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STABILITY AND THE LYAPOUNOV EXPONENT OF
THRESHOLD AR-ARCH MODELS

By DAREN B. H. CLINE AND HUAY-MIN H. Pu
Texas A&M University

The Lyapounov exponent and sharp conditions for geometric ergodicity
are determined of a time series model with both a threshold autoregression
term and threshold autoregressive conditional heteroscedastic (ARCH) er-
rors. The conditions require studying or simulating the behavior of a bounded,
ergodic Markov chain. The method of proof is based on a new approach,
called thepiggyback method, that exploits the relationship between the time
series and the bounded chain.

The piggyback method also provides a means for evaluating the Lya-
pounov exponent by simulation and provides a new perspective on moments,
illuminating recent results for the distribution tails of GARCH models.

1. Introduction. Modeling the stochastic volatility of econometric and other
time series with autoregressive conditional heteroscedastic (ARCH and GARCH)
type models has proved to be very successful. This effort recently has been
extended to include additional nonlinearity such as threshold (G)ARCH models
introduced by Glosten, Jagannathan and Runkle (1993), Rabemanajara and
Zakoian (1993) and Zakoian (1994), as well as the addition of autoregression
components, which may also be nonlinear [Li and Li (1996), Liu, Liand Li (1997),

Lu (1998), Hwang and Woo (2001), Lu and Jiang (2001) and Lanne and Saikkonen
(2004)]. For nonlinear models in particular, it is quite usual to make very strong
assumptions about the parameters and/or nonlinearity in order to ensure existence
of a stationary model. To avoid such strong assumptions, this paper introduces an
approach that will give definitive results about stationarity and can offer insight to
the moments of the stationary distribution. The method is applied here to threshold
extensions of ARCH models with an autoregressive component.

The threshold autoregressive ARCH (TAR-ARCH) model can be expressed as

(11) St = a(‘i:t—l’ seey Et—p) + b(sl‘—lv ceey Et—p)el"
wherea andb are finitely piecewise continuous functions afwd} is an i.i.d.
error sequence. The state vector for the time serié§ is (¢, ...,&_p,4+1). The

nonlinear autoregression functier(x) is continuous on individual, connected
subregions ofR?; the boundaries of these regions are called thresholds, hence
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the nomenclature for the model. Frequentlyx) is assumed to be linear on
each of these regions. Likewise, this model has a state dependent conditional
variance p2(x) = var( | X,_1 = x) if var(e;) = 1, which typically is of the order

of magnitude ofjjx||2. This provides the conditional heteroscedasticity (ARCH)
behavior and for our purposes it is also assumed to have thresholds.

Since the time series (1.1) is embedded ifXg}, which is a Markov chain,
it will have a stationary distribution when the Markov chain is ergodic. If
a andb are sufficiently smooth (e.g., Lipschitz continuous) this may be verified
using dynamical systems arguments [Chan and Tong (1985), Letac (1986), Tong
(1990) and Diaconis and Freedman (1999)]. Here, however, the discontinuities of
a andb, as well as their nonlinearity, complicate every aspect of the argument.
Another approach, which works well for nonthreshold ARCH models, involves
reexpressing the model as a random coefficients or stochastic difference equation
model [Brandt (1986), Engle and Bollerslev (1986), Bougerol (1987), Bougerol
and Picard (1992a, b) and many others]. This approach can even provide stationary
representations and tail behaviors of the stationary distributions [Basrak, Davis and
Mikosch (2002)], but it will not work here since the “random coefficients” would
not be independent of the past values of the process. Indeed the approach assumes
that the random coefficients are already known to be a stationary process. Our
approach will overcome these obstacles.

Both the dynamical systems approach and the random coefficients approach
are intricately tied to the concept of a Lyapounov exponent. This is a notion
readily apparent in such systems but largely bypassed in the general literature
on ergodicity of Markov processes and the like. An appropriate definition for the
Lyapounov exponent in our context is

o 1 | X0l _
liminf limsup—E( log ’Xo—x .

=00 x>0 1 | Xoll

This constant measures the “geometric drift” of the process when it is large (and
less subject to local perturbations). If this constant is negative, then the process
is stable in the sense that a drift condition for ergodicity is readily identifiable
[cf. Meyn and Tweedie (1993), Theorem 15.3.7]. Our approach in this effort will
both identify the Lyapounov exponent and show that it is the critical value for
determining stability.

As is standard, we assume the following on the error term, ens{Xipgis an
aperiodic, Lebesgue-irreduciklechain onR? [cf. Meyn and Tweedie (1993) and
Cline and Pu (1998)].

ASSUMPTIONA.1. The distribution ofe; has Lebesgue density which is
locally bounded away from 0. Alsd; is positive, locally bounded and locally
bounded away from 0.

We also have the following moment assumption.
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ASSUMPTION A.2. sup,(1+ |ul) f(u) < oo and E(Je1|"?) < oo for some
ro> 0.

In this paper we will employ further constraints on the functierandb. These
conform, however, to all standard uses of threshold autoregression and ARCH
models. The first such condition is next. Except when indicated othenjisg,
is the Euclidean norm though this is not strictly necessary.

ASSUMPTIONA.3. a(x)/(1+ |lx|]) andb(x)/(1+ ||x]|) are bounded.

The model thus has the functional coefficient AR-ARCH (FCAR-ARCH)
representation

p
& =ao(X,—1) + Y a;(X,—1)& i
(1.2) =1

» 1/2
+ (bé(xz_n + Zbi(xt_osf_i) e,
i=1

where ag, ...,ap, bo, ..., b, are bounded functions oR?” [e.g., ag(x) =

Ty and ai() = 29, i = 1., p]. Although the FCAR-
ARCH representation is not unique, it seems to be a good starting point for
(nonparametric) modeling. Stability conditions based on such a representation may
not be sharp, however, and this is one motivation for the present work.

Standard threshold models considerto be piecewise linear ant? to be
piecewise quadratic. More generally, it is not unreasonable to assume that
a(x) andb(x) are asymptotically homogeneous. We state this assumption next.

Let® = {0 e R”: 0] = 1}.

ASSUMPTIONA.4. There exisk, € R? and bounded functions, andb,. on
® such that
4a(x* + wh)
o)

—a.@)|=0 and lim su
w u)—>009€®

lim su — by (0)] =0.

w—>ooee

p{b(x* + wo)
w

This actually implies Assumption A.3, but it is convenient to state both.
It follows easily from Assumption A.4 that: and » may be decomposed
asa(x) = ag(x) + a*(x — xy) and b(x) = bo(x) + b*(x — x4), x = (x1,...,
xp) € R?, wherea* and b* are homogeneous [in fact,"(x) = a.«(x/[lx|D[lx|l
andb*(x) = b.(x/|lx])|lx]]] andag andbg are locally bounded functions such that
ao(x) = o(J|x|) andbo(x) = o(||x]|) as|lx] — oo. For simplicity, we henceforth
assumer, =0.
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By removing the nonhomogeneous terms from the model, we define a
homogeneous version of the time series,

(1.3) & =a"(X;_p + 0" (X[ _per,

whereX; = (¢, ..., E,*_pH). We intend to show that, under simple conditions,
the stability of{X,} is related to that of X;}. Furthermore, letting," = X; /|| X} |,

we can describe the stability conditions in terms of the collapsed prgégss
Note that{X*} is a Markov chain ofiR5 = R” \ {0} and, due to the homogeneity
of a* andb*, {6} is a Markov chain o® = {6 : ||0| = 1}.

Whenp = 1, the latter chain obviously is a two-state chain and we examine this
special case explicitly in Example 4.1. Much more interesting is the gasé.

Even though we are assumingo be locally bounded away from 0; need
not be. For example, for the standard ARCH mo#léix) = (b2x? + --- +
b2x2)1/2, where someb; may be 0. This requires an additional assumption
and some care. We defing to be the set on which limipf., 5*(y) =0 and
Hp = {x:min; |x;| =0}.

