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THE TAIL OF THE STATIONARY DISTRIBUTION OF A RANDOM
COEFFICIENT AR(g) MODEL!?

BY CLAUDIA KLUPPELBERG ANDSERGUE|I PERGAMENCHTCHIKOVZ
Munich University of Technology and Université de Rouen

We investigate a stationary random coefficient autoregressive process.
Using renewal type arguments tailor-made for such processes, we show that
the stationary distribution has a power-law tail. When the model is normal, we
show that the model is in distribution equivalent to an autoregressive process
with ARCH errors. Hence, we obtain the tail behavior of any such model of
arbitrary order.

1. Introduction. We consider the following random coefficient autoregres-
sive model:

(1.1) Yn =0nYn—1+ -+ 0gnYn—gq +&n, neN,
with random variables (r.v.s};, = a; + o;n;,, Wherea; € R ando; > 0. Set

an = (a1, - - -, qun)/a M= M, --» nqn)/7

where throughout the paper all vectors are column vectors afhddénotes
transposition. We suppose that the sequences of coefficient végtossy and
noise variabless, ),.cn are independent and both sequences are i.i.d. with

(1.2) E&=Eni1=0 and E&#=Ep3 =1, i=1...,q.

We are interested in the existence of a stationary version of the pro¢essy,
represented by a r.ws and its properties. In this paper we investigate the
tail behavior

(1.3) P(yoo > 1) ast — oo.

This is, in particular, the first step for an investigation of the extremal behavior
of the corresponding stationary process, which we will study in a forthcoming
paper. Stationarity of (1.1) is guaranteed by condition (DO) below. To obtain the
asymptotic behavior of the tail of,, we embedy,),cn into a multivariate setup.
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972 C. KLUPPELBERG AND S. PERGAMENCHTCHIKOV

SetY, = (yn, ..., Ya—g+1)". Then the multivariate procesg,,) can be consid-
ered in the much wider context of random recurrence equations of the type
(1-4) Yy =AYy—1+n, neN,

where(A,, ¢x)neN IS an i.i.d. sequence, the, are i.i.d. randontg x ¢)-matrices
and thez, are i.i.d.g-dimensional vectors. Moreover, for everythe vectory, 1
is independent ofA,,, Z,).

Such equations play an important role in many applications as, for example, in
gueueing; see [4] and in financial time series; see [8]. See also [5] for an interesting
review article with a wealth of examples.

If the Markov process defined in (1.4) has a stationary distribution¥fahds
this stationary distribution, then certain results are known on the tail behavkor of
In the one-dimensional casg £ 1), Goldie [10] has derived the tail behavioriof
in a very elegant way by a renewal type argument: the tail decreases like a power-
law. For the multivariate model, Kesten [14] and Le Page [17] show—under certain
conditions on the matrices,—thats* P(x'Y > ) is asymptotically equivalent to
a renewal function, that is,

o
(15) APEY>1)~Gx,t)=E;» g t—v,)  ast— oo,
n=0
where “~” means that the quotient of both sides tends to a positive constant. Note
that if we setx’ = (1,0, ..., 0), then we obtain again (1.3). Heg€-, -) is some
continuous function satisfying condition (4.1},,),>0 and(v,),>o are stochastic
processes, defined in (1.10) and (1.11).
In model (1.1) we have, = (§,,0,...,0) and
(1.6) A= (Iq—l 0 ) , neN,
wherel,_1 denotes the identity matrix of ordgr— 1.
Standard conditions for the existence of a stationary solution to (1.4) are given
in [15] (see also [11]) and require that

(1.7) Elogt |41l <oco and Elog™|¢1] < oo
and that the top Lyapunov exponent
(1.8) 7=n|Lmoon—1 log|A1--- Ayl <O.
In our case, conditions (1.7) are satisfied. Moreover, we can replace (1.8) by the
following simpler condition; see, for example, [20].
(DO) The eigenvalues of the matrix
(1.9) EA1® A

have moduli less than one, wherg
of matrices.

denotes the Kronecker product
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In the context of model (1.1) under the assumption that, for any 1,
det(A,) # 0 a.s., the processes,),>o and(v,),>o are defined as
/ xr/z—lAn x/Al"'An

(2.10) xpo=x¢€S, X, = = , neN,
"X _qAnl X AL Ay

and

n
U0=0, vn=Zui=|og|x/A1"'An|a
i=1

(1.11)
up =log|x, _1Anl, neN.

