1) = Xiy () + Tjy (1) + I (o).
Moreover, undebR(I(r), 6(r), IT), on the setV", we have that
I, =0 forallze[O, T].

This follows becaus®BR((r), 8(r), IT) never uses the nonbasic activities. Conse-
quently, undeDR((r), 6(r), IT) we always have

(80) W’ (1) = Xy, (1) + Iy (0).
Having (79) and (80), we can invoke Lemma 7 which is stated and proved in
Section A.2 to get, on the sat”,

- U (X (5)) < Ty (s)
(V6% + mn|y| 2| 4+ 1) + 2|y|my'0*|r])

ré2

< (X (s)) +

o(Xiy (5)) < W'(s)
(82)

('0* +mn|y|2lpl +1) + 2[y|my'0*|A])

réz

< o(Xjy () +

forall s €[0, T].

The next step is to prove that (-) = x*(-) asr — oo underDR((r), 6(r), IT),
wherex*(t) = x*¢. To this end, we define the sequence proceggsWw’, I},
X", Z", 1", Y" as follows:

_ 1~

Xy () ==X"(1), t>0,
r

_ 1 -

Wt)y=-Ww"(@), t=0,
r

_ 1
Iy (t) = ;I{V(t), t>0,
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_ 1~

X'(t)=-X"(1), t>0,
r

_ 1.

7zt =-7Z"@), t>0,
r

_ 1

I'(ty=~1"(), t>0,
r

_ 1.

Y'(t)y=-Y"(0), t>0.
r

We note thafl' (s) < s, for all 7 € [0, T'], by (22). We also recall [see (70)] that
X' ()=Z"0)+E 1)+ Y ®(S|(T} (1)) — RMS (T (1)).
j=1
Using these, it is straightforward to derive

>

j=1

+[RM||IS" |I7.

qr
IS% 17

IX 7 < 1 Z" Ol + I|1E"||7 +

It is also straightforward to show that the right-hand side converges in distribution
to a nondegenerate limit. This can be proved by using the continuous mapping
theorem, random time change theorem (cf. [4]) and the factfpat) — LS

asr — oo for everys € [0, T] (cf. [23] for a proof). On the other hand, since

X" =1X", we have that

IX"l7 =0 asr — oo.
We also conclude by (74) that
I Xty ll7 =0 asr — oo.

Since the one-dimensional regulator map commutes with scaling (see [50]), we
immediately have, on the s&t”, that

(V'0* +mn|y|2lul +1) 4 2|y|my'0*|A])
réz2 ’

(V'0* +mn|y|2|u| + 1) + 2|y|my'6*|r])

réz

(X () < Ty (s) < ¥ (X () +

(X () < W (s) < (X} (5)) +

for all s € [0, T]; and sincey, ¢ are continuous under Skorohod topology
(cf. page 153 of [11]) and tha (N") — 1 asr — oo, we immediately have

Ily=0 asr— oo,

W'=0 asr— oo.
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Since we haver > 0, andy > 0 (cf. Lemma 1), we also have that
I"=0 asr— oo,
Z'=0 asr— oo.

We now prove thatr”(-) = 0 asr — oo. Or, equivalently,7"(-) = x*(-) as
r — oo. We first note that

| YB | Ts
Y_[YN] and T_[TN},

whereYy = Ty = 0 underDR((r), 6(r), IT), because our policy never uses the
nonbasic activities. Also, we have for any admissible policy that, by dividing both
sides of (68) and (69) by,

Z" () =X"(s) + RY'(s),
1" (s) = AY" (5).
Moreover, undeDbR(I(r), 6(r), IT) these reduce to the following:
Z"(s) = X"(s) + HY(s),
I"(s) = BY(s).

We can rewrite this in matrix notation as follows:

Hlo, . [Z'()—X"(s)
[B]YB(”‘_ ') }

Or, we can write

[H —el:| [Yg(s)' B |:Z’(s)_— Y’(s)}
B O o |~ " (s) '

It is immediate from this and Lemma 2 that

Y5() | _ 1| Z7(6) = X"(s)
0o | I"(s) '

Since(Z", X", I") = (0, 0, 0) asr — oo, we conclude by the continuous mapping
theorem that'; (-) = 0 asr — oo, which in turn implies that

T () = x*() asr — oo.

We now immediately conclude by the representation (70) and the definitiﬁta,of
[see (74)] and by the continuous mapping theorem, random time change theorem
and functional central limit theorem for renewal processes (see [4]) that

Xiy()= Xl  asr— oo,
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whereX7j, is a one-dimensional (8,2) Brownian motion. Deriving the expression
for o2 is straightforward but tedious. It is outlined in [14] and so we will not repeat
here.

We also conclude by the continuous mapping theorem that

(X)) = v(Xiy) asr — oo,
o(Xy) = (X}y)  asr— oo,

because), ¢ are continuous under Skorohod topology; see [11].
Finally, sinceP(~N") — 1 asr — oo and (81), (82) holds on the s&t”, we
conclude by Skorohod representation theorem (see [4]) that

I, = ¥(X}y)  asr— oo,
W' = o(X})  asr— oo. O
COROLLARY 1 (Convergence of scaled queue lengths).
7" = z* asr — oo

under {DR((r), 6(r), 1)} ,, where

Z*(1) = (W*(’),o,...,o).

1

PROOF By (28) we have
~ 1] ~ mo
Zi(s)=— [W’(s) =Y viZ] (s)}.
y1 )
We also have by Theorem 1 that

iyj{:w asr — oo,
i=2
and by Theorem 2 that
W'()=W* asr— .
Therefore, the result follows by the convergence together lemma (see [4]).
5.3. An asymptotic performance bound. In this section we develop an asymp-

totic lower bound on the cost rate for admissible sequence of policies. The follow-
ing result provides an asymptotic bound on the cost rate:
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PrROPOSITION 2. Given an arbitrary sequence of admissible poli-
cies{T"(-)}22,, for eachr > 0, x > 0, one hasthat

. = h1 —XxXy1
liminf P(h - Z% (¢ >P<—W*t )=2N( )
r—00 ( T()>x)_ 1 0)>x hlo‘\/f

where N (-) is the cumulative distribution function for a standard normal random
variable.

For the proof see Section A.4.
Therefore, the proces%W*(-) gives an asymptotic lower bound on the
achievable cost rate.

5.4, Asymptotic optimality of the discrete review policy. Consider the se-
quence of discrete review policigPR((r), 6(r), IT)} with [(r) = r1=22, 6(r) =
0*1(r). Let T, = {T} (-)}22, denote the sequence of cumulative time allocations
under{DR(I(r), 6(r), I1)}22 ;. Our main result can then be stated as follows.

THEOREM 3 (Asymptotic optimality of the discrete review policy)For each
t > 0andx > 0, we have

lim P(h- 2; (1) >x) = P(ﬁW*(t) > x).
r—0o0 * y1
Therefore, {(DR(I(r), 0(r), IT1)}°2 4 is asymptotically optimal.

PROOF By Corollary 1 we have

= h
h-Z’T*:>—1W* asr — oo.
Y1

Given Proposition 2, the result follows (see [4])]
APPENDIX: TECHNICAL PROOFS

A.l. Proofs in Section 4.2 We now present the proofs of technical results
presented in the text. We start by stating and proving a lemma which will be useful
in proving Lemma 2.

LEMMA 5. Thematrix[2 0 Jisinvertible.

—e

PROOF Supposeitis notinvertible, then there exisgse RY, o € R such that
H 0 XB _
©) e[v]-e

(84) ["B} £0.

o
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Clearly, Hxg = 0, Bxg = ae and using (16), we immediately concluae= 0.
Therefore, we have

(85) [’; _2] :xg_ —0.

