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STABILITY AND THE LYAPOUNOV EXPONENT OF
THRESHOLD AR-ARCH MODELS

BY DAREN B. H. CLINE AND HUAY-MIN H. PU

Texas A&M University

The Lyapounov exponent and sharp conditions for geometric ergodicity
are determined of a time series model with both a threshold autoregression
term and threshold autoregressive conditional heteroscedastic (ARCH) er-
rors. The conditions require studying or simulating the behavior of a bounded,
ergodic Markov chain. The method of proof is based on a new approach,
called thepiggyback method, that exploits the relationship between the time
series and the bounded chain.

The piggyback method also provides a means for evaluating the Lya-
pounov exponent by simulation and provides a new perspective on moments,
illuminating recent results for the distribution tails of GARCH models.

1. Introduction. Modeling the stochastic volatility of econometric and other
time series with autoregressive conditional heteroscedastic (ARCH and GARCH)
type models has proved to be very successful. This effort recently has been
extended to include additional nonlinearity such as threshold (G)ARCH models
introduced by Glosten, Jagannathan and Runkle (1993), Rabemanajara and
Zakoian (1993) and Zakoian (1994), as well as the addition of autoregression
components, which may also be nonlinear [Li and Li (1996), Liu, Li and Li (1997),
Lu (1998), Hwang and Woo (2001), Lu and Jiang (2001) and Lanne and Saikkonen
(2004)]. For nonlinear models in particular, it is quite usual to make very strong
assumptions about the parameters and/or nonlinearity in order to ensure existence
of a stationary model. To avoid such strong assumptions, this paper introduces an
approach that will give definitive results about stationarity and can offer insight to
the moments of the stationary distribution. The method is applied here to threshold
extensions of ARCH models with an autoregressive component.

The threshold autoregressive ARCH (TAR-ARCH) model can be expressed as

ξt = a(ξt−1, . . . , ξt−p) + b(ξt−1, . . . , ξt−p)et ,(1.1)

wherea and b are finitely piecewise continuous functions and{et} is an i.i.d.
error sequence. The state vector for the time series isXt = (ξt , . . . , ξt−p+1). The
nonlinear autoregression functiona(x) is continuous on individual, connected
subregions ofRp; the boundaries of these regions are called thresholds, hence
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the nomenclature for the model. Frequently,a(x) is assumed to be linear on
each of these regions. Likewise, this model has a state dependent conditional
variance,b2(x) = var(ξt |Xt−1 = x) if var(et ) = 1, which typically is of the order
of magnitude of‖x‖2. This provides the conditional heteroscedasticity (ARCH)
behavior and for our purposes it is also assumed to have thresholds.

Since the time series (1.1) is embedded into{Xt }, which is a Markov chain,
it will have a stationary distribution when the Markov chain is ergodic. If
a andb are sufficiently smooth (e.g., Lipschitz continuous) this may be verified
using dynamical systems arguments [Chan and Tong (1985), Letac (1986), Tong
(1990) and Diaconis and Freedman (1999)]. Here, however, the discontinuities of
a andb, as well as their nonlinearity, complicate every aspect of the argument.
Another approach, which works well for nonthreshold ARCH models, involves
reexpressing the model as a random coefficients or stochastic difference equation
model [Brandt (1986), Engle and Bollerslev (1986), Bougerol (1987), Bougerol
and Picard (1992a, b) and many others]. This approach can even provide stationary
representations and tail behaviors of the stationary distributions [Basrak, Davis and
Mikosch (2002)], but it will not work here since the “random coefficients” would
not be independent of the past values of the process. Indeed the approach assumes
that the random coefficients are already known to be a stationary process. Our
approach will overcome these obstacles.

Both the dynamical systems approach and the random coefficients approach
are intricately tied to the concept of a Lyapounov exponent. This is a notion
readily apparent in such systems but largely bypassed in the general literature
on ergodicity of Markov processes and the like. An appropriate definition for the
Lyapounov exponent in our context is

lim inf
n→∞ lim sup

‖x‖→∞
1

n
E

(
log

(‖Xn‖
‖X0‖

)∣∣∣X0 = x

)
.

This constant measures the “geometric drift” of the process when it is large (and
less subject to local perturbations). If this constant is negative, then the process
is stable in the sense that a drift condition for ergodicity is readily identifiable
[cf. Meyn and Tweedie (1993), Theorem 15.3.7]. Our approach in this effort will
both identify the Lyapounov exponent and show that it is the critical value for
determining stability.

As is standard, we assume the following on the error term, ensuring{Xt} is an
aperiodic, Lebesgue-irreducibleT -chain onRp [cf. Meyn and Tweedie (1993) and
Cline and Pu (1998)].

ASSUMPTION A.1. The distribution ofet has Lebesgue densityf which is
locally bounded away from 0. Also,b is positive, locally bounded and locally
bounded away from 0.

We also have the following moment assumption.
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ASSUMPTION A.2. supu(1 + |u|)f (u) < ∞ and E(|e1|r0) < ∞ for some
r0 > 0.

In this paper we will employ further constraints on the functionsa andb. These
conform, however, to all standard uses of threshold autoregression and ARCH
models. The first such condition is next. Except when indicated otherwise,‖ · ‖
is the Euclidean norm though this is not strictly necessary.

ASSUMPTIONA.3. a(x)/(1+ ‖x‖) andb(x)/(1+ ‖x‖) are bounded.

The model thus has the functional coefficient AR-ARCH (FCAR-ARCH)
representation

ξt = a0(Xt−1) +
p∑

i=1

aj (Xt−1)ξt−i

(1.2)

+
(
b2

0(Xt−1) +
p∑

i=1

b2
j (Xt−1)ξ

2
t−i

)1/2

et ,

where a0, . . . , ap, b0, . . . , bp are bounded functions onRp [e.g., a0(x) =
a(x)

1+|x1|+···+|xp| and ai(x) = sgn(xi)a(x)
1+|x1|+···+|xp| , i = 1, . . . , p]. Although the FCAR-

ARCH representation is not unique, it seems to be a good starting point for
(nonparametric) modeling. Stability conditions based on such a representation may
not be sharp, however, and this is one motivation for the present work.

Standard threshold models considera to be piecewise linear andb2 to be
piecewise quadratic. More generally, it is not unreasonable to assume that
a(x) andb(x) are asymptotically homogeneous. We state this assumption next.
Let � = {θ ∈ R

p :‖θ‖ = 1}.

ASSUMPTIONA.4. There existx∗ ∈ R
p and bounded functionsa∗ andb∗ on

� such that

lim
w→∞ sup

θ∈�

∣∣∣∣a(x∗ + wθ)

w
− a∗(θ)

∣∣∣∣ = 0 and lim
w→∞ sup

θ∈�

∣∣∣∣b(x∗ + wθ)

w
− b∗(θ)

∣∣∣∣ = 0.

This actually implies Assumption A.3, but it is convenient to state both.
It follows easily from Assumption A.4 thata and b may be decomposed
as a(x) = a0(x) + a∗(x − x∗) and b(x) = b0(x) + b∗(x − x∗), x = (x1, . . . ,

xp) ∈ R
p, wherea∗ and b∗ are homogeneous [in fact,a∗(x) = a∗(x/‖x‖)‖x‖

andb∗(x) = b∗(x/‖x‖)‖x‖] anda0 andb0 are locally bounded functions such that
a0(x) = o(‖x‖) andb0(x) = o(‖x‖) as‖x‖ → ∞. For simplicity, we henceforth
assumex∗ = 0.
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By removing the nonhomogeneous terms from the model, we define a
homogeneous version of the time series,

ξ∗
t = a∗(X∗

t−1) + b∗(X∗
t−1)et ,(1.3)

whereX∗
t = (ξ∗

t , . . . , ξ∗
t−p+1). We intend to show that, under simple conditions,

the stability of{Xt } is related to that of{X∗
t }. Furthermore, lettingθ∗

t = X∗
t /‖X∗

t ‖,
we can describe the stability conditions in terms of the collapsed process{θ∗

t }.
Note that{X∗

t } is a Markov chain onRp
0 = R

p \ {0} and, due to the homogeneity
of a∗ andb∗, {θ∗

t } is a Markov chain on� = {θ :‖θ‖ = 1}.
Whenp = 1, the latter chain obviously is a two-state chain and we examine this

special case explicitly in Example 4.1. Much more interesting is the casep > 1.
Even though we are assumingb to be locally bounded away from 0,b∗ need

not be. For example, for the standard ARCH modelb∗(x) = (b2
1x

2
1 + · · · +

b2
px2

p)1/2, where somebi may be 0. This requires an additional assumption
and some care. We defineB0 to be the set on which lim infy→x b∗(y) = 0 and
H0 = {x :mini |xi | = 0}.

ASSUMPTION A.5. If p > 1, max(|a∗(x)|, b∗(x)) is locally bounded away
from 0 onR

p
0 andb∗ is locally bounded away from 0 onRp

# = R
p \ H0 (hence

B0 ⊂ H0).

Our final assumption refers to the threshold-like nature of the model, that is, the
piecewise continuity ofa∗ andb∗.

ASSUMPTION A.6. If p > 1, there exist(p − 1)-dimensional homogeneous
hyperplanesH1, . . . ,Hm such thata∗ andb∗ are continuous off

⋃m
j=1Hj .

Assumption A.6 implies that the character of the model depends on the signs of
linear combinations of the components ofXt . This is similar to and includes the
delay assumption most authors employ.

Define z(x,u) = a∗(x) + b∗(x)u for x ∈ R
p and u ∈ R, and w(x,u) =

‖(z(x,u), x1, . . . , xp−1)‖. Then ξ∗
t = z(X∗

t−1, et ) and θ∗
t = (z(θ∗

t−1, et ), θ
∗
t−1,1,

. . . , θ∗
t−1,p−1)/w(θ∗

t−1, et ).
Henceforth, letµp be Lebesgue measure onR

p and letµ� be the surface area
measure on�. That is,µ�(A) = pµp({x :x/‖x‖ ∈ A,‖x‖ ≤ 1}).