ASSUMPTIONA.5. If p > 1, max|a*(x)|, b*(x)) is locally bounded away
from 0 onR} andb* is locally bounded away from 0 oRj, = R? \ Hp (hence
Bo C Hp).

Our final assumption refers to the threshold-like nature of the model, that is, the
piecewise continuity of* andb™.

ASSUMPTIONA.6. If p > 1, there exis{p — 1)-dimensional homogeneous
hyperplanedds, ..., H, such thaw™ andb* are continuous ot‘U]’?:l H;.

Assumption A.6 implies that the character of the model depends on the signs of
linear combinations of the componentsXf. This is similar to and includes the
delay assumption most authors employ.

Define z(x,u) = a*(x) + b*(x)u for x e R” andu € R, and w(x,u) =
l(z(x,u), x1, ..., xp—D)|l. Then&F = z(X7 1, e) and 0] = (z(0] 4, e:), 0/ 1 1,

6y, ) WO e

Henceforth, let., be Lebesgue measure & and letue be the surface area
measure oi®. Thatis,ue(A) = pu,({x:x/lx|l € A, x| < 1}).

Section 2 discusses a direct approach to verifying stability that has its roots in
the literature for both paraetric and nonparametric models. We present it because
of its simplicity and to contrast it with our results in Section 3. The main results,
which are in Section 3, provide a sharp condition for stability and identify the
Lyapounov exponent fofX,;}. The approach is based on a method of proof we
have named thpiggyback method. Section 4 examines four cases explicitly. The
final section contains the proofs.
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2. A simple sufficient condition for FCAR-ARCH models. In the spirit of
numerous other authors, we present a simple condition for geometric ergodicity
applicable to general functional coefficient models. This condition is based on
bounding the FCAR-ARCH representation and therefore is simple to apply,
but it ultimately proves to be too rudimentary to establish the parameter space
definitively for more specific models. The approach has roots in conditions for
FCAR models, starting with Chan and Tong (1986), and culminating recently
in conditions for models with both a nonlinear autoregression and an ARCH or
bilinear conponent [Lu (1998), Lu and Jiang (2001) and Ferrante, Fonseca and
Vidoni (2003)]. Our theorem and corollary below encompass these latest results.

First, however, we briefly recall the Foster—Lyapounov drift condition for
establishing geometric ergodicity of a Markov chain as developed by Meyn and
Tweedie [(1993), Theorem. 16.0.1], namely the chain is aperigdioeducible,
T-continuous and there exi& < oo, Bo < 1 and a test functiof¥ (x) > 1 such
thatV(x) — oo as||x|| — oo and

E(V(X)|Xo=x) <K +poV(x) forallx.

This condition in fact establishes th@g{,} is V-uniformly ergodic: withI" as the
stationary distribution anfl1 € (8o, 1),

(2.1) SUBP(X, € A|Xo=x) —T(A)| <MBIV(x)  alln,x,
A

for some finite M. The further advantage of knowing something about the
function V is twofold. First, [V (x)['(dx) < oo [cf. Meyn and Tweedie (1993),
Theorem 14.0.1], implying that ifg(x)| < V(x), then [ |g(x)|'(dx) < oo and
%Z;":lg(X,) — [g(x)T'(dx) almost surely. Second, a central limit theorem
holds for " g(X,) if |g(x)| < V(x)¥/? [cf. Meyn and Tweedie (1993),
Theorem 17.0.1]. In particular, an appropriate test function will ensure the
existence of moments.

THEOREM 2.1. Assume Assumptions A.1-A.3. If there exist nonnegative c;
with Zle ¢i <1,r >0and K < oo such that

p
(2.2) E(ISlI’IXo=x)§K+Zcz'lxi|’,

i=1
for all x = (x1,...,x,) € RP, then {X,} is V-uniformly ergodic with V (x) =1+
Zf’zla’i lx;|" for some positiveds, ..., d,. Furthermore, the stationary distribution
has finite rth moment.

The theorem can be applied when one is given a specific representation of the
model. The following corollary does so, extending Lu (1998) and Lu and Jiang
(2001), who handle the cases- 2 andr = 1, respectively.
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COROLLARY 2.2. Assume Assumptions A.1-A.3 and that there are nonnega-
tive constants ao, . . ., a,, bo, ..., b, such that

la(0)| <ao+arlxal + -+ +aplx,| and b(x) < (bg+bixg + - +boxH)Y2
Each of the following implies (2.2) holds with Z{’Zlci <1:

() r<land Y7 (al + b E(le;]")) <1.

(i) Either 1 <r < 2 andthe error distribution is symmetric about 0, or r =2
and E(e1) =0,and (X7, a;)" + X0 BT E(le/") < 1.

Although no particular FCAR-ARCH representation is assumed, it seems one
cannot be avoided in checking the condition. Its advantage is in its simplicity. The
conditions presented in the next section, on the other hand, are sharp.

3. The piggyback method and the main results. The piggyback method is
the name we have given to a new approach for determining stability of nonlinear
time series. This approach has proven useful for some rather simple models that
do not behave the same as their deterministic “skeleton.” See Example 3.2 of Cline
and Pu (1999) and Example 4.2 of Cline and Pu (2002). See also Gourieroux and
Monfort (1992) for a simple example. We anticipate that this approach will prove
to have its greatest use for models such as those studied here, namely for models
in which the error terms are state dependent and thereby have a profound effect on
stability. The name “jggyback” derives from the use of a Foster—Lyapounov drift
condition that piggybacks on the stabilif another Markov process. This second
process is related to a process embedded in the first, is more basic and has a much
more obvious criterion for stability.

For the threshold AR-ARCH model we are investigating, the related process
is {6;"} (the collapsed process) which, being a process on compagts clearly
bounded. With minimal conditions for irreducibility and so on, therefore, it is
uniformly ergodic. We note thaiv (63, e1) (see Section 1) is a surrogate for
the one-step change in magnitude of the AR-ARCH model, nargdyi/|| Xoll
when | Xp| is large. Intuitively then, the Markov chaifX,} should be stable if
the expected value of lg@ (65, e1)), taken relative to the stationary distribution
of {6}, is less than 0. The trick is to construct a function to verify this, especially
in view of the discontinuous coefficient functions, and this is where the piggyback
method is both extremely helpful and somewhat intricate.

We now state the stability theorems for these two processes. An outline of the
method follows the statement of Theorem 3.3.

THEOREM3.1. AssumeAssumptionsA.1-A.5.Then {6} isa ue-irreducible,
uniformly ergodic T-chain on ® with stationary distribution IT satisfying

(3.1) /(H)/R|z(9,u)|Sf(u)dun(d9)<oo for all s € (—1. ro.
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Moreover, define

(3.2) 0= exp(/ / log(w (8, u)) f (u) du H(de)).
e JRrR
Then for any ¢ > 0, there exists a bounded function v: ® — R, such that

(3.3) SUplE (v(65) — v(0) + logw (8, e1)|03 =0) — logp| < e.
0e®

Under the stationary distributiofl, z(6, e1)/w (6, el)Beajl, and therefore
log p is also equal tgg, [ 109(12(6, u)|/161]) f (1) du T1(d6).

THEOREM 3.2. Assume Assumptions A.1-A.6 and let p be as in (3.2). If
p < 1,thenfor any p1 € (p, 1) thereexist K < o0, s > 0and V:R? — [1, 00)
such that

E(V(XD|Xo=x)<K+pjV(x) forallxeR?,

and the test function hastheform V(x) = 1+ A(x)||x]||*, where A is bounded and
bounded away from 0. As a consequence, { X, } is V-uniformly ergodic.

Althoughp < 1 also implies the homogeneous procgss} does not explode,
it actually is transient in this case, diminishing to 0.

The value log turns out to be the Lyapounov exponent for the original chain.
This means the condition in Theorem 3.2 is shdi;} is transient ifp > 1
by (3.4) below and Cline and Pu [(2001), Theorems 2.1 and 2.2].