Recall that we denote the solution of the static planning problenibwhere
«_ [ X5

=179

andxjy > 0. Therefore, without loss of generality we can assume that
(86) xp+xp>0.

Also by using the heavy traffic assumption and (85), (86), we write

e

[ngxg} > 0.

This impIies["Zg"B ], p = 1is an optimal solution to the static planning problem.
However, by the heavy traffic assumption, the solution of static planning problem
is unique. Thatisxp = 0, which contradicts (84).0

PROOF OFLEMMA 2. We consider solving the following equation:

® [a-cJ[5)=[5]

which has a unique solution by Lemma 5. By Cramér’s rule (see page 233 of [45]),
we conclude

el 3]
de{§ 5]
We can write (87) as
(88) Hx = e,
(89) Bx =ep.
Premultiplying (88) byy’ givesy’Hx = y1, and also by (89), (16) we have that

YVHx=n'Bx=n'ep=p.
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Therefore, we have = y; and we conclude > 0, because > 0 by Lemma 1.
Clearly, by (87),0 > 0 implies

H eq
det[ B O] #0,

which in turn impliesIT is invertible. O
The following lemma is needed to prove Lemma 3:

LEMMA 6. Giveng € Bcy/cmy(0), if xp, z1 iSgiven by

xpl | _ _1[g+Al—0
(90) [m—el]—“ [ vt
then [ 5] > 0. More precisely, [1#] > 3[ 45 ].
PROOF We letwa, g be such thai > 0,
q=q+aer

and
C
|qi—9i|<%°1 fori=1.....m.

Recall tha®) > C1le. We first prove the following two facts:

v [3]-[2)

= (6],

Equation (91) follows from Lemma 2 and the fact that

"fa)=[s)

To prove (92), we lek, B8 be such that

)= 6)

We want to prove thgt = ﬁ It follows from the equation immediately above and
Lemma 2 that

(93) Bx =0,

(94) Hx + Be1=¢;.
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By (16) and (93), premultiplying (94) by’ gives

By1=yi.

Thus,8 = %
We now note that

)= (] [0 e8]

We then have, by the heavy traffic assumption, Lemma 2 and (91) that

o= [8 e el

Sincea > 0, we also have

[ 2]=[§]+ @ -o(n[g])

We now rewrite the inequality for each component; we first consider

o= G -6 n—l[eiD .
21 121_:2;(61 )( 0]),

We immediately conclude by (92) and choicejotr that

m
q i Vi C1
21— 01> — Iqi—9i|(—)_ _——l { }=——l.
e 2

i— 1y1 y1

Therefore,

C1 01
>0 — —1> 2 >0.
A= 2 2>

The second inequality follows because Cile.
Also, we have forj =1, ..., b,

m
xjl = x¥l+ Zi(c;,- - 9,-)<n—1 [eo])]

Clearly, we also have

m ) C x*
leijl—Zléi—Qil (H_l[%’]).‘>x*l—mﬁlcjo— 2]l>0,
i=1 J

359

where the second inequality follows by the choicegofind definition ofCq

[see (33)]. O
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PROOF OF LEMMA 3. We letg =g¢g + A[y/(® — ¢)]". To prove xg >
%x;, it suffices by Lemma 6 to check thgte Bc,/om)y(0#). We check this
componentwise, first considee 2, ..., m,

m
G 61 <1 — 61+ 1y/© = @)1 <81+ () Soiles - ol
- i=1

Or, we can write
m " Co
gi —0;| <38l 1 maxi ] < —L.
|qi i < ( +<k=1 k);yt)_zm

The last inequality follows by the choice éf[cf. (37)]. To complete the proof
of the first part of the lemma, we also establish a similar inequality for the first
component ofy, which indeed holds trivially:

G1=q1+ Ml O -l >q1>61-3l,

where the last inequality follows from the fact thig€ Bs; (6).
To provez =6 + y—ll[y’(q —0)]"eq, we first observe by (44) and Lemma 2 that

(95) Hxpl +e1(z1—01) =q + AT -6,
(96) Bxpl =el.
We observe that premultiplying (95) by gives
Y (Hxpl +e1(z1—61) = y'[q + A + ALY (@ — )]" —6].
Using (16), we write
' Bxpl + yi(z1 —01) = y'q + Y M+ VYO — I — y'6.

We further simplify this by using (96), the heavy traffic assumption and Lemma 1
to get

yiz1—60) =y (-0 + 'O -]
Therefore, we have
(g —O)1F
y1 '

71=01+

Finally, by (45) and (95) we have
2=q+AT° — Rxl=q +AT*° — Hxgl =6 + (z1 — 01)e1,
and we conclude the proof by observing that

k=6 fork=2,...,m. O
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PROOF OFLEMMA 4. We first argue that > 0. Forj =1,...,b, one can
express; as follows [from (43)]:

1 1 G+r—0
(1—a) g (mam (775 0)
Al _1(q—90
s ilmom () s (757))
<x*z+[1 O]n—1<‘7 _9)>
C,\"B ’ 0 ;
‘ 1 Gg—0o
e ron(757)

* 1 *
= Xj + C_S(_ijS)’

Il
=
~. %
N
H
|
Q| k- -
+
XS

where the last inequality follows from the definition ©f.
To complete the proof, we first observe that

_ -1 C} +ACsl —0
(97) Cslxg = [, 0]T1 ( Cuol .
Also, one can show by using (92), (13) and the heavy traffic assumption that
_@G-o1t 1(G+ACsl—0
(98) z71—61= A lepy1]T1 ( C,el ) ,

wheree;, 11 is a(b + 1)-vector whose firsb entries are zeros and last entry is one.
By combining (97) and (98), we arrive at the following:

xgCsl _1_[_1 q+21Csl—06
71—01|" eCql ’

which can equivalently be written as
[H el] [ xpCsl } _ [c] + 1Cyl —9}
BO]||lz1—61] eCql :
One can further write this as follows:
(99) HxpCg4l + e1(z1 —01) =q + ACsl — 6,
(100) BxpCgl = Csle.

Becausery = 0, it is immediate from (100) thadx = e. Finally, by using (99)
and thatcy = 0, one has the following:

=G +ACyl — RxC,l
=G +ACyl — HxpCyl
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=4+ ACsl — (G +1Csl — 0 — e1(z1 — 61))
=0+ (z1—0O1)eq,

which can also be writtenag =6, fork=2,...,m. O

A.2. An auxiliary lemma for Theorem 2. We now state a technical lemma
which is crucial for proving Theorem 2. The first part of this lemma is proved on
pages 14 and 15 of [53] (cf. equation (8) of [53]), and the proof of the second part
is very similar to that of first part; but we state and prove it—which is essentially
the same as the proof given by Williams [53]—here for the sake of completeness.

LEMMA 7. Weletw,x,ye D([0,T], R) and é > O be such that:
(i) w()=x(@)+y@)Vrel0,T],
(i) w)=0VrelO,T],

(i) (@) y(0)=0,
(b) y isnondecreasing,
(©) Jio.77 L.00)(w () dy(2) = 0.

For z € R, we letz— = maxX0, —z} = —min{0, z}. Then we define for all
t €[0, T], that

Y1) =sup(x(s))”":0=s =1},
y(1) =3@) +3.
Then we have
(101) y() <y  Vtelo,T],
(102) y(@) < y() Vtel[O,T].
REMARK ON CONDITION (iii))(c) oF LEMMA 7. One needs to be careful in
interpreting the Lebesgue—Stieltjes integral, because the jumyps)imakes the

interpretation quite subtle. We refer the interested reader to the remark on page 12
of [53] for a discussion of these issues.