Section 2 discusses a direct approach to verifying stability that has its roots in
the literature for both parametric and nonparametric models. We present it because
of its simplicity and to contrast it with our results in Section 3. The main results,
which are in Section 3, provide a sharp condition for stability and identify the
Lyapounov exponent for{Xt }. The approach is based on a method of proof we
have named thepiggyback method. Section 4 examines four cases explicitly. The
final section contains the proofs.
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2. A simple sufficient condition for FCAR-ARCH models. In the spirit of
numerous other authors, we present a simple condition for geometric ergodicity
applicable to general functional coefficient models. This condition is based on
bounding the FCAR-ARCH representation and therefore is simple to apply,
but it ultimately proves to be too rudimentary to establish the parameter space
definitively for more specific models. The approach has roots in conditions for
FCAR models, starting with Chan and Tong (1986), and culminating recently
in conditions for models with both a nonlinear autoregression and an ARCH or
bilinear component [Lu (1998), Lu and Jiang (2001) and Ferrante, Fonseca and
Vidoni (2003)]. Our theorem and corollary below encompass these latest results.

First, however, we briefly recall the Foster–Lyapounov drift condition for
establishing geometric ergodicity of a Markov chain as developed by Meyn and
Tweedie [(1993), Theorem. 16.0.1], namely the chain is aperiodic,φ-irreducible,
T -continuous and there existK < ∞, β0 < 1 and a test functionV (x) ≥ 1 such
thatV (x) → ∞ as‖x‖ → ∞ and

E
(
V (X1)|X0 = x

) ≤ K + β0V (x) for all x.

This condition in fact establishes that{Xt } is V -uniformly ergodic: with� as the
stationary distribution andβ1 ∈ (β0,1),

sup
A

∣∣P (Xn ∈ A|X0 = x) − �(A)
∣∣ ≤ Mβn

1V (x) all n,x,(2.1)

for some finiteM . The further advantage of knowing something about the
function V is twofold. First,

∫
V (x)�(dx) < ∞ [cf. Meyn and Tweedie (1993),

Theorem 14.0.1], implying that if|g(x)| ≤ V (x), then
∫ |g(x)|�(dx) < ∞ and

1
n

∑n
t=1 g(Xt ) → ∫

g(x)�(dx) almost surely. Second, a central limit theorem
holds for

∑n
t=1 g(Xt ) if |g(x)| ≤ V (x)1/2 [cf. Meyn and Tweedie (1993),

Theorem 17.0.1]. In particular, an appropriate test function will ensure the
existence of moments.

THEOREM 2.1. Assume Assumptions A.1–A.3. If there exist nonnegative ci

with
∑p

i=1 ci < 1, r > 0 and K < ∞ such that

E(|ξ1|r |X0 = x) ≤ K +
p∑

i=1

ci|xi |r ,(2.2)

for all x = (x1, . . . , xp) ∈ R
p, then {Xt } is V -uniformly ergodic with V (x) = 1 +∑p

i=1 di |xi|r for some positive d1, . . . , dp. Furthermore, the stationary distribution
has finite r th moment.

The theorem can be applied when one is given a specific representation of the
model. The following corollary does so, extending Lu (1998) and Lu and Jiang
(2001), who handle the casesr = 2 andr = 1, respectively.
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COROLLARY 2.2. Assume Assumptions A.1–A.3and that there are nonnega-
tive constants a0, . . . , ap, b0, . . . , bp such that

|a(x)| ≤ a0 + a1|x1| + · · · + ap|xp| and b(x) ≤ (b2
0 + b2

1x
2
1 + · · · + b2

px2
p)1/2.

Each of the following implies (2.2)holds with
∑p

i=1 ci < 1:

(i) r ≤ 1 and
∑p

i=1(a
r
i + br

i E(|et |r )) < 1.
(ii) Either 1 < r < 2 and the error distribution is symmetric about 0, or r = 2

and E(e1) = 0, and (
∑p

i=1 ai)
r + ∑p

i=1 br
i E(|et |r) < 1.

Although no particular FCAR-ARCH representation is assumed, it seems one
cannot be avoided in checking the condition. Its advantage is in its simplicity. The
conditions presented in the next section, on the other hand, are sharp.

3. The piggyback method and the main results. The piggyback method is
the name we have given to a new approach for determining stability of nonlinear
time series. This approach has proven useful for some rather simple models that
do not behave the same as their deterministic “skeleton.” See Example 3.2 of Cline
and Pu (1999) and Example 4.2 of Cline and Pu (2002). See also Gourieroux and
Monfort (1992) for a simple example. We anticipate that this approach will prove
to have its greatest use for models such as those studied here, namely for models
in which the error terms are state dependent and thereby have a profound effect on
stability. The name “piggyback” derives from the use of a Foster–Lyapounov drift
condition that piggybacks on the stabilityof another Markov process. This second
process is related to a process embedded in the first, is more basic and has a much
more obvious criterion for stability.

For the threshold AR-ARCH model we are investigating, the related process
is {θ∗

t } (the collapsed process) which, being a process on compact�, is clearly
bounded. With minimal conditions for irreducibility and so on, therefore, it is
uniformly ergodic. We note thatw(θ∗

0 , e1) (see Section 1) is a surrogate for
the one-step change in magnitude of the AR-ARCH model, namely‖X1‖/‖X0‖
when‖X0‖ is large. Intuitively then, the Markov chain{Xt } should be stable if
the expected value of log(w(θ∗

0 , e1)), taken relative to the stationary distribution
of {θ∗

t }, is less than 0. The trick is to construct a function to verify this, especially
in view of the discontinuous coefficient functions, and this is where the piggyback
method is both extremely helpful and somewhat intricate.

We now state the stability theorems for these two processes. An outline of the
method follows the statement of Theorem 3.3.

THEOREM3.1. Assume Assumptions A.1–A.5.Then {θ∗
t } is a µ�-irreducible,

uniformly ergodic T -chain on � with stationary distribution � satisfying∫
�

∫
R

|z(θ, u)|sf (u) du�(dθ) < ∞ for all s ∈ (−1, r0].(3.1)
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Moreover, define

ρ = exp
(∫

�

∫
R

log
(
w(θ,u)

)
f (u) du�(dθ)

)
.(3.2)

Then for any ε > 0, there exists a bounded function ν :� → R, such that

sup
θ∈�

∣∣E(
ν(θ∗

1 ) − ν(θ) + logw(θ, e1)|θ∗
0 = θ

) − logρ
∣∣ < ε.(3.3)

Under the stationary distribution�, z(θ∗
0 , e1)/w(θ∗

0 , e1)
D= θ∗

0,1, and therefore
logρ is also equal to

∫
�

∫
R

log(|z(θ, u)|/|θ1|)f (u) du�(dθ).

THEOREM 3.2. Assume Assumptions A.1–A.6 and let ρ be as in (3.2). If
ρ < 1, then for any ρ1 ∈ (ρ,1) there exist K < ∞, s > 0 and V :Rp → [1,∞)

such that

E
(
V (X1)|X0 = x

) ≤ K + ρs
1V (x) for all x ∈ R

p,

and the test function has the form V (x) = 1 + λ(x)‖x‖s , where λ is bounded and
bounded away from 0. As a consequence, {Xt } is V -uniformly ergodic.

Althoughρ < 1 also implies the homogeneous process{X∗
t } does not explode,

it actually is transient in this case, diminishing to 0.
The value logρ turns out to be the Lyapounov exponent for the original chain.

This means the condition in Theorem 3.2 is sharp:{Xt} is transient ifρ > 1
by (3.4) below and Cline and Pu [(2001), Theorems 2.1 and 2.2].

THEOREM 3.3. Assume Assumptions A.1–A.6 and let ρ be as in (3.2).Then
logρ is the Lyapounov exponent for {Xt }. Indeed,

lim
n→∞ lim sup

‖x‖→∞

∣∣∣∣1nE

(
log

(‖Xn‖
‖X0‖

)∣∣∣X0 = x

)
− logρ

∣∣∣∣ = 0.(3.4)

The key to the piggyback method is the use of thenear-equilibrium equation
(3.3) in the proof of Theorem 3.2. We present here an outline of the method as it
is applied to the TAR-ARCH model. This can be used as a guide to the series of
lemmas that constitute the proof.

STEP 1. The preliminary step (Lemmas 5.1 and 5.2) is to show that the
Markov chains{�∗

t } and{Xt } are aperiodic,φ-irreducible and sufficiently smooth
(T -chains), at least when restricted appropriately.

STEP 2. The collapsed process{θ∗
t } stays well within�# = � \ H0, that is,

away from the axial planes, with high probability (Lemma 5.3).
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STEP 3. The collapsed process is uniformly ergodic andρ is well defined
(proof of Theorem 3.1).

STEP4. LetH# be the smallest set closed under the mapFθ = (θ2, . . . , θp, θ1)

and containing the thresholds and axial planes. The collapsed process stays well
within �## = � \ H#, with high probability (Lemma 5.4).

STEP 5. Continuity of a functionq(θ) on �## ensures continuity of condi-
tional expectationsE(q(θ∗

t )|θ∗
0 = θ) on �## (Lemma 5.5). This is required in or-

der to construct a test function that can be piggybacked.

STEP 6. The near-equilibrium equation (3.3) holds with a functionν(θ) that
is continuous on�## (Lemma 5.6).

STEP 7. Let X̃∗
t = (z(Xt−1, et ),Xt−1,1, . . . ,Xt−1,p−1). Both Xt/‖Xt‖ and

X̃∗
t /‖X̃∗

t ‖ are well within�## and close to each other with high probability, if
t and‖X0‖ are large enough (Lemmas 5.7 and 5.8). Note thatX̃∗

t /‖X̃∗
t ‖ is what

the first step of the collapsed process would be, if started atXt−1/‖Xt−1‖.