THEOREM 3.3. Assume Assumptions A.1-A.6 and let p beasin (3.2). Then
log p isthe Lyapounov exponent for {X;}. Indeed,

(3.4) lim lim sup{}E<Iog< X, ) X0 = x) - |Og,0‘ —0.

n=>00 | |00l | Xoll

The key to the piggyback method is the use of tiear-equilibrium equation
(3.3) in the proof of Theorem 3.2. We present here an outline of the method as it
is applied to the TAR-ARCH model. This can be used as a guide to the series of
lemmas that constitute the proof.

STEP 1. The preliminary step (Lemmas 5.1 and 5.2) is to show that the
Markov chaing®;} and{X;} are aperiodicg-irreducible and sufficiently smooth
(T-chains), at least when restricted appropriately.

STEP 2. The collapsed proce$8;"} stays well within®4 = ® \ Hp, that is,
away from the axial planes, with high probability (Lemma 5.3).
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STEP 3. The collapsed process is uniformly ergodic ands well defined
(proof of Theorem 3.1).

STEP4. LetHybe the smallestsetclosed underthe map= (62, ...,6,,601)
and containing the thresholds and axial planes. The collapsed process stays well
within ®4 = © \ Hg, with high probability (Lemma 5.4).

STEP 5. Continuity of a functiorny (6) on ®4 ensures continuity of condi-
tional expectations (¢ (6;)|6;5 = 6) on Oz (Lemma 5.5). This is required in or-
der to construct a test function that can be piggybacked.

STEP 6. The near-equilibrium equation (3.3) holds with a functigf) that
is continuous o« (Lemma 5.6).

_STEP 7. LetX; = (z(Xi-1.€), Xi—11...., Xi—1,p—1). Both X;/|| X, and
X7 /I1X7 |l are well within ®4 and close to each other with high probability, if
t and||Xo| are large enough (Lemmas 5.7 and 5.8). Note ¥jgt| X*| is what
the first step of the collapsed process would be, if startéf) at/|| X;_1]|.

Step8. |If, for some functionv1(x) and some: > 1, log(V1(X,+1)/ Vi(Xy))
has negative expectation when conditionedXqgn= x, uniformly for large| x|,
then a test function can be constructed to velfuniform ergodicity of{X;}
(Lemmas 5.9 and 5.10).

STEP9. The continuity ofv(0) on O, the near-equilibrium equation and the
results of Step 7 make it possible to satisfy the condition in Step 8, thus creating
a test function forX,; by piggybacking on the simpler properties of the collapsed
process (proof of Theorem 3.2).

STEP10. The Lyapounov exponent foK;} is logp (proof of Theorem 3.3).

STeEP11. If an appropriate condition on the collapsed process holds, then the
above can be applied to a test function roughly proportionfktd, thus ensuring
the stationary distribution diX, } exists and hasth moment (proof of Theorem 3.5
below).

The method just outlined is necessary because of the discontinuities in
a® and b*. One may think that a test function that gives the required drift
condition when applied to the homogeneous pro¢esy could just as well be
applied to the original proce$&,}. Unfortunately this is not the case because the
expected difference betweéi(X1)/V (Xo) andV (X7)/V (Xo) need not diminish
sufficiently fast asXg increases in magnitude. Nevertheless, as indicated in (3.5)
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and (3.6) below, solving the simpler problem does suffice to verify stability. This
is in fact the primary motivation behind our method.

The piggyback method of construction of a test function depends on obtaining a
solution to the near-equilibrium equation (3.3). Indeed, solving (3.3) is tantamount
to solving the stability of X;}. It has the advantage that it does not actually require
finding the stationary distributioR, as the next result indicates, but it does require
constructing the function.

COROLLARY 3.4. Assume Assumptions A.1-A.6. If there exists a bounded
function v: ® — R such that

(3.5) SUpE (v(67) — v(6) +logw (8, e1)|65 =6) <O,
6e®
then {X,} is V-uniformly ergodic.

Theorem 3.2 does not guarantee the existence of any particular moments of the
stationary distribution fofX,}. Two equivalent conditions which do are provided
next.

THEOREM 3.5. Assume Assumptions A.1-A.6 and suppose E(Je1]”) < oo,
r > 0. Thefollowing are equivalent conditions for {X,} to be V-uniformly ergodic
with K|x||" < V(x) < L + M|x]||" for some positive K and finite L, M, and
for {X,} to have a stationary distribution with finite th moment:

() Thereexists):® — (0, c0), bounded and bounded away from 0, such that

165) ,
(3.6) eseu(g)E( Y0 (w(b,e1))

05:9) <1

(") I|m supn—>00SUQGG)(E(H:[Zl(w(GZ*_]_, et))r|96< — 0))1/71 <1

We observe that the above conditions are not equivalent to the condition that
E((w(05,e1))") < 1 under the stationary distribution fdg;}. Though more
appealing, and sufficient for verifying ergodicity, the latter is neither necessary
nor sufficient for the-th moment to exist. (See the examples below.)

For nonthreshold ARCH and GARCH models, the stationary distribution has
been shown to have regularly varying tails [e.g., Borkovec (2000), Borkovec and
Klippelberg (2001) and Basrak, Davis and Mikosch (2002)]. (See Example 4.2.)
The index of regular variation is the supremumro$atisfying the conditions in
Theorem 3.5. Whether this is also true for more general models is as yet an open
question.

In general, it seems that only numerical methods will verify the conditions
for stability and moments. We recommend simulat{@g} and estimating the
Lyapounov exponent log in (3.2). There is a distinct advantage, furthermore, to
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having expressed stability ¢X;} in terms of{6,} because the latter is uniformly
ergodic. This means both that convergence of a simulation will tend to be faster
and that estimators are well behaved with relatively small variances. The only two
alternatives are to conduct the very high-dimensional optimization required to find
a test functionv (x) or to simulate the time series itself, and pay attention only to
its (highly volatile) behavior when it grows large.

4. Examples. In this section we provide four examples, giving more specifics
about their staitity conditions. First, the case = 1 is examined explicitly and
conditions given in simple terms. Second, the known criterion for ARCH models
is related to the piggyback method, showing how best to estimate the Lyapounov
exponent. Third, a special TARCH(2) model can be related to an ARCH(2)
model and, finally, second moment conditions for general TAR&H{odels are
considered.

EXAMPLE 4.1 [The TAR-ARCH(1) model]. Assumg =1 and Assumptions
A.land A.2. Let

X =a"(X;—1) +b*(X;—1)e; + ao(X;—1) + bo(X;—1)e;

with a*(x) = (a1lx <0 +a2ll,~0)x andb*(x) = (b1l <o+ b21,~0)|x|, b1, b2 > 0.
Also, ag(-) andbg(-) are locally boundedig(x) = o(J|x|) andbo(x) = o(||x||) as
lx]| = oo; andb*(x) + bo(x) # O for all x € R. Then Assumptions A.1-A.6 are
all satisfied.

Though expressed differently, this includes the usual formulation for a first-
order AR-ARCH model withay; = a2 and by = b [e.g., in Borkovec and
Klippelberg (2001)].

Let pr =P (07 =165 = —1) = P(a1 — biex < 0) andp, = P (6] = —1]65 =
1) = P(a2 + boe1 < 0). ThenIl is found to be the stationary distribution of a two-
state Markov chain, given bM (—1) = p2/(p1 + p2) andIl(1l) = p1/(p1+ p2).
By Theorem 3.2{X,} is geometrically ergodic if

p2E(logla1 — bie1]) + p1E(loglaz + boel)
logp = <0.

pP1+ p2
The proof of stability is based on an equilibrium equation (see Lemma 5.6),
E(v(67) — v(8) +logw (8, e1)|65 =6) =logp, 0 =41,
which is easily solved here:
E(loglaz + boe1|) — E(log|ay — brei|)
2(p1+ p2) '

The functionx in (3.6) has a similar, if more cumbersome, solution. To verify that
condition, we must fing' [= A(1)/A(—1)] such that

v(£l) =+

Y E(la1 — bie1] 1y;—pre;<0) + E(lar — birea| Lay—pyer>0) <1
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and

y_lE(laZ + b261|r]]-a2+b2€1§0) + E(|612 + b261|r1a2+b261>0) < 1
Letting E; ; = E(la; + (—1)ib,-e1|’]l(_l)_i(ai+(_1);biel)>o), the existence of such
ay equatesto
(4.1) maxE12 Ez2) <1 and E11E21<(1—E12)(1—E2>2).
On the other hand, the conditidiX(w (63, e1))") < 1 under stationarity is
p2(E11+ E12) + p1(E21+ E22)
p1+ p2

which certainly neither implies nor is implied by (4.1). Two cases where they do
agree are for the ARCH(1) models) (= a2 = 0, b1 = b») and for the TARCH(1)
models {1 = a» = 0) with errors symmetric about 0.

