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LARGE DEVIATIONS PROBLEMS FOR STAR NETWORKS:
THE MIN POLICY!?

BY FRANCK DELCOIGNE AND ARNAUD DE LA FORTELLE?
EDF R&D and INRIA

We are interested in analyzing the effect of bandwidth sharing for
telecommunication networks. More precisely, we want to calculate which
routes are bottlenecks by means of large deviations techniques. The method
is illustrated in this paper on a star network, where the bandwidth is shared
between customers according to the so-called min policy. We prove a sample
path large deviation principle for a rescaled proc9§§Qn,, where Q;
represents the joint number of connections at tim&he main result is
to compute the rate functioexplicitly. The major step consists in deriving
large deviation bounds for aampirical generator constructed from the join
number of customers and arrivals on each route. The rest of the analysis
relies on a suitable change of measure together with a localization procedure.
An example shows how this can be used practically.

1. Introduction.

The model. Consider a star shaped network (see Figure 1) consisting of
links connected to the othé¥ — 1 through a central hub: there algN — 1)/2
routes of length two. In the sequel the set of links (or channels) is denoted
by 8§ ={1,..., N}, whereas the set of routes is simply the set of unordered
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FIG. 1. The (asymmetric) star network.
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two-uplesij, i, j € 4: for the sake of simplicity, we do not distinguish between
ij andji (i.e., we consider nonoriented routes), but there is no additional difficulty
to handle oriented routes. Denote By(r) [resp.q;(¢)] the number of calls (or
connections) on routg (resp. the number of calls involving channght timer.
Each link has a capacity (or bandwidth) equaldo(expressed, e.g., in bits per
second in the context of communication networks). Note ghad = >_; gi; (1).
ThenQ(t, x) = (gi;(),1, j € 8) represents the state of the network at tinvehen

it starts initially from statec. For the sake of simplicity, we shall sometimes omit
x ort when they do not play a role.

Documents to be transferred arrive on roijtexccording to a Poisson process
of ratex;;. We shall denote byr the set of active routes, that is, with; > 0. The
size of a document (expressed in bits) on raytes supposed to be exponentially
distributed with parameter;;. Each document on rouig is allocated a portion
v;j (x)/x;; of the bandwidth when the state of the network i$ience, a document
on routeij is transferred at ratg;;v;; (x). There are several possibilities in order
to allocate a fair proportion of the bandwidth to customers. A classical one is to
choose the coefficientsg; (x) according to the max—min fairness allocation.

The star network is proposed as a model for a router where the bandwidth is
shared fairly between the different connections. However, the max—min fairness
allocation is not explicit and hard to analyze at first. In order to get a more tractable
model, we focus on the min policy,

Xij— N —, if Xij >O,
vij() =4y T xi  x; ‘

0, otherwise

It has been shown in Fayolle, de La Fortelle, Lasgouttes, Massoulie and Roberts
(2001) that the system under the max—min fairness allocation is stochastically
smaller than the one with the min policy and that the network is ergodic if, and
only if,
Aij .

(1.1) Y=< Vies.

;i Mij
However, it appears very difficult to compute quantities of interest like the mean
transfer time of a document, so we turn to asymptotic analysis, especially large
deviations.

Previouswork. Lots of work has been devoted to the analysis of telecommu-
nication networks. The model (star network and min policy) is described within
telecommunication context in Fayolle, de La Fortelle, Lasgouttes, Massoulie and
Roberts (2001). In the present paper we aim at deriving a sample path LDP for the
rescaled process

n def 1

0y = {;Q(nt, [nx]), t > O}.
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Our main concern is to identify explicitely the rate function. This is a preliminary
step in order to obtain large deviation bounds in stationary regime. This issue is
discussed in Section 2.

The major difficulty comes from the fact that the coefficients of the generator
are not spatially continuous [the service ratg(x)]. It seems that one of
the first papers dealing with large deviations for processes with discontinuous
statistics is Dupuis, Ishii and Soner (1990), where the case of Jackson networks
was investigated using partial differential equations techniques. In Dupuis and
Ellis (1995) a sample path LDP is proved for a wide class of jump Markov
processes with discontinuous statistics. However, the methodology of proof uses
subadditivity arguments and the rate function is not identified; moreover, there is
a uniform reachability condition that our model does not fit. The identification
of the rate function in this general framework is still an open problem when the
dimension of the network is arbitrary. General results were obtained in Dupuis
and Ellis (1992) and Ignatyuk, Malyshend Shcherbakov (1994), where the
LDP has been established. Nevertheless, in such examples, there are at most two
boundaries with codimension one or two where discontinuity arises. Using special
features of the models and the fact that fluid limits could be completely identified,
this program was carried out, for example, in Atar and Dupuis (1999), Ignatiouk-
Robert (2000) and in Delcoigne and de La Fortelle (2002).

Structure of the paper. An example (Section 2) shows how the rate function
expression can be used to compute decay rate for tails of stationary distribution.
In Section 3 we introduce the central notionlotalized model and ofempirical
generator; the rate functions (local and global) are studied. In Section 4 the local
LDP is proved by mean of a change of measure and the identification of the local
rate function is worked out for ergodic networks. In Section 5 the sample path LDP
is stated. In Section 6 we get rid of the ergodicity assumption: in our opinion this
is the main contribution of the present paper since the methodology used allows
a treatment of more complex and realistic protocols like max—min-fair. This issue
will be investigated in a forthcoming paper.

