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This paper presents a heavy traffic analysis of the behavior of multi-
class acyclic queueing networks in which the customers have deadlines.
We assume the queueing system consists/ oftations, and there are
K different customer classes. Customers from each class arrive to the network
according to independent renewal processes. The customers from each class
are assigned a random deadline drawn from a deadline distribution associated
with that class and they move from station to station according to a fixed
acyclic route. The customers at a given node are processed according to the
earliest-deadline-first (EDF) queue discipline. At any time, the customers
of each type at each node have a lead time, the time until their deadline
lapses. We model these lead times as a random counting measure on the
real line. Under heavy traffic conditions and suitable scaling, it is proved that
the measure-valued lead-time procesaverges to a deterministic function
of the workload process. A two-station example is worked out in detalil,
and simulation results are presented to illustrate the predictive value of the
theory. This work is a generalization of Doytchinov, Lehoczky and Shreve
[Ann. Appl. Probab. 11 (2001) 332—-379], which developed these results for
the single queue case.

1. Introduction. The last decade has brought dramatic developments in com-
munication technology. There are now a wide range of types of communication
services available and an ever increasing demand for those services. An impor-
tant component of this demand is for real-time applications, that is, applications
with specific timing requirements. Examples are video-conferencing and video-
on-demand, in which the timely delivery of packets must be maintained to ensure
continuity of the image and sound. Networks servicing real-time applications also
arise in production systems where the orders have due dates or in control systems
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where there are upper bounds on the latency between the occurrence of an event
and the control system’s response to it.

For queueing networks, the measures of performance are often related to system
stability, to queue legths (e.g., the adequacy of buffer space or the amount of
work-in-process in those buffers) or to waiting times (e.g., the delay at a node
in the system). For real-time applications, in addition to standard measures of
stability, queue length and delay, one must also be concerned whether individual
applications are meeting their timing requirements. Determining the waiting time
distribution is not sufficient to determine whether a particular queue scheduling
policy can satisfy real-time application (customer) timing requirements under
various workload conditions.

To model customer timing requirements, we assume that each customer arriving
to the system has an initial lead tindelf the customer arrives at time then its
deadline is met if it exits the network not later thas £. To determine whether
customers meet their timing requirements, one must dynamically keep track of
each customer’s lead time, where the lead time is the time remaining until the
deadline elapses, that is,

lead time = initial lead time — time elapsed since arrival.

In the study of real-time systems three different types of timing requirements are
usually distinguished: hard, firm and soft deadlines. Hard deadlines must be met
or a system failure is considered to occur. These applications arise in many control
systems, especially in avionics systems or automobile engine control applications.
For a computer system to meet hard deadlines, there must be essentially no
stochastic aspects associated with the arrival or servicing of an application or
these quantities ost be bounded above. The subsequent analysis is based on those
bounds with service times taking their longest possible value and interarrival times
taking their shortest possible value. This worst case approach can result in systems
functioning at very low levels of average case utilization to ensure they can meet
application deadlines under worst case conditions.

Applications with firm or soft deadlines are permitted to miss their deadlines,
usually with some bound on the size or rate of misses. This class of examples
include audio and video transmissions, where the end user is able to tolerate a small
lack of continuity in the sound or image being transmitted. A firm deadline is one
which can be missed and there is no value in completing a task whose deadline has
expired, while a soft deadline permits lateness and uses the task completed after
the deadline. In this paper we study the soft deadline case but wish to control the
fraction of customers that will miss their deadlines and to model the amount of
lateness as a function of the workload and the scheduling policies used.

As noted earlier, to study queueing systems in which the customers have
deadlines, one must attach a lead-time variable to each customer in the system. Itis
convenient to model the vector of customer lead times at any:tiasea counting
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measure ofR with a unit atom at the current lead time of each customer and total
mass equal to the number of customers in the system atrtilfeact analysis of

such a measure-valued process is intractable; however, a heavy traffic analysis can
be done. Doytchinov, Lehoczky and Shreve (DLS) [5] studied the single queue
case in which the customers are processed according to the earliest-deadline-first
(EDF) or the first-in-first-out (FIFO) queue disciplines. DLS proved that under
heavy traffic conditions, a suitably scaled version of the random lead-time measure
converges to a nonrandom function of the limit of the scaled workload process,
which in the case of &l/G/1 queue, is a reflected Brownian motion with drift.
This paper is focused on generalizing the results of DLS to acyclic queueing
networks.

There is some other recent work on heavy-traffic approximations for systems
that handle real-time applications. Van Mieghem [15] studied a single server
multiclass queueing system. He considered control policies to minimize the total
delay cost incurred by customers over a finite time horizon. Markowitz and
Wein [12] studied the single machine scheduling problem in a manufacturing
context that included customer due dates along with other model features.
Lehoczky [10] gave an informal analysis of a singfg¢ M /1 queue by constructing
the generator for the lead-time vector and showing a scaled version converged
to a deterministic limit under the EDF or the processor sharing queue discipline.
Lehoczky [9] used these results to study the performance of a threshold access
control policy to reduce customer lateness. Lehoczky [11] informally extended the
analysis to Jackson networks.

In this paper we extend the approach and the results of DLS to the case of
acyclic queueing networks. We assume that a queueing system consigts of
stations, and there arg€ different customer classes. Customers from each class
arrive to the queueing network according to independent renewal processes. The
customers from each class are assigned a random deadline drawn from some
deadline distribution associated with that class, then each moves from station to
station according to a fixed route. THeé different routes are acyclic, meaning
that they visit any of the/ stations at most once. Upon completion of their
route, they exit the system. If the lead time of a customer at the time of exit
is negative, then that customer is late. While lateness is permitted, we wish to
determine (and ultimately to control) the fraction of customers that will exit late.
Each station will process some subset of khdifferent customer classes. At each
station, customers are queued in lead-time order and preemption (preempt-resume)
is allowed. We assume there is no overhead associated with preemption. In the
special case that all customers are assigned zero initial lead time, the EDF policy
used in this paper becomes first-in-system-first-out (FISFO). Our analysis thus
provides information about the time customers spend at various stations and in the
system when FISFO is used.

We study the behavior of these acyclic networks under heavy traffic conditions.
That s, we consider a sequence of queueing systems in which the traffic intensities
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at each node approach 1. We prove that if the suitably scalddnensional
workload process converges appropriately (see Assumption 2.1 and following
discussion), then a suitably scaled version ofRhdimensional lead-time measure
process converges to a deterministic function of the workload.

This paper is organized as follows. Section 2 presents the model, notation and
assumptions. Section 3 presents the measure-valued processes associated with
customer lead times and the concept of the frontier processes. This section also
states the relationship between the limiting workloads and the limiting frontiers,
a major result of this paper, which is proved in Section 6. The frontier process was
defined in DLS for the single-queue case and formed the basic methodology used
to analyze EDF and FIFO queues. This methodology is generalized to the network
case in Section 4, which provides several technical results needed for the analysis.
Section 5 shows how the equations which provide limiting workloads as a function
of limiting frontiers can be inverted, so that one can determine the frontiers as a
function of the workloads. Section 7 presents a simple but interesting worked-out
example. It also presents simulations which illustrate the accuracy of the heavy
traffic theory.

2. Themodd.

2.1. System topology. We consider a sequence of queueing systems indexed
by n. It is assumed that each system is composed atations, indexed by 1
through J, and K customer classes, indexed by 1 throukh Each customer
class has a fixed route through the network of stations. Customers inkglass
k=1,..., K, arrive to the system according to a renewal process, independently
of the arrivals of the other customer classes. These customers move through
the network, never visiting a station more than once, until they eventually exit
the system. However, different customer classes may visit stations in different
orders; the system is not necessarily “feed-forward.” We defingdtieof class k
customers as the sequence of servers they encounter along their way through the
network and denote it by

(2.1) P (k) = (k.15 J,25 -+ -5 Jeomk))-

In particular, clasg customers enter the system at statjpa and leave it through
stationjix ). If j is a member of the list of station indicesdh(k), we shall write
jePk).

Forj=1,...,J,wedefine

(2.2) C(j) £ {Indices of customer classes that visit statjon

(2.3) Kolj) 2 { Indices of customer classes that er}ter

station; from outside the system
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We assume that for every € {1,...,J}, C(j) # @. For j =1,...,J and
k € C(j), we further define

(2.4) S(k|j) £ { k before visiting statiory, or @ if custome

Indices of stations visited by customer cl3ss
r
classk enters the system at statign

We assume that the network is connected, in the sense that for any two stations,
there is a way of reaching one station from the other by following fragments of
paths of the form (2.1), not necessarily in the forward direction. The network
topology captured by (2.1)—(2.4) does not depend .on

2.2. Arrival times, service times and lead times. The customer inter-arrival
times are a sequence of strictly positive, independent and identically distributed

random variablesfg(”), i=12,..., where the subscrigtindicates the customer
class and the superscri@t) indexes the queueing system. These are independent
acrossk as well ag. We assume that

(2.5) AL (R M) g 2 (vary )2
are both defined and finite.

Thecustomer servicetimes are a sequence of strictly positive, independent and

identically distributed random varlableg( P, i=1,2,..., wherej indicates the
station of service and € C(j) indicates the class of customer The superscript
i indexes the order of arrival of customers of clast® the system, which may
be different from the order of arrival of clags customers to statiory. The

random varlables)o( " are independent acrogsand j as well asi, and they
are independent of the inter-arrival times. We denote)}pg?) the service times
of customers of clask at stationj, with indexi indicating the order of arrival to
stationj. The random varlable{svl (”)}"Ol are thus a random permutation of the
random varlable$v’ () }""1 Under the EDF service discipline described below,
the indexi of arrival at stationj of a customer of clask is independent 01‘;,’((/”)
Therefore, v’( ), i=1,2, ..., are also independent and identically distributed,

with the same dlstrlbutlon as the random varlablgg’) Forj=1,...,J and
k € C(j), we assume that

nf) 2 () = (),
/3(”) A (Var l(n) )1/2 (Var z(n))l/Z

are both defined and finite. .
Each customer in clasé arrives with aninitial lead time Ly having
distribution

(2.7) P{L;™ < iy} = Gi(y),

(2.6)
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whereGy is a cumulative distribution function. These lead-times are independent
and identically distributed acrossThey are independent acrdsand independent

of the interarrival and service times. Note tliat does not depend ort the lead-

time distributions dilate at ratg/n asn — oco. We assume thatfdr=1, ..., K,

(2.8) yi £supy e R; Gi(y) < 1} < .

We also assume that for evety the sequence{su}'(’(”)}, {US,(kn,)j} and{L};’(”)} are

mutually independentovere {1,...,J}, ke C(j)andi=1,2,....