<1,

EXAMPLE 4.2 [The ARCHfp) model]. Here, the modelis
& = b5+ b2+ + b2 ) e,
Assume Assumptions A.1 and A.2 and eag¢h- 0. A standard way to handle this
is to embed it in a random coefficients model [Bougerol and Picard (1992b) and
Basrak Davis and Mikosch (2002)]. To do this, lgt= (st 5, p+1) SO that

= C; + B;Y,_1 for ani.i.d. sequence of random matrices and vec{t(cBg Co}.
Indeed

ble, bzet e bf,e,z boet
1 o --- 0
B = : - -\ : and C; = :
0 e 1 0 0

Define M; = B;---B1, Mg = I and A; = log(||M;|/IIM;-1]l), where any

matrix norm may be chosen. There exists, irrespective of the n@r%f,
lim, o + E (log(|| M, |})) and hence

(4.2) Jlim — -] ZA = lim - Iog(||Mt||) =y a.s.
[Furstenberg and Kesten (1960) and Kingman (1973)]. Under the given assump-
tions, the necessary and sufficient condition{f} to have a stationary solution
is y < 0 [Brandt (1986), Bougerol and Picard (1992a), Theorem 2.5, and Goldie
and Maller (2000)].

Moreover, suppos¢d,‘} is the coIIapsed process f¢X;} and defineT,* =
(CH l)2 L ©0F, )2). Let1=(1,...,1). Thenitis easy to show that

. MT§ 1M, T}
MY UM, 4T§

forallr and (w(6," 1,6,))
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Therefore, withT ¥ = %; andp as defined in Theorem 3.1,

1 .
2logp = tll)moo " Y 2log(w (b q, e))
i=1

T |
= lim —log(1'M;Ty) = lim —log(||M;|) =y.
t—>00 t =00t

This gives an alternative method for estimating the Lyapounov exponent. While
earlier authors have recommended simulating the matBgesomputing a norm

of their product and applying (4.2) in order to estimate we recommend
simulation of6;* (or 7;*) instead.

The stationary distribution for related GARCH models is known to have
regularly varying tails [Basrak, Davis and Mikosch (2002)]. Their argument
applies here for an ARCHK) model as well, and the index of regular variation
is the positive value of satisfying
(4.3) lim (EQIM:1179) Y =1,
which is based on a result of Kesten (1973). See also Goldie (1991). The
unbounded support of the error densftyAssumption A.1) ensures that a solution
to (4.3) does indeed exist. From our discussion above, we may easily see that such
k as satisfies (4.3) must also satisfy

; 1/t
({1t o)) .

i=1
Note that the condition in Theorem 3.5(ii) essentially is thatx.

ExamMPLE 4.3 [The TARCH(2) model with delay specific conditional het-
eroscedasticity]. Lek1 > 0, b2 > 0 and consider the order 2 model:

(b2, +b2(E2 , +E2 )%, g 1<0,

(b2, + b2(E2  +E2 )%, & 1>0.

Assume Assumptions A.1 and A.2 and also that the errors have density symmetric
about 0. This is a restricted form of the order 2 model with threshold delay 1. Other
than the coefficient due to the delay criterion, the conditional heteroscedasticity is
proportional to|| X;||. We will show this model has the same stability criterion as
a random coefficients model suggested by the piggyback method, even though the
TARCH model itself cannot be embedded in a random coefficients model.

Let 6 = (01,62) and b*(6) = billg,<0 + b2lp;~0. Given initial statedy =
(69,1- 60,2), we have

& =b(X;—1)e, = {

(b*(03)e1. 05 1)
(b (03)2le1? + [65,11D72°

01 = (011,012 =
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Since the error distribution is symmetris|, sgre1) and6; are independent.
Since b*(6y) depends only on sg@é ;) = sgné; ,), it is easy to see then
that sgrt; ;) and (|61 41, sgn(dy ,)) are independent. Thus, under the stationary
distribution, sgmg’l) and|05"1| are independent and henkéﬁﬂ andb*(65)le1l

are independent.

Now consider an ARCH(2) process with uniform heteroscedasticity and error
density given byf(u) = 5 f (u/b1) + 5 f (u/b2). That is, let{e,} be an i.i.d.
sequence frony andé, = (14 &2, + £2 ,)Y/%¢,. This is, in fact, a special case
of the model of this example, but with both coefficients equal to 1 and with a
different error distribution now depending éa andb,. Applying the comments
above accordingly, it is apparent that the stationary distributiol@gf (but not
of 67) is nevertheless the same for both.

By the comment following Theorem 3.1, the condition for geometric ergodicity
of {&} may be expressed as(log(|b*(6g)e1l/105 11)) < O under the stationary
distribution, or equivalently a€ (log(|e1]|) — E(Iog(|05"1|)) < 0. This depends
only on the stationary distribution qﬂ:ﬂ. Therefore{¢,} and{&,} have identical
stability criteria. The previous example discusses ARCH models in more detalil
and relates them to a random coefficients model.

The second moment condition for the random coefficients model associated
here is(b? + b3)E(e?) = E(2¢2) < 1, and this coincides with (4.4) found in
Example 4.4 for a more general TARCH model.

EXAMPLE 4.4 [The TARCH{) model with delay 1]. Assume Assumptions
A.1and A.2. Conside§; = b(X,_1)e;, Wwhere

(b3o+b5pxs + -+ b5 x)V2,  if x1 <0,
b(x)= .
(b§0 + b%lx% +- 4 bgpxi)l/z, if x1 >0,
andb;; >0,i=1,...,p,j=12.Toget an explicitth moment condition for this
model, wherr < 2, definep; = P((—1)/e1 > 0) and E; = E(le1|"1(_1)ipy~0)5
j=1,2.Then

P
(4.4) 11E1+ b5 Ea+ Y (by;p1+ b5 p2)E(ler]”) <1
=2

implies (3.6) is satisfied i < 2. This is proven at the end of Section 5. With
symmetric errors, this reduces to
3((Bhg+ -+ b)) + (bhy+ -+ b5,))E(lea]”) < 1.

(Compare this to the condition given in Corollary 2.2.) In fact, whea 2 the
test function is optimal, with the expectation in (3.6) having the same value for
all 6, suggesting this is the best possible condition for ergodicity with finite second



STABILITY OF TAR-ARCH MODELS 1933

moment. On the other hand, the conditiBio(w (65, e1)?) < 1 under stationarity
is

[ (@307 + -+ 03,0210, 0

+ (B30 + -+ + b5,00) 10,20+ 1 — 02)TI(dO) E (Jea]?) < 1.

Simulations indicate that this is not the same as (4.4) with2.

5. Proofs. The proof for the casg = 1 follows the same piggyback principle
as does the proof for the cage> 1 but it is much simpler, sinc® = {—1, 1} is
finite, and we therefore omit it.

We start by asserting some regularity{df } and proving the simple conditions
in Theorem 2.1 and Corollary 2.2.

LEMMA 5.1. Assume Assumption A.1. {X;} is an aperiodic, u ,-irreducible
T-chainonR”.