Notation. In our settings,{Q(¢,xg), t > 0} is a Markov process with
generatorR such that, for all bounded real functighon 7R,

Rf)= Y qx,»(fm—fx) VxeZl,

yer
where
Aijs if y —x =eij,
def def C; Cj .
q(x,y) = pij(x) = Mijxij—l/\—], |fy—x=—eij,
Xi Xj
0, otherwise,

using the convention that/0 =0 (i.e., whenx;; = 0).
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[ ] saturated channel
O ergodic channel
—— active routes: A, Ao

77777 jammed routes: Al

FIG. 2. Representation of a star-shaped network: lines symbolize routes using two channels
(circles at the ends of the lines). The routes are partitioned into saturated routes (A), jammed
routes (A1)—the service rate being null on these routes since all channels belonging to A are
saturated—and ergodic routes (A ).

e ForanysetA, A° will denote its complementary arid,, its indicator function;

e D([0, T],R%) is the space of right continuous functiofis [0, 7] — R$ with
left limits, endowed with the Skorokhod metric denotedd)y

e C([0,T7, Rf) is the space of continuous functions equipped with the metric of
the uniform convergence denoted dyy

DEFINITION 1.1 (Face). Fox e ]Rf, the faceA (x) is defined by

A) E'fije R:xi; > 0).
By an abuse of notation, we will also call fage
(1.2) [yeRR:y; >0, Vije A, andy;; =0, Vij € A°}.
A partition of the routes (see Figure 2) is definedtwand
AL B ije ATk e s, ike AorjkeAl,

Ay ' ije AV e s, ik ¢ Aandjk ¢ A).
The vector space relative tb is defined by

RA Ly e RR 1y, =0, Vij e A°Y.

Results. For ergodic networks, our main result is the local linear large
deviation bounds of Theorem 1.2. The notation is explained by Figure 3.

THEOREM 1.2. Assume that Q is ergodic and let x € RT and D € RA™.
Then, writing lim; 5 .o for lim;_glims_olim._o,

. , P |
lim inf  liminf — IogP[ sup |Q(t,y) —nx — Dt| < Bn}

7,8,e>0|y—nx|<en n—>00 puT te[0,nt]

(1.3)
1
= lim sup Iimsup—logIP’[ sup |Q(t,y)—nx—Dt|<8n]
te

r,8,e—>0‘y_nx\<5n n—oo NT [0,n7]
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nx+nD T

FiG. 3. Sructure of the local linear bounds of Theorem 1.2. L(x, D) isthe cost per unit time for
the path Q(z, y) (starting near nx) to stay in the neighborhood of nx + Dt over thetimer € [0, nt].

Moreover, if A and the drift D € R* arefixed, the preceding limit in  is uniform
w.r.t. to x in compact sets of A (see Definition 1.1). The common value of these
limitsis denoted by — L (x, D) and

(1.4) L(x,D)= > [(DjjlIAij, pij(x)),
ijeA(x)UA1(x)

where

def D +VD?+ 4
1.5) I(D|r,n) = Dlo A —VD2+4u>0
(1.5) U(DIr, w) g( 5 >++u VD2 + 4 >

stands for the cost that a suitably normalized M /M /1 queue with parameters
A and u, starting far from the origin, follows the drift D [see, e.g., Shwartz and
Weiss (1995)].

Let us explain briefly the meaning of the different terms appearing(in D)
[see (1.4)]. Owing to the fact that the service ratg(x) tends to 0 when;;
becomes null, whiler; v x; remains strictly positive, the arrivals must be cut on
the routesj € A1(x) in order to keep these routes in a neighborhood of 0. The
costto do this i$;;c a,(x) Aij; iINdeed/ (0|45, 0) = 4;;. Since the arrivals are cut
on the routes;j € A1(x), the routesj € As(x) are isolated from the rest of the
network (see Figure 2) and so by (1.1) this set of routes behaves as an ergodic star
network [with R = A2(x)] since Q is ergodic by assumption. Hence, the cost for
the componentsj € Az(x) to stay in a neighborhood of 0 is null. Now locally,
the routesj € A(x) behave as a set of independ@#fM /1 queues with arrival
and service rates;; and u;;(x). The corresponding terms ih(x, D) represent
the cost that this set of queues follows the prescribed Drift

The proof is done introducing a functional so called empirical generator
consisting of @, and of the join number of arrivals on routes belonging to
A(x) U A1(x). In Section 4 large deviation bounds are obtained for the localized
empirical generator from which Theorem 1.2 is derived using an adaptation of the
contraction principle.
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Theorem 1.2 has been stated for ergodic networks. However, large deviations
bounds can be obtained for transient networks, at the cost of some more detailed
analysis. This is an important feature since it is linked with the study of networks
under max—min-fair allocation (or similar ones). The reason is that, fergouic
network under max—min-fair allocation, when some routgs A are made
saturated (i.e., for localized models), the rest of the routes (in our notatipn
can behave as tansient network, still under max—min-fair allocation: the local
rate function must include the cost for this transient network to stay near 0. This is
to the opposite of our framework, where only ergodic networks are considered, for
which the cost to stay around 0 is null. However, our methodology allows one to
compute cost for a transient network under the min policy to stay around 0 and as
a corollary the rate function without ergodicity assumptions [see (6.6)]. The result
is stated and discussed in Section 6.

Moreover, the topology of the network can be extended, as well as the length
of the routes, (but not arbitrarily) to include more realistic networks. However,
the notation becomes very heavy and our aim is to present tools [extending those
developed for polling networks in Delcoigne and de La Fortelle (2002)] in a fairly
simple way for achieving the above program.