Here| - | denotes the Euclidean normlif and|A|%2 =tr A A’ is the corresponding
matrix norm; we denote, furthermores, = {z € R?:|z| = 1} and X = x/|x|
for x #0.

Since GARCH models are commonly used as volatility models, modelling
the (positive) standard deviation of a financial time series, Kesten’s work can be
applied to such models; see, for example, [6]. Kesten [14, 15] proved and applied
a key renewal theorem to the right-hand side of (1.5) under certain conditions
on the functiong, the Markov chainx,),>o and the stochastic procegs,),>o;

a special case is the random recurrence model (1.4) Rith, > 0) = 1, for

all n e N. By completely different, namely, point process methods, Basrak, Davis
and Mikosch [1] show that for a stationary model (1.4)—again with positive
matricesA,,—the stationary distribution has a (multivariate) regularly varying tail.
Some special examples have been worked out as ARCH(1) and GARDH(1
see [10, 12, 19].

The random coefficient model (1.1), however, does not necessarily satisfy the
positivity condition on the matrices,;; see Section 2 for examples. On the other
hand, it is a special case within Kesten’s very general framework. Consequently,
we derived a new key renewal theorem in the spirit of Kesten’s results, but
tailor-made for Markov chains with compact state space, general mattices
and functionsg satisfying condition (4.1) (see [16], Theorem 2.1). We apply this
theorem to the random coefficient model (1.1).

The paper is organized as follows. Our main results are stated in Section 2.
We give weak conditions implying a power-law tail for the stationary distribution
of the random coefficient model (1.1). For the Gaussian model (all random
coefficients and noise variables are Gaussian) we show that model (1.1) is in
distribution equivalent to an autoregressive model with ARCH errors of the same
order as the random coefficient model. Since the limit variable of the random
recurrence model (1.6) is obtained by iteration, products of random matrices have
to be investigated. This is done in Section 3. In Section 4 we check the sufficient
conditions and apply the key renewal theorem from [16] to model (1.1). Some
auxiliary results are summarized in the Appendix.
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2. Main results. Our first result concerns stationarity of the multivariate
process(Y,).en given by (1.4). We need some notions from Markov process
theory, which can be found, for example, in [18]. The following result is an
immediate consequence of Theorem 3 of [9].

THEOREM 2.1. Consider model1.1) with A, given by(1.6), and ¢, =
(¢,,0,...,0). We assume that the independent sequepggsl <i < g,n € N}
and (&,),cn are both ii.d. satisfying(1.2) and thaté; has a positive density dR.
If (DO) holds thenY,, = (yn, ..., ya—q+1)" converges in distribution to

(2.1) Y=0+) A1 Avale
k=2

Moreover (Y,,),en is uniformly geometric ergodic

REMARK 2.2. (i) From (2.1) we obtain
(2.2) Y LAYy + 1,

whereY1 =+ Y (23 A2 Ap—18k Ly andY; is independent ofA1, ¢1).
(i) Since E((A1---Ap) ® (A1---A,)) = (E(A1 ® Aq1))" condition (DO)
guarantees that

(2.3) E|lA1---Ay|? <ce "™

for some constants, y > 0. From this follows that the series in (2.1) converges
a.s. and the second momentlofs finite; see Theorem 4 of [9].

We require the following additional conditions for the distributions of the
coefficient vectorgn,),<n and the noise variabld§,),<n in model (1.1).

(D1) The rv's {niy,1 <i < g,n € N} are i.i.d. with symmetric continuous
positive densityp(-), which is nonincreasing of® . and moments of all
order exist.

(D2) For somem € N we assume thaE(a11 — a1)?" = o2"En2 € (1, 00).
In particular,oq > 0.

(D3) Ther.v.'s(&,)qen arei.i.d. ance|&1|™ < oo for all m > 2.

(D4) For every real sequend@y)ieny With 0 < 3724 |ck| < oo, the rv.t =
Y i1 ckéx has a symmetric density, which is nonincreasindgkon

Condition (D4) looks ratheawkward and complicated to verify. Therefore,
we give a simple sufficient condition, which is satisfied by many distributions.
The proof is given in Section Al.

PROPOSITION 2.3. If the rv. £&1 has boundedsymmetric density’, which
is continuously differentiable with bounded derivatiyé < 0 on [0, c0), then
condition(D4) holds
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The following is our main result.