PROOF Thelemma follows from Assumption A.1 by Theorem 2.2(ii) of Cline
and Pu (1998). O

PROOF OFTHEOREM 2.1.  We use essentially the same argument as Lu and
Jiang (2001). Lep € (0, 1) satisfy}""_, B~c; = 1 and define

p
di=Y B 7 Ye;,  i=1..,pdp1=0,
j=i
sothatBd; = c; +d;+1anddy = 1. LetV(x) =1+ Y7 d;|x;|". By (2.2),
p—1

E(V(XD)|Xo=x)=1+E(&l'|Xo=x)+ Y _ diy1lx]"
i=1

b4 r—1
<1+ K+ cilxl"+ Y diqalxil =1— B+ K+ BV (x).
i=1 i=1

By a standard result [cf. Meyn and Tweedie (1993), Theorem 16.0.1] and
Lemma 5.1{X,} is V-uniformly ergodic and the stationary distribution has finite
rth moment. O

PROOF OFCOROLLARY 2.2. Note first that, if < 2, then
(5.1) b (x) < (b§+bixZ + -+ b3x3) 2 < by + bilxa| + -+ |xpl".
Also, if r <1, then

(5.2) a@o)l” < ab+aflxal + -+ ah el
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However, if 1< r < 2, then by Jensen’s inequality,
(5.3) (aalxs| +---+aplxp)) < (azlxa]” +---+aplx,Nag+---+ap) L

Also, for any smalls > 0 there existsM < oo such thatja(x)|" < M + (1 +
8 (Xr_qailxi]).

(i) Sincer <1, it is immediate that (|£1]" | Xo = x) < |a(x)|" + b"(x) x
E(le1]"), and thus (2.2) follows from (5.1) and (5.2).
(i) For1 < r <2 the conditions on the errors imply

E(1&1) | Xo=x) = 3E(la(x) + b(x)e1|") + FE(ja(x) — b(x)er|")
<la@)|" +b"(x)E(le1l"),

using the fact thatl — u)" + (1 + u)" — 2u” <2 for 0<u < 1. We now apply
(5.1) and (5.3) withe; = (1 + 8)a; (X0 _j @) "1 + bT E(Je1]”) and$§ sufficiently
small. O

Next, we have two lemmas aboid'} followed by the proof of Theorem 3.1.

LEMMA 5.2. Assume Assumptions A.1, A.4 and A.5. Then the following
hold:

(i) {X7} is an aperiodic, u,-irreducible 7-chain when restricted to R§ =
R?\ Hp.

(i) {67} is an aperiodic, pue-irreducible T-chain when restricted to G4 =
® \ Ho.

ProOOF (i) By Assumption A.56* is locally bounded away from O o]Rﬁ,
so then-step transition densitgj(-; x) is well defined orRY; for anyn > p and
any initial stater in R%. Furthermore, it is locally bounded away from 0 and full.
HenceRﬁ is absorbing andX;} is aperiodic and ,-irreducible on]Riﬁ.

For anyz € R, let G, be an open set containingsuch that its closure is
compact and contained ;. Then

def

T.e, ) &6, [ inf ghriudy
© AueG;

defines a kernel oR,’;, nontrivial atz, such that, (-, A) is lower semicontinuous
for eachA and 7,(x, A) < PP(x, A). By Meyn and Tweedie [(1993), Proposi-
tion 6.2.4],{X;} is aT-chain when restricted tﬁﬁ.

(ii) For any setA c ® we define the con€4 = {x € Rg :x/|lx|| € A}. Since

POF e AlfE =0) = P(X* € C4|XE=ch)

foranyA, t, ¢ and@, the result follows easily from (i). O
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LEMMA 5.3. Assume Assumptions A.1-A.5. Given ¢1 € (0, 1), there exists
compact C1 C ®x such that the following hold:

(i) P07 €C1ly=0)>1—¢e1forall 6 eCy;
(i) P(G;; €C1l65 =6) > 1— peyforall 6 € ©.

PROOF Let Lo = sup,(1 + |«]) f(u), which is finite by Assumption A.2.
Supposex and g are values withg > 0 and max|«|, 8) > 0, and suppose
e € (0,max(|a|, B)/2). This impliesg + max(|«| — ¢, 0) > max(|«|, 8)/2. Then,
if 8>0,

Pl Ber| V<L /(—a+s)/l3 1
o+ pe| <¢g) <
' ) cacerp 1+ ul
(5.4)
2Loe - 4L e

= 51 max(al —,0) — max(al, )’

The above holds trivially in casé = 0 since, in that cas¢y + Be;| = || > &.
Now let Ly = inface max(la™(0)], b*(#)) and Ly = sup,.g max(|a*(6)],
b*(0)). Note L1 > 0 by Assumption A.5 and., < co by Assumption A.3.

By (5.4), we determine that i € (0, L1/2), then

(5.5) P(|z(0, ;)| <€) <4Loe/L.

With no loss we supposg € (0, L1/2). Letes = Wlo/“. ChooseM; > 1 so
that P (le;| > M1) < &2 and thus, applying (5.5) with = &5,

(5.6) P(|z(0, e1)| > &2; |e]] < M1) > 1 —eq.
Fixy =14 Lo(14+ M7) and defineXix’u = (z(x,u),x1,...,xp-1). Then
(6.7) lul<M1 = [z@0,w)|<y—-1 and [Xi,,I<I|z@ w)|+1=<y.
By (5.6) and (5.7),

P(|z(0, e1)| = &2;

Xi@,el || = y)

> P(|z(0, e1)| = e2; |e1] < Mq) > 1—e1.

(5.8)

Now defineCy = {6 = (61, ....6,): 16i| = e2y~",i = 1,..., p}, which is
compact. Ifg € C1, [z(0, e1)| > e2 and | X3, , | < v, then|z(0, eD)|/I1 X5 ., [ >
e2y~tand|6;1/1X3,,, || = eyt fori=1,....,p — 1. Sinced; = X3, /
||Xi9,e1 | when6; =60, therefore, we conclude

P65 € C1165 =0) = P(|z(0, e1)| > &2;

X160, =7)
>1—¢1 for6 € C1.

Thus (i) is proved. By (5.8) and an induction argument, (ii) follows as well.
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PROOF OF THEOREM 3.1. By Lemma 5.2(ii),{6;} restricted to®y is an
aperiodicug-irreducibleT -chain. For any1 € (0, 1), let C1 be asin Lemma 5.3.
ThenC1, being compact, is small for the restricted process. It follows easily that
C1 is small for the process o8 and therefore Lemma 5.3(ii) implie® is itself
small [Meyn and Tweedie (1993), Proposition 5.5.4(i)]. It also follows from the
lemmas that the unrestricted procesguis-irreducible and aperiodic. Thus, the
chain is uniformly ergodic o® by Meyn and Tweedie [(1993), Theorem 16.2.2]
is aT-chain and has some stationary distributidn

The inequality (3.1) clearly holds for € [0, ro] by Assumption A.2 and the
boundedness af* andb* on ®. By (5.5), there exist& < oo such that

/G)/R]l\z(&u)\ﬁf(u)du [(dP) < Ke

for anye > 0. Thus, (3.1) holds for € (—1, 0). We note further thaz (0, e1)| <
w(B,e1) < |z(0,e1)| + 1. Hence Assumption A.2 and (5.5) implylog(w (6,
e1))|}oco is uniformly integrable. Thus ld@ (63, e1)) has finite mean under
IT andp is well defined.

The near-equilibrium equation (3.3) holds by Lemma 5.6 belaw.

We now provide several lemmas needed to construct a proof of Theorem 3.2.
Recall that by Assumption A.6¢* and b* are continuous off a collection
of hyperplanesHi, ..., H,, each of which contains the origin. Defirfé by
FO = (02,...,0,,601) andOu = {0 € O: Fko ¢ H;j forall j, k}. Note that®4x
excludes not only the thresholds but also certain critical points for which the
probability of being near the thresholds in the fipssteps cannot be controlled.

LEMMA 5.4. Assume Assumptions A.1-A.6. Given any ¢3 € (0, 1), there
exists compact D1 C Ox such that

P67 € D1|105 =0) > 1—¢e3 for all 6 € D;.