Now, the rate functiory (-) for the sample path LDP is expressed as

T
(1.6) Ir(o) def {/0 L(p@®), o(1))dt, if ¢ is absolutely continuous

400, otherwise

REMARK. I7(-) is defined by all the valuek(x, D) with x € ]Rf andD e
RA(x) (i.e., the values treated by Theorem 1.2). Indeed, assume that forrsome
@;j (1) =0 andg;; () exists. Sincey;; (t) < ¢;;(s) for all s, this impliesg;; (t) < 0.
Then, necessarilyy;; (t) = 0. Moreover,¢ being absolutely continuous; (1)
exists for almost alt.

Define the level set

(1.7) 0.(K) E'{p e D0, T1.RR): Ir(p) < K, ¢(0) = x}.

The final result is the following theorem.
THEOREM 1.3 (Sample path LDP).Assume Q is ergodic. The sequence

{Q%, n > 1} satisfies an LDP in D([O, T],Rf) with good rate function I (-):
for every T > 0, x € R¥,

(i) for € c RT compact, U,cc @ (K) iscompactin €([0, T], RY);
(i) for eachclosed set F of D([0, T],RY),

lim sup} logP[Q" € F] < —inf{I7(¢), ¢ € F,$(0) =x};

n—oo N
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(iii) for eachopenset O of D([0, T], RY),
1
liminf —logP[Q" ; € O] > —inf{Ir(¢), ¢ € O, (0) =x}.
n—oo p ’
Its proof is discussed in Section 5.

2. Example. We would like to emphasize what kind of further results we aim
at deducing from the sample path large deviation principle. First, it seems that
the optimal paths of large deviatiamannot, in general, be calculated, but some
special solutions may be, leading to explicit expressions for the asymptotics of
stationary distribution (which is not known). This is a performance criteria of
practical value: bounds for buffer size could be optimized, or simulation accuracy
(through importance sampling using the change of measures associated to optimal
paths) could be improved.

Freidlin and Wentzell's works exposed in Freidlin and Wentzell (1984) suggest
that the tail of the stationary distribution of the linkis related tol7 (-) by the
following formula:

(2.2) lim } logPlg; > n]=— inf inf{I7(¢):¢(0) =0, ¢;(T) =1}.
n—oo p T>0 ¢

Although technical, it is reasonable to argue that the preceding equality can be
checked in our case. However, this leads to an infinite-dimensional optimization
problem. Nonetheless, by comparison with a processor sharing model, it seems
that we can have partial information. Indeed, if the optimal path leading to
the saturation of a channelis such that this channel is always the bottleneck
(i.e.,C;/x; is minimal) then the service rate can be written, for each connection

Xij

wij(x) = wijCi —=.

Xi
This is exactly the service rate for a processor sharing model which is a well-known
model [e.qg., the stationary distribution is explicit; see Baskett, Chandy, Muntz and
Palacios (1975)]. With some calculations we can fingeeessary condition for
a channel to behave like a processor sharing (having thus the same stationary
distribution decay rate). Otherwise there are more complex interactions between
channels.

To illustrate the changes in the channels behavior with the load, we estimated
the queues decay rates for different arrivals razt§§d=efx. We simulated the
network described in Figure 4 and obtained statistics for the stationary queue
lengthP[Q; = n] decay rate. These results are compared with the decay rates of
processor sharing models with the same parameters as the channel in Figure 5.

The necessary condition we told about states that queue 1 can never behave like
a processor sharing model, queue 2 can onty<4f0.292893, and queue 3 always
can. This is, indeed, what we see on Figure 5. All plain lines are lower bounds and
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channel 1

channel 2
channel 3

FIG. 4. The network studied as example. The capacities of the respective channel are C1 = 3,
Cy =2 and C3 = 1. The arrivals and document size are 112 = 12 =1, Ap3=1, up3 =2 and
Az=x, u13=1.

sometimes fit well simulation results. Queue 1 is “pushed” by 2 and then by 3;
qgueue 2 is on its own (i.e., behaves like a processor sharing) until approximately
x = 0.2, then is pushed by 3; queue 3 is always on its own. We see the necessary
conditionx < 0.292893 holds, but is not very tight. We hope this kind of study can
furnish more detailed results and holds for other policies.

queue length decay rate for a 3 branches star network
1 T T T T T

09 + 4
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@ 08 XX,X/X’X i
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Fic. 5. Comparison between decay rates obtained by simulation to processor sharing models with
the equivalent parameters. Smulations were stopped at time T = 108,
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3. Localized empirical generator, entropy and therate function.

3.1. Localized empirical generator. Takex € RT and D € RA™. We are
interested in computing large deviations bounds of the form (1.3) (i.e., linear
bounds as presented in Figure 3). In order to prove Theorem 1.2 we introduce
a functional which allows one to measure how the different arrival rates should
be modified in order that the rescaled proce€gsfollows a prescribed driftD.
Moreover, the explanation exposed just after the statement of Theorem 1.2
suggests that the transition rates of routes indexetldgy) should not be modified
and so it is useless to measure the arrivals on routes belongifg(ig. Let us
introduce the localized empirical generator at pointas well as suitable state
spaces associated to this process:

DerFINITION 3.1 (Localized empirical generators). Lét be a face and
denote:

e A;(t), the number of arrivals on routg till ¢;

o the restrictiond® (1) £'(4;;(1), ij € A UA1);

o GM=(2A%(r), £=£0), the localized empirical generator on the face

The setl"® of localized empirical generators is the set of elemgnts, D) with
D € R® satisfying:

(I) aij >0VijeAUA;,

(3.1) (i) ajj—D;j>0VijeAUA;.