STEP 8. If, for some functionV1(x) and somen ≥ 1, log(V1(Xn+1)/V1(Xn))

has negative expectation when conditioned onX0 = x, uniformly for large‖x‖,
then a test function can be constructed to verifyV -uniform ergodicity of{Xt }
(Lemmas 5.9 and 5.10).

STEP 9. The continuity ofν(θ) on�##, the near-equilibrium equation and the
results of Step 7 make it possible to satisfy the condition in Step 8, thus creating
a test function forXt by piggybacking on the simpler properties of the collapsed
process (proof of Theorem 3.2).

STEP 10. The Lyapounov exponent for{Xt } is logρ (proof of Theorem 3.3).

STEP 11. If an appropriate condition on the collapsed process holds, then the
above can be applied to a test function roughly proportional to‖x‖r , thus ensuring
the stationary distribution of{Xt } exists and hasr th moment (proof of Theorem 3.5
below).

The method just outlined is necessary because of the discontinuities in
a∗ and b∗. One may think that a test function that gives the required drift
condition when applied to the homogeneous process{X∗

t } could just as well be
applied to the original process{Xt }. Unfortunately this is not the case because the
expected difference betweenV (X1)/V (X0) andV (X∗

1)/V (X0) need not diminish
sufficiently fast asX0 increases in magnitude. Nevertheless, as indicated in (3.5)
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and (3.6) below, solving the simpler problem does suffice to verify stability. This
is in fact the primary motivation behind our method.

The piggyback method of construction of a test function depends on obtaining a
solution to the near-equilibrium equation (3.3). Indeed, solving (3.3) is tantamount
to solving the stability of{Xt }. It has the advantage that it does not actually require
finding the stationary distribution�, as the next result indicates, but it does require
constructing the functionν.

COROLLARY 3.4. Assume Assumptions A.1–A.6. If there exists a bounded
function ν :� → R such that

sup
θ∈�

E
(
ν(θ∗

1 ) − ν(θ) + logw(θ, e1)|θ∗
0 = θ

)
< 0,(3.5)

then {Xt } is V -uniformly ergodic.

Theorem 3.2 does not guarantee the existence of any particular moments of the
stationary distribution for{Xt }. Two equivalent conditions which do are provided
next.

THEOREM 3.5. Assume Assumptions A.1–A.6 and suppose E(|e1|r ) < ∞,
r > 0. The following are equivalent conditions for {Xt } to be V -uniformly ergodic
with K‖x‖r ≤ V (x) ≤ L + M‖x‖r for some positive K and finite L,M , and
for {Xt } to have a stationary distribution with finite r th moment:

(i) There exists λ :� → (0,∞), bounded and bounded away from 0, such that

sup
θ∈�

E

(
λ(θ∗

1 )

λ(θ)

(
w(θ, e1)

)r ∣∣∣θ∗
0 = θ

)
< 1.(3.6)

(ii) lim supn→∞ supθ∈�(E(
∏n

t=1(w(θ∗
t−1, et ))

r |θ∗
0 = θ))1/n < 1.

We observe that the above conditions are not equivalent to the condition that
E((w(θ∗

0 , e1))
r) < 1 under the stationary distribution for{θ∗

t }. Though more
appealing, and sufficient for verifying ergodicity, the latter is neither necessary
nor sufficient for ther th moment to exist. (See the examples below.)

For nonthreshold ARCH and GARCH models, the stationary distribution has
been shown to have regularly varying tails [e.g., Borkovec (2000), Borkovec and
Klüppelberg (2001) and Basrak, Davis and Mikosch (2002)]. (See Example 4.2.)
The index of regular variation is the supremum ofr satisfying the conditions in
Theorem 3.5. Whether this is also true for more general models is as yet an open
question.

In general, it seems that only numerical methods will verify the conditions
for stability and moments. We recommend simulating{θ∗

t } and estimating the
Lyapounov exponent logρ in (3.2). There is a distinct advantage, furthermore, to
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having expressed stability of{Xt} in terms of{θ∗
t } because the latter is uniformly

ergodic. This means both that convergence of a simulation will tend to be faster
and that estimators are well behaved with relatively small variances. The only two
alternatives are to conduct the very high-dimensional optimization required to find
a test functionV (x) or to simulate the time series itself, and pay attention only to
its (highly volatile) behavior when it grows large.

4. Examples. In this section we provide four examples, giving more specifics
about their stability conditions. First, the casep = 1 is examined explicitly and
conditions given in simple terms. Second, the known criterion for ARCH models
is related to the piggyback method, showing how best to estimate the Lyapounov
exponent. Third, a special TARCH(2) model can be related to an ARCH(2)
model and, finally, second moment conditions for general TARCH(p) models are
considered.

EXAMPLE 4.1 [The TAR-ARCH(1) model]. Assumep = 1 and Assumptions
A.1 and A.2. Let

Xt = a∗(Xt−1) + b∗(Xt−1)et + a0(Xt−1) + b0(Xt−1)et

with a∗(x) = (a11x<0 + a21x>0)x andb∗(x) = (b11x<0 + b21x>0)|x|, b1, b2 > 0.
Also, a0(·) andb0(·) are locally bounded;a0(x) = o(‖x‖) andb0(x) = o(‖x‖) as
‖x‖ → ∞; andb∗(x) + b0(x) 	= 0 for all x ∈ R. Then Assumptions A.1–A.6 are
all satisfied.

Though expressed differently, this includes the usual formulation for a first-
order AR-ARCH model witha1 = a2 and b1 = b2 [e.g., in Borkovec and
Klüppelberg (2001)].

Let p1 = P (θ∗
1 = 1|θ∗

0 = −1) = P (a1 − b1e1 < 0) andp2 = P (θ∗
1 = −1|θ∗

0 =
1) = P (a2 + b2e1 < 0). Then� is found to be the stationary distribution of a two-
state Markov chain, given by�(−1) = p2/(p1 + p2) and�(1) = p1/(p1 + p2).
By Theorem 3.2,{Xt} is geometrically ergodic if

logρ = p2E(log|a1 − b1e1|) + p1E(log|a2 + b2e1|)
p1 + p2

< 0.

The proof of stability is based on an equilibrium equation (see Lemma 5.6),

E
(
ν(θ∗

1 ) − ν(θ) + logw(θ, e1)|θ∗
0 = θ

) = logρ, θ = ±1,

which is easily solved here:

ν(±1) = ±E(log|a2 + b2e1|) − E(log|a1 − b1e1|)
2(p1 + p2)

.

The functionλ in (3.6) has a similar, if more cumbersome, solution. To verify that
condition, we must findγ [= λ(1)/λ(−1)] such that

γE
(|a1 − b1e1|r1a1−b1e1≤0

) + E
(|a1 − b1e1|r1a1−b1e1>0

)
< 1
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and

γ −1E
(|a2 + b2e1|r1a2+b2e1≤0

) + E
(|a2 + b2e1|r1a2+b2e1>0

)
< 1.

Letting Ei,j = E(|ai + (−1)ibie1|r1(−1)j (ai+(−1)ibie1)>0), the existence of such
aγ equates to

max(E1,2,E2,2) < 1 and E1,1E2,1 < (1− E1,2)(1− E2,2).(4.1)

On the other hand, the conditionE((w(θ∗
0 , e1))

r ) < 1 under stationarity is

p2(E1,1 + E1,2) + p1(E2,1 + E2,2)

p1 + p2
< 1,

which certainly neither implies nor is implied by (4.1). Two cases where they do
agree are for the ARCH(1) models (a1 = a2 = 0, b1 = b2) and for the TARCH(1)
models (a1 = a2 = 0) with errors symmetric about 0.

EXAMPLE 4.2 [The ARCH(p) model]. Here, the model is

ξt = (b2
0 + b2

1ξ
2
t−1 + · · · + b2

pξ2
t−p)1/2et .

Assume Assumptions A.1 and A.2 and eachbi > 0. A standard way to handle this
is to embed it in a random coefficients model [Bougerol and Picard (1992b) and
Basrak, Davis and Mikosch (2002)]. To do this, letYt = (ξ2

t , . . . , ξ2
t−p+1) so that

Yt = Ct +BtYt−1 for an i.i.d. sequence of random matrices and vectors{(Bt ,Ct)}.
Indeed,

Bt =


b2

1e
2
t b2

2e
2
t · · · b2

pe2
t

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

 and Ct =


b2

0e
2
t

0
...

0

 .

Define Mt = Bt · · ·B1, M0 = I and 
t = log(‖Mt‖/‖Mt−1‖), where any

matrix norm may be chosen. There exists, irrespective of the norm,γ
def=

lim t→∞ 1
t
E(log(‖Mt‖)) and hence

lim
t→∞

1

t

t∑
i=1


i = lim
t→∞

1

t
log(‖Mt‖) = γ a.s.(4.2)

[Furstenberg and Kesten (1960) and Kingman (1973)]. Under the given assump-
tions, the necessary and sufficient condition for{Yt } to have a stationary solution
is γ < 0 [Brandt (1986), Bougerol and Picard (1992a), Theorem 2.5, and Goldie
and Maller (2000)].

Moreover, suppose{θ∗
t } is the collapsed process for{X∗

t } and defineT ∗
t =

((θ∗
t,1)

2, . . . , (θ∗
t,p)2)′. Let 1= (1, . . . ,1)′. Then it is easy to show that

T ∗
t = MtT

∗
0

1′MtT
∗
0

for all t and
(
w(θ∗

t−1, et )
)2 = 1′MtT

∗
0

1′Mt−1T
∗
0

.
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Therefore, withT ∗
0 = 1

p
1 andρ as defined in Theorem 3.1,

2 logρ = lim
t→∞

1

t

t∑
i=1

2 log
(
w(θ∗

i−1, ei)
)

= lim
t→∞

1

t
log(1′MtT

∗
0 ) = lim

t→∞
1

t
log(‖Mt‖) = γ.