PrRoOFk There existhy,...,h, € Ré’ such thatd € O if and only if
hf/. F¥6 £ 0 for all j, k. Since F? = I, it suffices to assume the first coordinate
of eachi; is 1.

Sete; = ¢3/2 and define/, C1 a”dXI,e,el as in the proof of Lemma 5.3. Then,
by that proof,

(5.9) P(65eCa,

Xige |l <vI0g=0)>1—e3/2  foralld e Cy.
Also let Lo be as in the proof of Lemma 5.3,3 = infgec, b*(0), La =
min{|A x| h;x # O} andeg = %. Define

Dy=1{0 € C1:|h;F*0| > eqy ¥ forall j=1,....m k=0,....,p—1}.
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Definehj pir1=hj1=1.1f65=0and|X], , Il <y, then

gy OIS kGO0 =)+ P X g
= |, p+1-4(2(0, e1) = 0,) + H;F<10| /.

Thusé € Dy andh; p11-k =0 imply

(5.11) |0 FYO5| = W, FE201/y = eay .

Also, note that, i € C1, then

(5.12) P(|z(0,e1) —u| <c)= P(|a*(®) —b*(@)e1 —u| <c) < %c,
3

forallu €e R andc > 0. Let

! k=1
B th 0

o T hj i #0,
Ujko= i p+1-kVY

O, |f hj,p—}—l—k == O
Therefore, using (5.9)—(5.12),
P (67 € D165 =6)

> P(05 € C1; | X5 g, | < vi IW;F 5] > eay ™ forall j, k|65 =0)
1—k
€3 y .
>1——— P(Iz(@,el) —Ujkol < —— forsomej,k)
2 vy L4
€3 2mpLoesy
>1-—— ————=1—¢3. ]
2 L3lLy

LEMMA 5.5. Assume Assumptions A.1-A.6. Suppose ¢ (9) is bounded on ®
and continuous on O Then E(q(6;)165 = 0) is continuous on O for each
t>1.

PROOF Fix ¢+ > 1, ¢ € (0,1) and compactC C O Define Lg =
SUR e 1g(0)]. Pickes € (O, m). By Lemma 5.4 and its proof, which in turn
depends on the proof of Lemma 5.3, there exdisso large that (Je1| > M) <
£3/2 and compacbD with C C D1 C ®g4 such that

(5.13) P eDi|6f=60)>1—¢c3 forall6 e Dy.

AgainletX; |, = (z(x,u),x1,...,x,_1) and defin&j ., = X}

1,x,u 1,x,u

Sinceq is uniformly continuous oD, choose&lg > 0 such that

(5.14) (16" —0"|| < o, 0'eD1, 0"eD1 = |q(0)—q0")] <es.

JIXT ¢l

1,x,u
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Also, (0] o o lul < Mz} is uniformly equicontinuous o1, so chooséy, k > 1,
such that iflu| < M4,
16" — 6" < &, 0’ € D1,0" € D1
(5.15)
— ||0]>i9/’u — 9{9//’“” < (Sk_]_.

Now let {6/, } and {6 ,,} be the processes that start with and 9",
respectively. We thus have, by (5.13) and (5.15),

P07 g — 05 gl < 81—k 0F g € D1; 0F gn € D1)
> P16 19— 0; 1971l <8r—k+15
O0; 1.0 € D1;6_1 v € D1; lex| < M1) — &3
> P16 19 — 07 197ll <8—k+15 67 14 € D156, 1 g» € D1) — 2e3,
fork=1,...,t. Hence, if¢’ € D1,0"” € D1 and|0’ — 8”| < §;, then
P16} — 09Il < 80: 6"y € D1: 651 € D1) > 1 — 2te3.
Applying (5.14),
(5.16) P(lg(0]9) —q (00| < £3) > 1 — 2te3.
From (5.16) we obtain, ¥’ € D1, 0” € D1 and| 6’ — 0" | < &, then
[E(q@)165 =0') — E(q(67)165 =0")| < E(19(6]5) — 4(6"5)])
<e3+2LsP(lq6; ) —q 6] gn)| > &3)
< (14 4tLs)ez < e.

The conclusion then follows sin@@ c D; and sinces andC are arbitrary. [

This lemma identifies the implicit behavior @} that we will piggyback upon,
namely a near-equilibrium equation.

LEMMA 5.6. Assume Assumptions A.1-A.6.If p is defined asin (3.2), then
for any e5 > 0, there exists a bounded function v: ® — R, such that

(5.17)  SupE(v(6F) — v(8) +logw(b, e1)|6¢ =0) —logp| < es.
0e®
Moreover, v is continuous on O .

PROOF Fix g5 > 0. By definition,

(5.18) logp = /O /R log(w (@, u)) f (u) du T1(d6).
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Defineq(#) = E (logw(8, e1)), which is bounded. By (5.18) and the uniform
ergodicity of{#}, there exist$ < 1 andK1 < oo such that

|E(q(6)105 =0) —logp| < K18"  forallt >1andalld € ®

[cf. Meyn and Tweedie [(1993), Theorem 16.2.1]. Chodssuch thatk 157 < ¢5
and let
T-1
V(@) =) E(q(6))165 =0).
t=0
Then

E(w(B7) —v(0) +logw(8, e1)|65 =0) = E(q(65)165 =0)

and (5.17) follows immediately.
Furthermoreg is continuous o4 and therefore is also continuous 0®xy,
by Lemma5.5. O

Previously we definedy , , = (z(x,u),x1,...,xp-1) and oy, = X7,/
X7 ;. |l Now defineXy , , = (a(x) +b(x)u, x1, ..., xp—1) ando1 x u = X1.x.u/

| X1.x..1l. Additionally, let
0 =01x, 1., = Xt /1 X:l,
X;=X3 Xy and 67 =0y = XF/IXF|.

In the following arguments it will be crucial to compake to X* (andd, to 67),
to consider how they would differ ik;_; is acted upon by* andb* instead of by
a andb.

Recallz(x, u) = a*(x) + b*(x)u. Define alsac(x, u) = ag(x) + bo(x)u so that
a(x) +bx)u=z(x,u)+c(x,u).

The next two lemmas show thétandét* are each eventually within a compact
subset 0@y (hence away from singular behavior), with high probability.

LEMMA 5.7. Assume AssumptionsA.1-A.5.Givenany 1 € (0, 1), thereexist

y >1,n7€(0,1), M> < oo and compact set Co» C O such that, if ||x|| > Mon*~*
and if either x/||x|| € C2 or t > p, then

¢ Xl

(5.19) P(é,ecz; 6FeCo n' < i S()/+T])t‘X0=x)>(1—81)t.
X

PROOE As in the proof of Lemma 5.3, we assumge (0, Lg/2). Let &2,
M, and y be the same as in the proof of Lemma 5.3. We iget ¢2/2. By
Assumption A.4 and the definitions efy and bg that follow it, there exists
M> < oo such that

(5.20) e, w)l

o forall [u| < M1, ||x|| > Ma.
X
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For: > 1 andx e R?, x #0, let

| i ]

Cons = {0 16 = 0y 4+ m i = min, py: 6] = S g el <i < p}.

x|l
DefineC, = C2 x,, Which in fact does not depend an Clearly, ifx /|| x| € C2 or
t>p,thenCz = C>.

Therefore it suffices to show that, for- 1 and||x|| > M2/n' 1,

1,
<o +n>’\Xo=x) ~ (1—e1)'.