PROOF OFLEMMA 7. We first present the proof of (101), which is, indeed,
taken directly from [53]. We let > 0 andt, = inf{r € [0, T]: y(¢) > y() + ¢}
with inf @ = co. If 7, < 00, theny(z,) > y(z.) + ¢ by the right continuity of
paths, and

w(te) = x(Te) + y(Te) = x(7e) + y(7e) +8=x(fe)+§(fe) +6+e>8+e.

However, by definition ofr, and (iii))(a) and (b),y must either have a positive
jump at timer, or y must have a point of increase to the right there. In either case,
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sincew(t,) > §, this contradicts (iii)(c). Thus;, = oo for eache > 0, and, hence,
y(t) <y(@) VYVt €[0, T] as desired.

We now prove (102). To this end, we first defidgz) = x(¢) + y(¢r) for
t € [0, T]. Itis well known that (cf. [41]w, x, y jointly satisfy:

(i) @) =x@)+3@)Vtel0,T],
(i)’ w()>=0Vrel0,T],
(i) (a) y(0) =0,
(b) y is nondecreasing
() f[O,T] 10,00 (w(t)) d¥(t) = 0.

We lete > 0, andz, = inf{r € [0, T]: y(¥) > y(¢) + &} with inf & = 0. If 7, < 00,
theny(z,) > y(z:) + ¢ by the right continuity of paths, and

W(Te) =x() 4+ Y(7e) 2 x(1) + y(re) +e=w(w) +e =& > 0.

However, by definition ofc, and (i) (a) and (b), eitheff must have a positive
jump atz, or y must have a point of increase to the right there. In either case,
sincew(t,) > 0, this contradicts (iii\c). Thus,z, = oo for eachs > 0 and, hence,
y(t) < y(r) forall t € [0, T] as desired. [

A.3. Proof of Proposition1. We now present the lemmas below which will be
useful in proving Proposition 1.

LEMMA 8. Given a sequence {Y;}7°, of independent and identically distrib-
uted random variables with mean zero and

E|Y12t%1 <00 for someey > 0,

we have

N 2—|—2€1

3/2\ 242
E ZYi < [(M) 81E|Y1|2+281]N1+81.
i=1

(1+ 261)172

PROOF The result follows from Hdélder's and Burkholder’s inequalities. For
a derivation of this result (indeed, a more general version) see equation (3.67)
of [12]. O

We now prove alemma regarding renewal processes associated with the external
arrival and service processes.

LEMMA 9. Givene > 0and ¢ > 2/¢, we have

Ca(e)

(103) P( sup () stz er) < S22,
_ C3(e)

104 P( sup [S(xt) — M Lxt za)g ,
( ) x20,|x?§1| ( ) | t1+51
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where
2+ 261 [18(2 + 2¢1)%/27%+21
C2(8) = |: 75 i|
261 +1L (1+2spY
B20x + o)\ a3\t
x 3 Elux(D) - Euk<1>|2+2“[(k72) " (—zk) }
keA & e
2+ 261 [18(2 + 2¢7)3/2721+201
C3(8) = |: 75 :|
261+ 1L 1+2e)V
S 4M2(M i+ &)\ e 4,u3.‘ 1+eq
Fonn- o (M) ()]
j=1

ProOF We will only present the proof of (103), because the proof of (104) is
essentially the same. It is straightforward to arrive at the following:

P( sup |E(s) — As| Zet) <> P< sup |Ex(s) — Axs| zet).

O<s=<t keA O<s=t

Letting oy = inf{s € [0, #]: | Ex(s) — Axs| > et}, where infg = oo, observe that

P( Sup|Ek(s)—)\ks|28t)=P(O'k§t), k € A.

O<s<t
On the other hand, it is easy to see the following:
{|Ek(s) — Aks| = et} = {Ex(s) — Ags = et} U {Ex(s) — Ags < —et}
={Ek(s) = Aks + et} U{Er(s) < Aps — et}
CH{Ek(s) = [Mrs + et]} U{Er(s) < [hks — et}
= {Uk(Lrxs + 1)) = s} U{Uk(TAxs — et]) = s},

whereU (—k) =0 fork > 0.
Defining

oY =inf{s € [0, 1]: Up(Lhis + 61]) <5}, k€ A,
o2 =inf{s € [0,1]: Up(Thas —et]) =5}, ke A,
we can writeoy, > crk(l) A ak(z). Therefore,
Por<n <Pl ro® <t)< PP <t)+ P <1).

We now analyze each of these terms separately. Ei,f@t,can be re-expressed as
follows:

crk(l) = inf{s € [0, 1]: Ur (L Aks +et]) — 7ka$ il <s— 7ka$ et }

Ak Ak
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Next, defining

&P = inf{s € [0, 11: Ur (| Aes + t]) — Lhis Tet] _ —8—’}

Ak - 2un )

one has tharﬁk(l) < ak(l). This follows becauser > 2, and that in turn implies that
— > — W‘J”J . Therefore,

P( (1)<t)<P( (1)<t)

It follows that

P(&k(l) <1< P( sup

i=0,1,..., | Akrser]

et
>
- Z)Lk)
It is straightforward to conclude by Markov’s inequality (cf. page 39 of Ross [43])
that

kk

242,
P <) < E(SUD—01,..., g per) 1URD) — /2 )T
Lo (e1/(201)) 221 '

We then use Doob’s inequality (cf. page 15 of [12]) to get the following:

2+ 261 E|Ui(LAxt +et]) — | Axt + &t ] /Ak|2+281
T 14+ 2¢ (81‘/(2)»1())2"'251

Finally, invoking Lemma 8 gives the following:

PG <1) <

PEP <1<
(105)

2+ 261 [18(2 + 281)3/2]2+281
1+281 (1+ 281)1/2

x Elup(1) — Euy(1)|?+2

A0 + a2 1
|: 82 i| tl—‘r&‘l ’

Similarly, we rewriteo;, 2 as follows:

o2 = inf{s € [0, 1]: U ([hgs — et]) — M"s/\_ i B r’\"s/\_ al }
k k

Defining

[Aks —et] _

52 =inf . ArS — — }
o In {s e[0,t]:Ur([Ars — €t]) " > 2)»1(

one has thaﬁk(z) < ok(z). This follows becauser > 2, and that, in turn, implies

et [Aks—et]
oy =8 — 52 . Therefore,

P( (2 <t)<P( (2 <t)
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It follows that

i
Ur(i) — —

P(&k(z) <1< P( sup
Ak

i=0,1,...,[Agt—et]

st
>—.
=,
Then by Markov's inequality, one has that

..... i1 Uk () — i /Ag]) 2281

E(SUp—_g 1
<
(e1/(20x))? 281

P (&k(z) <1<

One can further use Doob’s inequality to arrive at the following:

2+ 2¢1 E\Ui(TAxt — et]) — [t — et /Ap |21
P(&k(z)st)< + 2e1 E\Up([Art — et]) — [Axt — et] /M| .

142 (8t/(2)y)) %2
Also, invoking Lemma 8 gives
2+ 261 [18(2+ 261)¥/272 2
P(&,C(Z)St)s + 81[ (2+ 2¢1) ]
1421l (14 2e1)1/2

(106)
4)\‘2 ) 1+El 1

x E|ug(l) — Euk(l)I2+2“< 2 Arer

Finally, combining (105) and (106), fdre 4, gives (103). [

The next lemma provides a similar probability estimate for our routing vectors,
®;()forj=1,...,n.

LEMMA 10. Givene >0andfor j =1,...,n,wehave

. . Cyj(e)
Y, J
P(i:O?E.P,N |CI>](1) P]ll > 8N> < Niter
where
2+ 2, 18(2+281)3/2:|2+281 i ) 242 [ 1 ]
Caj(e) = E|® ;1(1) — Pl |5T%1 ,
45 (€) 281+1|: (14 2e)V/2 kgi P k(D) = Pl g2t2e

PRoOOFE We first note that

m
P( sup |CI>j(i)—PJ/-i|zsN)§ZP< sup |<1>,~k(i)—P,’.ki|zsN).
i=0,1,....N k=1 \i=01..N ‘

By Markov’s inequality (cf. page 39 of [43]), we write

.....