This gives an alternative method for estimating the Lyapounov exponent. While
earlier authors have recommended simulating the matricesBt , computing a norm
of their product and applying (4.2) in order to estimateγ , we recommend
simulation ofθ∗

t (or T ∗
t ) instead.

The stationary distribution for related GARCH models is known to have
regularly varying tails [Basrak, Davis and Mikosch (2002)]. Their argument
applies here for an ARCH(p) model as well, and the index of regular variation
is the positive value ofκ satisfying

lim
t→∞

(
E(‖Mt‖κ/2)

)1/t = 1,(4.3)

which is based on a result of Kesten (1973). See also Goldie (1991). The
unbounded support of the error densityf (Assumption A.1) ensures that a solution
to (4.3) does indeed exist. From our discussion above, we may easily see that such
κ as satisfies (4.3) must also satisfy

lim
t→∞

(
E

(
t∏

i=1

(
w(θ∗

i−1, ei)
)κ))1/t

= 1.

Note that the condition in Theorem 3.5(ii) essentially is thatr < κ .

EXAMPLE 4.3 [The TARCH(2) model with delay specific conditional het-
eroscedasticity]. Letb1 > 0, b2 > 0 and consider the order 2 model:

ξt = b(Xt−1)et =


(
b2

10 + b2
1(ξ

2
t−1 + ξ2

t−2)
)1/2

et , if ξt−1 ≤ 0,(
b2

20 + b2
2(ξ

2
t−1 + ξ2

t−2)
)1/2

et , if ξt−1 > 0.

Assume Assumptions A.1 and A.2 and also that the errors have density symmetric
about 0. This is a restricted form of the order 2 model with threshold delay 1. Other
than the coefficient due to the delay criterion, the conditional heteroscedasticity is
proportional to‖Xt‖. We will show this model has the same stability criterion as
a random coefficients model suggested by the piggyback method, even though the
TARCH model itself cannot be embedded in a random coefficients model.

Let θ = (θ1, θ2) and b∗(θ) = b11θ1≤0 + b21θ1>0. Given initial stateθ∗
0 =

(θ∗
0,1, θ

∗
0,2), we have

θ∗
1 = (θ∗

1,1, θ
∗
1,2) = (b∗(θ∗

0 )e1, θ
∗
0,1)

(b∗(θ∗
0 )2|e1|2 + |θ∗

0,1|2)1/2 .
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Since the error distribution is symmetric,|e1|, sgn(e1) and θ∗
0 are independent.

Since b∗(θ∗
0 ) depends only on sgn(θ∗

0,1) = sgn(θ∗
1,2), it is easy to see then

that sgn(θ∗
1,1) and (|θ∗

1,1|,sgn(θ∗
1,2)) are independent. Thus, under the stationary

distribution, sgn(θ∗
0,1) and |θ∗

0,1| are independent and hence|θ∗
0,1| andb∗(θ∗

0 )|e1|
are independent.

Now consider an ARCH(2) process with uniform heteroscedasticity and error
density given byf̄ (u) = 1

2b1
f (u/b1) + 1

2b2
f (u/b2). That is, let{ēt} be an i.i.d.

sequence fromf̄ and ξ̄t = (1 + ξ̄2
t−1 + ξ̄2

t−2)
1/2ēt . This is, in fact, a special case

of the model of this example, but with both coefficients equal to 1 and with a
different error distribution now depending onb1 andb2. Applying the comments
above accordingly, it is apparent that the stationary distribution of|θ∗

t,1| (but not
of θ∗

t ) is nevertheless the same for both.
By the comment following Theorem 3.1, the condition for geometric ergodicity

of {ξt} may be expressed asE(log(|b∗(θ∗
0 )e1|/|θ∗

0,1|)) < 0 under the stationary
distribution, or equivalently asE(log(|ē1|) − E(log(|θ∗

0,1|)) < 0. This depends
only on the stationary distribution of|θ∗

t,1|. Therefore,{ξt} and{ξ̄t} have identical
stability criteria. The previous example discusses ARCH models in more detail
and relates them to a random coefficients model.

The second moment condition for the random coefficients model associated
here is(b2

1 + b2
2)E(e2

1) = E(2ē2
1) < 1, and this coincides with (4.4) found in

Example 4.4 for a more general TARCH model.

EXAMPLE 4.4 [The TARCH(p) model with delay 1]. Assume Assumptions
A.1 and A.2. Considerξt = b(Xt−1)et , where

b(x) =
(b2

10 + b2
11x

2
1 + · · · + b2

1px2
p)1/2, if x1 ≤ 0,

(b2
20 + b2

21x
2
1 + · · · + b2

2px2
p)1/2, if x1 > 0,

andbji > 0, i = 1, . . . , p, j = 1,2. To get an explicitr th moment condition for this
model, whenr ≤ 2, definepj = P ((−1)j e1 > 0) andEj = E(|e1|r1(−1)j e1>0),
j = 1,2. Then

br
11E1 + br

21E2 +
p∑

i=2

(br
1ip1 + br

2ip2)E(|e1|r ) < 1(4.4)

implies (3.6) is satisfied ifr ≤ 2. This is proven at the end of Section 5. With
symmetric errors, this reduces to

1
2

(
(br

11 + · · · + br
1p) + (br

21 + · · · + br
2p)

)
E(|e1|r) < 1.

(Compare this to the condition given in Corollary 2.2.) In fact, whenr = 2 the
test function is optimal, with the expectation in (3.6) having the same value for
all θ , suggesting this is the best possible condition for ergodicity with finite second
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moment. On the other hand, the conditionE((w(θ∗
0 , e1)

2) < 1 under stationarity
is ∫

�

(
(b2

11θ
2
1 + · · · + b2

1pθ2
p)1θ1≤0

+ (b2
21θ

2
1 + · · · + b2

2pθ2
p)1θ1>0 + 1− θ2

p

)
�(dθ)E(|e1|2) < 1.

Simulations indicate that this is not the same as (4.4) withr = 2.

5. Proofs. The proof for the casep = 1 follows the same piggyback principle
as does the proof for the casep > 1 but it is much simpler, since� = {−1,1} is
finite, and we therefore omit it.

We start by asserting some regularity on{Xt } and proving the simple conditions
in Theorem 2.1 and Corollary 2.2.

LEMMA 5.1. Assume Assumption A.1. {Xt } is an aperiodic, µp-irreducible
T -chain on R

p.

PROOF. The lemma follows from Assumption A.1 by Theorem 2.2(ii) of Cline
and Pu (1998). �

PROOF OFTHEOREM 2.1. We use essentially the same argument as Lu and
Jiang (2001). Letβ ∈ (0,1) satisfy

∑p
i=1 β−ici = 1 and define

di =
p∑

j=i

βi−j−1cj , i = 1, . . . , p, dp+1 = 0,

so thatβdi = ci + di+1 andd1 = 1. LetV (x) = 1+ ∑p
i=1 di |xi|r . By (2.2),

E
(
V (X1)|X0 = x

) = 1+ E(|ξ1|r |X0 = x) +
p−1∑
i=1

di+1|xi|r

≤ 1+ K +
p∑

i=1

ci|xi |r +
p−1∑
i=1

di+1|xi|r = 1− β + K + βV (x).

By a standard result [cf. Meyn and Tweedie (1993), Theorem 16.0.1] and
Lemma 5.1,{Xt } is V -uniformly ergodic and the stationary distribution has finite
r th moment. �

PROOF OFCOROLLARY 2.2. Note first that, ifr ≤ 2, then

br(x) ≤ (b2
0 + b2

1x
2
1 + · · · + b2

px2
p)r/2 ≤ br

0 + br
1|x1|r + · · · + br

p|xp|r .(5.1)

Also, if r ≤ 1, then

|a(x)|r ≤ ar
0 + ar

1|x1|r + · · · + ar
p|xp|r .(5.2)
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However, if 1< r ≤ 2, then by Jensen’s inequality,

(a1|x1| + · · · + ap|xp|)r ≤ (a1|x1|r + · · · + ap|xp|r )(a1 + · · · + ap)r−1.(5.3)

Also, for any smallδ > 0 there existsM < ∞ such that|a(x)|r ≤ M + (1 +
δ)(

∑p
i=1 ai |xi|)r .

(i) Since r ≤ 1, it is immediate thatE(|ξ1|r
∣∣ X0 = x) ≤ |a(x)|r + br(x) ×

E(|e1|r ), and thus (2.2) follows from (5.1) and (5.2).
(ii) For 1 < r ≤ 2 the conditions on the errors imply

E(|ξ1|r |X0 = x) = 1
2E

(|a(x) + b(x)e1|r ) + 1
2E

(|a(x) − b(x)e1|r)
≤ |a(x)|r + br(x)E(|e1|r ),

using the fact that(1 − u)r + (1 + u)r − 2ur ≤ 2 for 0≤ u ≤ 1. We now apply
(5.1) and (5.3) withci = (1 + δ)ai(

∑p
k=1 ak)

r−1 + br
i E(|e1|r ) andδ sufficiently

small. �

Next, we have two lemmas about{θ∗
t } followed by the proof of Theorem 3.1.

LEMMA 5.2. Assume Assumptions A.1, A.4 and A.5. Then the following
hold:

(i) {X∗
t } is an aperiodic, µp-irreducible T -chain when restricted to R

p
# =

R
p \ H0.
(ii) {θ∗

t } is an aperiodic, µ�-irreducible T -chain when restricted to �# =
� \ H0.

PROOF. (i) By Assumption A.5,b∗ is locally bounded away from 0 onRp
# ,

so then-step transition densityg#
n(·;x) is well defined onRp

# for anyn ≥ p and
any initial statex in R

p
# . Furthermore, it is locally bounded away from 0 and full.