The spacd™” is equipped with the distaneedefined by

dG,Gh"E" S jaj—d,l+ Y IDj-Dyl  VG,G er.

ije AUA ijeER

The inequalities (i) and (ii) in (3.1) refer, respectively, to the mean number of
arrivalsa;; and to the mean number of deconnections per unit tiae; D;; being
positive.

Since it is difficult to analyze at first the behavior @1r) as in (1.3), we shall
first establish large deviation bounds for the event

(3.2) EY) (x.G) ENGA® ¢ B(G,8), sup |Q(1,y) —nx — Dt| <én |,

vy te[O,nt]
where B(G, §) is the ball of centerG and radiuss [within the metric space
(2™ 4)]. As it will emerge, strong constraints must be imposedsom order
that the evenffg’g,y(x, G) occurs at a large deviation scale. More precisely, the
arrivals must be cut on routes belongingAe(x).
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LEMMA 3.2. Takex e Rf and G = (A, D) e TAW, such that D € RA™ . If
thereexist m and p such that

xpn=0 and x,>0, and ap,,>0,

then E§”§ y(x, G) almost never occursat a large deviation scale, that is,

(3.3) I|m lim supi sup IogIP’[Eing L, G)] =~
8,650 n—soo NT |y_px|<en
PrROOFE The proof relies on a change of measure, as in Section 4.1. In fact, on
Eing ,(x, G) the service rate on routem tends to 0 when the different limits are
taken. Since orEi"g (x, G), the arrival process is not cut on royte:, the cost
to keep the componerptm of the rescaled process near 0 is infinite. Details are
similar to the proof of the upper bound (see Section 4.2) and are omitfed.

Lemma 3.2 states that in order to prove large deviation bounds for the localized
empirical generator, it will be sufficient to deal with the following subspace
of TAW,

DEFINITION 3.3. 6% denotes the set of localized empirical generators
(A%, D) such that:
(i) DeRA,
(3.4) (i) a;j=0VijeAy,
(i) a;j >0anda;j — D;; >0VijeA.
In this settinggA will represent the closure &f”.

Owing to Lemma 3.2, it is sufficient to deal with empirical generators
satisfying (ii). In order to prove the large deviation local bounds, it will be sufficient
to deal with empirical generators such that arrival and service rates are not cut,
for ij € A(x), hence, condition (iii). A simple continuity argument will allow to

extend the bounds obtained f6re 2™ to G € ™.

3.2. Correspondence between localized empirical generators and star net-

works. LetG = (A, D) e gA be a localized empirical generator. It is associated
with a unique localized star netwotk;;, 1;j (y), y € Rf) by the following rela-
tions:
() hij=aijVij € AUAq,
(i) Aij=x;; Vij € Ao,
(35) L L )
(iii)  fiij(y) =hij — Dij Vij € AUA1, Vy eRE,

(V) fiij(») = pij(y) Vij € Az, ¥y € RE.
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Let us describe the behavior of this network when it starts frorfwith
A = A(x)]. In this case the routes belonging &» behave as a star network of
the type presently studied and the parameters of the routes belonging to this set
are left unchanged. Moreover, they are independent from the rest of the network.
Indeed, ifij € Ay, thenx;; = 0 for all k such thatk ¢ Ao (actuallyik € A1; see
Figure 2), hence, the constraints imposedbimsures thak;; = 0. Hence,

) . Wi K
ij (Q(s)) = Qij(s) Sikens Qik(s) " 2 jkens Qjk(s)

proving the asserted independence. Moreover, the network consisting of the routes
belonging toA» is ergodic when the initial network is. Indeed, for all ergodic
channel (see Figure 2),

Vij e AS(x),

i _ Moy M,
- ;.

jrijens i jrijen, i jes M

Besides, routes belonging @ behave like independemtf/M /1 queues up to
the initial conditions, whezas the routes indexed ky; remain null. Now, the
parameters have been chosen so that:

LEMMA 3.4. Assumethat Q is ergodic. Let x € RY, G = (A, D) € 2™,
a localized empirical generator, and denote P the law of its associated star
network. Then, for all <,

lim inf liminf P[E®)(x, G) N {A;;(nT) =0Vij € A1(x)}]=1.

8,e—~>0|y—nx|<en n—>00

PrROOF The proof is omitted: it is a classical fluid limit.C]
3.3. Entropy.

DEFINITION 3.5. Letx € Rf, R(x) = (Aij, nij(x)) denotes the generator

of the star network ak, G = (A, D) € gA™ be a localized generator and
(Aij, i (y),y € ]Rf) its representation as a star network. The relative entropy
of G with respect taR (x) is

HGIR®) = > IyGujllnig) + Ip(fijllpwij (x)),
ijeA(x)UA1(x)

wherel,(v||2) is the relative entropy of Poisson processes of intensitiasd A
defined by

(3.6) 1,(v][A) d:efv|0g£—v+)u,

with the conventior§ = 0 and 0log 0= 0.
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The entropy has an easy interpretation in terms of information theory: it can be
defined as thenean information gain. H (-||R) is decomposed as the sum of the
information gain for the arrival$, (4;;|1;;), the information gain for the service

time 1, (i || pij(x)).
LEMMA 3.6. For fixed x, H(-||R(x)) iscontinuouson g“").
PROOF lItis an easy consequence of the expression (316).
3.4. Thelocal rate function L(x, D).