2.3. EDF discipline. Customers are served at each station according to the
EDF discipline. That is, the customer with the shortest remaining lead time,
regardless of class, is selected for service. We give the analysis for the case of
no preemption. If preemption is permitted and we assume preempt-resume, then
an obvious simplification of the analysis gives the same results. There is no set-
up, switch-over or other type of overhead. Late customers (those with negative
lead times) stay in the system until served to completion. We assume the system is
empty at time zero.

2.4. Unscaled queueing processes. For each statiory = 1,...,J and cus-
tomer clask =1,..., K, we define

m
29  spWEY u™
i=1

= Time of arrival to the system of theth customer of clask,

(2.10) A" (1) £ max(m; Si" ™ <1)

= Number of clasg arrivals to the system by time

(2.11)  A{.() £ Number of clasg arrivals to statiory by timer,

(2.12) Q,(c"i (1) £ Number of clasg customers at statiop at timez,

213) o%m2 Y o

keC(j)
= Number of customers at statignat timer,
(n) £ [, (1)
n A ,(n
i=1
= Work for stationj associated with the firgt | customers
of classk to arrive to the system
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L]
( ) i,(n)
(2.15) (= > :v,w’?

i=1

= Work associated with the fir$t | customers of class
to arrive at statiory.

(Here and elsewhere we use the convenﬁ@?g1 = Y rew = 0.) We further define
thenetput at station j to be

(2.16) NP0 E S vE(ao) -
keC(j)

and thecumulative idleness at station j to beI}")(t) 2 —infocys< NJ(.”)(s), which
is nonnegative becausg; (0) = 0. Finally, theworkload at station j is the amount
of time it would take to serve all customers at statjoto completion, assuming
no new customers arrive, and thisWé”)(t) = N/(-”)(t) + I}”)(t).

2.5. Scaled queueing processes. In order to obtain a limit as — oo, it is
necessary to scale and sometimes center the above processes. We define

_ 1
(1), \ & (n) (n) A (n) (n)
AP0 2 —[A™ (1) — AMni), A0 & —=[A" (1) — 1],
k \/— k k ] [[ k ]
o) & [Q(”) (nt), OGNS0
keC(j)
7 . 1 5 (n) A 1
n l n n
Vo (0= —= Z( Vo, n) Vil = —= Z( )
“k,j “k,j

_ 1
W}”)(z) 2 —W}”)(nz).

N

2.6. Heavy traffic and convergence assumptions. For j = 1,...,J and
k € C(j), thetraffic intensity of class k cuSomersat Satlon jis p(") = k(n)/M;(f},

and the traffic intensity at stationis pj = Zke@(j) ,Ok,/.. It is assumed that for
all j, ‘

(2.17) yj 2 lim /n(1- p(”))

exists. Furthermore, it is assumed that forkadind j satisfyingk € C(;),
(n)

L

= I|m k(”) pkj = lim g

- n— 00 J’

(2.18) w N (n)
ap = Jim o, Br.j = lim g;°

n—oo
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are all defined and;, andu ; are positive. We define the limiting traffic intensities
Pr.j = A/ k. @andp; £ Y iee(j) Pk, j- We impose the usual Lindeberg condition
on the inter-arrival and service times: fpe=1, ..., J andk € C(j),

. i,(n) (12,
n'LmooE[(“k - (") )H{|u’k’<">—<xi">)—1\>cﬁ}]

(2.19) = lim B[ = (1{") 7L, o

n—)oo ‘kj

—(uh~ 1|>cﬁ}]
=0 Ye>0.
In what follows, the symbok denotes weak convergence of measures on the

spaceDg[0, o) of right-continuous functions with left limits fronj0, oo) to a
Polish spaces. The topology on this space is a generalization of the topology
introduced by Skorokhod fabs[0, 1]. See [2] for details. We tak& =R (or R¢,
with appropriate dimensio, for vector-valued functions) unless explicitly stated
otherwise.

Theorem 3.1 [14], together with (2.19) and the independence assumptions of
Section 2.2, implies that for every=1,...,J andk € C(j) and everyy < y;,
we have

Lt
_ 1

(2.20) ng;{{j(z;y) & = Z[ 6(121),]1 L0 < iy T FGk(y)} =T y),
k.j

where Tk* :(t;y) is continuous int. Putting y = y; into (2.20) and using the
fact that the sequenceso(") 192, and{vk (")}OO have the same distribution, we
conclude thatforj =1,..., J andk € G(])

(2.21) vg';g] = Vi V;",? = Vi

Wherer is a continuous process. In fact,Af ; > 0, thend is a Brownian

motion. Slmllarly, Theorem 3.1 of [14] and Theorem 14.6 of [2] imply that, for
everyk, there exists a continuous processsuch that

(2.22) Al = AL
By (2.21), (2.22) and a standard argument (see, e.g., [8], Corollary 3.2), we have

(2.23) 0(’?,0) = —[ érjc)](A,((n)(nt)) — np;&"]) t] = M; @),

Jn

whereMk is continuous. We also make the following convergence assumption:

ASSUMPTION 2.1. For everyj and k € C(j), there exists a continuous
processA; ; such that

(2.24) Al = AL
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There exists @ -dimensional continuous proce§&;, W5, ..., W) such that
(2.25) (W Wy, W) = (Wi, Wi, W),

In feed-forward networks, (2.24) and (2.25) hold under FIFO (see [13]) and
EDF (see [17]). Because our network is not of the feed-forward type, there
are no known general conditions which guarantee (2.24) and (2.25). However,
the literature contains a number of special cases of our model in which
(2.24) and (2.25) hold. Rather than take one of these special cases as a starting
point, we choose to begin with Assumption 2.1 because this is all we shall need in
order to obtain convergence of scaled lead-time profiles.

3. Measure-valued processes and frontiers. Our goal is to obtain a charac-
terization of the lead-time profiles of the customers queued at te&tions in
the system in terms of the limiting workload proce8s’, W5, ..., W7) in (2.25).
These lead-time profile processes are measure-valued. More precisely, they take
values in the spaceu of finite, nonnegative measures @B(R), the Borel
o-algebra orR, equipped with the weak topology. In what follows, we shall de-
note by.M’ the J-fold product of.M (with the product topology). For a Borel set
B C R, we set

Work for station? represented b
lead times inB at time¢

3.1 Wk J(n) (1)(B) & ’classk customers at statiopwith

(3.2) Wi (1)(B) 2 {Work for station? represented by custome}rs
. 7 =

at station; with lead times inB at timer

Then W,f”)(t)(B) Wk’ (”)(t)(B) is the work at statiory represented by class
k customers at that station with lead times Bnat time ¢, and ’W(”)(z)(B)

W] ) (t)(B) is the work at statiorj corresponding to all customers at that station
W|th lead times inB at timer. We also define

) » [ Number of customers at statig
(33) QOB = with lead times inB at timet ’
Number of clasg& customers arrivin
(n) » ] to the system by timeand having
(3.4) (B) = lead times at time in B, whether or
not still in the system at time
and

Work for station;j associated with customeys
of typek arriving to the system by timeand
having lead times at timein B, whether or
not still in the system at time

(35) Vor, (B2
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The scaled versions of these processes are

~7,(n A 1 i,(n
W/ (1) (B) £ ﬁwg;é )(nt)(v/nB),

o), (n A 1 j,(n
W O®) & 2w a0 (/aB),

1
ﬁwk(f’} (nt)(v/nB),

T A 1 n
W 0B) £ =W ) (VR B).

W (1)(B) &

) A 1 n
Qj" (B £ 2=} () (VR B).

%A,ﬁ“(m)(\/r‘zm,

Vo (0 (B) 2 f Vor.j(nt)(V/nB).

AM(1)(B) £

We introducefrontier processes

Largest lead time of any clagscustomer
who has ever been in service at statjon
or /ny; — t if no such customer exists or{ ’
if this quantity is larger than the former ofie

(3.6) IO

M)y & (n)
(3.7) Fj H= kren@agg) F,w. ().
The scaled versions of these processes are

- 1
(3.8) F" @) = TF(")(nt) F" () 2 \/_F(")(nt)

The next step is to define a sBt which contains the/-dimensional vector-
valued processF,", Fy", ..., F\")). To do this, we begin with a permutation
= (my, w2,...,my) Of the integergl, 2, ..., J). Given such a permutation and
an integetn € {1, ..., J}, we define

(3.9) K1) = {k € () 8klj) C{ma, ..., wm-1}},

(3.10) Jr_ 12 KE_1() # DI\ {71, o, 1)

By convention, ifm =1, then{ry, ..., mn-1} = 9, K{ (j) = Ko(j), the set of
indices of customer classes which enter the system at stafiand g5 = Jo,

the set of stations which serve as the entry point for at least one external arrival
process. These two sets do not depend on the permutatiSabsequent sets do.
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The setX;, _;(j) is the set of all customer classes that visit staji@nd visit only
stations in the sefry, ..., 7,1} before arriving at statiori. We say it is theset
of customer classes which reach station j through {r1, ..., 7, _1}. The setg”

is the set of all stationg not in the set{n, ..., m,,—1} which are visited by at
least one customer class of the type just described. We sag hatis theset of
stations which can be reached through {m1,...,mn_1}. Note that bothX” ()
andg” 1 depend only omnl, e TTp— 1) not the full permutation. Thus, we shall

Finally, we defrne

(3.11) £ {7; 7 is a permutation of L.., J

' andrn,, € g5 _,forallm=1,...,J}.
In other words,IT is the set of all permutations = (1, ..., ;) such that, for
eachm, the stationr,, can be reached throudh, ..., 7,,_1}. Form € I, we set

(3.12) D™ & {y GRJ;ynl >... >y, andy,, < max y; Vm},
keXT ) (7Tm)

(313) D2 (D",

mell

LEMMA 3.1. For all 7 > 0, the randomvector (F\” (1), Fy” (1), ..., F\" (1))
takesvaluesintheset D.

PrROOFR We must construct a permutation (71, ...,my) € IT such that
F@0) = FP@) > - > F () and Fy, (1) < MaXe k™ (x,) Vi fOr everym.
We do this by inductlon

We note first that because customer classsits consecutive statiorys 1, jk.2,

s jk,m(k) in P(k),

(3.14) iz B = B i) == B ().