HenceR
p
# is absorbing and{X∗

t } is aperiodic andµp-irreducible onRp
# .

For anyz ∈ R
p
# , let Gz be an open set containingz such that its closure is

compact and contained inRp
# . Then

Tz(x,A)
def= 1Gz(x)

∫
A

inf
u∈Gz

g#
p(y;u)dy

defines a kernel onRp
# , nontrivial atz, such thatTz(·,A) is lower semicontinuous

for eachA andTz(x,A) ≤ P p(x,A). By Meyn and Tweedie [(1993), Proposi-
tion 6.2.4],{X∗

t } is aT -chain when restricted toRp
# .

(ii) For any setA ⊂ � we define the coneCA = {x ∈ R
p
0 :x/‖x‖ ∈ A}. Since

P (θ∗
t ∈ A|θ∗

0 = θ) = P (X∗
t ∈ CA|X∗

0 = cθ)

for anyA, t , c andθ , the result follows easily from (i). �
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LEMMA 5.3. Assume Assumptions A.1–A.5. Given ε1 ∈ (0,1), there exists
compact C1 ⊂ �# such that the following hold:

(i) P (θ∗
1 ∈ C1|θ∗

0 = θ) > 1− ε1 for all θ ∈ C1;
(ii) P (θ∗

p ∈ C1|θ∗
0 = θ) > 1− pε1 for all θ ∈ �.

PROOF. Let L0 = supu(1 + |u|)f (u), which is finite by Assumption A.2.
Supposeα and β are values withβ ≥ 0 and max(|α|, β) > 0, and suppose
ε ∈ (0,max(|α|, β)/2). This impliesβ + max(|α| − ε,0) > max(|α|, β)/2. Then,
if β > 0,

P (|α + βet | ≤ ε) ≤ L0

∫ (−α+ε)/β

(−α−ε)/β

1

1+ |u| du

(5.4)

≤ 2L0ε

β + max(|α| − ε,0)
≤ 4L0ε

max(|α|, β)
.

The above holds trivially in caseβ = 0 since, in that case,|α + βet | = |α| > ε.
Now let L1 = infθ∈� max(|a∗(θ)|, b∗(θ)) and L2 = supθ∈� max(|a∗(θ)|,

b∗(θ)). Note L1 > 0 by Assumption A.5 andL2 < ∞ by Assumption A.3.
By (5.4), we determine that ifε ∈ (0,L1/2), then

P
(|z(θ, et )| ≤ ε

) ≤ 4L0ε/L1.(5.5)

With no loss we supposeε1 ∈ (0,L1/2). Let ε2 = ε1
1+4L0/L1

. ChooseM1 ≥ 1 so
thatP (|et | > M1) < ε2 and thus, applying (5.5) withε = ε2,

P
(|z(θ, et )| > ε2; |et | ≤ M1

)
> 1− ε1.(5.6)

Fix γ = 1+ L2(1+ M1) and defineX∗
1,x,u = (z(x,u), x1, . . . , xp−1). Then

|u| ≤ M1 �⇒ |z(θ, u)| ≤ γ − 1 and ‖X∗
1,θ,u‖ ≤ |z(θ, u)| + 1 ≤ γ.(5.7)

By (5.6) and (5.7),

P
(|z(θ, e1)| ≥ ε2;

∥∥X∗
1,θ,e1

∥∥ ≤ γ
)

(5.8)
≥ P

(|z(θ, e1)| ≥ ε2; |e1| ≤ M1
)
> 1− ε1.

Now define C1 = {θ = (θ1, . . . , θp): |θi | ≥ ε2γ
−i, i = 1, . . . , p}, which is

compact. Ifθ ∈ C1, |z(θ, e1)| ≥ ε2 and‖X∗
1,θ,e1

‖ ≤ γ , then|z(θ, e1)|/‖X∗
1,θ,e1

‖ ≥
ε2γ

−1 and |θi |/‖X∗
1,θ,e1

‖ ≥ ε2γ
−i−1 for i = 1, . . . , p − 1. Sinceθ∗

1 = X∗
1,θ,e1

/

‖X∗
1,θ,e1

‖ whenθ∗
0 = θ , therefore, we conclude

P (θ∗
1 ∈ C1|θ∗

0 = θ) ≥ P
(|z(θ, e1)| ≥ ε2;

∥∥X∗
1,θ,e1

∥∥ ≤ γ
)

> 1− ε1 for θ ∈ C1.

Thus (i) is proved. By (5.8) and an induction argument, (ii) follows as well.�
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PROOF OF THEOREM 3.1. By Lemma 5.2(ii),{θ∗
t } restricted to�# is an

aperiodic,µ�-irreducibleT -chain. For anyε1 ∈ (0,1), let C1 be as in Lemma 5.3.
ThenC1, being compact, is small for the restricted process. It follows easily that
C1 is small for the process on� and therefore Lemma 5.3(ii) implies� is itself
small [Meyn and Tweedie (1993), Proposition 5.5.4(i)]. It also follows from the
lemmas that the unrestricted process isµ�-irreducible and aperiodic. Thus, the
chain is uniformly ergodic on� by Meyn and Tweedie [(1993), Theorem 16.2.2]
is aT -chain and has some stationary distribution�.

The inequality (3.1) clearly holds fors ∈ [0, r0] by Assumption A.2 and the
boundedness ofa∗ andb∗ on�. By (5.5), there existsK < ∞ such that∫

�

∫
R

1|z(θ,u)|≤εf (u) du�(dθ) < Kε

for anyε > 0. Thus, (3.1) holds fors ∈ (−1,0). We note further that|z(θ, e1)| ≤
w(θ, e1) ≤ |z(θ, e1)| + 1. Hence Assumption A.2 and (5.5) imply{| log(w(θ,

e1))|}θ∈� is uniformly integrable. Thus log(w(θ∗
0 , e1)) has finite mean under

� andρ is well defined.
The near-equilibrium equation (3.3) holds by Lemma 5.6 below.�

We now provide several lemmas needed to construct a proof of Theorem 3.2.
Recall that by Assumption A.6,a∗ and b∗ are continuous off a collection
of hyperplanes,H1, . . . ,Hm, each of which contains the origin. DefineF by
Fθ = (θ2, . . . , θp, θ1) and�## = {θ ∈ �# :Fkθ /∈ Hj for all j, k}. Note that�##
excludes not only the thresholds but also certain critical points for which the
probability of being near the thresholds in the firstp steps cannot be controlled.

LEMMA 5.4. Assume Assumptions A.1–A.6. Given any ε3 ∈ (0,1), there
exists compact D1 ⊂ �## such that

P (θ∗
1 ∈ D1|θ∗

0 = θ) > 1− ε3 for all θ ∈ D1.

PROOF. There existh1, . . . , hm ∈ R
p
0 such thatθ ∈ �## if and only if

h′
jF

kθ 	= 0 for all j, k. SinceFp = I , it suffices to assume the first coordinate
of eachhj is 1.

Setε1 = ε3/2 and defineγ , C1 andX∗
1,θ,e1

as in the proof of Lemma 5.3. Then,
by that proof,

P
(
θ∗

1 ∈ C1,
∥∥X∗

1,θ,e1

∥∥ ≤ γ |θ∗
0 = θ

)
> 1− ε3/2 for all θ ∈ C1.(5.9)

Also let L0 be as in the proof of Lemma 5.3,L3 = infθ∈C1 b∗(θ), L4 =
min{|hj,k| :hj,k 	= 0} andε4 = L3L4ε3

4mpγL0
. Define

D1 = {θ ∈ C1 : |h′
jF

kθ | ≥ ε4γ
−k for all j = 1, . . . ,m, k = 0, . . . , p − 1}.
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Definehj,p+1 = hj,1 = 1. If θ∗
0 = θ and‖X∗

1,θ,e1
‖ ≤ γ , then

|h′
jF

kθ∗
1 | = ∣∣hj,p+1−k

(
z(θ, e1) − θp

) + h′
jF

k−1θ
∣∣/∥∥X∗

1,θ,e1

∥∥
(5.10)

≥ ∣∣hj,p+1−k

(
z(θ, e1) − θp

) + h′
jF

k−1θ
∣∣/γ .

Thusθ ∈ D1 andhj,p+1−k = 0 imply

|h′
jF

kθ∗
1 | ≥ |h′

jF
k−1θ |/γ ≥ ε4γ

−k.(5.11)

Also, note that, ifθ ∈ C1, then

P
(|z(θ, e1) − u| ≤ c

) = P
(|a∗(θ) − b∗(θ)e1 − u| ≤ c

) ≤ 2L0

L3
c,(5.12)

for all u ∈ R andc > 0. Let

uj,k,θ =


θp − h′

jF
k−1θ

hj,p+1−kγ
, if hj,p+1−k 	= 0,

0, if hj,p+1−k = 0.

Therefore, using (5.9)–(5.12),

P (θ∗
1 ∈ D1|θ∗

0 = θ)

≥ P
(
θ∗

1 ∈ C1;
∥∥X∗

1,θ,e1

∥∥ ≤ γ ; |h′
jF

kθ∗
1 | ≥ ε4γ

−k for all j, k|θ∗
0 = θ

)
> 1− ε3

2
− P

(
|z(θ, e1) − uj,k,θ | ≤

ε1−k
γ

L4
for somej, k

)
> 1− ε3

2
− 2mpL0ε4γ

L3L4
= 1− ε3. �

LEMMA 5.5. Assume Assumptions A.1–A.6. Suppose q(θ) is bounded on �

and continuous on �##. Then E(q(θ∗
t )|θ∗

0 = θ) is continuous on �## for each
t ≥ 1.