DEFINITION 3.7. The local rate functiof (x, D) is defined by
(3.7) L. D)E inf  H(GIRx) ¥DeRAW,
GEfrisy (D)

where fa () : §2™ > RAW s the projectionf, ) (G) = D.
It appears thaf.(x, D) is the cost for a set oM /M /1 independent queues

indexed byA (x) U A1(x) to follow the prescribed drifD when the queues are far
from all boundaries. A simple computation yields

D+ VD?+ 4
l(D||A,M)(j=efDIog< + 2x+ “)+x+u—¢02+4mzo

for the costthat &7/ M /1 queue with parameteksandu follows the drift D [see,
e.g., Shwartz and Weiss (1995)]. Using this remark and the idgdify., 0) = A,
one can deduce the explicit representation (1.4)Ifor, D) [which is equal to
(3.8) under the constraim;; = u;;(x) =0 forij € A1(x)].

In equations (1.4) and (3.7),(x, D) is only defined forD € RA™ . In order
to study the properties of the rate functiép(-), it is convenient to extend the
definition of L(x, D) for all D, suchthatD;; > O forallij € A°(x) by

def
(3.8) L, D)Z Y U(Dyjllnij, pij(x))-
ijeA(x)UA(x)

PrRoOPOSITION3.8. The local rate function L(x, D) possesses the following
properties.

(i) Itispositive, finite, strictly convex and continuous with respect to D, such
that D;; > Ofor all ij € A(x). It has compact level sets;
(ii) thereexists M € R such that

L(x,D)>3|D|log| D]  ¥xeR}, V|D| = M;
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(i) for afixed D and a prescribed face A, L(x, D) is continuous for x € A
[see (1.2)];
(iv) L(x, D) isjointly lower semicontinuousw.r.t. x and D.

PrROOF Properties (i) and (ii) are obvious from (3.8).

(iii) is clear from (3.8), noting that the functions;(x), ij € A, are continuous
for x belonging to the fac&. Moreover,A1(x) = A1 is constant forx € A.

Let (x™, D™) tends to(x, D). First, it is clear that forn large enough,
A(x) C A(x™) and alsoA (x) U A1(x) € A(x™) U A1(x™). Hence, sincé is
positive, for sufficiently large:,

3.9) L. DMz 3 D g (7))
ijEA(x)UAL(x)

Now, A;; > 0 (sinceij € R) sothat(-||;;, -) is continuous. Moreovep,; ; (x ™) —
wij(x) Yij € A(x) U A1(x). Therefore the right-hand side of (3.9) converges to
L(x, D) and the lower semicontinuity (iv) is proved

3.5. The sample path rate function I7(-).

PROPOSITION 3.9. The rate function I7(-) defined in (1.6) possesses the
following properties:

(i) Assume I7(¢) < K for some K. Then, for all € > 0, there exists § > 0
independent of ¢, suchthat for any collection of nonoverlappingintervals|z;, ;1]
in [0, T] with Yjti+1—1; =3,

D le(tjv1) — o)) < €
J

(i) Ir(-) islower semicontinuousin (D([0, T1,RF), dy);

(i) for C ¢ R compact, U,cc @ (K) iscompactin ([0, T1, RY) [see (1.7)
for the definition of the level set @, (K)];

(iv) consider an absolutely continuous function ¢ with I (¢) < oo. Then, for
all € > 0, there exists a piecewise linear function ¢, such that:

(@) de(@e, @) <,
(b) I7(pe) <I7(p) +e.

PROOF  One proves (i) using Proposition 3.8(ii) in a way similar to Lemma 5.18
of Shwartz and Weiss (1995).

In order to prove the lower semicontinuity &f (-), (i) shows it is sufficient to
consider sequences of absolutely continuous functions. Sin&x[@n 7], ]Rf),
the metricsi. andd,; are equivalent, one can uge Now, using Proposition 3.8(ii),
the fact thatL (x, D) is lower semicontinuous ix, D) and convex with respect
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to D by Proposition 3.8, (ii) is proved by means of Theorem 3 of Section 9.1.4 in
loffe and Tihomirov (1979).

(iii) is a consequence of (i) and (ii) [see Proposition 5.46 of Shwartz and Weiss
(1995)].

The proof of (iv) is a simple adaptation of Proposition 6.3(4) of Delcoigne and
de La Fortelle (2002). O

4. Large deviations bounds for the localized empirical generator. In this
section, we aim at proving the following theorem:

THEOREM 4.1. Let x € R and G = (A, D) € g“") be a localized
generator. Then

— (n)
H(G||R(x)) = I|m_>0|) ,LQLenhnrmpof — IogIP[ET 5.y, G)]
= lim  sup limsup— IogIP’[Ey’g L, 6],

7.0,6>0)y_px|<en n—oo NT

where Ei"g) (x, G) isthe event defined in (3.2). Moreover, if a face A and a drift
D e R” are fixed, then the preceding limit in 7 is uniform with respect to x in

compact setsof A (see Definition 1.1).

4.1. An exponential change of measure. Fix an empirical generatoG =
(A, D)= (hij, fuij(»), y eRF) e "™ and denote by the following:
e N;, the number of jumps of the process ill
e Q(k)={Q;j(k), i, j € 8}, the embedded Markov chain at tirke N. We shall

distinguish between discrete and continuous time by ukifay discrete and
or ¢ for continuous time.