This implies that the largest frontier must be at a station which igginthe set

of stations that have arrivals from outside the system. We select a statogo
whose frontlerF(”)(nt) is maximal. If this maximal frontier is the lead time of a
customer which has been in service, we may choast be the station where
that customer entered the system. If the maximal frontier is not the lead time of
a customer who has been in service, then it is of the quﬁry_ — nt for some
customer clask. In this case, we choosg to be the station where this customer
class enters the system, so tkat in Ko(r1), the set of customer classes that
enter the system at statian. In either case, we obtain

3.15 max > F"(nt >maxF(”) t
( ) ke XKo(m1) «/7)’]( (nt) j#m 7 ().
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For the induction hypothesis, we assume for same {2, ..., J} that we have
constructedry, ..., m,;,—1 such that:

() foreachi <m — 1, stationn; is reached throughr, ..., 71},
(i) foreachi <m —1,

(3.16) max Vnyg = F(nt),
ke, LT ()
(iii) we have
(3.17) FP(nt)>--->F" (nt)>  max F;n)(m‘).

JE{m, -1}

If the maximal frontier among«“}”)(nt) for j ¢ {m1, ..., mu_1} is the lead time of

a customer that has been in service, we may chagse be the station where
that customer first reaches a station notin, . . ., 7,,_1}. If this maximal frontier

is not the lead time of a customer who has been in service, then it is of the form
\/ﬁyE* — nt for some customer clags In this case, we choose, to be the first
station not in{r1, ..., m,_1} reached by this customer class. In either case, we
obtain

(3.18) max Sy = FM(nr) > max }F}")(m).

TT1yeers T,
kex, 1 (7Tm) JEUTLs - Tom

The induction step is complete.

Once the induction has concluded, we have constructed a permutation satisfying
properties (i)—(iii) form = J + 1. Dividing (3.16) and (3.17) by/n, we obtain the
desired properties for the scaled frontiergl

Fork=1,..., K, we define

o0
(3.19) B2 [T1-Giw)dx,  yeR

y
This function is strictly decreasing o@-oo, y{], mapping this half-line onto
[0, 00). We next defingb = (&4, ..., @) R/ — [0, c0)’ by

+
Qi(y1, ..., ¥) = Z Pk,j[Hk(Yj)—Hk(,Tikn, yi)] .
(3.20) k() ied(klj)
j=1,...,J.

In the above definition and in all that follows, the minimum taken over the empty
set should be interpreted as. The main results of this paper are the following
two theorems.
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THEOREM 3.2 (Convergence of scaled frontiers)The function & is a
homeomorphismof D onto [0, co)’ . With

(3.21) (Ff, ..., F) 207 (Wi, ... W),
we have
(3.22) (F",...,F") = (Ff, ..., F}).

We define W*(t) = (W(®),..., Wj(@)) and @*(t) = (Q](),...,Q%()),
which take values inM’, the set ofJ-dimensional vectors of measures Bn
by specifying their values on half-lines of the form, co) for all y € R. This is
done forj =1,..., J by the formulas

+
(323) W (.02 3 pk,,-[Hk(va;‘a))—Hk(_ min F,-*(r))} ,
ke () ied(klj)

+
(3.24) é‘Z’;(l)(y,oo) = Z kk[Hk(va;‘(t)) - Hk<_ min Fi*(t))} .
kee()) ies(klj)

THEOREM 3.3 (Convergence of scaled workloads and queue lengtivs.
have

(3.25) (W, W) = wE (@, a%) = e

The weak convergencein (3.25)takes placein D [0, 00).

4. Customers behind the frontiers. In this section we prove the crucial
observation that both the number of customers at each statwith lead times
smaller than or equal to the current frontiEJ")(t) and the work for the system
associated with these customers are negligible. This is done in several steps,
leading to Corollary 4.7. Along the way, we show tightness of the scaled frontier
processes (Lemma 4.6). Both these results will be used in Section 6 to prove
Theorem 3.2.

PROPOSITION4.1. Letj=1,...,J,keC(j),—oo<yo<yiandT > Obe
given. Asn — oo,

= P
4.1)  sup sup Vg ()(y.00) + pi j[Hi(y + v/nr) — He(»)]| = O,
yo<y<y0=t=T

4.2) sup  sup |£,§”)(t)(y, 00) + Ak[ Hi(y + +/nt) — He(»)]| £o.
yo<y=<yj O=t<T
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The processes in Proposition 4.1 do not take departures into account. Because
this proposition is concerned only with arrivals, its proof can be given following the
proof of Propogion 3.4 of [5]. We do not repeat that proof here, but instead give
a heuristic argument. Let us first consider (4.2), which asserts that asymptotically,

the “density” of the measure-valued procéé,g)(t) is the same as the density

@3)  A[H{(y +vnt) — H )] =2 [Gi(y + v/nt) — Gr(y)].

In order for a clask customer to have lead timg at time ¢, it must arrive at
some timer — § prior to 7 and be assigned lead tinfe+ § upon arrival. If G,

has a density, then the density of the assigned lead-time dlStFIbUB%"G%()_H

[see (2.7)], and multiplying by the arrival ra}té!’), we obtain the density of clags
customers with lead times

5 [t <9;;>—Gk<%>]-

The heavy traffic scaling considers the density%f times the actual number

of customers whose lead times are= f at scaled timg = £. This density is

the right-hand side of (4.3). (The Jacob%_ J/nis canceled when we divide

the customer count by/n.) Under the heavy traffic scaling, the work brought by
customers of clagsto station; is the average work per custom(au,,(c”i)—1 times

the number of customers. Multiplying the right-hand side of (4. SQ;D,SZ)) 1
obtain j[Gk(y + /nt) — Gr(y)], which explains (4.1).

COROLLARY 4.2. Letj=1,...,J,keC(j), —o0o<yo<y;andT > 0be
given. Asn — oo,

sup sup 'V(") (z){y}io,
yo<y=yj O=t=T
(4.4)

sup sup Akn)(t){y} = 0.
yo<y<yj O=t=T

This corollary is a consequence of the fact that the limiting measures for

(”) ;) and A,ﬁ”)(t) have densities and, hence, do not charge points. Its proof
is S|m|Iar to the proof of Corollary 3.5 of [5], and we refer the reader there for
details.

Lemma 4.3 and Corollary 4.4 generalize Proposition 3.6 in [5] to the case of
acyclic networks. We provide the details of these proofs.

LEMMA 4.3. For all k and j € £ (k), we have
(4.5) @ (00, F")= 0. W (00, ) =0,
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and for every station ¢ satisfying j € $(k|¢),
(4.6) Wi (—00, ) = 0.

The weak convergencesin (4.5) and (4.6) take placein Dg[0, c0).

PROOF We fix ko and prove (4.5) and (4.6) by induction alosyko). Let
Jjo € P (ko) be given and make the induction hypothesis that (4.5) and (4.6) hold
for k = kg and everyj € $(koljo). If jo is the first station inP (kg), this hypothesis
iS vacuous.

From the induction hypothesis (4.6) we have

W]',(n)(_oo I?(n)):>0

jO ko’j
for everyj € $(ko|jo). For such a station, we haveﬁ,f;‘,)j > fk(g)jo and, hence,
(4.7) Wi (—o0, Fig ) = .

We now prove (4.5) and (4.6) far= ko andj = jo. Toward this end, we define

. =) (n)
=supfs <t; (sz (s)(—o0, Fkg,jo(s)) =0},
and note that

(4.8) QW (" (1)-)(—o00, Y, (nT, (1)) =O.

Indeed, from the definition oﬂ,f;‘,)jo(t),

(4-.9) Q%) (nrk(g’)jo(t)—)(—oo, Fk(:,)jo (ntlc(g,?io =) =0

and the only way in Which,c(;”)/.o can jump up at timerk(g,)jo(t) is that a customer

of classkg with lead time greater than any customer of this class who has ever been
in service at stationp begins to receive service at time,ig’)io(t). But then, by the
EDF service discipline, ‘

), ) n . _m
Qi (nTy iy (D) (=00, Frg o (nT0 1 (1)) =0

and, consequently, the value @%)(-)(—oo, Fk((’)”)jo(-)) remains zero at least until
the next arrival to servef after timenr,f;‘,)jo(t), which contradicts the definition of
rk(:’)jo(t). Thus,Fk(:,)j0 cannot jump up at timer,fg’)jo (1), so (4.8) follows from (4.9).
(n)

ForrkO (1) <s <t,we have

»JO

(n) ) () ()
(4.10) Fi)o(ns) = F2 o (nge” (0) —n(s — 500 (1))
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The first step is to prove

(4.11) t—t (1) =0,
and, subsequently, to upgrade this convergence to
(4.12) V(=7 (1) = 0.
The convergences in (4.11) and (4.12) ar®ig[0, co). The key inequality is
Wio' () (=00, Fig (1)
<HD@n+ Y J" @)+ D" ()
(4.13) J€8(kol jo)
+ Y K o) —n( -7 () + R™ (),
keC(jo)
k#kg

where the terms on the right-hand side are defined below. The first term,

(n) (n) (n) (n)
H™ ) 2 Wi (5, () (=00, Fig o (1071 (1)
accounts for the work arriving to statigg by tlmen‘rko) (#). A typical summand
in the second term,

o) RO RO ()
Ji ) S Wit (nty o (D) (=00, Fig g (nTg o ().

is the work for stationjg at upstream statiop which is ahead oFk(;‘)]O (nt ;‘)]0 (1))
(n)

at tlmenr and hence, has the potential to arrive at stajfiploy timent ahead

of F,c(;”)/.o(nt). If jois the first station i (kg), these terms do not appear. The third
term,

(n) _ i,(n)
(nt) = Zkao Jo n‘[kn) (t)<S;<(n)<nt}]I{ LDy S (”))<Fk”) (nr))’

is the work of typekp arriving to the system during the time mter\(air(g)J nt]
with lead time upon arrival that puts it ahead &8, j,(nt) at timent. A typlcal
summand in the fourth term,

(n) L
Ky (nt) = Z”k Jo Ak jo(nT i () <i<AL (an))’
is the work of typek # ko arrlvmg to station jo during the time interval

(nr,fg)jo t]. The fifth term,—n(t — Tko ]O(t)) is the work accomplished by the

server during the time mtervahrk0 (D), nt], some of which may be devoted to
a customer already in service at tlmq(;”)/.o(t) whose lead time is greater than or
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equal tonfZ,),-o(nfk(Z,),-oU)) and the remainder of which at each time (r,c(;”)io, 1]

must be devoted to customers with lead times less ﬂ’jébo(ns). The final term,

R™ (nr) 2 max{vp 1< i < A} (1), k € C(jo)}.
is an upper bound on the amount of work that can be devoted to a customer already
in service at timezr,fg,)jo(t). If there is preemption, this final term does not appear.
We fix T > 0 and estimate the terms appearing on the right-hand side of (4.13).
The termso(/n), O(/n) and O (n~1/?) in the following argument depend dh
but not onr € [0, T]. Fort € [0, T'], (4.8) implies

n) (n) _ wm _
H (nt)forirlséé);[Wjo (ns) — W, (ns )]