PROOF. Fix t ≥ 1, ε ∈ (0,1) and compactC ⊂ �##. Define L5 =
supθ∈� |q(θ)|. Pick ε3 ∈ (0, ε

1+4tL5
). By Lemma 5.4 and its proof, which in turn

depends on the proof of Lemma 5.3, there existsM1 so large thatP (|e1| > M1) <

ε3/2 and compactD1 with C ⊂ D1 ⊂ �## such that

P (θ∗
1 ∈ D1|θ∗

0 = θ) > 1− ε3 for all θ ∈ D1.(5.13)

Again letX∗
1,x,u = (z(x,u), x1, . . . , xp−1) and defineθ∗

1,x,u = X∗
1,x,u/‖X∗

1,x,u‖.
Sinceq is uniformly continuous onD1, chooseδ0 > 0 such that

‖θ ′ − θ ′′‖ < δ0, θ ′ ∈ D1, θ ′′ ∈ D1 �⇒ |q(θ ′) − q(θ ′′)| < ε3.(5.14)
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Also, {θ∗
1,θ ′,u : |u| ≤ M1} is uniformly equicontinuous onD1, so chooseδk , k ≥ 1,

such that if|u| ≤ M1,

‖θ ′ − θ ′′‖ < δk, θ ′ ∈ D1, θ
′′ ∈ D1

(5.15)
�⇒ ‖θ∗

1,θ ′,u − θ∗
1,θ ′′,u‖ < δk−1.

Now let {θ∗
k,θ ′ } and {θ∗

k,θ ′′} be the processes that start withθ ′ and θ ′′,
respectively. We thus have, by (5.13) and (5.15),

P (‖θ∗
k,θ ′ − θ∗

k,θ ′′‖ < δt−k; θ∗
k,θ ′ ∈ D1; θ∗

k,θ ′′ ∈ D1)

> P (‖θ∗
k−1,θ ′ − θ∗

k−1,θ ′′‖ < δt−k+1;
θ∗
k−1,θ ′ ∈ D1; θ∗

k−1,θ ′′ ∈ D1; |ek| ≤ M1) − ε3

> P(‖θ∗
k−1,θ ′ − θ∗

k−1,θ ′′‖ < δt−k+1; θ∗
k−1,θ ′ ∈ D1; θ∗

k−1,θ ′′ ∈ D1) − 2ε3,

for k = 1, . . . , t . Hence, ifθ ′ ∈ D1, θ ′′ ∈ D1 and‖θ ′ − θ ′′‖ < δt , then

P (‖θ∗
t,θ ′ − θ∗

t,θ ′′‖ < δ0; θ∗
t,θ ′ ∈ D1; θ∗

t,θ ′′ ∈ D1) > 1− 2tε3.

Applying (5.14),

P
(|q(θ∗

t,θ ′) − q(θ∗
t,θ ′′)| < ε3

)
> 1− 2tε3.(5.16)

From (5.16) we obtain, ifθ ′ ∈ D1, θ ′′ ∈ D1 and‖θ ′ − θ ′′‖ < δt , then∣∣E(
q(θ∗

t )|θ∗
0 = θ ′) − E

(
q(θ∗

t )|θ∗
0 = θ ′′)∣∣ ≤ E

(|q(θ∗
t,θ ′) − q(θ∗

t,θ ′′)|)
< ε3 + 2L5P

(|q(θ∗
t,θ ′) − q(θ∗

t,θ ′′)| ≥ ε3
)

< (1+ 4tL5)ε3 < ε.

The conclusion then follows sinceC ⊂ D1 and sinceε andC are arbitrary. �

This lemma identifies the implicit behavior of{θ∗
t } that we will piggyback upon,

namely a near-equilibrium equation.

LEMMA 5.6. Assume Assumptions A.1–A.6. If ρ is defined as in (3.2), then
for any ε5 > 0, there exists a bounded function ν :� → R, such that

sup
θ∈�

∣∣E(
ν(θ∗

1 ) − ν(θ) + logw(θ, e1)|θ∗
0 = θ

) − logρ
∣∣ < ε5.(5.17)

Moreover, ν is continuous on �##.

PROOF. Fix ε5 > 0. By definition,

logρ =
∫
�

∫
R

log
(
w(θ,u)

)
f (u) du�(dθ).(5.18)
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Defineq(θ) = E (logw(θ, e1)), which is bounded. By (5.18) and the uniform
ergodicity of{θ∗

t }, there existsδ < 1 andK1 < ∞ such that∣∣E(
q(θ∗

t )|θ∗
0 = θ

) − logρ
∣∣ < K1δ

t for all t ≥ 1 and allθ ∈ �

[cf. Meyn and Tweedie [(1993), Theorem 16.2.1]. ChooseT such thatK1δ
T ≤ ε5

and let

ν(θ) =
T −1∑
t=0

E
(
q(θ∗

t )|θ∗
0 = θ

)
.

Then

E
(
ν(θ∗

1 ) − ν(θ) + logw(θ, e1)|θ∗
0 = θ

) = E
(
q(θ∗

T )|θ∗
0 = θ

)
and (5.17) follows immediately.

Furthermore,q is continuous on�## and thereforeν is also continuous on�##,
by Lemma 5.5. �

Previously we definedX∗
1,x,u = (z(x,u), x1, . . . , xp−1) and θ∗

1,x,u = X∗
1,x,u/‖X∗

1,x,u‖. Now defineX1,x,u = (a(x) + b(x)u, x1, . . . , xp−1) andθ1,x,u = X1,x,u/

‖X1,x,u‖. Additionally, let

θ̃t = θ1,Xt−1,et = Xt/‖Xt‖,
X̃∗

t = X∗
1,Xt−1,et

and θ̃∗
t = θ∗

1,Xt−1,et
= X̃∗

t /‖X̃∗
t ‖.

In the following arguments it will be crucial to compareXt to X̃∗
t (and θ̃t to θ̃∗

t ),
to consider how they would differ ifXt−1 is acted upon bya∗ andb∗ instead of by
a andb.

Recallz(x,u) = a∗(x) + b∗(x)u. Define alsoc(x,u) = a0(x) + b0(x)u so that
a(x) + b(x)u = z(x,u) + c(x,u).

The next two lemmas show thatθ̃t andθ̃∗
t are each eventually within a compact

subset of�## (hence away from singular behavior), with high probability.

LEMMA 5.7. Assume Assumptions A.1–A.5.Given any ε1 ∈ (0,1), there exist
γ > 1, η ∈ (0,1), M2 < ∞ and compact set C2 ⊂ �# such that, if ‖x‖ > M2η

1−t

and if either x/‖x‖ ∈ C2 or t ≥ p, then

P

(
θ̃t ∈ C2; θ̃∗

t ∈ C2; ηt ≤ ‖Xt‖
‖x‖ ≤ (γ + η)t

∣∣∣X0 = x

)
> (1− ε1)

t .(5.19)

PROOF. As in the proof of Lemma 5.3, we assumeε1 ∈ (0,L0/2). Let ε2,
M1 and γ be the same as in the proof of Lemma 5.3. We setη = ε2/2. By
Assumption A.4 and the definitions ofa0 and b0 that follow it, there exists
M2 < ∞ such that

|c(x,u)|
‖x‖ < η for all |u| ≤ M1, ‖x‖ > M2.(5.20)



1940 D. B. H. CLINE AND H. H. PU

For t ≥ 1 andx ∈ R
p, x 	= 0, let

C2,x,t =
{
θ : |θi | ≥ η(γ + η)−i , i ≤ min(t,p); |θi | ≥ |xi−t |

‖x‖ (γ + η)−1, t < i ≤ p

}
.

DefineC2 = C2,x,p which in fact does not depend onx. Clearly, if x/‖x‖ ∈ C2 or
t ≥ p, thenC2,x,t = C2.

Therefore it suffices to show that, fort ≥ 1 and‖x‖ > M2/η
t−1,

P

(
θ̃t ∈ C2,x,t; θ̃∗

t ∈ C2,x,t;ηt ≤ ‖Xt‖
‖x‖ ≤ (γ + η)t

∣∣∣X0 = x

)
> (1− ε1)

t .(5.21)

Suppose‖x‖ > M2, |u| ≤ M1 and |z(x/‖x‖, u)| ≥ ε2 = 2η. Then, by (5.7)
and (5.20),

η‖x‖ ≤ |z(x,u) + c(x,u)| ≤ ‖X1,x,u‖
≤ |z(x,u) + c(x,u)| + ‖x‖ ≤ (γ + η)‖x‖.

Likewise,

2η‖x‖ ≤ ‖X∗
1,x,u‖ ≤ γ ‖x‖.

Furthermore, for the components ofθ1,x,u andθ∗
1,x,u,

min(|θ1,i,x,u|, |θ∗
1,i,x,u|) ≥


η(γ + η)−1, i = 1,

|xi−1|
‖x‖ (γ + η)−1, i = 2, . . . , p.

Hence

P

(
θ1,x,u ∈ C2,x,1; θ∗

1,x,u ∈ C2,x,1;η ≤ ‖X1‖
‖x‖ ≤ (γ + η)

∣∣∣X0 = x

)
(5.22)

≥ P

(
|e1| ≤ M1;

∣∣∣∣z(
x

‖x‖ , e1

)∣∣∣∣ > ε2

)
> 1− ε1,

where the last inequality follows from (5.6). That is, (5.21) holds fort = 1.
Next, assume (5.21) holds fort = k, somek ≥ 1. Then for‖x‖ > M2/η

k ,

P

(
θ̃k+1 ∈ C2,x,k+1; θ̃∗

k+1 ∈ C2,x,k+1;ηk+1 ≤ ‖Xk+1‖
‖x‖ ≤ (γ + η)k+1

∣∣∣X0 = x

)

≥ P

(
θ̃k+1 ∈ C2,Xk,1; θ̃∗

k+1 ∈ C2,Xk,1; θ̃k ∈ C2,x,k;η ≤ ‖Xk+1‖
‖Xk‖ ≤ (γ + η);

andηk ≤ ‖Xk‖
‖x‖ ≤ (γ + η)k

∣∣∣X0 = x

)
≥ (1− ε1)

k+1,

by conditioning onXk . Thus (5.21) holds for allt ≥ 1 by induction. �
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LEMMA 5.8. Assume Assumptions A.1–A.6.Given any ε3 ∈ (0,1), there exist
γ > 1,η ∈ (0,1), M2 < ∞ and compact set D2 ⊂ �## such that, if ‖x‖ > M2η

1−t

and if either x/‖x‖ ∈ D2 or t ≥ 2p, then

P

(
θ̃t ∈ D2; θ̃∗

t ∈ D2;ηt ≤ ‖Xt‖
‖x‖ ≤ (γ + η)t

∣∣∣X0 = x

)
> (1− ε3)

t .