Define the following:
e The mapping:: Zf x ZR > R by

Aii . -
|Og)\—l.]., Ify—x=el-j andkij>0,
def )
h ii . -
(x,y) = lo Hij (x)’ if y —x=—e;; andji;;(x) > 0,
wij(x) ‘ ‘
0, otherwise

¢ The compensatdk : Z7 — R by
K@) €Y g (e -1)

yeZR

= Z (hij — hij) + Z (fij (x) — pij(x)).

ijeR ijeR

(4.1)
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e The process

def

N,—1 p
M, = exp[ > h(Qk), Ok + 1)) —/0 K(Q(s))dv}.
k=0

Note that the compensator is always bounded, sothatkes only finite values.
SinceK has been exactly defined so that

K(x)= —E[ex Z h(Q(k,x), Q(k + 1, X))H ,
t=0
it is easily checked that the derlvatlve BfM,] att = 0 is null (note that the
derivative is independent ak, so that it is dropped). Then using the Markov
property, one can get that the derivative is null forraH 0, so that

E[M,] =1
Using again the Markov property, this proves that
E[M;|Fs] = Mg forallt > s >0,

hence{M;, t > 0} is a martingale w.r.t. the natural filtraticf .
Then define a new probability measure by

BB L'B[15M] VBeF.
Itis a matter of routine to show that undErX is again a Markov process. In fact,
underP, the system behaves like a star network, where the arrival and the service
rates at node;j are respectively given by;; andi;;(y) (whence the notation).

REMARK. The probability measuiis not necessarily absolutely contlnuous
with respect toP. This is the case, for instance, if for somge R, i;; =0
(whereas,;; > 0).

4.2. Proof of the upper bound of Theorem 4.1 SinceP is not necessarily
absolutely continuous with respect g in order to prove the upper bound, we
introduce a sequence of change of mea$Bfe, » > 0} such that

i’ >0 and nna,\("):i-j Vije A(x)UA1(x),
T]—)
~ ()

le] >0 and |ImM(n)=pLij(x) Vij e A(x).

In this setting,{M", ¢ > 0} is the martingale definin™ with respect taP,

and ™ (x, y) and K (x) are the functions used to defined'” according to
Section 4.1. NowP™ andP are mutually absolutely continuous and

(4.2) PlES) M)

" &, 6] =E"[1

(EY .ol
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(

Let us majorizeMP)~1 on E™

t,S,y(x’ G) when|y — nx| < en. First, recalling

Aij = Aij forij e Ao
and
ij (v) = wij (y) forij € A1U Az andy e RT
one has the following bounds:
Nur—1

- > h"(Qk), Ok + 1))

k=0

i
S—I’ll’( Z ;1,-‘,-Io Y

g
ijeA(x) SUR.¢[0,n7] Hij (Q(5))

(4.3) 3
- i
+” > Aijlog A,-,-)
ijeA(x)UAL(x) <
alm 3
+nr8< > |log: a ‘4— > log - )
l/GA(X) InfSG[O,nT] l‘l’l/(Q(s)) l/GA(x)UA]_(X) )"l/
Moreover, the compensatér is bounded in (4.1) by
nt
| kP@w)as
4.4)"°
S0 DN RV ENIEDS (ﬂ?}-” - nf T]u,;,(Q(s))).
ijeA(x)UA1(x) ijeA(x) ’
Besides, orEi’fg’y(x, G), we have forij € A(x)

0<puij(x)=lim inf  liminf inf ],ul-j(Q(s,y))

7,8,e—>0|y—nx|<en n—>00 se[0,nt

= |im sup limsup sup u;;j(Q(s,y)).

7,6,e—~>0 |y—nx|<en n—>00 se[0,nt]

(59 oy YL boundings\? using (4.3), (4.4) and (4.5)

and taking into account the order in which the different limits are taken, the
representation formula (4.2) yields

Finally, majorizing1

1
lim limsup— sup IogP[Ei’fg’y(x,G)]

7,8,6>0 n—soo NT ly—nx|<en

A
< — Z k,-jlog%—kg-])—{—kij
ijeA(x)UA1(x) Lt
~ (1)

- Mij -
— Z “1(7) log — lé — M,(Jr]) + wij(x).
ijeA(x) i (x)
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The proof of the upper bound is concluded lettipntend to O.

4.3. Proof of the lower bound of Theorem4.1 TakeG € 2™ and denote the
event (appearing in Lemma 3.4)

def

FY x,6)E

o3y E")(x,G)N{A;;(nT) =0Vij € A1(x)}.

Although P is not absolutely continuous w.rle, by definition ofgA™), %,; > 0
andii;; >0Vij € A(x) so thatP is absolutely continuous w. rl on Fr(f‘a),y(x, D)
and

PE")

x5 G = PR (x, 6]

> inf MHP[F (x.6)].
weF" (x.D)
By Lemma 3.4P[Ff(f’5),},(x, G)] tends to 1. Therefore, reversing the inequalities
obtained for the upper bound yields

1
lim liminf = inf logP[E) (x,G)]

7,8,e>0 >0 pnT |y—nx|<en
~ '):U ~
>— > kjlog o A
ijeA(x)UA1(x) ij
. fij .
— Y fijlog l(/ — fij + pij (x).
ijeA(x) 1ij (x)

This concludes the proof of the lower bound where §A™.

ConsiderG € §" and defineG© by & €'%;; + & andji €'y + ¢, for
ij € A(x); otherwise, the coefficients are the same. TGén belongs teg ™ for
¢ > 0, it converges t@; and its entropy converges (G || R(x)) by Lemma 3.6.
Moreover, the driftsD = (%;; — fi;;) andD® = (X7 — (") are equal.