= Vi max [W"(s) = Wi (s=)] = o(vn)

becauseW]*.‘0 in (2.25) is continuous. Furthermore,

(4.14)

" ) = max Wit ns)(—o, Figy (n5))
(4.15) T ) )
= ﬁogast); W (s)(—o00, Fko,jo(s)) =o(v/n)
because of (4.7). The last ter® (nt), satisfies
(4.16) R™ (1) < [max (W (ns) — Wi (ns—)] = o(v/n)

asin (4.14). We also have
(n)

" Al(cr,l.)/'o(m) - 1 Al(:,l_)io(mko,jo(t)) - 1
n _ n _ n
Kk (I’ll) - Z (vk,jo (n) ) Z (vk,]'o (n) )

i=1 k.Jo i=1 -Jo
(n) (n) (n)
+ (n) [Ak,jo(m) o Ak,jo(ntko,jo(t))]
k, jo

~m (1 ~m (1
(n) (m) (n) (m (m)
- \/E[Vk,njo<;’4kr,ljo(m)> N VkZO(;Akr,l‘io(nrk;jo(t)))]

4.17 N ~) () (n) (n)
( ) + ) [Ak,jo(t) o Aknio(tko,jo(t))] + 'Ok,jon(t o Tko,jo(t))
k, jo
_ v (2™ ¢4
= n kij ﬁ kaO(t) + kt
~ 1 -
(n) (n) (_(n) (n)
o Vk,jo(ﬁAk,jo(TkoJo(t)) + )”krkovjo(t)>:|

vn (n) (n)

1) T (_(n)
+ ") [AI:J'O(I) o Ak,rfio (tkg,jo (t))] + P, jot (t ~ Tko.jo (t))'
k, jo
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From (2.21) and (2.24), we obtain
(4.18) K" (nr) = o) n(r — 1l () + O(Vn).

Finally, we estimateD (nr). For this we choose < Yko and divide the
analysis into the two cases

1
(4.19) t—t (1) < %(y,’:o —)
and the complementary case
(4.20) nTi o (D) + (v, = y) <nt.

In the former case,— rk(:,)jo(t) = 0(n~Y?). We show this is also true in the latter
case. Under condition (4.20), because

F ()= F& (ngl () —n(e — 10 (1)) < vy —nlt — 5 (1),

ko, jo
we have
D™ (nr)
— (1)
< Ul’ . . I[ n i,(n n *
= ; 0,ko, jo {”IIEO,)_;'O(’)<SI<S )Snrlio?jo(t)—i-ﬁ(yko—)’)}
0
i,(n) . )
+ 2; ”o,ko,joﬂ{m,gg? fo(t)+ﬁ(y,;“0—y)<s,’(g")Snt}H{Ligé")sﬁy}
P _
_ym (A (nl_(n) () +\/ﬁ( x ))) oy (A (n.[(n) (t)))
= Y0,kq, jo \“tko\" o, jo Yko =Y 0,ko, jo \“*ko\" tko, jo
Ay (nr) » 1
,(n i -
+ Z |:v0,k0,j0]I{L;<'(")§\/Zy} ) Gko(y)i|
i=1 0 Mo, jo
AR (e O+ =) » 1
,(n X -
- 2 [vo,ko,joH{L;é")sﬁy} ](cn)' Gko(y)}
1= 0.J0
(4.21)
GioOW) r () _(n)
o (AR () — A (T ) () + V(v — v))]
ko, jo
_ lam (n) 1 =) ()
- \/'_Z|:M0,ko,jo (tko,jo(t) + ﬁ(y;:o o y)> o MO,ko,jo(Tko,jo(t))]

- 1
+/n [To(j}c)& jo(;A,i’;) (n1); y)
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-~ 1
) ) .
- 0(,’20,]'0 (;A/(CZ) (nrk(g,jo(t) + \/r_l(y/to - y))’ y>i|

SAGroO) [ ~ ~ 1
+ [Aég”m — A" (féﬁ,)jom + i - y))}
Hko.jo "

+nGreMp (0 — 7 () + V(L= Gro() o (05, = ¥).

From (2.20), (2.22) and (2.23), we obtain
D™ (nt) < nGioy(y) iyt — T (1))
+ V(L= G iy 1y vy = ¥) + O(V).
Substitution of (4.14)—(4.16), (4.18) and (4.22) into (4.13) yields

() (1)
0 W o) (—oc. £ n0)

(4.22)

4.23)  <n(t— r,ig,?,o<z>)[ Yo -1-(1- Gko(y))p,?;?‘,-o} +0(v/n)
keC(jo)
< —n(t =g, (D) (L= Gio()wjg jy + O (V).
where the last inequality follows from (2.17). Assume for the moment)tha'gv,fo.

Then(1— Gy, (y))p,ig‘?jo is strictly positive and bounded away from zero uniformly

in n. This implies
t—1l) (1) =0@m Y3
Hence, (4.11) holds.
Armed with (4.11), we return to the weaker assumptjog y,jo and use the

differencing theorem in (4.17) (see, e.g., Theorem A.3 of [5]), (2.21) and (2.24) to
obtain

(4.18) K"ty = phn(e =1 () +o(Vn)
in place of (4.18). Similarly, (4.22) becomes

) w o
4.22) DV (nt) < nGko(y)Pko,jo(t Tko,jo(t))

+ /(1= G o %, — ¥) +o(v/n).

If (4.20) holds, we may substitute (4.14)—(4.16), (4)Ed (4.22) into (4.13)
to obtain

0 < W (nt)(—00, Fiy jo(nt))

(n) (n) (n)
(4.24) <—n(t =70 ) (1 —GiWMorio— D pk'fjo)
keC(jo),k#ko

+ /(1= GryW)pir . (v = ¥) +o(Vn).
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Assume for the moment that< y,j‘o. Then (4.24) implies

(4.25) Vit =10 (1) = Calyly — ¥) +o(D),

where

A= GO
CVL -

- (n) (n) *
1= Gio(¥) Py, jo — 2keC (o) ksko Pk, jo

The constants§’,, converge to a finite limit a8 — oo, which is bounded uniformly
iny< y,jo. Sincey may be arbitrarily close t(y,”jo, by (4.25), if (4.20) holds,
then (4.12) holds also. Similarly, if (4.19) holds, then we have (4.25) @ijtk= 1
and again (4.12) follows.

From (4.12) we immediately obtain (4.5) fbe= kg andj = jo, because

(n) (n)
Q) (nt)(—o0, F,’. (nt))

ko, jo
= X (A0 = AL (n7 ) (0-)]
keC(jo)
_[ A‘(n) ¢ _ Al () H— f— (n) ¢ A(")
=wvn Z [ k,jo() k,jo(rko,jo() )]+1’l( tkOnl'O( )) Z k-
keC(jo) keC(jo)

We divide this by,/n and use the differencing theorem, (2.24) and (4.12) to obtain
the first relation in (4.5). For the second part of (4.5), we yset y,j‘o, so that
case (4.19) is vacuous. Then (4.20) implies (4.24), which we dividg/byThe
conclusion follows.

It remains to prove (4.6) fok = ko, j = jo and ¢ satisfying jo € $(kolf).
From (4.8) and (4.10) we see that all work at statjgrior station¢ present and
having lead time in(—oo, F,f(’)’y)jo(nt)) at timenr must arrive in the time interval
[ntk(:’)/-o(t), nt]. It follows that

4.26) W/ @r)(—00, F () < HP iy + Y K@),
keC(jonC(®)

where

H" (nt) &2 WP (nrl, (0)(—o0, Y, (nTil, (1))

accounts for statiod work arriving to stationjp at timenr,fg)jo (), and

(n)

o0
(n) A i, jo,(n)
Ky o (nr) = _Xivk,e H{Ak,jo(nrég?jo(t))<i§Ak,j0(nt)}
=

is the classk, station ¢ work arriving to stationjo during the time interval
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(nrko Jo(t) nt]. The random variables; % ™ i =12, ..., arearandom permu-

tation of the clasg, station¢ service time random variabl (k”)e i=12,.
The latter are indexed in order of arrival to the system; the former are mdexed in
order of arrival to statiorg. Because the indexof arrival of a customer of clags

to station jo is independent of the service timvé,{;o’(") of that customer, the se-
quenceu,lc]@O i —1,2 ..., is independent and identically distributed, with the

same distribution asg; (k")@ i=12,.
We bound the terms appearlng on the right-hand side of (4.26). We have first of
all that

1
—H™ (nr)

Jn

1
<> max —=uvg
keC() 0<1<A(")(nT) \/_

1 1 1
< Y max (vo('}()@( AP (n s)) 5'}3@( A,ﬁ")(ns—)) )
kee(p 0=5=T \/_M(")

But the process
1 1
vg;{g( A(")(ns)) 5’2,3(\/_&”)@) +as )

converges weakly imDr[0, co) to the continuous proceszsje(kks) [see (2.21)
and (2.22)] and, thus, its maximum jump ouek [0, T] converges to zero. It
follows that

i,(n)

1
4.27 —H" 0.
( ) Oll‘tg)?(" N (nt) =

Let us now define
jo.(n) o w1
17Jo,(n i,jo,(n
Vi = Z( i (n))’
Mi.e
which satlsflesV’° SONSN Vi¥,, where kag is a continuous process [cf. (2.21)].

Then

1 ~ ~ 1
(n) Jo.(n) (n) Jo, (n)
ﬁ[{ktlg (nt) = Vk,% ( A n ( [)) — Vk,% <;Akvjo(nfk0 /O(I))>

+ (A () — A (n (1))

ny

1
=V (n)<TA1£nj)o(” +at )
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1
=T (AL, 0) + 15, 0)

[ k Jo
1 ) )
+ a7 (AL 0 = AL (38 0)) + i v/n(e = 75 ).
k.l

The right-hand side converges weakly to zeroO@[0, co) because of (4.11),
(4.12), the continuity o¥/*, and Assumption 2.1. In particular,

(4.28) [max TK,E’Q?(m) =0 VkeC(jo)NC®).
From (4.26)—(4.28), we have
1
g Wi 00, Fgg(0) = gnax T (00, Fgy(nn) =

Th|s gives us (4.6) fok = ko, j = jo ande satisfyingjo € 8(kol€). O

COROLLARY 4.4 (Crushing). For every j, we have

o (n) (n) () (n)
(4.29) @j (—oo, Fj (t)) =0, "Wj (—oo, Fj (t)) =0

PROOF From (4.5) we have

@(- ) —0Q, I;( ) 1)) = max Q(n) ( ) t
J ( J ( )) keC(j) ( ( ))
AW(") o, I;( ) 1)) = max W W ( ) t
J ( ( )) keC(j) ( ( )) OJ

COROLLARY 4.5. For all stations j and ¢ for which there exists a customer
classk suchthat j € 8(k|¢), we have

Wi (o0, F) 0.