. . " E(SURgy,.. v |® k(i) —iPj )7+
P( sup |<I>,~(z)—Pl/-z|zeN>§Z o J .
i=0,1,...N ‘ =1 (eN)



DISCRETE REVIEW POLICIES 367

We then write by Doob’s inequality (cf. page 15 of [12]),

2+ 261 ¢N E|®ji(N) — NPj, 2423
T 2a+1/7 NZ+2e1 ’

P( sup |D;(i) — P [ >£N)
i=0,1,...
and the result follows by Lemma 8

ProoF oFProOPOSITION1. We first review some essential notatiag, 71,
7o, ... are the review points withg = 0. t; marks the beginning of thieth period

for k 0,12, ...; x” denotes rate of activity in periodi for j =1,2,...,n,
andi =0,1,2,. In particular, during review periodl servers(J) (nomlnally)
undertakes act|V|ty] for x(’)l time units in Case 1, and x§ [ time units in
Case 2; and there are no partlally completed jobs at time zero. Therefore, we have
x© = x*, wherex* is the solution of the static planning problem, and= .

We first prove that

C

where C is a constant, which depends a@nbut not oni, given by (138).
Equivalently, we prove the following:

PONG) < 1y

Since N = A§ U B§ UCoU D§ UES, we have
P(NS) < P(Co) + P(D§) + P(BS NC§) + P(AS N C§) + P(ES N CE).
We first considelP (Cop):
P(Co) = P(S; (x;‘l) > (2uj + 1)1 for somey)
< P(Sj(1) = (2u; + 1)l for somej)
< P(IS(el) — pul| = 1).
Therefore, by Lemma 9, we have that

C3(1)
]1te1

(207) P(Co) < forl > 2.

We now consideP (A§ N C§). It follows that [recall thatZ (0) = 6]
Z()—0=E(1)—Al

+ D [@(S; (D) — PLS;(x3D] — RM[S(x*1) — M~ x*1],
j=1
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Fix ane > 0 such that/6 < ¢ < §/3; and observe that
(108) P(A§ NCE) < pf+ pil + Pili»
where

PP =P(E(l) — M| > ¢l),

pii =P (Z |©;(S; (D) = PiS;(xiD] = el S;(x}1) < (uj + D w’),
=1
P = P(RM|IS@*D) — M™Yx*1| > el).
We will bound each op?, p?, p, separately. We first observe by Lemma 9

Co(e) 12
(109) p?:P(|E(1)—/\l|zez)gllT€1 for > —.

Then note that

" el
ph = Y P(19,,05) — P8I = 58,670 = @uy + D)
=1

A

" L, el
ZP( sup |d>‘,-(z)—sz|z—)
j=1 "

i=1,....[(2u;+D)I]
n
< P( sup |®i(i)—iP)|> ————
21 Ni=Lo @D ! T n@ui+2)
Therefore, we conclude by Lemma 10 that

(110) 0 1 Xn: Caj(e/(n(2u; + 2)))

<
Pn = ll—l—sl ] (2/‘L/ + 1)1+81

@+ )

Finally, we considep)),:
0 ~ 1~
p §P< sup |SGxD)—M xllz—).
" I%1<1,5>0 |RM|
We then conclude by Lemma 9 that

C3(e/IRM])
(111) pir < Tt

Combining (108)—(111), we write

12|RM|
forl > ————.

P(A§ NCE) < [cz(s) + C3(
(112)

e ) +Zc4<e/<n<2uj+2>»} 1

|IRM| = (ZMj + 1)l+e J1ter’

12
I>(1V [RM)).
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We now con3|deP(D ) and note that

LnJ T 8\/_ U {1251) > S«ﬁ}

ieA

Observe that for € A4, one has that

P > sv1) = P(E;(l + V1) = Ei(1))
= ZP Ei(l+8V1)=k E;i(l)=k)

= ZP(Ui(k) <I,U;j(k+1) >l+8ﬁ)
k=0

<Y P(Uitk) <l uj(k+1) > 8v1)
k=0

o0

=3 Puitk+1) >8vI)P(E;(l) =k)

= P(u;(1) > 5/1) i P(E:i(l) =k)
k=0
= P(u;i(1) > 81).
Therefore, we conclude by the Markov inequality that
Eluj(D]*21 1

113)  P@P >sv1) < P(ui(1) > 8v/1) <
Also, observe thatfoj =1, ..., n, one has that

PV > 83/1) = P(S;(xil +8vI) = S;(x7D))

= };)P(s,- (X4 8V1) =k, S;(x31) = k)

=Y P(Vj(k) <x31 Vi(k + 1) > x31 4+ 8V1)

k=0

<Y P(Vitk) =xilvjk +1) > 81)
k=0

=Y P(vj(k+1) > 8VI)P(S;(x}) =k)

k=0

82+2€1 ll—‘rel :

369
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o
=P(u;i(1)>8v1) Y P(Sj(x3) =k)
k=0
=P(v;(1) > 8v1).
Therefore, we conclude by the Markov inequality that

Ey;(D]***1 1
52+281 ll—‘rel :

114) PP >6vI) < Pvj() > 8Vi) <
We then conclude by (113) and (114) that

1 " 1
C (11]2+2 (1)12+2
j= S

Next, we consideP(BOC N COC). SinceZ (0) =6, we haver; =; and we have, for
0<s <1, that

Z($)<O+ED+ Y ®;(S;x;D)<0+E0+ (Z Sj(x]'l)>e.

j=1 j=1
Therefore, on the se{fg, we have, fok =2, ..., m, that
Sup Zi(s) <6+ Er (D) +n(2uj+ L.

0<s<1ny
Therefore, we note that
P(BS NC§) < P(IE() — M| > |A]D).
Hence, by Lemma 9, it is straightforward to conclude that

20D oy 2

C C

Finally, we considerP(E§ N C§). However, by definition of the policy on the
seth, the servers are never idled duripg, 71], and, hencelw () = Iy (0) =0

on that set. The last assertion follows because the servers work continuously during
[0, 1] by our policy description. (As we restrict attention on the(sgt the servers

will have enough input to work on durin@, /].) Hence, trivially,

Tk+1
/ L(W (5)> (6" +mnly|@ul+D42lymy'o+apn dIw(s) =0 onC§.
Tk

Therefore,
(117) P(E§ncC§)=0.
Combining (107), (112), (115)—(117), we conclude that

12 121RM 2
forl >2v — | |

P(N§) < e v v —,
N = 1 8 8 IA]
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where the constant

C = Ca() + [Cz(S) + c3( ° ) Ly Cate/napy & 2)))}

|RM| ] (2 + 1)lt+e
n
+ [Z Elvj (D71 + ZE|ui<1>|2+2“} + C2(IAl)
j=1 €A

[see (138)]. This provides the induction basis for proving Proposition 1. We now
assume that (56) holds for=0, 1, ...,k — 1, and prove that it holds far= k to
complete the proof. It suffices to prove

C
(118) P(N¢, Ni—1, ..., M) < llTelP(’Nk_l’ ..., No),

because
P(Ni, M1, ..., Mo) = P(Nk—1, ..., No) — P(N{, Nk—1, ..., Mo).

Therefore, we will show (118). Clearlyy = A{ U B{ U Cx U D{ U Ef, and we
have that

P(NE, N1, ..., No) < P(DS, Ni_1. ..., No) + P(Ci, Ni_1. . ... No)
+ P(B{,C{, M1, ..., No)
+ P(AS, Cf, Mt -, NO)
+ P(ES, CEL Nkt ... NO).