PROOF. The argument for this is analogous to that of Lemma 5.7: an induction
by conditioning, starting witht = p and (5.19) and iterating tot ≥ 2p. Using the
same notation as in Lemmas 5.4 and 5.7, the induction step is possible by showing
that if ‖x‖ > M2η

−t , θ̃0 = x/‖x‖ ∈ C2 and h′
jF

kθ̃0 ≥ ε4(γ + η)−k for k < t ,
t = 0, . . . , p − 1, then

P
(
h′

jF
kθ̃1 ≥ ε4(γ + η)−k;

h′
jF

kθ̃∗
1 ≥ ε4(γ + η)−k,1≤ j ≤ m,0 ≤ k ≤ t;A1

)
> 1− ε3/p,

where

A1 = {θ̃1 ∈ C2; θ̃∗
1 ∈ C2;η‖x‖ ≤ ‖X1‖ ≤ (γ + η)‖x‖}.

In other words, ifθ̃t and θ̃∗
t are both inC2, then we can reachD2 with both

in p steps, with high probability. The argument for this is the same that yielded
(5.21) and (5.22). �

LEMMA 5.9. Assume Assumptions A.1–A.5.Then

sup
x∈Rp

E

((
1+ ‖X1,x,e1‖

1+ ‖x‖
)s)

< ∞ for all s ∈ (−1, r0],

and ‖x‖ → ∞ implies ‖X1,x,e1‖ → ∞ in probability.

PROOF. Let K2 = supx∈Rp
max(|a(x)|,b(x))

1+‖x‖ . Clearly,
1+‖X1,x,e1‖

1+‖x‖ ≤ 1 + K2(1 +
|e1|), which establishes the result for 0≤ s ≤ r0. (Assumptions A.4 and A.5 are
not needed for this.)

Next, let L1 = infθ∈� max(|a∗(θ)|, b∗(θ)), as in the proof of Lemma 5.3.
ChooseM3 ≥ 1 such that

max
( |a0(x)|

1+ ‖x‖ ,
|b0(x)|
1+ ‖x‖

)
≤ L1

4
whenever‖x‖ > M3,

by the definitions ofa0(x) and b0(x) following Assumption A.4. DefineL6 =
inf‖x‖≤M3

b(x)
1+‖x‖ , which is positive by Assumption A.1. Thus,‖x‖ ≤ M3 implies

max
( |a(x)|

1+ ‖x‖ ,
b(x)

1+ ‖x‖
)

≥ L6.
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On the other hand,‖x‖ > M3 implies

max
( |a(x)|

1+ ‖x‖ ,
b(x)

1+ ‖x‖
)

≥ max
( |a∗(x)| − |a0(x)|

1+ ‖x‖ ,
b∗(x) − |b0(x)|

1+ ‖x‖
)

≥ max(|a∗(x)|, b∗(x))

2‖x‖ − L1

4
≥ L1

4
.

Applying (5.4), then, for allε ∈ (0,min(L1/8,L6/2)) andx ∈ R
p,

P

(
1+ ‖X1,x,e1‖

1+ ‖x‖ ≤ ε

)
≤ P

(∣∣∣∣ a(x)

1+ ‖x‖ + b(x)

1+ ‖x‖e1

∣∣∣∣ ≤ ε

)
≤ 4L0ε

min(L1/4,L6)
.

This ensures the expectation in the lemma statement is uniformly bounded for
eachs ∈ (−1,0). Furthermore, it also requires that‖X1,x,e1‖ → ∞ in probability,
as‖x‖ → ∞. �

LEMMA 5.10. Assume Assumptions A.1–A.3.Suppose there exist a bounded
function ν(x), ρ1 < 1 and n ≥ 0 such that

lim sup
‖x‖→∞

E

(
ν(Xn+1) − ν(Xn) + log

(
1+ ‖Xn+1‖
1+ ‖Xn‖

)∣∣∣X0 = x

)
< logρ1 < 0.

Then, for some s ∈ (0, r0] and some function λ :Rp → (0,∞), bounded and
bounded away from 0,

lim sup
‖x‖→∞

E

(
λ(X1)‖X1‖s

λ(x)‖x‖s

∣∣∣X0 = x

)
< ρs

1 < 1.(5.23)

Consequently, {Xt } is V -uniformly ergodic with V (x) = 1 + λ(x)‖x‖s and (2.1)
holding.

PROOF. The proof of (5.23) is contained in the proof of Lemma 4.1(i) of
Cline and Pu (1999), with Lemma 5.9 in support. Along with the conclusion
of Lemma 5.1 and the factE(λ(X1)‖X1‖s |X0 = x) is locally bounded, this
establishes the standard Foster–Lyapounov drift condition for geometric ergodicity
[Meyn and Tweedie (1993), Theorem 15.0.1 and Section 15.2].�

PROOF OF THEOREM 3.2. We do not assumeρ < 1 until the very end of
the proof. Chooseε6 > 0 and letε5 = ε6/4. Defineν according to Lemma 5.6.
Extend ν to R

p by defining ν(0) = 0 and ν(x) = ν(x/‖x‖) for x 	= 0. Let
V1(x) = 1+ ‖x‖. Then

lim sup
‖y‖→∞

∣∣E(
ν
(
X∗

1,y,e1

) − ν(y) + log
(
V1

(
X∗

1,y,e1

)
/V1(y)

)) − logρ
∣∣

(5.24)
< ε5 = ε6/4.
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Let L7 = supx∈Rp |ν(x)|. By Lemma 5.9, there existsK4 < ∞ such that

sup
y∈Rp

E
(∣∣log

(
V1

(
X1,y,e1

)
/V1(y)

)∣∣) ≤ K4.

Let L8 = 4 max(2p| logρ|,2(2p + 1)L7,2p(2L7 + K4)) and chooseε3 < ε6/L8.
ChooseD2, η andM2 according to Lemma 5.8 and define

At = {θ̃t ∈ D2; θ̃∗
t ∈ D2; ‖Xt‖ ≥ ηt‖X0‖}, t = 1, . . . ,2p + 1.

Then, in particular,

P (At |X0 = x) > 1− tε3,(5.25)

if ‖x‖ > M2η
1−t and eithert ≥ 2p or x/‖x‖ ∈ D2. Conditioning on(X2p−1, e2p)

and applying (5.24) and (5.25), we have

lim sup
‖x‖→∞

∣∣E((
ν(X̃∗

2p+1) − ν(X2p)

(5.26) + log
(
V1(X̃

∗
2p+1)/V1(X2p)

))
1A2p

|X0 = x
) − logρ

∣∣
< ε6/4+ 2p| logρ|ε3 < ε6/2.

Sincea0(x) = o(‖x‖), b0(x) = o(‖x‖) andD2 ⊂ �#, we conclude

lim inf
‖y‖→∞

y/‖y‖∈D2

‖X1,y,e1‖
‖y‖ = lim inf

‖y‖→∞
y/‖y‖∈D2

‖X∗
1,y,e1

‖
‖y‖ = inf

θ∈D2

∥∥(
z(θ, e1), θ1, . . . , θp−1

)∥∥
> 0 with probability 1

and, givenX0 = y,

lim
‖y‖→∞

y/‖y‖∈D2

‖θ̃1 − θ̃∗
1‖ = lim

‖y‖→∞
y/‖y‖∈D2

∥∥θ1,y,e1 − θ∗
1,y,e1

∥∥ = 0 almost surely.

By the uniform continuity ofν onD2, therefore,

lim sup
‖x‖→∞

E
(|ν(X2p+1) − ν(X̃∗

2p+1)|1A2p
|X0 = x

)
≤ lim sup

‖x‖→∞
E

(|ν(X2p+1) − ν(X̃∗
2p+1)|1A2pA2p+1 + 2L71Ac

2p+1
|X0 = x

)
(5.27)

≤ lim
‖y‖→∞

y/‖y‖∈D2

E
(|ν(θ̃1) − ν(θ̃∗

1 )|1A1|X0 = y
) + 2L7(2p + 1)ε3 < ε6/4.

We may also conclude

lim sup
‖y‖→∞

y/‖y‖∈D2

E
(
log

(
V1

(
X1,y,e1

)/
V1

(
X∗

1,y,e1

))) = 0,

so that

lim sup
‖x‖→∞

E
(
log

(
V1(X2p+1)/V1(X̃

∗
2p+1)

)
1A2p

|X0 = x
) = 0.(5.28)
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Hence, by (5.26)–(5.28),

lim sup
‖x‖→∞

∣∣E((
ν(X2p+1) − ν(X2p)

(5.29) + log
(
V1(X2p+1)/V1(X2p)

))
1A2p

|X0 = x
) − logρ

∣∣
< 3ε6/4.

The definitions ofL7 andK4 and (5.25) provide

lim sup
‖x‖→∞

∣∣E((
ν(X2p+1) − ν(X2p)

(5.30) + log
(
V1(X2p+1)/V1(X2p)

))
1Ac

2p
|X0 = x

)∣∣
< 2p(2L7 + K4)ε3 ≤ ε6/4.

By (5.29) and (5.30), we conclude

lim sup
‖x‖→∞

∣∣E(
ν(X2p+1) − ν(X2p)

(5.31)
+ log

(
V1(X2p+1)/V1(X2p)

)|X0 = x
) − logρ

∣∣ < ε6.