PrRoOF It suffices to show that for evetye C(j) N C(¢£), we have
Wi (—00, F") = 0.

For such ak, let J,(c”) (nt) denote the indices, according to the order of arrival
to the system, of the clagscustomers at statiop at timent with lead times in

(—00, F}”)(m)). Then

=, (n) =) 1 [, (n)
W O(=00, F0) = == ). G

i€0y" (n1)

Let |J(") (nt)| denote the cardinality dT(") (nt). For each positive integen,
let (P = IP{|J(”) (nt)] = m}. Let IP’(”) be the zero measure, and for each



1328 KRUK, LEHOCZKY, SHREVE AND YEUNG

positive integerm let P! denote the measure induced @by the random

variable X Z GJ@ - vg ¢y Conditioned on|ZJ(”) (nt)| = m, the distribution of

>, @ g1 ¢ 1S the same as the distribution B v i1 Because the random
i€y (nt) OkE 1%0,k,e-

vanz;tblew0 5", do not enter the determination of the |nd|ces which beloﬁf”[;)

aWpm
the measure induced dh by <")\H{\J(")(nt)|>1} ZzeJ(")(nt) ka 718 Y neotm Py

The set of probability measu(@m)} is tight because for. > 1 andK > (M(”)) L

we have

| St = o) <o 2 S0g - = k- |

i=1

1 1 2
o T ]

=<
(K —(u m i=

T m(K - w(")) 12’

and this can be made arbitrarily small, uniformlyrsinandn, by the choice oK.

Consequently, the set of probability measyies_ Oa(”)IP’(”)} . is also tight. In
particular, givere > 0, there exist¥ > 0 such that B

1
(n)
P{WH{J,C ](Vll‘)‘>1} Z vok ¢ = < K} > 1_ e
lEj]((’?;(n;)

foralln > 1.
According to the first part of (4. 29)—|J(”) (nt)| = 0, and hence there is an

integerN such that

(n) €
NHi<—t>1-
(n1)] < K} €

{f”

for all n > N. Therefore, fom > N,
P{W/" (1) (—00, F{" (1)) < e
1
> P} ——1 Y )| <6
{ Iy LR Ok
k.j
>1-— 2e.

This establishes the corollaryd
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The following lemma gives a tightness bound for the scaled frontiers.

LEMMA 4.6. Forevery T >0, >0, je{l,...,J} and k € C(j), there
exists y € (—oo, y{) suchthat for all n,

(4.30) P{oi?fTFk(n)(t) < y} <e.

PROOE As in the proof of Lemma 4.3, we fik and proceed by induction
along 2 (k). Let £ € P (k) be given and assume that fgre 8(k|¢), T > 0 and
¢ > 0, the corresponding satisfying (4.30) for alk can be found. In particular,
no assumption is necessary to analyze the first statigh(i).

We first argue that

(4.31) w0 = Vg E(:)(ﬁ,ff’g(t) m(ln F(”)(t)) +0(D).

Indeed, the workload at statiahis at least as great as the Workload brought to
station¢ by classk customers with lead times iF (n)(nt) MiN; e 5 (k¢ Fk F (nt))
None of classk customers who have arrived to the system by timand have
lead times at this time greater thﬂ;ﬁ’? (nt) has ever been in service at station
by timenz. Thus, every such customer is either in gueue at stdtmmn queue at
some statioryg € $(k|£). By Lemma 4.3, for suclip we have

"VAVZ"’(”)(t)( 00, m(ll?lE)F(”)(t)) < W (1) (=00, B (1)) = 0(D),
so the difference betwee"ﬁgf,gye(t)(fk(f’e)(t), Min;jeske) I?,ff’}(t)) and the scaled
workload for station¢ associated with clask customers already present &t
with lead times in(Fk(f?(l’ll‘),minje/g(kw) Fk(Z-)(nt)) is of the ordero(l). This
justifies (4.31).
Fix T > 0 ande > 0. By the induction hypothesis, there exists< y; such
that, for alln, P(A,) > 1— 7, where

A, 21 inf min F™« }
" {O<t<T]e5(k|€) k(0>

By (2.25) and the continuous mapping theorem,

sup W (1) = sup Wi@).
0<t<T 0<t<T

Inequality (4.31) and the fact that lim _, Hi(y) = oo enables us to choose
y2 < y1 such that, for alk, P(B,) > 1 — £, where

By é{ sup Vé"z?ﬂ”(”xfnz)(f) min Fm)“) = Hk(m}

0<t<T €8(k|0)
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OnA,NB,, for0O<¢t<T, wehave

(4.32) sup V34 (O(E) (1), y1] < VHi(v2).

O<t<T

By Proposition 4.1we can findV such that for alh > N, P(C,) > 1 - %, where

C, & { sup sup ’Vé",z (O, 00) + pi e[ Hi(y + v/nt) — Hk(y)]’
y

2<)<}* 0<r<T

Pk, ¢
< THk()ﬂ)}
Forn > N,P(4, N B, N Cy) 21~ 5. By (4.32), 0nA, N B, N C, we have
15 ()
Ogtu<pT "VO . E(t) (v2, yl]ﬂ{ﬁk(ne) (1) <y} <V Hi(y2),
SO
o)
v Hi(y2) + iu<p Voke (OO, OO)H{f,fﬁgqu}
()
2 SUP Vot (D02 0z
(4.33) 0
k.l
> THk(yz) maX I Fk(fl()(t)<y2}
,Ok ¢
2 Hk(yZ) {Inf0<[<T Fk (t)<y2}’

where the third line follows from the definition @f,, the fact thaty, < y1 < y;

implies Hi(y2) > Hi(y1), and the inequalityF (")(t) > yk J/nt (following
immediately from the definition of the frontier) resultlng in

(4.34) yi <Yy2++/nt on {F\,C(Z)(t) < y2}.
Also, onA,, N B, N Cy,

sup P (1) (y1, 00)I ~w
O<t<pT Okg( )(¥1, 0) {Fk(,z)(f)<y2}

()

= sup |V H(y1, H, ) e
oo [Vor e 001, 000+ i (O Vg oy

3px,
< Tgﬂkm) 2

[The second line follows fromy,; < y1 and (4.34) and the third one from the
definition of C,,.] Thus, (4.33) yields, fon > N,on A, N B, N C,,

Ph.t <~ Hi(y2) +c,

> —— Hi(y2)l

{infos<r P (1) <y2) =
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and, therefore,

3e
P{ inf F™ }
{O<Irt1 kg(t)<y2 Z

s]P’({olnf Fk(g)(t) <y2} NA,NB, ﬂCn)
<t<

_2AS/AGD+0) e
< <

Pk,e Hi (y2) 4

for y» small enough. Thus, (4.30) holds fborj = ¢, y = y» andn > N. Takingy
smaller, if necessary, we extend (4.30ktg = ¢ and alln. O

COROLLARY 4.7. For every j, we have
(1) () w () 7(n)
Q; (—o0, F; (1] =0, w; (—o0, F; (1] =0.

Moreover, for all stations j and ¢ for which there exists a customer class k such
that j € 8(k|¢), we have

PROOFE This is just a restatement of Corollaries 4.4 and 4.5, except that the
half-line (—oo, F{" ()] is now closed on the right. Corollary 4.2 asserts that if
F(”) were bounded below, uniformly ine [0, T] andn, then the inclusion of this

endpomt would make no difference. Using Lemma 4.6, we can ensuré {has
bounded below with probability arbitrarily close to 1, and the result follows.

5. Inverting the frontier equations. In this section we show the first part of
Theorem 3.2, that is, that the functidndefined by (3.20) is a homeomorphism of
the setD given by (3.12) and (3.13) on{6, co)’ (Proposition 5.5). It is clear that
@ is continuous. Lemma 5.1 asserts tiatapsD onto[0, co)” . The proof of this
lemma contains an explicit algorithm for invertidg Lemmas 5.2 and 5.3 show
that ® is one-to-one orD. Finally, Lemma 5.4, examining the limiting behavior
of ®(y) in D asy — oo, is used to show that the mappidgis open.

LEMMA 5.1. ®(D) =10, 00)”.

PROOF Letw = (wy,...,wy) € [0,00)’ be given. The aim is to fing =
(y1,...,yy) € D such thatb(y) = w, that is, to solve the frontier equations

+
(5.1) w;= Z pkvj[Hk(yj)—Hk< min y)] , j=1...,J,
kee () €$(kl))
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foray € D. Note that ifk is a customer class entering the system at statjdinen
MiN;e sk j) Yi = MiNjeg y; = 00, SO

H.(y;))—Hl min y; ) =H(y;).
k(i) k(iez;(ku)y‘) «(yj)

We may rewrite (5.1) in the form
_ +
wi= Y e iHGD+ Y ,Ok,j|:Hk(yj) - Hk(, min. yi)] .
ke Ko(j) keCNKo()) Fedkl))
Forj € go andy € R, we define
) +
KojW= Y. pjHO)= > pk,j[Hk@) - Hk(. min. yl-)} :
ke Ko()) ke Xo() Fed@li
Although defined on all oR, we shall be interested ik ; restricted to a smaller

set. In particular,

Ko, ;: (—oo, max y,j] onto [0, 00)
| keXKo(j)

is strictly decreasing and has a strictly decreasing inverse

1. onto %
Ky :[0,00) — <—oo, max }
0.j keXo() ¥

We choosej € o S0 thatKg 7 (w,) = MaXjeg, Ko t(w;) and we sety;, =
Ko7 (wjy). Then

(5.2) wj = KO,j(yjl)

= Pk,j[Hk(yjl)—Hk< min yi>r Vj € Jo

keKo()) ies (kL))

+
(53) wj=Ko(yy)= D Pk,jl[Hk(yjl)—Hk<_ min yi)} -
keKo(j1) iedkljy)

Induction hypothesis. Supposethatfor =1,..., M, we have chosen distinct
indices j1, jo, ..., ju, have defined numbers;, > y;, > --- > y;,,, and have
defined functions

+
Kn—1:i(y)= | H — Hi[ min y; , e R,
m l,](y) Z ,Ok,]|: k() k(ie5(k|j)yl>i| y
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for j e ngrfl_"l'”j’"*l). Although defined on all oR, each function

. ¢
Kpo1j: (—oo, max (y,f A min y,-)] 2™ 10, 0o)
kex U ie8(k.j)

is strictly decreasing when restricted to the indicated set and, therefore, has a
strictly decreasing inverse

-1 onto s i .
(5.4) Km_lvj_[o,oo)—><—oo, i <ykAieg}5crﬂ/)y’>}'

Suppose further that forn =1, ..., M, we havej,, € g(“ """ =1 and

m—1
K1 o (w,)= max K 1 (w)) =K (w;);
m—21, j, \"Im) T : ) m—=1j\"J/> Yijm = m—21, j, \"m)>
. Uldm—1)
]Egmfl
hence,

wj > Kn-1,j(¥),)

ied(klj)

V] c g(]l ----- jm—l)’
wjm = Km_l»jm (y]m)

+
= > Pk, jim [Hk (Yjw) — Hk <ieg?]jr}m) yi)} :

(Jgseees Jm—=1), .
ke, 1 m Y ()

(5.6)

Induction step. If M = J, we terminate the construction. ¥ < J, we
proceed to step/ + 1 as follows. Recall that the s@%""”’”) is the set of
all stationsj not amongjs, ..., ji with the property that at least one customer
class visitsj and the previous stations visited by this customer class are among
the stationsjs, ..., ju. If there were no such statiojyy then all external arrivals
would be to the set of stationgy, ..., jy} and all customers exiting a station
from this set would either exit the system or else proceed to another station in this
set. In this situation, stations outside $gt, ..., jy} would not be connected to
these stations, a situation we have ruled out by assumption. Hgfdﬁ’e;"’m is
nonempty.