On the setAMgN N1 N --- N MNe—1, We haveZ(z;) € Bs;(0) for i = 1,... k.
Therefore, in each of these periods the system manager implements the Case 1
of DR(I(r), 6(r), IT). In particular,

(119) Texe(i) =T —ri_1=l+[y/(0 —Z(‘L’l‘))]+ fori=12,...,k,

woy [ 81 | a7 e o
Zg_l)—Ql el '

andxl(\’,) =0, andxg) > (1/2)xy by Lemma 3.

Therefore, to calculate the probability of an evéhh My N Ny N -+ N N1
fori =1,...,k, we first further partition this event with respect to the values
of Z(t;) =q; € Bs;(0), i =1,...,k. That is, we fixZ(t;) = ¢g; € Bs;(0) for
i=1,..., k. Itis important to observe that once we ;) = ¢q; € Bs;(6) for
i=1,..., k, we also fixzy, ..., andx®, ..., x® on the seth\g N N1 N -+ N
MNr—1 by (119) and (120). In other words, once we partition the event in question
further with respect to values taken [¥(t;) for i =1,...,k, r; andx?, for
i=1,...,k, are determined by (119) and (120), and their values are deterministic
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(but different on each partition set) on each of these partition events whose union
constitute the event in question. We then have
P(F, Ng-1, ..., No)

= Z P(F,Nk_l,...,d\fo,
(q1,.--qr) EBs1(0) X+ x Bs (6)NZm >k

Z(Ti)zqi,izl,...,k).

Therefore, to simplify the notational burden, we will just pretend that

x are deterministic in the derivations below. However, we implicitly do the
partitioning above to justify the calculations. We will illustrate this approach in
estimatingP (Dy, Ni-1, ..., No), but this detailed approach will not be repeated

in the interest of brevity. Nevertheless, one needs to go through the same
steps to rigorously justify the calculations we will present. We first consider
P(D]g, MNe—1, ..., No):

n
P(Dlg, Ne—1, ..., Ng) < Z P(5§k+1) > 3\/2, MNo, ..., Nk—l)
j=1

+ Z P(ﬁ;k—’_l) > 5\/Z, NOs - ., JVk_l),
ieA

where
P > sV, Mo, ..., Ni_1)
= P(E;(ti11+8v1) = Ei(ti1), Mo, - - ., Ni—1)

= > P(Ei(tis1+ V1) = Eij(ti31),
(q1,----qK) € Bs1(0) x---x Bs; (0)

No,...,Nk_l,Z(‘L’j)=qj,j=1,...,k)
k

= > P(Ei<<k+1>l+2[y/(9 —q,~>]++M>
j=1

k
= E; ((k + I+ Y6 - qm*)

j=1

No,...,Nk_l,Z(;,-):q,-,j:l,...,k)
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< ¥ iP(u,-(a+l)>8\/Z)

(q1,---qx) =0

k
x P |:E,- ((k +DI+ D Y6 - q‘,-)]+) =a,

j=1
:NOw--,:/vk—l,Z(Tj)=Qj,j=17---7ki|
= P(ui(1) > 81)

o0
x > > P(Ei(tsD) =, Mo, ..., Me—1. Z(t)) =qj, j=1,....k).
(q1,--,qr)x=0

Therefore, we have that

P@E* > 5V, Mo, ..., Mi_1) < P(ui(1) > 8+/1) x P(Mo, ..., Ni_1)

Elu;(1)[?+21 1
- 82+2€1 ll+81

P(Mo, ..., Ni-1).
Similarly, we write

P(ﬁ;kﬁ_l) > 8\/Z, No, M1, ..., dvk—l)

k ) k )
P (S‘,- (ij.’)l + aﬂ) =5; (ij.’)l), No, M1, ..., Nk_l)
i=0

i=0

00 k k
=3 p(s5( Lo avE) = (L) = 4 e
a=0

i=0 i=0

<3 P(vjle+1)> V1) x P<Sj<2x§~”l) =, Mo. M,...,wk_1>
a=0

i=0
00 k )
=P(v;()>svI) Y P(Sj (ij.’)z) =a, No. M. ..., Nk_1>.
=0 i=0
Therefore, we have that
P(5§k+l) > 3«/2, MNo, ..., Jvk—l)

< P(vj(1) > 8VI) x P(M, ..., Ni_1)

Elvj (1) |2+2£1 1
= §2+2¢ J1+e1

P(Mo, ..., Nie-1).
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Combining these, we conclude

P(D{, Ni—1, ..., M)
(121)

P(Mo, ..., Ne—1) - 1
X 2 [ZA Elu; (D)%% + ZlElvj(l)IM”} T
i€ Jj=

We now consideP (Cy, Nx—1, ..., No):
P(Ck, Nr-1, ..., No)

=P<=/Vk—1,---,d\fo,

k k-1
S; (Zxﬁ.’)l) —S; (Z xﬁ.’)l) > (2uj + D for somej)
i=0

i=0

S; (i D@40

n
< Zp(aj.k) + > v; (i) Sxﬁ.k)z,wk_l,...,av(a)
j=1 i=8;(Cig x " D+2

nooo jaHuAD k-1
= ZP< > UjU)SLS/(ZXEI)l):O@ Nk—l,---,d\fo>
j=1la=0 i=a+2 i=0
n a+[(2u;+1)1
SZZ[P( 2 vju')sl)
j=1a=0 i=a+2
k-1
X P(Sj (Z xE-”l) =o, Ne_1,..., ,No>i|
i=0

< P(Miets - No) Y P(Vi(L2uj + D)) <1)
j=1

n
<> P(IS(el) — pl| > 1) forl > j:r???fn{l/uj}.

j=1

Therefore, we conclude by Lemma 9 that

nCz(1)
P(Cr N1, -, Mo) = =

P(Nk-1, ..., M)

(122)

forl >2v max {1/u;}.
j=1,...n :
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Next, we consideP (B, Ci, Ni_1, ..., No):
P(B;, Ci, Mi-1, ..., Mo)

SZP< sup - Zi(s) > [2107| +n(2lul + 1) + 2211+ y'0)1L,
i=2

Tk <S <Tk+1

NO, -+ s M1, Sj<2x§’)z> —S; (ij.’h) <@uj+ 11 w).
i=1

i=1
Forty <s <t41,i=2,...,m,we haveonthesetpN---NN._1NC} that
n koo k=1
Zi(s) < Zi(t1) + Ei(tra1) — Ei(tp) + Z b (SJ'<ZX§'Z)I) —S; ( ij’”))
j=1 i=0 i=0
<20 +n2lp| + DI+ Ei(tk1) — Ei(i).
Therefore,
P(B,g, C,g, MNe—1, ..., No)

m
<> P(Ei(tk41) — Ei(t) = 211+ Y091, Mo, ..., Ni—1)
i=2

m

<Y P(Ei(t+1(14y'0%) — Ei(t) = 2IAl(1+ y'05)1, Mo, ..., Me—1)
i=2
m Ei (z)+T2[A1(1+y'0™)]

<3P (ﬁl@ + > ui(@) < (L+y'60")1, Mo, ..., Nk_l)
i=2 a=FE;(t;)+2
m B+ T2y 67)]