Now, finally, we assumeρ < 1 andε6 > 0 has been chosen so that logρ1
def=

logρ + ε6 < 0. The result follows from Lemma 5.10 withn = 2p. �

PROOF OFTHEOREM 3.3. Letε6, ν(x), L7 andV1(x) be as in the proof of
Theorem 3.2. Note thatε6 is arbitrary butν(x) andL7 depend on it. On the basis
of Lemma 5.9, choose

K5 = sup
x∈Rp

E
(∣∣log

(
V1(X1)/V1(x)

)∣∣|X0 = x
)
< ∞.

Also, letn0 ≥ (4pK5 + 2L7)/ε6.
Now let 
Bj = ν(X2p+j ) − ν(X2p+j−1) + log(V1(X2p+j )/V1(X2p+j−1)).

Then, by (5.31),

lim sup
‖x‖→∞

∣∣E(
B1|X0 = x) − logρ
∣∣ < ε6.

Since by Lemma 5.9, lim sup‖x‖→∞ P (‖X1‖ ≤ M|X0 = x) → 0 for every
M < ∞, it is easy to see inductively that, for everyj ≥ 1,

lim sup
‖x‖→∞

∣∣E(
Bj+1|X0 = x) − logρ
∣∣

≤ lim sup
‖x‖→∞

E
(∣∣E(
Bj+1|X1) − logρ

∣∣|X0 = x
)

≤ lim sup
‖x‖→∞

∣∣E(
Bj |X0 = x) − logρ
∣∣ < ε6.
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Therefore,

lim sup
‖x‖→∞

1

n

∣∣E(
ν(X2p+n) − ν(X2p)

+ log
(
V1(X2p+n)/V1(X2p)

)|X0 = x
) − logρ

∣∣(5.32)

= lim sup
‖x‖→∞

∣∣∣∣∣1n
n∑

j=1

E(
Bj |X0 = x) − logρ

∣∣∣∣∣ < ε6.

Note that

E
(∣∣log

(
V1(Xn)/V1(x)

) − log
(
V1(X2p+n)/V1(X2p)

)∣∣|X0 = x
)

= E
(∣∣log

(
V1(X2p+n)/V1(Xn)

) − log
(
V1(X2p)/V1(x)

)∣∣|X0 = x
) ≤ 4pK5.

Consequently, by (5.32),

lim sup
‖x‖→∞

1

n

∣∣∣∣E(
log

(
V1(Xn)

V1(x)

)∣∣∣X0 = x

)
− logρ

∣∣∣∣ < ε6 + 4pK5 + 2L7

n
< 2ε6,

for everyn ≥ n0. Sinceε6 can be arbitrarily small, this proves (3.4) and hence the
Lyapounov exponent must be logρ. �

PROOF OFCOROLLARY 3.4. Since a stationary distribution� exists for{θ∗
t },

(3.5) implies

logρ =
∫
�

∫
R

log
(
w(θ,u)

)
f (u) du�(dθ)

=
∫
�

E
(
ν(θ∗

1 ) − ν(θ) + logw(θ, e1)|θ∗
0 = θ

)
�(dθ) < 0.

V -uniform ergodicity follows by Theorem 3.2.�

PROOF OF THEOREM 3.5. Define�## as before and assume (i) holds. We
first verify that{Xt } is V -uniformly ergodic. We show below that (i) implies (ii)
and then that (ii) implies (i) withλ continuous on�##, bounded and bounded
away from 0. Therefore, there is no loss in assuming thatλ is continuous on�##,
bounded and bounded away from 0. LetV1(x) = 1 + ‖x‖r . By an argument
analogous to that for Theorem 3.2, one may show that

lim sup
‖x‖→∞

E(λ(X2p+1/‖X2p+1‖)V1(X2p+1)|X0 = x)

E(λ(X2p/‖X2p‖)V1(X2p)|X0 = x)
< 1.

The drift condition for geometric ergodicityis therefore satisfied with test function
V (x) = E(λ(X2p/‖X2p‖)V1(X2p)|X0 = x). From (5.5) we have

E
(∣∣a∗(x) + b∗(x)e1

∣∣r ) ≥ E
(|a∗(x) + b∗(x)e1|r1|a∗(x)+b∗(x)e1|≥ε‖x‖

)
≥ δ1‖x‖r ,
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for someδ1 > 0, and therefore by (1.1) and the assumptions,E((1+‖X1‖r )|X0 =
x) ≥ δ2(1 + ‖x‖r ) for someδ2 > 0. Thus,E((1 + ‖X2p‖r )|X0 = x) ≥ δ

2p
2 (1 +

‖x‖r ). Sinceλ(θ) is bounded away from 0, it follows thatV (x) ≥ K‖x‖r for
some positive constantK . Likewise,V (x) ≤ L + M‖x‖r for finite L,M .

Next, we show that (i) implies (ii). Letβ be the left-hand side of (3.6) and
chooseL9 < ∞ such that 1/L9 < λ(θ) < L9 for all θ . By (3.6) and the Markov
property,

E

(
n∏

t=1

(
w(θ∗

t−1, et )
)r ∣∣∣θ∗

0 = θ

)

≤ L9E

(
E

(
λ(θ∗

n )
(
w(θ∗

n−1, en)
)r |θ∗

n−1
) n−1∏

t=1

(
w(θ∗

t−1, et )
)r ∣∣∣θ∗

0 = θ

)

≤ L9βE

(
λ(θ∗

n−1)

n−1∏
t=1

(
w(θ∗

t−1, et )
)r ∣∣∣θ∗

0 = θ

)

≤ · · · ≤ L9β
nλ(θ) ≤ L2

9β
n.

The condition in (ii) follows easily.
Finally, we assume (ii) and verify that (i) holds. We need to construct a test

functionλ(θ) that is bounded, bounded away from 0 and continuous on�##. This
has two parts.

First, we defineλ and show it satisfies (3.6). Choosen ≥ 1 andδ > 0 such that

sup
θ∈�

(
E

(
n∏

t=1

(
δ + w(θ∗

t−1, et )
)r ∣∣∣θ∗

0 = θ

))
< 1(5.33)

and defineQt = (δ + w(θ∗
t−1, et ))

r . The test function we need is

λ(θ) =
n−1∏
t=1

(
E(Qt · · ·Q1|θ∗

0 = θ)
)1/n

.

Applying Hölder’s inequality ton factors,

E
(
λ(θ∗

1 )
(
w(θ, e1)

)r |θ∗
0 = θ

)
≤ E

(
n−1∏
t=1

(
E(Qt+1 · · ·Q2|θ∗

1 )Q1
)1/n

Q
1/n
1

∣∣∣θ∗
0 = θ

)

≤
n∏

t=1

(
E(Qt · · ·Q1|θ∗

0 = θ)
)1/n = (

E(Qn · · ·Q1|θ∗
0 = θ)

)1/n
λ(θ),

thus verifying (3.6) by (5.33).
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Second, we showλ has the desired properties. Defineqt (θ) = E(Qt · · ·Q1|
θ∗

0 = θ). By the Markov property,

qt (θ) = E
(
qt−1(θ

∗
1 )Q1|θ∗

0 = θ
)
.(5.34)

Let K6 = supθ E(Q1|θ∗
0 = θ) and by iteratively using (5.34) we haveδt ≤

qt(θ) ≤ Kt
6 andδ(n−1)/2 ≤ λ(θ) ≤ K

(n−1)/2
6 for all θ .

Note thatλ is continuous on�## if each qt(θ) is. Clearly,q1 is continuous
on �## since w(θ, e1) is and {(w(θ, e1))

r}θ∈� is uniformly integrable. By
the argument of Lemma 5.5,qt−1(θ) continuous on�## implies qt(θ) =
E(qt−1(θ

∗
1 )Q1|θ∗

0 = θ) is also, and we obtain the conclusion inductively.�

PROOF OF EXAMPLE 4.4. Definec1 = br
11E1 + br

21E2 and ci = (br
1ip1 +

br
2ip2)E(|e1|r ), i = 2, . . . , p. Chooseβ ∈ (0,1) such that

∑p
i=1 β−ici = 1. Now

let djp = β−1br
jpE(|e1|r ), j = 1,2 and

dji = β−1br
jiE(|e1|r) +

p∑
k=i+1

βi−k−1ck, i = 1, . . . , p − 1, j = 1,2.

Thus,d11E1 + d21E2 = E(|e1|r ),
br
jp(d11E1 + d21E2) = βdjp, j = 1,2,(5.35)

and fori = 2, . . . , p − 1, j = 1,2,

br
ji(d11E1 + d21E2) + (d1,i+1p1 + d2,i+1p2)E(|e1|r ) = βdji.(5.36)

Now definedj,p+1 = 0, j = 1,2, R1 = {x :x1 ≤ 0}, R2 = {x :x1 > 0} and

V (x) =
{

d11|x1|r + · · · + d1p|xp|r , if x1 ≤ 0,

d21|x1|r + · · · + d2p|xp|r , if x1 > 0.

Applying (5.35) and (5.36),

E
(
V (X∗

1)|X∗
0 = x

)
=

2∑
j=1

( p∑
i=1

b2
j i|xi|2

)r/2

1Rj
(x)(d11E1 + d21E2)

+
2∑

j=1

p∑
i=2

(d1,i+1p1 + d2,i+1p2)|xi |r1Rj
(x)E(|e1|r )

≤
2∑

j=1

p∑
i=1

(
br
ji(d11E1 + d21E2) + (d1,i+1p1 + d2,i+1p2)E(|e1|r ))|xi |r1Rj

(x)

=
2∑

j=1

p∑
i=1

βdji|xi|r1Rj
(x) = βV (x),
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with equality whenr = 2.
Letting λ(θ) = V (θ), for θ ∈ �, leads immediately to (3.6) and the conclusion.

�
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