THEOREM 2.4. Consider model(1.1), with A, given by (1.6), and
o= (£,,0,...,0). We assume that the sequenées.,1 <i < ¢,n € N} and
{&,, n € N} are independenthat conditiongD0)~+D4) hold and thatzg +oq2 > 0.
Then the distribution of the vect(2.1) satisfies

lim *P&'Y > 1) =h(x), xes.
[—00

The function.(-) is strictly positive and continuous a$iand the parametek is
given as the unique positive solution of

(2.4) k() =1,
where for some mbability mesurev on S
(2.5) k(A = lim (E|A1--- A, )Y = / E|x’' A1 v(dx),
n—o0 S

and the solution 0{2.4) satisfies\. > 2.

The following model describes an important special case.

DEFINITION 2.5. Ifin model (1.1) all coefficients and the noise are Gaussian;
thatis,n;1 ~ N (0,1) fori =1,...,9 and&; ~ N (0, 1), we call the model (1.1)
a Gaussian linear random coefficient model.

The proof of the following result is given in Section A2.

PROPOSITION 2.6. We assume the Gaussian modéll) with o1 > O.
This process satisfies conditio(i31)«(D4). Furthermore under condition(D0),
the conditional correlation matrix of is given by

o0
(26) R=EQY'|A;, i=1)=B+) A1 Ar1BA}_;-- Al
k=2

where
1 0 0
B_ 0 0 0
0 0 0

Moreover R is positive definite &., that is the vectorY is conditionally
nondegenerate Gaussian aBl' |2 < co.

We show that the Gaussian model is in distribution equivalent to an autore-
gressive model with uncorrelated Gaussian errors, which we specify as an autore-
gressive process with ARCH errors, an often used class of models for financial
time series.
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LEMMA 2.7. Define for the samg e N, ¢; € R, 0; > 0as in mode(1.1),

(2.7) xp=awxp_1+-- +agxy_g+ \/1+012x3_1 +-+ aqzx,%_qen, neN,

with the same initial valuesxo, ..., x_44+1) = (Yo, ..., y—¢+1) as for the pro-
cess(1.1). Furthermore let (,)neny be iid. A (0,1) rv.'s with initial val-
ues (xo, ...,x_44+1) independent of the sequengs,),cn. Then the stochastic
processesx,),>o0 and the Gaussian linear random coefficient model) have
the same distribution

PROOF We can rewrite model (1.1) in the form

(28) yn:alyn—1+“‘+aqyn—q +\/1+012y3_1++0q2y3_q5n, neN,
where
~ En +o1yn—1n1n + - + OgYn—qllgn

" 2.2 2 ’ nen,
\/1+Glyn—l+"'+aqzyn—q

are i.i.d..~ (0, 1). This can be seen by calculating characteristic functions.

REMARK 2.8. (i) Since detA,) = oy = a; + og4ngn, the condition
a2 + o2 > 0 and condition (D1) guarantee that dé) # 0 a.s.

(i) Forg =1, model (2.7) was investigated in [3] by different, purely analytic
methods. Stationarity of the model was shownd-o2 < 1. Under quite general
conditions on the noise variables, defining

(2.9) k(1) = Elar + o1¢|*,

the equationr (-) = 1 has a unique positive solutignand the tail of the stationary
I.V. xoo Satisfies

lim *P(xoo > 1) =c.
—00

Moreover, this also covers infinite variance cases, thak isan be any posi-
tive value.

(i) Kesten proved a result similar to Theorem 2.4 for the process (1.4)
(see [14], Theorem 6) under the following condition: There exists 0 such
that E(A,)™ > 1, wherei, = Amin(A14)) is the minimal eigenvalue ofi;A].
However, for the matrix of the form (1.6) we calculate

Ao = inf 7/A1A] 7
lz|=1

q—1 q
; 2 2 2 2
= Inf1 E (oj1z1 — 2j41) " +agq 27 < E 75=1 a.s,
j=1 j=2
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g-1 -1
Ay < <1+ > ajgl) afy  as.
j=1
In the Gaussian case, when thg are all i.i.d. & (0, 1) with o1 > 0 the second
inequality impliesP(A, < 1) > 0. ThereforeE(A,)™ < 1 for anym > 0. This
means, however, that Kesten’s Theorem 6 does not apply to the Gaussian linear
random coefficient model.