Forj e gV andy e R, we define

M

+
Ky j(y)= > Pk,j[Hk(Y)—Hk( min yi)} :

ic8(klj)
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Although defined on all oR,

Kum,j: (—oo, max (y,’: A min y,-)] onto [0, 00)
ie8(klj)

is strictly decreasing when restricted to the indicated set and, therefore, has a
strictly decreasing inverse

KA}?j:[O,oo)m)<—oo, max <y,f/\ min y,->:|.

ke Ui ) ic8(k|j)
We choosejy 11 € gl,(él """ M) 50 that
k-1 (wj,,.,)= max K7t (w;)
M, jupa\Winsd) = A M, j\W
. J1oedM)
JEF ¥

-1
and sety;, ., = K/, (wjy,,,). Then

wj > K, j (Vi)

(5.7) - ¥ pk,j[Hk(ijH)—Hk(, min yl-)}+

Wiy = KM, jyia (ij+l)

(5.8) - Z Pk,jM+1|:Hk(yJ'M+l)_Hk< min yi>]+'

. ie8(k|jm+1)
(J1seees im)
ke Ky M (i)

To complete the induction step it remains only to show that> y;,, ...
We divide the analysis into two cases.

CASEIl. jyi1€ gM_"i""Mfl).

In this case (5.5) implies that

+
(5.9) wjy,,, > Z Pk, jyr41 [Hk(ij) — Hi (iesmi;r;+1) )’i)] .

5.10 min =i .
(.10 ieslipsn M



ACYCLIC NETWORKS 1335

It follows that

> Pk jrrs1 [Hk (Vjnr)

Ui —1)

(5.112) keI G\ Ky (jm+1)

+
—Hk( min )} =0.
ies(kljsin)

Summing (5.9) and (5.11), we obtain

Wipg1 = KM jagia (y]M)

and, hence,
-1
Yin Z KM,jMH(ijH) =Yims1-
C [ (J1seees M) (J1sees, jM—-1)
ASE JM+1 € E \ I 1

that for everyk JC,(‘jl ]M)(]M+1), we must havg‘M € 8(k|jm+1). Hence, for
everyk Jf,ﬁf """ JM)(jMH), equation (5.10) holds. Equation (5.8) becomes

+
Wiy = Z pk,jM+1[Hk (ij+l) — H (ij)] .
ke KM (g g

If wj, ,>0,theny;, . <yy.Ifw;, , =0, we have by definition

1
Yimsr = KM ]M+1(0)

~ (e )
keJC}(\;;l »»»»» ./M)(jM+l) ieSkljm+1)
= max (¢ AViu) < Yiws

k€=7<1(\,§1 """ Im) (Jm+1)

where the third equality follows fronb(10). The induction step is complete.

When this construction terminates witl = J, we have chosery, ..., j;,
a permutation of 1..,J, and we have defined numberg > y;, > --- > y;,,
such that (5.6) holds for =1,..., J. Letj € {1,..., J} be given, and choose
so thatj = j,. Fork € C(j) \ JC(“ """ In-1( ), the set§(k|j) is not a subset of
{J1,-.., jm—1} and, hence, m[@g(ku)y, <, =, It follows that

+
(5.12) Z Pk,j[Hk(Yj)—Hk< min yzﬂ =0.

ie$(klj)
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Summing (5.6) withj,, = j and (5.12), we obtain (5.1).

It remains to show thay = (y1,...,ys) € D. Let ¥ = (j1,...,js). By
construction, form =1,...,J, j, € gl,(,{f'l'”"’"*l) = gr_,, sox € I1. Moreover,
Yjp = Vj =2 yj, and, by (5.4),

-1
Yijm = Km—l,jm (w]m)

< max A min vy,
= ‘ (yk ies(k|jm)y’)

<  max .
ke X 2Gm) K
Thus,y € D™ and, henceye D. O
LEMMA 5.2. Letw = (w1,...,wy) € [0,00)’ begiven. Let y = (y1,..., ys)

be the solution to (5.1) constructed in Lemma 5.1 and let y = (y1,...,yy) be
another solutionto (5.1). Then,fori =1, ..., J, we have

(5.13) yi < Vi

PrRoOOF The proof proceeds by induction. Namely,Aet= (1, ..., j;) be the
permutation constructed in the proof of Lemma 5.1. We assume that (5.13) holds
fori = j1,..., j;u with someM < J (in particular, forM = 0, no assumption is

needed). We want to show that (5.13) holds fet j);+1. By (5.8) and the fact
thaty satisfies (5.1), we have

KM, jyia (y4/'M+1)
=Wy

+
= k, j H (y; —Hk< min ~)jl
(5.14) ke@Z(jM+1)p JM+1|: (Fjrrsa) P 8K jarsa) Yi

+
= > pkva+l|:Hk()~)jM+l)_Hk< min iiﬂ-

. - ie8(kljy+1)
keJC](\;;l"”’jM)(jMH) "
For k € X\ (jyrs1), 8kljms1) S {1, ..., ju}, SO by the induction
hypothesis,

5.15 min L < min Vi .
( ) ie8kljmsr) i= i€d(kljm+1) Y

This, together with (5.14) and the monotonicity &, yields

+
KM,J'M+1(ij+1) = Z Pk, jy41 [Hk(ijH) — Hi (iesmlj'r,]u+1) yi>i|
keI M ()

= KM, jyi1 (S’J'M+1)-
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Thus, by the monotonicity property &y ;,, . ,, either

(5.16) Yissr = Vims
or
(5.17) max (y,f A min yi> < Vvt < Yimii-
ke:K """ jM)(jM+l) lEég(kle+1)
However, (5.17) contradicts the definition of, . ,:
Vivar = KA}l. (W) € <—oo, max (y,f A min y,-)],
. SIM+1\ T X JC,(él ----- JM)(/M ) ied(kljm+1)

so (5.16) holds. O
LEMMA 5.3. Themapping ®: D — [0, c0)’ is one-to-one.

PROOF Let w = (w1,...,wy) € [0,00)’ be given and lety = (51,...,
ys) € D be a solution to (5.1). Let = (j1,..., js) € I be such thay € D7,
in particular,

(5.18) V= V5= =5,

In light of Lemma 5.2, it suffices to show that and 7 can be constructed

as the outputy = (y1,...,y5), * = (j1,..., jj), of the algorithm described in
Lemma 5.1. Once again, we proceed by induction. We assume that for some
M < J and allm < M we have chosen in the above-mentioned algorijfre: j,,
andy;,, =y, (for M =0, nothing is assumed). We want to show that it is possible

to choose in this algorithmMH ande+1 asyMH andfMH, respectively. By

In particular, jy11 € f,l](‘jl ]M) becauser € I1. By assumptlon,

+
619wy, = X pg w5, - mn 5]

¥ ic8kl|j
keC@(sn) (kljm+1)

If k € CCm1) \ K™ G +1), then 8kl ju+1) & {ja. ., ju} and, hence,
by (5.18), mlneg(kw " Vi < ¥jus1- Thus, (5.19) reduces to

+
Wi = Z Pk, jus1 |:Hk(j/~'M+l) - Hk(. min 5}’>1|

iedk 1)
kGJ@(él """ jM)(JM+1) L+

(5.20) _ ) pijH[H (Fpsa) = Hk< min y,-)r

j ie8(kljm+1)
keJC](\;;l ,,,,, /M)(j D JM+

= KM’4/~'M+1 (S}fMH)'
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The second equation follows from the fact that

(5.21) Skljms1) St sy = juy  fork e KU1 (i)

and, hence, by the induction hypothesis= 3; for i € 8(k|jy+1). But§ € D7,
SO
Viga = max oy
]M+1 ke JC](\/;l ,,,,, ]M)(jM+1)

By (5.18), (5.21) and the induction hypothesis,fcz JC,(‘f """ jM)(]M+1), we have

nyHSy/TM:min{y;'l""’i}fM}:min{yjl""’ij}5 miﬂ Yi-
‘ ‘ ied(kljm+1)
Therefore,
(5.22) y: < max (y,f A min y,-).
s = keq UL (G oy ie8(kljp+1)

By (5.20) and (5.22),

- -1 -
(5.23) y]M+1 KM fM+1(ij+1)'
Sincey is a solution to (5.1), foyj € f,l(’l , we have
2 )
pk,jl:HkG’j) - Hk( min yz)]
keel) 8 (k1))
(5.24)

+
> | He(3;) — Hy[ min .
= (igw) pk,‘/|: (Vi) k( Skl )Yt>:|
keJ ()
Fork € XV (j), 8(k|j) S {j1. ..., jm}, SOy; = 3 for i € 8(k|j) by the
induction hypothesis. Thus, by (5.24),

+
P = E or.i| He(y;) — H, min
Wi= k’j|: k) k< e5(k|l)y ):|

kedt M ()

(5.25) [ 3 ( . >]+
> | H, v — H, min 1
= ((ZA ) Pk, j k(y]M+l) k ie/j(k‘j)yl
keIt M ()
- KM*j(nyH)

The second inequality follows from the fact thyat g(’l """ : ), S0j ¢ {j1,---» jm}
and, hence, by (5.18) and the induction hypothesiss y Yivin: Relation (5.25)

implies

-1 -1 ~ ~ U1y im)
(5.26) Ky i(w)) =Ky (K j(55,.,) <55, JegytM.
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By (5.23) and (5.26);) 41 andyj,,., in the algorithm of Lemma 5.1 may be
chosen agy;11 andyiMH. This is what we wanted to show[]

LEMMA 5.4. |imyeD’||y||_>+oo P || =—+o0.