§ZP< > ui(o) < (1+y’9*)1,,/v0,...,,ka_1>
i=2 a=E;(tx)+2

m

< P(No, ..., Mic1) D P(Ui(L2IA (L + y'6*)1]) < (14 y'0")1)
i=2

’

m )\‘ 1 /9*
<P(WNo.... M=) P(|E(1+ YOO = AL+ Y091 = w’)
i=2
forl > 1/|1|. We then have by Lemma 9 that
P (B, Ci, Ni—1, ..., No)

mCo((IA[(1+y'0%))/2) 1
=< (1+y/9*)1+61 P(N07 ey Nk—l)llTelv

1 4
l>—[ vl}.
M L1+ y'o*

(123)
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Next, we conside (E;, Ci, Ni—1,...,Mp). On the selC; N N_1 N - N N,
one has that

Tk+1
/ Liw (s)> (y/0*+mnly|@lul+D+2lyimy'o*papny dIw (s) = 11 + I2,
Tk

where

R NECEVACS) I
L= f L{w (5)> (y/0*+mn]y| 2l ul+1)+2lylmy'o* 21y d Tw (5)
Tk

and
I /Tk+1 1 p ()
2= W(s)>(y'0* (2] p|+1)+2 ox Ay ALw ().
oty (O—Z @ {W(s)>(y'0*+mn|y|2lu|+1)+2|y|my'6*|A )]}

It is essential to observe th#t = 0 on the seC; N N;_1 N --- N N, Which is

a consequence of the fact thay (ty + [y'(0 — Z(tx))]™) = Iw (k1) oOn that

set. The latter assertion follows because the servers work continuously during
[t + [y (6 — Z(w))]T, try1] by our policy description. (As we restrict attention

on the setC; N NM,_1 N --- N My, the servers will have enough input to work on
during[zx + [y (6 — Z(m))]T, ©e+1].) Notice also that

(124) Lin>0 = Lsun, o 16z W 6> 00 Hmnlyl@ul+1)+2ly|my6* 1)) -

Without loss of generality, we can assumé > y'Z(t;) = W(tx). (Otherwise,
Iy =0.) Fors € [t, T + [y (6 — Z(7))] 7], it is easy to see that

n k k—1
Zi(s) — Zi(w) < Ei(s) — Ei(w) + ) ©;i (s,~<2x§.“z) - sj<zx§f'>z>),
j=1 i=0 i=0

i=1...,m.
Then it is straightforward to arrive at the following:

W(s) < W(w) + Iyl D_LEi(s) — Ei(t)] +mnly| || + D)
i=1

m
< Y'O* 1 +mn (2l + DI+ 1y Y [Ei(s) — Ei(w)].
i=1
Therefore, we immediately have the following:

P( sup W(s) > (y'0* +mn|y|(2|ul +1)+2|y|my/9*lkl)l>
T <s<u+[y' (0—Z(m)]+

m
< P(Z[Ei(fk +Y'0*D) — Ei(t)] = 2mly/9*|/\|)
i=1
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<Y P(Ei(tk+ y'0*1) — Ei(t)] = 2mly'6*|1])

ieA
E; (t+[2Ly'60%|1[1)
= p(g,@ + ) ui@s y/e*l)
ieh a=E;(tx)+2
E; (te+[2Ly 6% |1[1)
<y P( > ui(a) < y/9*l)
icA a=Ei(t)+2
=" P(U(121y'0"|Ml]) < y'0%1)
ieA
<Y P(E;(Y'0*]) > 2ly'0*|x| — 1)
ieh

1y'0*A;
<y P(|Ei<y/0*l> VO] = )
€A 2

< ZC(E) 1 forl>max{ 4 }
= &7\ 2) et e yern |

where the last inequality follows from Lemma 9. Therefore, it is straightforward
to conclude by (124) that

Ai 1 1
c c 1
P(EL, C, Ni—1, ..., No) = |:Z C2(5>:|W11T81

=
(125) '
forl > max{ }
ieA | yO*N;
Finally, we conside (A¢, Ci, Nk—1, ..., No):
(126) P(AS, C, N1, .., No) < p¥ + pf + phi,

where

P =P(E(tit1) — E(to) — M(tks1 — )| = €1, N1, ... No),

o= P(XH: ®, (Sj<§x§i)z) - S,~<§x§-">z>)

j=1
Lo = 0
1 l
(s () - 52 0))
i=0 i=0

k k=1
S,~<Zx§.’)1) ~5; ( Zx](-’)l> — M ®y
i=0 i=0

Zela Nk—lv DR} <N05 C]g)7

Pl = <|RM|

ZSZ,Nk—l,---,Wb)-
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We first conside;bﬁ , and immediately write

n
Pl < P( sup |®; (i) —iPj 1> & No,Nl,...,Nk_1>.
i=1,...,[u;+D)1

Therefore, we have by Lemma 10 that

[Z Cajle/(n(2u; +2>>>} 1

(127) pli <

= (Zﬂj + 1)1+81 J1ter”

We now considep*:
(128) P < Y IPF, () + P, 0],
ieA
where
Pf (i) = P(Ei(tj41) — Ei(te) < hi(ts1 — ) — &1, Mo, ..., Me—1),
Py (i) = P(Ei(th41) — Ei (1) = A (T — ) + €1, Mo, ..., Me—1).
We analyze each of these terms separately below:

® Ej(t)+ A (ter1—k)—el]
P,’fa(i)=P<ﬁl. + Z Mi(j)Z(Tk+1—fk),=/\/o,---,=/\/k—1)
J=Ei(t)+2
Ei (te)+ i (ter1—tw) —el]
< P(5«ﬁ+ Z ui(j)Z(fk+1—fk),=/\’o,.--,=/\/k—1>.

J=Ei(t)+2

By partitioning the eventin question, first with respect to the values takeh{(hy
and then with respect to the values taken/yr; ), we write

Pla(l)< > ZP

qr€Bs1(0) =0

N/ 3 wi() = (1410 — qol™),

( ot [ (Y (0 —gi) T el
j=a+2

NOs -+« s Ni—1, Z(Tk) = qx, Ei(t) = 06)

= > Z Ui(Lhid 416 — gl —el])

qr€B5;(6) «=0

> (14 [y'(0 — g1t = 8v1))

P(MNo, ..., NMi—1, Z(tk) = gk, Ei(ti) = a)
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< Y PEI+DYO -1 —8vVT) <0+ 10 — gl —el =)
qr€Bsi ()

X P(No, ..., M—1, Z(w) = i)

= 2 (s EE-us= )

, y -2
qreBsi(0) O=s=<l+y'¢

X P(MNo, ..y Ni—1, Z(Tk) = qk) forl > 144

el
<P( sup [Ei(s)=dislz Y P(Mo,.oo s Mot Z(T0) = i)
O<s<l+y'0 qk€Bs1(0)

Hence, we have by Lemma 9 that
Ca(e/(2(1+y'6%)))
(1+y/9*)1+81

Pf (i) < P(Mo, ..., Nik—1)

ll+81
(129)

24
forl > 5 v 144

Next, we considePI’ib(i):

Pf (i) = P(Ei(tk+1) — Ei(t) = Ai (ks — ) + &L, No, ..., Ne—1)

. E;i (ti)+ A (ter1—tk)+el ]
< P(L?f )4 3 i (j) < (g1 — 7). Mo, - ., Nk_l)
J=Ei(t)+2

Ei (v)+ i (ter1— i) +el
SP< Z ui(j)S(fk+1—fk),=/\’o,.--,=/\/k—1>.
J=Ei(t)+2

It follows similarly that

Ca(e/(2(1+y'6))) 1
(1+y/9*)1+81 P(:/vbvv‘Nk—l)llTsl

By combining (128)—(130), we have

Ca(e/(2(1+y'0™))) 1
1+ y'o*)lta P('/Vow--’d\fk—l)m

(130) P}, (i) <

24
forl > —.
)