3. Products of random matrices. In this section we investigate the func-
tion k(1) as defined in (2.5) for matricesl ;) ;e presented in (1.6) derived from

model (1.1). Notice thatA1--- A, 4 A, ---Agforalln eN, since thed; are i.i.d.

Furthermore, for any functiort : R? — R, we write f(x') = f(x) for all x € RY.
For the following lemma we adapted the corresponding proof from [17].

LEmmA 3.1. Assume that conditiongD1l) and (D2) are satisfied and
a(f +qu > 0. Then there exists some probability measuren S such that for
everya > 0,

€G) 1= fim ElAz-+- 4,107 = [ EIX A v(d) > 0

PRoOFE Denote byB(S) the set of bounded measurable functions an@ @)
the set of continuous functions ¢h Define, fori > 0,

3.1 0,:B(S)—>B(S) by 0i(f)(x) =Elx"A1]" f (X' A1)

forx € Sandf € B(S), wherev = v/|v| for v # 0. Notice that, iff is continuous,
then alsoQ; (f) is continuous, that isQ; : C(S) — C(S). Denote by>(S) the

set of probability measures ah SinceS is compact inR?, £ (S) is a compact
convex set with respect to the weak topology. Furthermore, for every probability
measurer € £ (S), we define the measui € £ (S) by

Js Q:.(f)(x)o (dx)

[s Oi(e)(x)o(dx)’

wheree(x) = 1, f € B(S). The operatofT, : P (S) — £(S) is continuous with
respect to the weak topology and, by the Schauder-Tykhonov theorem (see [7],

page 450), there exists a fixpoint £ (S) such thatl, = v, thatis, T, () = v(f)
forall f € B(S). This implies that

/ 05 () (0)v(dx) = k() / Fv(dx),
S S

(3.2) T, (f) = /S FOTy (dx) =

where

k(0 = fs 0. () () (dx).
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Notice that for alln € N,
(n) _.n
(3.3) /SQ* (Hx)v(dx) =« (k)fsf(x)v(dX).

Here Q™ is the nth power of the operatoQ. From (3.1) follows for every
f€B(S)

3.4 O™ x)=ElA1- A" f(GTAL- - A,),  x€S.

Therefore, by (3.3x"(A) = [ Q&")(e)(x)v(dx) = [GE[x'Aq--- Ap*v(dx). This
implies thatc” (1) < E|A1--- A,|*. On the other hand, we have

(3.5) (1) = EJAq--- Ay / ' By *u(dx),
S
whereB, = A1---A,/|A1--- A,|. We show that

(3.6) ¢, = inf /lx/Bl}‘v(dx)>O.
|B|=1JS

Indeed [taking into account tha |x’B|*v(dx) is a continuous function oB],
if c. =0, there existsB with |B| = 1 such that/|x’'B|*v(dx) = 0, which
means thabv{x € S:x'B #0} =0. SetN ={x € S:x'B =0} andg(x) = .-,
whereN ¢ = S\ N and x4 denotes the indicator function of a sétIf & # &,
there exist vectord; £ 0, ..., b; #0 with 1 <[ < g, such that

NC{xeR:xXB=0}={xeR?:x'b1=0,...,x'b; =0}.
Furthermore, by (3.3), we obtain, for alle N,
/S 0" (g)(x)v(dx) =" (1) /S g(x)v(dx) = 0.

By (3.4) this implies fom =2¢ + 1
E fs WAy Agg 1l g AT AzgrD)v(dx)

- /N Elx'Ar--- Agys1l"g WAL Agyrn)v(dx)
=0.

Sincev(N) = 1, there exists somee N such that’A;--- Ay, 1 € N a.s., that
is,forall1<j <1,

P(x'A1--Agg11b; =0)=1.
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By Lemma A.5 this is only possible if; =0, forall 1< j </; thatis, if B =0.
But this contradict$B| = 1. Thus we obtained (3.6). Consequently,
ElA, - A1l* = «" ()

—EJA, - Agl /S ' By [F0(dx)

> c,E|A, -~ A1),

that is,
Kk (A)
~ (co)ln

k() < (ElAy - A" <
and from this inequality Lemma 3.1 follows by taking the limitas> co. [

LEMMA 3.2. Assume that conditiorf®0)—(D2)are satisfied and3+ oqz> 0.
Then equatiori2.4) has a unique positive solution