PROOE We argue by contradiction. Suppose that the lemma is false. Then

there exists a sequengg = (y7,...,y) € D, with |y, || — +o00 asn — +o0,
and a finite constan¥ such that
(5.27) Pyl =M, n=12....

By taking a subsequence (also denotedyhy, we may assume that for some
7=1,...,j;)€ll,wehavey, e D", n=1,2,.... Let

mo=min{m € {1,...,J}:{y] },_1, . is an unbounded sequerce

By definition the seD” is bounded above in each coordinate. Again extracting a
subsequence (still calleg), if necessary, we may assume

(5.28) im y! =—oo.

n— 00 jmo

Letw, = (w],...,w))=P(y,),n=1,2,.... By (5.6) withm = mq, we have

+
5.29 o= | He (Y ) —H min y! )
(5:29) " Wi, 2 pk’]’”o[ k(y "’"0) k(feg(kjmo)y ’)}

Usodmpg—1) .
kE]Cm071 "0 (]mo)

[Recall that, by the proof of Lemma 5.3, the permutation constructed in the
algorithm of Lemma 5.1 with inpub,, = ®(y,), y» € D™, may be chosento be.]
Observe that

s . . ( 55555 mo— ) .
(5.30) S(kljmo) S {j1s---» Jmo—1} fork e mejol_l Jmo-1 (Jimo)»
and by the definition ofg,
(5.31) lim Sudym < 400, i=1...,mp— 1L
n—oo N
Relations (5.28)—(5.31) yield lign, » w;?mo = +00, because lim., _,, Hy(x) =
+oo0 for all k. This contradicts (5.27).0

PROPOSITION5.5. Themapping ®: D — [0, co)” isa homeomorphismof D
onto [0, c0)”’ .

PROOF By Lemmas 5.1 and 5.3, it suffices to prove tlatis open. The
main idea of the proof is to use the one-point (Alexandroff) compactification
of D and[0, o0)’ (see, e.g., [3], pages 92 and 93). Recall that the topology on
the one point compactificatio = X U {oo} of a locally compact Hausdorff
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spaceX consists of open subsets &f and the complements, @ of compact
subsets ofX. Let co be a single point not belonging ®”. Let D = D U {oo}

and@i = [0, 00)’ U {00} be the one-point compactifications bf and [0, c0)”,
respectively. Defin@: D — Ki by

@ (y), if yeD,
00, if y=o0.

B(y) 2 {

Lemma 5.4 implies the continuity @ atoco. Thus,® is a continuous mapping of
a compact space into a Hausdorff space and, therefore, by Corollary 2 on page 87
of [3], it is closed. In fact, by Lemmas 5.1 and 58,is a homeomorphism ab

ontoﬁi. To conclude, leU be an open subset &f and, hence, oD. Therefore,

O (U) =D(U) is open inR .. But ®(U) C [0, 00)’, s0®(U) is open in[0, o)’ .
O

6. Proofsof the main results.

PROOF OF THEOREM 3.2. By Proposition 5.5, only the second part of
Theorem 3.2 needs to be shown. Let us observe that ferd, ..., J, we have
[using the conventioku, b] = & if a > b]

W @) =W () (F" (1), 00) +0(1)
w5 (70 B
=y Wk’-(t)<F. (t), min F, (:)}
ke@(j)[ J J skl

+ W) F(t n F, 1), 00 +o(1
k,j ( )( j ( )vielsn(lklj) ;(@), )] (1)

= W(”.)t(ﬂ")t, min ﬁ.(")t] 1
Y WHo(F o, min B 0] +e@

keC(j)
) 7 (n) in 7
= Vo, OVF;7@), min F (¢
(6.1) ke%(:j)[ O,k,j( )( J (1) ies(klj) ()i|

—~ W™ (s (F\(”) 0, min E"( } 1
Y WM F ®., min F@) ] | +o(D)

Joe8 (k1))
= 2 Vo 0 F @, min F(0) | +o(1)
keC(j) ie8(klj)
() =) +
= Z pk,j|:Hk(Fj UD_Hk(fJRIkT-)Fi (ﬂ)] +o(1)
keC(j) j

=@, (F" @), ..., F"" (1) + (D).
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Indeed, the first equality in (6.1) holds by Corollary 4.7. The third one follows
from the fact that clas& customers with lead times at time& greater than
MiN; 8 k| /) Fl-(n)(nt) have not yet been in service at one of the statioass (k| ;)
and, thus, have not yet arrived at statipnSimilarly, no classt customer with
lead time at timext greater tharF(”)(nt) has ever been in service at statipnso
all such customers must be elther in queue at stgtion at an upstream station
Jo € 8(k|j). This explains the fourth equality in (6.1). The fifth one follows from
the fact that, for every € C(j) and jo € 8(k|j), we have

0< WP (n)(t)<F(")(t) min )ﬁ}”)(z)]
/o, () 7(n)
< W) (=00, Fj)) (0] = 0
by Corollary 4.7. Finally, the sixth equation in (6.1) follows from Proposition 4.1

and Lemma 4.6, together with the fact that, by definition, for every station
i € P(k), F™ (1) + /nt > y* and, hence,

Hk(fj(”)(z)+ﬁt):H< min F" )(z)+ft)

ied(klj)
By Lemma 3.1,(F"(t),..., F\"(t)) € D and, by Proposition 5.5¢ is a

homeomorphism ob onto [0, co)’. Thus, (2.25), (3.21) and (6.1), together with
the continuous mapping theorem, yield

(FEP@), ..., FP @) = o Y (W, @), ..., W™ 1)) + o))
= O YW @), ..., W) = (Ff@),..., Fi@®). O

PrROPOSITION6.1. Letj=1,...,J and T > 0begiven. Asn — oo, both

sup sup

+
FO00.00~ ¥ o Hlyv EP )= He min B0 ) |

)ERO<I<T kee(]) e/j(k‘])
and

() ~(n) =\
sup sup |\@;(1)(y, 00) — > /\k[Hk(yv F" (1) - Hk<_ min_F; (z))}
yeR0<t<T J ke () : ie8(k|j)

convergeto zero in probability.
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PROOF By an argument similar to that used to derive (6.1), we have,
uniformly in0<¢ <T,

W (1) (y, 00)

T () ()
=W () (y Vv F;" (1), 00) +0(1)

= > Wo(rvEe. min B0+

keC(j)
= 2 [V(") (t)(yVF( )(t) min F(”)(z)]
€8(klj)
(6.2) kee)
- X W (n)(t)(y\/F( ). min F(n)(t)]i|+0(1)
Joe(klj) e8(kl))
¥ (n) i B
= > vo,”(t)(va (1), i F (;)]_,_0(1)
keC(j) €8 (klJj)
F s\
- pk”'[H"(vaj Q) k( min_F; (t))] +o(1).
kee()) 80kl

Moreover, then(1) terms above may be chosen uniformlyyire R. This needs a
justification only for the last equality in (6.2). Fer> y{, thekth terms in the sums

in both the fifth and the sixth line of (6.2) are zero. Proposition 4.1 gives a uniform
bound foryg < y < y{, with yg arbitrary but fixed. Finally, the uniform bound can
be extended to alyf by Lemma 4.6. This proves the first part of Proposition 6.1;
the proof of the second part is analogous]

PROOF OFTHEOREM3.3. Letus define a mapping: R’ — M7 by ¢ (x) =
W1 (x), ..., ¥y(x)), x =(x1,...,xy),whereforj=1,...,J andB € B(R),

nOE =Y o | (1— Gi(§)) dt.

ke@(j) BO(xj,min;esk j) Xil

Observe thaty is continuous. Indeed, forj = 1,...,J and x,y € R/,
x=(x1,...,x7),y=(1,...,ys), using the fact tha} ;e px.; = 1, we have

sup [y (x)(B) —¥;(y)(B)|

BeB(R)

=Y o | (1- Gu(®))ds

keC(j) (xj,MiN; ey Xi 1Ay j,Mine k) ) il

<2 max |x —yi,

.....
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where A denotes symmetric difference. Therefore, by Theorem 3.2 and the
continuous mapping theorem, we have

(6.3) V(B @), ..., F0) = ¢ (Ff@), ..., Fi(1).
Forj=1,...,J,t>0andy e R,
Vi(Ff@), ..., FE(0))(y, 00)

=Y o,

(1-G(®)dé

ol
(YVF7 @), minjes ) £ (0]

keC(j)
_ +
= Z Ok.j [Hk(va;‘(t)) — Hk(. min Fl-*(t))]
keC(j) ies(klj)

=W} (1)(y. 00).
This shows that

(6.4) V(F{ @), ..., F5(@)) = W*@).
Proposition 6.1 yields

(6.5) sup sup |’V/\7j(")(t)(y, 00) — ¥ (FL (@), ..., F"(0)) (y, 00)| £o0
yeR0O<t<T

foreveryj=1,...,J andT > 0. Combining (6.3), (6.4) and (6.5), we have
(W, ..., W) = W*. The proof of(@!", ..., @%") = @* is analogous. [J

7. Simulation. In this section we use simulation methods to assess the
predictive value of the theory developed in the previous sections and to provide
a simple illustration of the methodology. In the previous sections we considered a
sequence of queueing networks, indexed byhereas here we want to consider a
single queueing network. We imagine that this single system is a member of such
a sequence of networks corresponding to a large value thfat is, a system with
traffic intensities close to one.