For anyeg > 0 there existg1 > 0 and§; > 0 such that, for all < ¢ < ¢1 and
0< 48 <é1, B(G®,8) Cc B(G,8) and H(G®||R(x)) < H(G||R(x)) + &o. For
the sake of simplicity, we shall deno®® by G’. SinceD’ = D, we get theiime
uniforminclusion

EY (x.G)CEY)

@6 Vr=0.

It yields, using the decrease "lg,’y(x, G') with &',

1
lim liminf — inf logP[E"} | (x,G)]

e—>0 n—>00 puTt |y—nx|<en

. o1 .
> lim liminf — inf IogIP’[Ei";,y(x,G/)] Vt>0.

§',e—>0 Nn—=>00 nT |y—nx|<en
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Using the lower bound fo6’ € ™) and the uniformity over time of the previous
bound, by I¢ting T tend to 0 we deduce that (dependingsghthere existgg such
that, for all 0< 7 < 19,

1
lim liminf — inf logP[E")

€—~>0 >0 pT |y—nx|<en .8,y

(x,G)] > —H(G'|IR(x)) — 0.

Now recall that the entropy is bounded (by continuity) wit&n— G so that there
is no problem wheid decreases, for all @ t < 1,

fim liminf = inf logP[E") (x,G)] > —H(G|R(x)) — 2so.

§,e—~>0 n—>00 nT |y—nx|<en T8,y

Since this is true for anyp, we get the lower bound fa®,

1
lim liminf = inf logP[E")

7,8,e>0 n—>X T |y—nx|<en T4,y

(x,G)] > —H(G'|R(x)).

Theorem 4.1 is proved for any € g“”.

The uniformity of the limit stated in Theorem 4.1 is easily checked. Nonethe-
less, this uniformity is clear as far asevolves on compact sets of some fate
Indeed, ifx;; goes to O for somej € A, thenu;;(x) possibly vanishes and diffi-
culties can appear.

PROOF OF THEOREM 1.2. Now Theorem 4.1 implies the large deviations
local bounds of Theorem 1.2. Moreover, if a fakeand a driftD € R are fixed,
then the limits in (1.3) inc are uniform w.r.t.x in compact sets of\. The proof
relies on a simple adaptation of the contraction principle, similarly to the proof of
Theorem 7.2 of Delcoigne and de La Fortelle (2002). Details are omitted.

5. Samplepath LDP. The proof of the sample path LDP is done in two steps
which are briefly recalled. Using Markov property, Theorem 1.2 and the continuity
of L(x, D) with respect tox € A(D) for fixed D, large deviations bounds are
established for the probability that the process stays near some linear path.

PROPOSITION 5.1 (Linear bounds). Let x € R¥ and D € R®, satisfying
x+ DT € Rf. Denote ¢ the function such that ¢(¢) = x + Dt for all ¢t € [0, T].
Then

m iminf} inf Iog]P’[ sup |Q(t,y)—n<p(t)|<6n]

lim |
8,e—~0 n—>00 p |y—nx|<en te[0,T]

—Ir(p) =

= lim Iimsup} sup Iog]P’[ sup |Q(t,y)—n<p(t)|<8n]

8,620 n—oo M |y_px|<en 1€[0,T]
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ProoF.  Due to the fact that the intensify;; (x) is not bounded away from 0,
this proof is quite involved. This is where the technical uniform reachability
condition of Dupuis and Ellis (1995) is used; but it does not hold in the present
model, even if the final result is the same. It is discussed in some detail in Section 4
and Appendix B of Delcoigne and de La Fortelle (2001}

Fromlinear pathsto LDP. The sample path local bounds of Theorem 1.3 are
now proved for linear path(Proposition 5.1). There@some steps to reach the
LDP, which we outline here.

First, the local bounds are extended to piecewise linear paths. Using the Markov
property, the proof looks very much like that of Proposition 5.1.

Second, the local bounds are extended to absolutely continuous paths with finite
entropy, using the properties bf (-). Notably points (ii) and (iv) of Proposition 3.9
imply that for an absolutely continuogswith I7(¢) < oo, there exists a sequence
{¢n, n > 1} of piecewise linear paths satisfying

Jim de(¢n,9) =0 and  1im I7(¢a) = I7 ().

The next step is to prove the exponential tightness of the seqyent@ (nt,
[nx]), n > 1} over finite interval of time (uniformly fox belonging to a compact
set). This is done, for instance, in Dupuis, Ellis and Weiss (1991). Finally,
Theorem 1.3 is proved. These last two steps use various properties of the rate
function I (-) and Proposition 3.9. The reader is referred to Section 5 of Dupuis
and Ellis (1995) for details.

6. LDP without ergodicity assumption. Theorem 1.2 states large deviation
bounds for ergodic networks. However, at the expense of cumbersome notation,
it is possible to compute these bounds directly without ergodicity assumption
introducing a more detailed empirical generator. For the ease of the exposition,
the study was first performed for ergodic systems. We show now how one can
compute, in general, (x, D). The discussion after Theorem 1.2 explains why the
main difficulty to overcome is to compute the cost for an arbitrary star network
under the min policy to stay in a neighborhood of 0.

PROPOSITIONG.1. Let Q benot necessarily ergodic. For all © > 0,

lim inf I|m|nfilog]P’[ sup |Q(t,y)|<6n]

§,e—>0|y|<en n—>X te[0,nt]
1
= lim _sup limsup—IlogP| sup |Q(t,y)| <dn|.
8,6>0|y|<en n—oo NT te[0,nt]

The common value of these limits is denoted by — L (0, 0) and

(6.1) L(0,0) = mf Z VP)"Z] «//Ll]vlj) mf Z l(Ol|}\'l]a/’Ll]Ul])7

IJER IJER
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wherel(-|-, -) isdefinedin (1.5)and the set V by

(6.2) vEIL eRR: Y vy < vies|.

jes

Note that Proposition 6.1 is a bit stronger than equality (1.3) of Theorem 1.2
applied tox = D = 0, since the timer is not necessarily short. Besides, the rate
function L(0, 0) is not explicit, but is an algorithmically fairly simple problem
since it is a convex program W.ry/v;;.