PROOF DenoteW¥(n) = A, --- Ay = (¥;j(n)). ThenWi1(n) = (a1, — a1) x
V11(n — 1)+, Wherew, = a1Wii1(n—1) +az, Yor(n — 1D +- - -+ g Vy1(n —1)
independent ofj1,,. By the binomial formula and condition (D1) (which implies
that all odd moments of; are equal to zero) we have for arbitrany € N

with €5, = (*7),
lI’11(7”1) Zsz (a1(n) —al) ) (w1200 — 1) 2j 2(m=j))

> s(m)E(W11(n — 1)),

where by condition (D2)s(m) = E(ay, — a1)?" > 1 for somem > 1. Thus
E(W11(n)?" > s(m)", that is, E[¥ (n)|?" > E(¥11(n))?" > s(m)", which im-
plies that

K (2m) = nleoo(Ew(n)Fm)l/” > s(m) > 1.

We show now that log (%) is convex for allx > 0 and, hence, continuous @, .
To see the convexity, set

1
cn(M) = =logE|w(m)*,  1>0,
n

and recall that log(X) = lim, o ¢, (A). Then fora € (0,1) andg=1— «
we obtain by Hdlder's inequality, fox, u > 0,

Sn(aA + Bu) <agy(A) + Bsu(i).

By Remark 2.2(ii) condition (DO) implies (2.3), which ensures thagt) < 1 for
all 0 < u < 2. Therefore equation (2.4) has a unigue positive roit.
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The proof of the following lemma is a simplification of Step 2 of Theorem 3
of [15] adapted to model (1.1); see also [17], Step 2 of Proposition 1.2.

LEMMA 3.3. Assume that conditiongD1l) and (D2) are satisfied and
ag +crqz > 0. For every > 0 there exists a continuous functid(-) > 0 such
that for Q; as defined ir(3.2),

(3.7) O (M) (x) =k (A)h(x), x€S.

The function is unique up to a positive constaroreovey for g = 1, it is
independent at.

PROOF Forg =1 we haveS = {1, —1} and it is easy to deduce that any
solution of (3.7) is constant af. Forg > 2 we first recall the notation of the proof
of Lemma 3.1, in particular (3.5) and (3.6). Set, fox 0,

0" (e)(x) Elx'A1-- A,

sp(x) = =
K"(2) K" (M)
Using (3.5) and (3.6), we obtain syg s, (x) < 1/cs.
Notice that for anyg x ¢)-matrix A andA > 0, choosing., = min(x, 1),

[l AP* = |y AP < max(1, A)|x — y* AN, x,ye€S,

, xes.

which implies |s,(x) — s,(y)| < (max(1,1)/cs)|x — y/**. By the principle
of Arzéla—Ascoli there exists a sequen@g)ien With n; — oo ask — oo and
a continuous functioi(-), such thati, (x) := Z;f":lsj (x)/ng — h(x) uniformly
for x € S and

1 X
01 () (x) = im0 (hy)(x) = lim - > 0is))
j=1

k(W) &
= lim_ o szlsHl(x) = k(WA (x).

If h(x) =0, for somex € S, thenQi”) (h)(x)=0foralln e N, that is,
Elx’A1- - Ap*h(x,) =0,

wherex, = x’A1--- A,, which means that(x,) =0, P-a.s., for alln € N. From
Lemma A.9, wherer(-) denotes the invariant measure of the Markov chain
(xn)n>0, We conclude

Exh(x,) =0 VneN =— I|im E h(x,)= / h(z)m(dz)=0
n—oo S

= lim /S he ()7 (dz) = /S h(z)m(dz) = 0.
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But on the other hand,

n

1 k
[ i = o6 / 0 (&) () (d2)

AL At
L Z E|A1---A; | Mn(dz)
K](A) s |A1- Aj|)‘

ng A
sy LA
L S kI (L)

where ¢1 = infigj=1 [ |z/B|*7(dz). Assume thatc; = 0. Then there exists
a matrix B with |B| = 1, such thatr (¥ N S) =0 for ¥ ={x e R?:x'B = 0}.
Denote byA(:) the Lebesgue measure o) then A(N N S) = 0 becauseV
is a linear subspace dR?. By Lemma A.97 is equivalent toA; that is,
(N NS)=0. This implies thatt(S) = z(N° N S) + (N N S) = 0, which
contradictst (S) = 1. Hence¢1 > 0 andh(x) > O forall x € S.