Plk <2m
131
(131) 24
forl > 5 v 144

To complete the proof we only need an estimateﬁ(ﬁr(i). Observe that

(132) Pl < 1P () + Pl (D],
j=1
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where

k k—1

' i el
Pl 4()) = P(Sj (Zx@l) —5; (Zx(})l> > x4 ’
pr g =’ J |RM|n

i=0

No, ..., eka—l),

k k—1

' i el
P|1|(| b(]):P(S]<Z'x(l)l>_SJ(ZX(Z)Z>S//L].x(k)l— ’
pr — J [RM|n

i=0
No, ..., ka—l)-
First considetPf; ,(j):
S; (A G x4 T2 Pttt /(IR M)

. - (k . k
P|'f|,a<J)SP<v§)+ 3 v () <21,
i=S;(Tigx " D+2

MNOs - - s Nk—l)
oo ot el ((RM )]
< ZP( 3 v (D) <x1,
a=0 i=a+2

k—1
MNos « ooy Mi—1, S (Z x](-l)l> = a)
i=0

0
(k) 03 el J)
<SS P(S:(xPr > | wix®r
_o,go (’(xf )—V’xf T RM@

k—1
X P(No, vy Ne—1, S (Zx&%) :a)
i=0

= el
< P( sup |SGI) — M~ > )
o; 1511<1,20 2[RM|n

k—1
X P(No, vy M1, S (Zx](})l> =a>.
i=0
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Therefore, we conclude by Lemma 9 that
C3(¢/(2|RM|n))
ll+81

24 RM|n

(133) Pf, () < P(MNo, ..., Nkc1)  forl>

We now conside®, ,(j):

. ~(k . k
P () =P v§)+ > v; (i) > x¢ 1,

Sj (A g 6 D+ L jx Otel /(IRM )
( j

i=S; (i g n+2

JVO, ce Nk—l)

M2

=

3 v; (D) = x 01— 81,

atLpxlel J(IRM )]
P (
i=a+2

0

<
I

k—1
MNos -y Ni—1, S (Z xﬁ.l)l) = a)
i=0

0
k) (k) el )
<N P(s;(x®Pr—6v1)<puix®1 - =
_a; <"(xf = |RM|n

k—1
x P (d\fo, vy M1, S (Z X;l)l) = og),
i=0

For! > 144(|RM|n)?, we have that

o
Pii () = P( sup  [S(GFl) — uil| = )
e ago 111520 2|[RM|n

k—1
X P(No, vy M1, S (2x51)1> :a>,
i=0

Therefore, by Lemma 9 we conclude that
Ca(e/(2|1RM|n))

ke
Phip(J) = ITrer

P(NMNo, ..., Nk—1)

(134)
24|RM|n 5
fori > ——— " v 144|RM|n)2.

By combining (132)—(134), we conclude

Pk<2nC< )l“elp Now ..o s M
= 2 2RMn (Mo k—1)
(135) 24/RM|
for [ > T" v 144 RM|n)2.
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Then by combining (127), (131) and (135), we conclude

C
(136)  P(ALCf Nt NO) = g P (Moo M),
for I > (24/8) v 144v (24 RM|n/8) v 144 RM|n?), where

c 2n_ . ( £ )+2 C ( £ )
= n _—
AT Ty 2\ 21 yer) S\ 21RMn

" Cajle/(n(2uj +2)))
] (ZMj + 1)1+81

Finally, by combining (121)—(123), (125) and (136), we conclude

_.l_

(137) P(N¢, Mo, ..., M—1) < P(MNo, -y Ni—1),

J1t+e
where
(138) C =C VImin,
and

~ C2(JAl(1+y'0%)/2) Aj 1
C>Cysp+m (1+y’9*)1+'91 +nC3(1) + ZEZ:A CZ(E) W

1 n
+ v [ Y Elui (D 4y E|v,~(1)|2+2€1},

ieh j=1
and

24 24/ RM|n

Imin = =V 144v v 144 RM |n)?

\Y4 max{l}v 1[ 4 vl]vmax{ 4 }
j=lonl A L1+ y?" icA | yO*N; ) O

A.4. Proof of Proposition 2.  The following lemma will play an important role
in proving Proposition 2.

LEMMA 11. Given positive natural numbers J, M, L, let g, {g/}72, be
functions from R to RM , where g is continuous, such that
g — g uniformly over compact setsasr — oo.

Smilarly, let £, {£,}°°, befunctionsfrom R¥ to RZ, where f is continuous, such
that

fr — f uniformly over compact setsasr — oo.
Then it follows that
fr o g — f og uniformly over compact setsasr — oo.
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PROOF LetK C R’ be an arbitrary compact set. We want to prove that

Jim_ squ|f, (&r(x)) — f(g(x)]=0.

Let ¢ > 0. First note thag(K) = {g(x):x € K c R’} c RM is compact. This
follows because is continuous, and is compact. Becausg(K) is compact,
andg, — g uniformly onK asr — oo, there exist®R1, N > 0, such that

g,(x)ef VxeK,r>Rq whereE:{yeRM:|y|§N}.
Then observe that for > R4, one has that

SUIE|fr(gr(X)) — f&r)| < suplfr () — fFODI.

yek

Because&k c RM is compact,f, — f uniformly onK asr — oo; and, therefore,
there existR2 > R; such that

(139) Sulglfr(gr(x)) — f(gr()| = suplfr(») — fF(M)] < g for r > R.
xe yekK

On the other hand, becaugé is compact, f is uniformly continuous onk.
Therefore, there existséa> 0 such that

1F () — FO2)] < g whenevely; — yo| < 8.

Moreover, becausg. — g uniformly onK asr — oo, there existR3 > R, such
that

suplgr(x) —g(x)| <8  forr > Rs.
xekK

Therefore,
&
(140) sup|f(g-(x)) — f(gx))| < = forr > Rs.
xekK 2
Finally, observe that combining (139) and (140) gives the resdit.

PROOF OFPROPOSITION2. Fixt > 0 andx > 0. Let{T"} be an arbitrary
sequence of admissible policies. L&/} be a subsequence such that

. . Arj T . . Ar
j_l|_>mooP(h Z/(t)>x)= lim inf P(h-Z5(1) > x).

SinceT" corresponds to cumulative time allocatiofig, is uniformly Lipschitz
continuous with Lipschitz constant less than or equal to 1 for ea@nd this
property is preserved by the fluid scaled proceg§gés. It follows from this, and
the functional central limit theorem for renewal processes (see [23]) and the fact
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that7Tpr = x*(-) asr — oo, wherex*(s) = x*s, s > 0 (and the fact that this limit
is deterministic), that

[E (), 877 (), (), .., @ (), T (), T5R()))

is tight and any weak limit of this sequence has continuous paths almost surely
(cf. Theorem 15.1 of [4]). In particular, the limit is of the following form:

(141) (E*(), §*(), @), -, @ (), T(), x*()),

whereE*(-), S*(-), ®3(), ..., ®;(-) are driftless Brownian motions of appropriate
dimension, and (-) is a nondecreasing process with

(142) A(T(s2) — T(s1)) < (s2 — s1)e for 0 < s1 < 50 almost surely.

Let {T"} be a further subsequence{dt’’} which converges weakly to a limit as

in (141). By appealing to the Skorohod representation theorem, we may choose
an equivalent distributional representation (which we will denote by putting a “
above the symbols) such that the sequence random processes

xr' ~ p/ ~ '

xr! =r’ xr’ ~r =~r
{E O, S (), Q1 ()y.., @, (), T (), TprM)}s
as well as the limit
(E*(), §5(), @50, .., D5 T (), x*()),
are defined on a new probability space, 682y ¥, P), so thatP almost surely

/
xr

E (S ()DL, By ()T (), Tpr())
S (B*(). 55 (), BE). .. B2C). T(), x*())

uniformly over compact time intervals as— oo.