6.1. Proof of Proposition 6.1 As in the ergodic case, the proof relies on
four steps: the introduction of a suitable empirical generator, the association of
a star network to each empirical generator, the proof of large deviation bounds for
empirical generator and finally, the proof of Proposition 6.1 using an adaptation of
the contraction principle.

6.1.1. Empirical generator. This process is a bit different than the one defined
in the ergodic case (see Definition 3.1). It takes into account the sole case
x = D =0, butin the transient case.

DEFINITION 6.2. The empirical generatdf, is the functional defined by

def

G, & (%Am, %/0 v(Q(s))ds),

wherev(x) dzef(v,-‘,- (x), i, j € 8). The sef” of empirical generators ﬂRf x V;its
elements will be denoted by = (A, v). It is equipped with the distaneedefined
by

d(G.GYE Y laj; —all+ Y vy -l VG,Gel.

ijeR ijeR
Large deviation bounds are established for the event [similarly to (3.2)]

def

(6.3) E™ G E

.06 @6, e BG.0). sup 106 <én ).

te[O,nt]

where B(G, §) is the ball of centelG and radiuss. Roughly speaking, when
vpm = 0 the service rate are cut on royter and so some constraints must be
imposed oM. More precisely:

LEMMA 6.3. TakeG = (A, v) e I'. Ifthereexist m and p such that

vpm =0 and ap, >0,
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then Ei"g ,(G) almost never occurs at a large deviation scale, that is,

1
lim limsup— sup logP[E")

7,6,e>0 n—soo NT ly|<en I,B,y(G)] S
PrROOF The proof is similar to the proof of Lemma 3.2(]
By Lemma 6.3, it is enough to deal with the following subspack .of

DEFINITION 6.4. 4G denotes the set of empirical generatar, v) such that:
(I) ajj = 0, Whenv,-j =0,
(II) Zj Vij < C,‘ Vi.

g, stands for the closure §f.

6.1.2. Correspondance between empirical generators and star networks. Let
G = (A,v) € §. Itis associated arrival and departure rates

Xij d=ef aij Vij € R,
- def - ¢ Cj .
ij(y) = fijyij— A —L1y,-0  Vij€R, Yy eRE,
Yi Vi '
where
- def i Vij such that;; > 0,
Mij = Vij ’
0, otherwise

Then(Xl-j, mij(y), y e Rf) simply describes a star network under the min policy
where the arrivals intensity and the duration of calls on raéytare respectively
given byk;; andji;;.

Similarly to Lemma 3.4, we now prove the following lemma:

LEMMA 6.5. LetG=(A,v)€§ and P the law of its associated star network.
Then Q isergodic under P. Besides, for all z,
(6.4) lim inf liminf B[E")

=1.
8,e—>0|y|<en n—>00 t,S,y]
PROOF.  Since G € §, the ergodicity condition (1.1) are easily checked
for (A;;, i), so thatQ is ergodic undei®. Moreover, a straight application of
the ergodic theorem yields

(6.5) jim 2 tv,-‘,-(Q(s))ds = ’\i —v;  Vij.

t—o0 t Jo ij

Equation (6.4) is, thus, just a statement about fluid limitsl.
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6.1.3. Entropy and local bounds.

DEFINITION 6.6 (Entropy). LetG = (A, D) € 6 be an empirical generator
and(a;;, i1;;) its representation as a star network. The relative entrofgy with
respect tar, the generator of the initial star network is

H(GIR) = Y (1p(hijlin) + 1p(hijllvij i),
ijeR
wherel, is the entropy of Poisson processes defined in (3.6).

PROPOSITIONG.7. Let G = (A, v) € § bean empirical generator. Then

1
—H(G|[R)= lim inf liminf —IlogP[E") (G)]

I
8,e—>0|y|<en n—>00 pT

. . 1
= lim _sup limsup— IogIP[Eg’g,y(G)],

8,6>0|y|<en n—oo AT

where £

7.5,y(G) isthe event defined in (6.3).

PROOF The proof is similar to that of Theorem 4.1 and will not be repeated.
Note simply that the lower bound is first proved #6re 4 using, in particular,

Lemma 6.5. It is then extended to &lle § using the continuity of the entropf .
O

PROOF OFPROPOSITIONG6.1. Details are similar to the proof of Theorem 1.2
and, thus, omitted. Note that

L(0,0) = inf H(G|R).
Ge§

TakingG = (A, v) € § and minimizing w.r.tA yields (6.1). O

Taking into account Proposition 6.1, this leads to the following expression
for L(x, D) for a network without ergodicity condition and f& e RA®):

(6.6) L(x,D)= > l(Dijllkij,Mij(X))—i-in{/ > LOlAij, pijvij),
ijeA(x)UA1(x) VSV ijena)

whereV is defined in (6.2).

REMARK. At the expense of heavier notation, this theorem could have been
derived at once, as in Section 4 studying the following more detailed empirical
generator

1 1 r! 1
L= (;Am, . /o Vaye) (Q(s)) ds, ;Qf),

wherevy, ) = (v (), ij € Aa(x), y e RT).
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