Now assume that there exists some positive functica i satisfying equa-
tion (3.7). Definell, = A1--- A,. Then for every: € N, we have

0 (9)(x) EWTLIgGT,)  hx) = .
B = = Ty B @), xes,

where f(z) = g(@)/h(@), and for every: e N,

E.f(x'TI )—%Elx I, " h(x'T1,) f(x'T1,), x €S,

that is,E, denotes expectation with respect to the measure defined in (4.7). Since
the representation fgr holds for alln (therefore fom = 2¢ + 1), the functiong is
continuous by Lemma A.7. Define

supg(x) _ 8(xo0)
xes h(x)  h(xo)
Notice that/(x) > 0 andl(xp) = 0. Next set

o= and I(x) =ph(x) —g), xeSs.

Loy=12 90O _ 0" ) _ Qﬁ")(hL)(y)’ es.
h(y) — k()h(y) K"Mh(y) k" (Wh(y)
We write

0" (hL)(y0)
L(y)=L = T
fgg ») (yo) = PIESTIRTS

equivalently, forx; = ygI,, E|y61‘[n|*h(xn)L(xn) = L(yo)h(yo)x™(1). More-
over, (3.7) implies thaE|y6Hn|Ah(xn) = k" (M)h(yo) for this sequenceéx,),>o0
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and therefore E[yjI1,|*h(x,)(L(yo) — L(x,)) = 0. Thus, for all n€N,
L(x,) = L(yo) P-a.s. and therefor&,,L(x,) = EL(y;I1,) = L(yo0). By Lem-
ma A.9, withz (-) the invariant measure @k,),>0, we get

/S L@)m(dz) = M EyL(x) = L(o).
SinceL(-) is continuous and the measuré) is equivalent to Lebesgue measure,
we have

[(x0) _
h(xo)
Thusl(z) =0 for all z € S and Lemma 3.3 follows. O

L(yo) = L(z) = L(xp) =

0, zes.

4. Renewal theorem for the associated Markov chain. The next result is
based on the renewal theorem in [16] for the stationary Markov cb&gin,>o
and the processe&;,),>0 and (u,),>1 as defined in (1.10) and (1.11), re-
spectively. Some general properties (@f,),>0 are summarized in Section A4.
Letg:S x R — R be a continuous bounded function satisfying

o0

(4.1) >~ sup sup |g(x, )] < oo.

e XESI<t<I+1

The renewal theorem in [16] gives the asymptotic behavior of the renewal function

o
Gx,t)=Ey; ) glx,t — )
k=0

under the following conditions:

(C1) For the processé€s,),>o0 and(u,),>1 define thes-algebras
Fo=o{xo}, Fn=o{xg, x1, U1, ..., Xn, Uy}, neN.

Here the initial valuexg is a r.v., which is independent ofA,);,cN.
For every bounded measurable functipn[[72,(S x R) — R and for every
Fn-measurable r.\p,

E(f(Q’ xn+1’ un—i—l’ cery xn+l’ un—i—l’ .. )|3'Vn)
(4.2)

= Exnf(Q, xn—i—l’ Mn-i—l’ ceey xn—i—l’ Mn-i—l’ . ) = (I)(-xm Q)’

that is, ®(x,a) = E, f(a,x1,u1,...,x5,u;,...) for all x € § anda € R.
Moreover, if form € N the functionf: (S x R)™ — R is continuous, then
®(x) =Ey f(x1,u1, ..., Xy, Uy) IS CONtinuoUs orf.
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(C2) There exists a probability measure) on S, which is equivalentto Lebesgue
measure such that

IP™M() =) -0, n— oo,

forall x € S, where||u|l = sup ¢<1 [s f(y)u(dy) denotes total variation of
any measureg on S. Moreover, there exists a constght- 0 such that for
alxes

. Uy

lim — =8, P,-a.s.

n—-oo n

(C3) There exists some numbare N such that for allb € R and for alls > 0
there existy, s € S andeg = go(v, §) > 0 such tha¥ 0 < ¢ < &g
inf Px(xm — yv,6| <&, vy — v <d) > 0,
X€Bs,y
whereB;s , ={x € S:|x — y, 5| <é}.
(C4) There exists somke N such that the functiom(x, ) = E,®(x;, v, )
satisfies

sup sup|®i(x,t) — P1(y,1)|— 0O, e — 0,

[x—y|<eteR

for every bounded measurable functidn S x R x R — R.