(143)

REMARK. Two processes are said to be equal in distribution if they have the
same finite-dimensional distributions. This is also referred to as one is a version of
the other; see page 50 of [11].

We define the following processes on this new probability space:

=y 1=
(144) E (s)==E (s5)+2s, $>0,
r
=~y 1=
(145) S (s)==S5 (s)+ us, s >0,
r
~y/ 1 =/ , .
(146) Q;(s) ==, (s)+ Ps, s>0,j=1,...,n,
r

(147) 5 0= 2.

r/
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We note that these processes have the same joint distribution as the corresponding
processes in the dlprobability pace. We also define the following processes

associated with the sequence of (scaled) poli(ﬂ:érs(-)} on the new probability
space:

(148) T (5)=rT (s), s >0,
(149) fN/\; (s) =r'x*s — 7" (), s >0,
(150) 1y (s) =r'es — AT (s), s> 0,
Xr)=2 (O+E (s)

(151) )

+3.8 (S (T ) -RMS (T (5)), 520,

j=1

(152) Zp(s)=Xp(s)+RY 7 (s), s>0,
(153) Ty () =n'Ty (s), s>0,
(154) Ty 7(s)=—0'Y 7 5(). 50,

=xr’ =r'
whereY ; 5 is the last: — b components of ;. Furthermore,

(155) Xy () =yX; (), )
=y’ =7’ 34 xr!
(156) WT (s):XW,T(S)+IW,T(S) +IW,N(S)’ SZO,
=~ 1=
(157) Zy (5)==Z7(s), s>0,
r
=y 1=
(158) W)= =Wy (), $20.
r

It follows from these, Lemma 1 and definition of (by purely algebraic

and straightforward manipulations) thﬁ;(-) has the following equivalent
representation:

(159) Wr()=yZr(s), s=0.

It is crucial to observe that these processes defined by (144)—-(158) have the same
joint distribution as the awesponding scaled processestie old probability space
for eachr.

Because in the old space we have that almost s@é’ly) is nondecreasing,

and?r () andT’/(-) are equal in distribution iD"[0, co), we have that (in the
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new probaility space)

(160) %r,(-) is nondecreasing almost surely.

Similarly, we conclude that almost surely (in the new probability space)
(161) A(%r,(sz) - %r/(n)) <(s2—spe,  0<s1<s

(162) 7" (+) is nondecreasing

(163) 7;,(-) is nondecreasing

We also define the sequence of proces{g%R(-)} associated with our discrete
review policy as follows:

Xor) =7 O +E ()
(164 °°° ’

r o~y

+ Z (5 (Toa®) = RMS (Tor(®), 520,

[It is essential to observe that the processes deflned by (144) (158) and (164),

as well as the processaﬁE () s () d>1() CD () T ), TDR( ), have
the same joint distribution as the correspondlng processes defined on the old
probability space. ]

First, becaus@’ (+) is a nonnegative process almost surely on the old space,

andZ’ ) andZ (-) are equal in dlstrlbutlon it follows thﬁT (+) is nonnegative
almost surely. Similarly, we argue thmT () is nonnegatlve almost surely too. It

also follows from (149), (153), (154), (162) and (163) thvatT()andIWN()are
nondecreasing processes. Therefore, it follows from these, (156) and (159) that

=’ hq=r'
heZp@ = LW @
y1
h, = =y =y’
(165) > E(XW,T(I) +y () +1y (1))

h, =
> 90(XW 7)),
y1

Wh/ere the Ias/t statement follows beca@é (-) is a nonnegative process, and
TVI,’T(-) andlxv:,’N(-) are nondecreasing processes; see Appendix B of [1].
From (144) we immediately conclude th&talmost surely as’ — oo,
o~y =~ ~y ~7
(S OE (), 210)....92,0)

(166)
- (M()7)‘()7P1()7’Pn()) u.o.c,
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where
A(s) = As, s >0,

w(s) = us, s >0,
Pj(s):P]/-s, s>0,j=1,...,n,

and u.o.c. means uniformly over compact time intervals. Furthermore,

(167) Zh (> Zr()=r()— RT()  uowc,
(168) W)= Wr()=y'Zr() u.o.c,

and it follows by Lemma 11 that

(169) X — X()=E*() — ZQD (T())) — RMS*(T () u.0.c,
j=1

(170) ?g’R»X*(-):E*(-) Zcp* (x*())) = RMS*(x*())  u.o.c,

and
(171) Xy ()= Xw() =y X() u.0.c,
(172) X or() = Xwor() =y'X*()  uo.c.

The following conclusions are immediate from (161) and (162):
(173) A(T(s2) ~T(s0) < (s2—sD)e,  O<sy<s2,
(174) %(-) is nondecreasing

Letﬁv denote the last — b components cf(-). We expand (168) by using (167),
and use (13), (16) and the definitioipin (72) to obtainW r (s) = s — ' AT (s) +
nTn(s),s > 0. Lemma 1 ensures that> 0 and (174) ensures tha@ty(-) is
nondecreasing. Therefore, for any> t1 > 0, one has that

Wr(i2) = Wr(t1) = (ta— 1) — ' A(T (1) = T(10) + (T n (1) — Ty (1))
> (1 — 1) — ' A(T(t2) — T (1)
From (15),7 > 0 andn’e = 1. Combining this with (173) yields
(A75) ﬁT(tz) — ﬁT(tl) >0 forallrp > > 0.

That is,%T(-) is nondecreasing.
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Next, we fixz > 0 and defind/; = {w € Q: ZT(t w) = 0}. ForP a.e.w e U;,
we have thatWT(t) = 0. [This follows becauséV (1) = y ZT(t) cf. (168).]

It follows from this and (175) thaWT(s) =0, s € [0,¢]. Combining this with
the fact thaty’ > 0, we conclude that

Zr(s)=0,  sel0,1].

Then we conclude by (167) thats — R%(s) = 0,5 € [0,¢]. Combining this
with (173), we see that7 (s)/s, 1) is an optimal solution to the static planning
problem by the heavy traffic assumption. By the uniqueness of this solution (also

by the heavy traffic assumption), we see tifat) = x*s, s € [0, r]. Combining
this with (169) and (170), we have that

X(s)=X*(s), sel0,]for Paewecl,.
Also, by (171) and (172) we have that
Xw(s)=Xly(s), sel0t]for Paewel,.

Combining this with (165), (171) and continuity of the one-dimensional regulator
mapg(-), we conclude that

h1 ~
(176) I|m|nf h- ZT (t) > —(p(X )(t) for P a.e.w e U;.
y1
On the other hand, foP a.e.w € Ut, we have thatZT(t) £ 0. Therefore for

P ae.we UC, we haveh - ZT(t) > 0. Sinceh - ZT & =rh- ZT(Z) and

Iim,N/_>Oo r'h- ZT (1) = oo [the last statement follows because limy, % - ZT ) =
h- Zr(t) > 0], we have that

liminf 7 - ZT (1) = for P a.ew e UL,
r’'—00
Combining this with (176), we have that
h1 ~ ~
77 I|m|nfh ZT (t) > —(p(X )(t) for P a.e.w € Q.
Y1

To conclude the proof we observe that

Jim P (- 250y >x) = lim P(h- 700 > x)

r'—o0
= |im E[]l =/
r'—o00 {h-Zy (t)>x}

zﬁ[liminfﬂ r! }

r'—oo {h-Zp (t)>x}
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= E[Ly/y10%5)0)5x)]

~(h1 o,
= P(—(p(XW)(t) >x>,
Y1

where the third step follows from Fatou’s lemma. Moreover,

~ o, _ —xy1
Blo(®) ) > x) = 2N<h10ﬁ>’

whereN (-) is the standard normal cumulative distribution function; see [1B].
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