Supposeél|x|| > Mz, lu| < M1 and |z(x/||x]|,u)| > e2 = 2n. Then, by (5.7)
and (5.20),

(521) P(ét € C2,x,t§ ét* € CZ,X,Z; nt =

nlixll < |z, u) +cCe,u)| < 1 X1 xull
<lz(x,u) +clx, )| + x|l < (¥ +n)lix]l.
Likewise,
2nllxll < 1XT ol < vIxll

Furthermore, for the componentséf, , ando; . .,

ny +mt i=1,
MiN(161,i,x,uls 161 ¢ 0) = .
i,x,u 1,i,x,u |xz l|()/ +77)_1, ; =2,...,p.
llxl
Hence
o Xl ~
PlO1xu€C2x1,01,,€Cox15n= el =+ n)‘Xo =X
(5.22)
X
= P(lell < Mjy; Z(n,E:L) > 82) >1-—e¢1q,
X

where the last inequality follows from (5.6). That s, (5.21) holdsrferl.
Next, assume (5.21) holds foe= k, somek > 1. Then for||x|| > M2/nF,

5 G g1 I X kel
P<9k+1 € Cox i+l 1 € Coxpqrs - < il

<+ n)k“‘Xo = X>

= s = ) | Xkl )
> P|Oky1€C2x,.150, 11 €C2x,.15 0k €Cox 451 < m <(y+n);
X
andnk < —””xk”” <(y+ n)k‘Xo = x)

> (1— ek,

by conditioning onXy. Thus (5.21) holds for al > 1 by induction. O
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LEMMA 5.8. Assume Assumptions A.1-A.6.Givenany 3 € (0, 1), there exist
y > 1,1 € (0,1), M2 < oo and compact set D> C O suchthat, if ||x|| > Monl~!
and if either x/||x| € D2 or t > 2p, then

- - X
P(@t € Dy: 7 € Dy f < 1]

<— §(y+n)t‘Xo=X) > (1—e3)".
[l |l

PrROOF The argument for this is analogous to that of Lemma 5.7: an induction
by conditioning, starting with = p and (5.19) and iterating to> 2p. Using the
same notation as in Lemmas 5.4 and 5.7, the induction step is possible by showing
that if ||x|| > Man™, 6o = x/||lx|| € C2 and h'; F*6p > ea(y + n)~* for k <1,
t=0,...,p—1,then

P(H;F 1 > ealy +m) 7"
W, F0F > ea(y +m) 7", 1< j <m,0<k <t; A1) > 1—e3/p,
where
A= {01 € C2; 67 € Co mllx|| < 1 Xall < (v + mIx]}).

In other words, ifd, and @ are both inCy, then we can react, with both
in p steps, with high probability. The argument for this is the same that yielded
(5.21) and (5.22). O

LEMMA 5.9. Assume Assumptions A.1-A.5.Then

1 X s
supE<<M> ) <00 for all s € (—1, ro],
xeRP 1+ xl

and [|x|| — oo implies || X1 x ¢, || = oo in probability.
P _ max(|a(x)|,b(x)) I+ X1 x4
ROOF  Let K2 = sup,cg» o Clearly, T = 1+ K1+
le1]), which establishes the result for<Qs < rg. (Assumptions A.4 and A.5 are
not needed for this.)
Next, let L1 = infgee max(la*(0)|, b*(#)), as in the proof of Lemma 5.3.
ChooseM3 > 1 such that

b L
lao(x)] ’ |bo(x)] ) <=1 whenevel|x|| > Ms,
T+ x)” 14 (x|

— 4
by the definitions ofag(x) and bgo(x) following Assumption A.4. DefindLg =
inf ). <m; 15127 Which is positive by Assumption A.1. Thugy|| < M3 implies

a0l bx) )> .
T+l T+ ) =
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On the other handjx|| > M3 implies

lax)|  b(x) )>max(|a*(X)|—|ao(X)| b*(X)—Ibo(X)I)
T4 Nxll” T+ xl/ — 1+ x|l T 14 x|l
_ max(a* )], b* ) L1 L1
- 2||x| 4 — 4
Applying (5.4), then, for alk € (0, min(L1/8, Le/2)) andx € R?,
P<1+||X1,x,el||§8)sp<’ a(x) b(x) o1 se>5 _ 4Loe .
1+ x]l T+ 0xll - 14 (lx]l min(L1/4, Le)

This ensures the expectation in the lemma statement is uniformly bounded for
eachs € (—1, 0). Furthermore, it also requires thgX 1 . ., || — oo in probability,
as||x|| - oco. O

LEMMA 5.10. Assume Assumptions A.1-A.3. Suppose there exist a bounded
function v(x), p1 < 1andn > 0 such that

1+X
+ |l n+1||)‘X

IimsupE(v(Xn+1) —U(Xn)+|°9< 1+ X,

llx]|—o00

=x) <logp1 <O.

Then, for some s € (0, rg] and some function A:R? — (0, co), bounded and
bounded away from O,

(5.23) limsupE

llx]|—o00

(A(X1)||X1IIS X
AQO)[|x]1*

:x)<pi<1.

Consequently, {X,} is V-uniformly ergodic with V(x) = 1+ A(x)||x||* and (2.1)
holding.

ProOF The proof of (5.23) is contained in the proof of Lemma 4.1(i) of
Cline and Pu (1999), with Lemma 5.9 in support. Along with the conclusion
of Lemma 5.1 and the facE(A(X1)||X1]|*|Xo = x) is locally bounded, this
establishes the standard Foster—Lyapaudrt condition for geometric ergodicity
[Meyn and Tweedie (1993), Theorem 15.0.1 and Section 15[2].

PROOF OF THEOREM 3.2. We do not assume < 1 until the very end of
the proof. Chooseg > 0 and letes = ¢g/4. Definev according to Lemma 5.6.
Extend v to R” by definingv(0) = 0 andv(x) = v(x/|lx]) for x # 0. Let
Vi(x) =1+ |lx||. Then

IHIrr|1| SUpE(v(XT ;) —v(y) +log(Va(XT, .,)/ Va(»)) —logp|
y||—o00

(5.24)
< &5 =¢g/4.



STABILITY OF TAR-ARCH MODELS 1943

Let L7 =sup,cr» [v(x)]. By Lemma 5.9, there exist§, < oo such that

sup E([log(Vi(X1,y,e)/ Vi(»)]) < Ka.
yeRP

Let Ls=4max2p|logpl,2(2p + 1)L7,2p(2L7 + K4)) and chooses < eg/Lg.
ChooseD», n and M» according to Lemma 5.8 and define

A =10, € D2; 6} € Dy I X/ = ' Xoll}, t=1,....2p+1
Then, in particular,
(5.25) P(A;|Xo=x)>1—te3,

if |lx|| > Mon'~" and either > 2p or x/||x|| € D,. Conditioning on(X2,-1, e2p)
and applying (5.24) and (5.25), we have

limsup E((v(X3,,1) — v(X2p)

[lx[|—00
(5.26) +10g(V1(X3,41)/ Vi(X2)))14,,|Xo = x) — log p|
< ¢eg/4+ 2p|logples < €g/2.

Sinceag(x) = o(||x|]), bo(x) = o(]|x||) and D2 C B, we conclude

o 1 Xy XTI

Immf 1X1y.ell = lim N zeng [(z(6,e1),01,...,6,-1)|
Y= 00 y|l—00 c

y/IylleDa il y/lyleDy Iyl 2

>0 with probability 1
and, givenXg =y,

lim |61 — 67| = lim |01y, —6F =0 almost surely.
Iy ll—> o0 ” 1 1” Iy ll—> o0 H Ly, 1,y,el|| y
v/llylleDy v/llylleDy

By the uniform continuity ofy on D5, therefore,

M SUPE (Jv(X2p+1) — v(X3,,1)|14,,|X0=1x)

Xl =00

(5.27) <limsupE(|v(X2p+1) — v()N(EPH)UlAszsz + 2L71A5p+1|X0 =x)

llx]|—o00

< lim - E(u@) - v@DI1a;|Xo=y) + 2L7(2p + Des < e6/4.
y/lIylleD2

We may also conclude
limsupE (log(V1(X1.y.e;)/V1(X7 ) (,))) =0,

[lyll—o00
y/lylleDp
so that
(5.28) limsupE (1og(V1(X2p+1)/ Vi(X3,,1))1a,, | Xo=x) = 0.

llxfl—o00



1944 D.B. H. CLINEANDH. H. PU

Hence, by (5.26)—(5.28),

limsuplE((v(X2p+1) — v(X2p)

Xl =00

(5.29) +10g(Vi(X2p+1)/ Vi(X2p))) L4y, | Xo = x) — log o]

< 3e6/4.
The definitions ofL7 and K4 and (5.25) provide

limsupg E((v(X2p+1) — v(X2p)

llx]|—o00

(5.30) +10g(Vi(X2p11)/ V1(X2p)))Lag |Xo= x)|

<2p(2L7+ Ka)ez < ¢6/4.
By (5.29) and (5.30), we conclude
limsup|E (v(X2p+1) — v(X2p)
(5.31) llx]|—o00
+log(V1(X2p41)/ Vi(X2p))|Xo =x) —logp| < es.