THEOREM 4.1 ([16]). Assume that condition€1)—(C4)are satisfiedThen
for any functiong satisfying(4.1),

. . e 1 o0
lim G(x,t)= lim E, Zg(xk, t—vg)=— / n(dx)/ g(x,t)dt.
t—00 t—00 k=0 BJs —00

We apply this renewal theorem to

!

1 re
G(x,t):—t/ u)‘P(x’Y>u)du, xe S, telR,
e Jo

where the vectoY is given by (2.1) and. is the unique positive solution of (2.4).

This definition corresponds to an exponential change of measure, equivalently,
to an exponential tilting of theiariate Markov processx,, v,),>0 as follows.
Denote byE, the expectation with respect to the probability meaguravhich is
defined by

EXF(-X].’ Mlv et Xn, un)
(4.3)

1
= ——Ex'A1--- A *h(xn) F(x1, ua, - . ., Xp, tUn)
h(x)
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for each measurable functiafi. Then by Kolmogorov's extensioR andE are
the corresponding quantities [& and E are for (x,, v,),>0] of the Markov
chain(x,, v,),>0 defined by the:-step transition densities

ekwh ()’) (n)

5(m) —
px,:lv(dy7 dw) - e)‘”h(x) px,v(dy’ dU)),

where pfc':‘%(dy,dw) is the n-step transition density of the original Markov

chain(x,, v,)n>0-
In order to apply Theorem 4.1 we need to check conditions (C1)—(C4).
However, before we treat the general case for arbitrary dimengiore con-
sider the casg = 1 in the next example.

EXAMPLE 4.2. Consider model (1.1) foy = 1 and 0< a? + o2 < 1,
then condition (DO) holds. Definéx,),>0, (vy)s>0 and (u,),eny as in (1.10)
and (1.11), respectively. Assume that conditions (D1) and (D2) are satisfied.
In this case the functior (-) is defined by (2.9), and Lemma 3.2 implies that
equationk (1) = 1 has a unique positive solution. From Lemma 3.3 we conclude
that only constant functions satisfy equation (3.7), and we simplyi@et= 1
in (4.3). This case is special in the sense thiat {1, —1}, that is, the sphere
degenerates to two points, and we define the “Lebesgue measur®’asrany
point measure with\ (1) > 0 andA(—1) > 0. By the ergodic theorem for finite
Markov chains one can directly (without Lemma A.9) conclude that the Markov
chain (x,),>1 [defined in (1.10)] is uniformly geometric ergodic with unique
invariant distributionr = 7 = (1/2, 1/2) with respect to both measurBsandP,
that is, the condition (C2) (with respect B) holds with 8 = E|a11|* log |1,
which is positive (cf. [10], Lemma 2.2).

To show condition (C3) for the measulRe setm =1 andy, s =1 forv > 0
andé > 0. Therefore, taking into account that by condition (D1) thea;y.has a
positive density, we obtain the inequality in condition (C3) for any & < 1.

PROPOSITION4.3. Consider mode{l.1) with (x,,),>0, (V4)n>0 @and (u,)nen
defined in(1.10)and (1.11), respectivelyAssume that condition®0)—(D2) are
satisfied andsZ + o2 > 0. Then conditiongC1)—(C4)hold with respect to the
measure®, generated by the finite-dimensional distributiq4s3).

PROOF.  Firstrecallll, = A1 --- A, andx/, = x'TI,, = x'T1,/|x'T1,| andv), =
log|x'T1,|. For every bounded measurable functi®drix,, v,,r) = f(x'I1,, 1),
with f(z,t) = ®(z,log|z|, t), we have by Lemma A.7 immediately that condi-
tion (C4) holds.

Next we check (C1). Fat, I € N we have

/ x;lArH—l o Apg

X, = =h;(x,, A e Apal)
+1 ! n» n+1, ) n—+l
" X Ant1- - Antil
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and
XpAngi—1--Ap
|x;lAn+l—1 <o Apgal

/
untr =10g1x,,, 1A =log An+i

- gl(xn’ An—i—l’ cevy An+l)

Now for every functionf : []724(S x R) — R and some — ¥, measurable r.\o
we calculate

SO Xnt1s Unt1s - s Xl Untls - - -)
= f(0 h1(xn, Ant1), g1(Xn, Any1), ...
hiCony Antds o5 Ant)s 81, At s Anta), )
= f1(0: Xn, An+1s -+ Antis -+ 2)-

ThereforeE(f (0, Xn+1, uny1, .. )| Fn) = E(f1(0, Xn, Anta, .. )| Fn) = P (xn, 0),
where [notice thatp, x,,) is independent ofA, 11, ..., Anys, ...)]