Here we show how the theoretical lead-time profile can be constructed when the
system occupancy of thah system is given for an EDF network. Suppressing the
time variabler, we recall that we denote the queue length of claas station;

by Q,(c"i and its scaled version by

Smo_ L o
Qk’j=—an,j-

Jn

We also denote the workload at statipiy W}”) and its scaled version by
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Recall that, by Assumption 2.1, the scaled workloeﬁ’%”) W(”)) converge

weakly to (Wf,...,Wy). The lead-time measurez(")(y,oo) represents the
number of clasg customers at statioﬁwith lead-time greater thamand

(n) \/_
ny, .
f ' (v/ny, 0)
Classk customers arrive with lead-time distribution given by
(7.1) P(Ly™ < Vny) = Gi(y).
We defineGy" (y) £ Gi(J5) so that

(7.2) P(Ly™ <y) =G (y)

is the cumulative distribution function of the lead times of classustomers in
the nth system. The limits of the lead-time measure processes are in terms of the
functionsHy:

(7.3) ) 2 [T (- Gen)d

y
We also define the function

o0
(7.4) HP () 2 Hk( )= [ a-6amyd
NG y
Recall that the frontier at statiohis F;”), and the scaled frontier is

1
(n) __ (n)
FJ \/_FJ .
According to Theorem 3.2,
(7.5) (F, .. FW)y= (Ff,...,F)H 2o Y Wi, ..., WD),
where® = (1, ..., ®;): R/ — [0, 00)’ is defined by
+
Di(y1,...,y) = Z pk,j[Hk(yj) - Hk( min y; )} ,

(7.6) keC(j) <8(kl))
j=1...,J

We also definad® = (o, ..., d>(J”)) R’ — [0, 00)’ by
+
oV 0non® X o0 0p - 1"( min w)]

(7.7) keC(j) ies(klj)
j=1...,J.
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Suppose that, in additioto (2.17), we have

1 1
woat'=o( ) wm wi-sti=o( )

forke C(j), j=1,...,J. Then, by (7.5) and the continuous mapping theorem,
we have, forj =1,...,J,

1 - \1"
(n) ( -(n) (n) () .
—oW(F", . FY) = Y [H(F-)—H(mln F)]
Jn o (Fy 7)) kee(,)p k(E icsw
~ ~ 1
_ () (n)
= & (FF,...,F))=W*~ R0
Therefore QJ(")(F(”), e, (")) A ](”), j=1,...,J. [The difference between

these two quantltles i® (1), but it is small relatlve to the number of customers
in the system.] Becaus&™ has the same functional form &s the proofs in
Section 5 apply tab™ as well asd. In particular,®™ is a homeomorphism of
D™ 2 /uD onto[0, c0)’ (see Proposition 5.5). Therefore,

7.8) (F™,....F/")~(@™)Yw™ .. w2 F" . FW).

According to Theorem 3.3, for evesye R andj =1, ..., J, we have, by (7.4),
(7.5) and (7.8),

Q" (v, 00) ~ V@ <ﬁ oo)

+
) n) Y -
~ Y | HP (v F™) = HM( min F,
(7.9) S k[ ¢ OV ET) = H (iezf(kj) i ﬂ

~ )| g7 () (n) (n) . =) *
~ Y M HY(VE]) - H"( min F; .

keC(j) i€s(klj)
In particular,
0" = Vn@;®)
+
7.10 ~ )L(n)|: (n) (n) H(n)( min F( )):| ’
(7.10) 2 )~ H ie8(klj)

keC(j)
j=1...,J.

Equations (7.9) and (7.10) indicate that the lead-time profiles can be approximated
by a deterministic function in terms of the parameters ofsitte system, while

the knowledge of the index is not required. The above approximations can be
verified by simulation.
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k=3 J

< k=2
e —— - -
k=1 5 1 > 2 -

— =

Fic. 1. Atwo node acyclic network with four customer classes.

7.1. A two station case. We consider a simple network with two stations
(J = 2) and four customer class€X = 4). Flows 1 and 2 visit both stations
but in the opposite order, while flows 3 and 4 visit only one station (Figure 1).

7.2. Constant deadline. For illustrative purposes, we present the special case
in which customers in clagsarrive at the system with constant deadlije that

is, G,(c”)(y) = I[yr.00)(¥). We also assume thaf > y3 > y3 > y;. We simplify

notation by writing Q;, F;, D and i, in place of Qi.”), fﬁ"), D™ and 1",
respectively. It is easy to see that in the case under consideration th&l sets
and D, defined by (3.11)—(3.13), are equal{id, 2), (2, 1)} and D®2 U p@D,
respectively, where

(7.112) D2 = {(y1, y2):y1= y2. y1 < yi, y2 < yi},

(7.12) D@V = {(y1, y2):y2> y1, y1 < ¥5. y2 < y3}.

Given Q1 andQ», one can findF; and F» by inverting the system of approximate
equations (7.10), which in our case reads

(7.13) Q1 ~r1(yf — FO) +r2l(ys — F)T — (v3 — F) 1+ 23(y5 — F)™,
(7.14) Qo~A(F1— F)t + 22005 — F2)T + (i — F2) T

Depending on values @1 andQ», there are five different formulas givirfg and
seven forF, presented in equations (7.15)—(7.26). These are

(7.15) i~ yi‘ — g,
Al
A yF 4+ Aoyl — —
(7.16) L~ 1y +A2y5 — Q2 Ql’
AL+ A2
A VE 4+ A3yh —
(7.17) FL~ 1y1 +A3y3 — 01
A1+ A3
A VE 4+ doyh 4 Ay — —
(7.18) L~ 1y] +A2y5 +A3y3 — Q1 Qz’

AL+ A2+ A3
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Fi~ Ay +A3yz — 01 A2(A2y5 + Aayy — 02)

(7.19) |
A+ A2+ A3 A1+ A2+ 2A3) (A2 + As)
(7.20) Frrys— 22,
A2
ALYE— Qp —
(721) R 1T Q2701
A1
AovE 4L AayE —
(7.22) P ) e
A2+ Ay
AV 4 Aoyt — Op —
(7.23) Fo~ 1] +A2y; — Q2 Ql’
A1+ A2
AV 4 AoyE 4+ AayE — 0o —
(7.24) Py~ ML A2+ haya — 02— 01
AMA A2+ Ay
(7.25) o MQay;+23y; — 01 | hays— Q2
| (A1 +22)(A1+ A3) A+An
(7.26) ~ MOT+A3y3 — Q1) | hays +havy — Q2

2 Mt At A2+ ra) | ALt A2+ A

To describe the function mapping the queue lengtts, Q») to the point
(F1, F») € D satisfying (7.13) and (7.14), we have divided the quadi@nto)? in
the(Q1, Q2)-plane into eight regions, I-VIII, which can be seen on Figure 2. Each
of these eight regions is mapped onto the corresponding regigill’ of D (i.e.,

I is the image of I, etc.) plotted on Figure 3. The regionfiro)? are defined by
the eight verticesA—H shown in Figure 2 and the images of these verticeP in
are denotedt/—H’ in Figure 3.

Table 1 gives the appropriate pair of formulas for the different ranges of values
of (01, 02), depending on the region i, o) in which the point(Q1, Q2) is
located.

In the various simulation experiments, we simulate the two node queueing
network, as shown in Figure 1. The external inter-arrival times and service times

Region Formulafor F; Formulafor F»

[ (7.15) (7.21)

[ (7.16) (7.20)
I (7.15) (7.23)
\Y (7.15) (7.24)
v (7.18) (7.20)
Vi (7.17) (7.25)
VI (7.19) (7.22)

Vil (7.17) (7.26)
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Q2
C S
v
Vertical
line
Line with
slope
VIIT fatda
111
B ¢
1y Horizontal
# line
v
I
1I
A
D E (93}

A=(0,0) =Myt~ v3) -+ Ma(y5 - 93),0)
B = (0, My —3)) Fa= (g — u3): da(ys — v5)
C=(0. Myl —vi) + Xy —yi) G =Myl — ), Mlys — 3) + Ao (s — ui))
D= (Mlyt —43),0) I = (Mgt — i) + Xalys — D). A2 (93 — i)

FIG. 2. Regionsof the set [0, 00)2.

2 p
A= (ui,vD)
p
T
E =
. B =(yi.v3)
Y3 y5)
F = (y5,y5)
v
v
VI
C = (y1,91)
H' = G =(y3.43) e
VIT (.7/4 B ?/4)
VIII v >
I3

FiG. 3. Regionsoftheset D.
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are all assumed to follow exponential distributions. For each simulation run,
a particular queue length combination at each n@@e= (Q1;, Q2i, O3, Q4i),
i =1, 2, is chosen. Not&D14 = Q23 = 0. The simulation run is initiated with
empty queues. Local time is accumulated when the queue length levels at node 1
and node 2 are exactly equal & and Q-», respectively. At the instant the local
time reaches a pre-specified value, 10 for the results presented in this paper, the
lead-time profiles for all the customer at each node are recorded and the local time
counter is reset to zero. The simulation continues until 50 lead-time profiles at each
node are recorded. The empirical lead-time profiles are expressed in the form of
empirical lead-time c.d.f.’s.

In the simulation we set; = A = A3 = A4 = 0.32, and uy ; = 1 for
all k, j, so that the total traffic intensity at each node is equal .@.0We
consider three cases with different combination of queue lengths and end-to-end
deadlines. The end-to-end constant deadline for the four customer classes are
denoted byD = (D1, D2, D3, D4). In Figures 4-6, the left-most dots indicate
the pointwise minimum empirical cumulative distribution function of the lead-
time profile for these 50 samples, the right-most dots indicate the pointwise
maximum, and the central dots are the average. As a function tfie ratio
(QE.”) - (fzi.")(y, oo))/QE.”) [wherec‘zﬁ.”)(y, oo) is approximated by the right hand-
side of (7.9)] is plotted as a dashed curve in these figures. We obtained the solid
curves in Figures 4-6, by replacing in the right-hand sides of (7.9) and (7.10) by
4;/0.96. This normalization by the total traffic intensity causes the theory to have
better predictive value. Indeed, with this normalization the theoretical cumulative
distribution functions and the pointwise average empirical cumulative distribution
functions are in almost perfect agreement.

In Figures 4-6, the choice @P1 and Q» is made to illustrate different profile
compositions at the two nodes. Figure 4 shows the profiles of the case when

01=(50,0,0,0), 0,=1(20,38,0,0)
and
D = (400, 300, 200, 100).

In this case only flow 1 is present at node 1, while only flows 1 and 2 are present
at node 2(F1, F») is solved by (7.15) and (7.23) (region III).
In Figure 5 the queue length levels are set at

01=(40,10, 10, 0), 0,=1(0,30,0,0)
and the deadlines are
D = (200,200,110 100).

Here, all three flows are present at node 1, while only flow 2 is present at node 2.
In this casg F1, F») is solved by (7.18) and (7.20) (region V).
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Node 1, queus length = 50

Node 2, queue length = 58
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Node 1, queue length = 50 Node 2, queue length = 50
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0.6
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Fic. 6. Profiles Mean, Max, Min and Theory, Q; = (50,0,0,0), Q0> = (50,0,0,0),
D = (500 100 100 100).

The final case in Figure 5 shows the profiles when
01=(50,0,0,0), 02=(50,0,0,0)
and
D = (500,100, 100, 100).

Only flow 1 is present at both nodes 1 and 2. In this od@&e F») is solved by
(7.15) and (7.21) (region I).

In each of these cases the figures show the excellent predictive accuracy of the
theory.
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