Now, finally, we assume < 1 andeg > 0 has been chosen so that }de:ef
logp + ¢ < 0. The result follows from Lemma 5.10 with=2p. 0O

PROOF OFTHEOREM 3.3. Letegg, v(x), L7 and Vi(x) be as in the proof of
Theorem 3.2. Note thag is arbitrary butv(x) andL7 depend on it. On the basis
of Lemma 5.9, choose

Ks= sup E(|log(V1(X1)/ Vi(x))|| X0 =x) < 0.
xeRP
Also, letng > (4pKs+ 2L7)/¢6.

Now let Bj = v(X2p+j) — v(X2ptj-1) + 109(Vi(X2pt)/ Vi(X2ptj-1))-
Then, by (5.31),

lim sup|E (B1|Xo = x) — logp| < €s.
llx||—o0
Since by Lemma 5.9, limsyp,_ ., P([ X1l < M|Xo = x) — O for every
M < oo, it is easy to see inductively that, for eveiy- 1,
limsup|E (B 4+1|Xo = x) — logp|

llx[l—o00

<limsupE(|E(B;+11X1) — logp|| Xo = x)

llxfl—o00

<limsupE(B;|Xo=x) —logp| < 6.

llxfl—o00
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Therefore,
. 1
limsup=|E (v(X2p4n) — v(X2p)
x[|—o0 7t
(5.32) + log(V1i(X2p+n)/ Vi(X2p))| X0 = x) — log p|
1 —
= Iimsup{— ZE(BHXO:x) —logp| < ¢e.
Ixll—oo|™ 23
Note that

E(|log(Vi(X,)/ Vi(x)) — log(Vi(X2p4n)/ V1(X2p))|| X0 = x)
= E(|log(V1(X2p+n)/ V1(Xy)) —l0g(V1(X2,)/ V1(x))|| X0 = x) < 4pKs.
Consequently, by (5.32),

X 4pKs+ 2L
Vi(x) n

. 1
limsup—

llx)|—>o00 1

for everyn > ng. Sincesg can be arbitrarily small, this proves (3.4) and hence the
Lyapounov exponent must be lpg [

PROOF OFCOROLLARY 3.4. Since a stationary distributidh exists for{6,},
(3.5) implies

|ogp=/(_)/Rlog(w(e,u))f(u)dumde)

:/ E(v(67) — v(0) +logw(8, e1)|65 = 0)I1(d0) <O.
S}
V-uniform ergodicity follows by Theorem 3.2

PROOF OFTHEOREM 3.5. Define®u4 as before and assume (i) holds. We
first verify that{X,} is V-uniformly ergodic. We show below that (i) implies (ii)
and then that (ii) implies (i) withh continuous on®yy, bounded and bounded
away from 0. Therefore, there is no loss in assuming zhiatcontinuous oy,
bounded and bounded away from 0. Léf(x) = 1 + ||x||”. By an argument
analogous to that for Theorem 3.2, one may show that

lim supE(MXZPH/”X2p+1||)V1(X2p+1)|X0 =x)

The drift condition for geometric ergodicitg therefore satisfied with test function
V(x) =EMX(X2p/11X2p1)V1(X2,)| X0 = x). From (5.5) we have

E(|a*(x) +b*(x)e1|") = E(la* (x) + b*(x)e1]" Lia* (x)+b* )er|>ellx])

> dalxll”,

<1
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for somes; > 0, and therefore by (1.1) and the assumptid@l+ || X1]|")|Xo =
x) > 82(1+ |lx||") for somes, > 0. Thus,E((1+ || X2, (") X0 =x) > 83”(1 +
lx]|"). SinceA(®) is bounded away from 0O, it follows thaf (x) > K| x|" for
some positive constati. Likewise,V (x) < L + M| x||" for finite L, M.

Next, we show that (i) implies (ii). Leg be the left-hand side of (3.6) and
chooseLg < oo such that 1Lg < A(0) < Lg for all 6. By (3.6) and the Markov

property,

(]_[ w1, e)) 68 = )

n—1
< LgE( (O (WO _1.e0)) 105_1) [ [ (w61, e,))"eg = 9)

=1

n—1
ngﬂE<A(9:_1>H(w(e,*_l,e»)’ = )

=1
<..-<LgB"A(P) < L3B".

The condition in (ii) follows easily.

Finally, we assume (ii) and verify that (i) holds. We need to construct a test
functionA(6) that is bounded, bounded away from 0 and continuou®gn This
has two parts.

First, we define. and show it satisfies (3.6). Choose- 1 and$ > 0 such that

n
0e® =1
and defineQ, = (§ + w(8;_4, e;))". The test function we need is
n—1 1
#60) = [T(EQ:--- Q1165 = )"
=1

Applying Holder’s inequality to: factors,
E(AO7) (w8, e1)) 165 =6)

n—1
< E(]‘[(E(Qtﬂ---szf)Ql)l/”Ql/” )

=1
<[T(EQ; - 01165 =0))"" = (E(Qy--- 01168 = 6))""1.(6),
=1

thus verifying (3.6) by (5.33).
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Second, we shovit has the desired properties. Defipgd) = E(Q; --- Q1]
6 = 0). By the Markov property,
(5.34) q:(0) = E(q,-1(07) Q1165 =6).
Let Ke = sup E(Q1/65 = 6) and by iteratively using (5.34) we haw <
q:(0) < Ksands" /2 < 3(0) < K(" D72 tor all 6.

Note that/\ is continuous orﬁ)## if eachg,(0) is. Clearly, g1 is continuous
on O since w(f,e1) is and {(w(b, e1)) }oce is uniformly integrable. By

the argument of Lemma 5.5, 1(F) continuous on®gx implies ¢;(0) =
E(q:-1(97) Q1165 = 6) is also, and we obtain the conclusion inductively]

PROOF OF EXAMPLE 4.4. Definecy = bj,E1 + by E> andc; = (by; p1 +
by p2)E(le1]”), i =2,..., p. ChooseB € (0, 1) such thaty"?_, B7'c; = 1. Now
letd;, = ﬂ—lb;quelV), j=1,2and

p
dji =B E(led])+ Y B e, i=1..,p—1 j=12

k=it+1
Thus,d11E1 + d21E2 = E(|e1]"),
(5.35) b’ (d11E1+d2E2) = pd,p, i=12,

andfori=2,...,p—1,j=1,2,

(5.36) b} (d11E1+d21E2) + (d1i+1p1 + d2i+v1p2) E(leal”) = Bdji.
Now defined; ,41=0,j=1,2, Ry ={x:x1 <0}, R2 = {x:x1 >0} and

di1lx1|” + -+ +diplx,l, if x1 <0,

do1lx1|" + -+ +doplx,|, if x> 0.

Applying (5.35) and (5.36),

E(V(Xf)|X8 =x)

Vix)= {

2 r/2
=Z<Zb | xi ) 1g;(x)(d11E1 + d21E?)
j=1\i=1

2 p
+ )Y (@ris1p1+dois1p2)lxil 1, () E(ler”)
j=1i=2

2 p

<> Y (Vi(d11E1+ da1E2) + (d1iy1p1+d2iv1p2) Elea]”)) x| g, (x)
j=1li=1

N
=

=YY Bdjilxi|"1g,(x) = BV (x),

j=1i=1
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with equality whenr = 2.
Letting L(9) = V (9), for 6 € ®, leads immediately to (3.6) and the conclusion.
O
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