®(x,a)=Efi(a,x, Apy1,...)=Efi(a, x, A1, ...)
=Ef(a, hi(x, A1), g1(x, A1), ...) =E, f(a, x1,u1,...).

This and (4.3) implies for evemy € N and every bounded functiofy, : R x (S x
R)" — R,

(44) E)c(fm (Qv Xn+1, Un4+1s -+ -5 Xn+ms un—l—m)l?n) = O, (xp, Q)y

whered,, (x,a) =E,(fi.(a, x1, u1, ..., Xm, Um)).

Denote by u, the measure on the cylindrie-algebra 8 in [[72,(S x
R) generated by the finite-dimensional distributions(ef, u1, ..., xi, ux) [de-
fined by (4.3) with initial valuex] on By, where B, is the Borelo-algebra
on (S x R)¥ and 8 = o{Ur21 Bi}. Let furthermorew, s, be the conditional
(on #,) infinite-dimensional distribution of(x,+1, #n41, - - -, Xnak> Untks - -+ )-
Equality (4.4) implies that the finite-dimensional distributions of the mea-
sureu,|#, coincide with the finite-dimensional distributions of the measugg
that is, x|z, = 1y, On B. This implies(4.2) for the measure defined in (4.3).
Furthermore, the definitions @%,),cn and(v,).en imply that for every continu-
ous f also®(x) =E, f(x1, v1, ..., xm, Up) iS CcONtinuous inx € S. Hence condi-
tion (C1) holds.

Next we check condition (C2) foy > 2. The case; = 1 has been treated
in Example 4.2. We first show
(4.5) SUpE, (log|x’A1)? < .

xes

To see this notice that for eveky> 0,

i oge)®
xeR 1+ |x|)\+1 .



986 C. KLUPPELBERG AND S. PERGAMENCHTCHIKOV

Hence for every € S,

— / 1 / A /
E.(log|x'A1])% = max A1*h(x"A7)(log|x'A1])?

h*
< c*h—(1+ E|A1)*)) < o0,
k

whereh, = inf,cgh(x) andh* = sup, g h(x). This implies (4.5).
Define

1 . -
fx)= WEWAM log|x’A1|h(x"A7) = E, log|x’ Ay,

andmy =log|x;_;Ax| — f(xk—1), then

U 172 12 12
(4.6) === fa-D+=Y mii=ci+—y m.
noon4 i1 i1

By the strong law of large numbers for square integrable martingales and (4.5) the
last term in (4.6) converges to zdfy-a.s. for anyc € S. By Lemma A.9(x;,),eN

is positive Harris recurrent with respect to the meadyeas defined in (4.3).
Hence we can apply the ergodic theorem to the first term of the right-hand side
of (4.6) (see Theorem 17.0.1, page 411 in [18]). This term then converges to the
expectation off with respect to the invariant measutre

1 .
47) lim ¢, = =/~ dz)——E|7’ A1) log |z’ A1 |h(Z A7), 7-a.s.
@7 Jimen=p=| 7 D ElR Al loglz Aslh (@AY, 7

This implies

/ﬁx< lim U—":ﬂ)ﬁ(dx):/f’x< lim g,,:ﬂ)ﬁ(a’x):l.
S n—>o00 p S n—00

By Lemma A.9 the measure is equivalent to Lebesgue measure, hence

~ . Vp _
(4.8) P <nI|_)moO = ﬁ) =1
for A-almost allx € S. From condition (C1) we conclude
st( Ilm v_n =ﬁ> = Exf(xl, U[),

n—-oo n

wherel =2¢ + 1, and

fx,v)=P, (nleoo ItV )

=
By condition (C4) the functiorﬁx(limnﬁoo“n—" = B) is continuous onS and
therefore (4.8) holds for alf € S.
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It remains to show that the constafitin (4.7) is positive. By (2.3) there
exist c>0 and y > 0 such thatE|I1,|? < ce”?". Chooses > 0 such that
d =y — 28 > 0. Then by Chebyshev’s inequality,

P(Ix'TL,| > e7%") < e®"E|x'T,|? < e®"E|T1,|? < ce™".
Moreover, for every 6< p < d/x andx,, = x'I1,,, we have
Po(1x' T, | < ™) = h ™ () E|x T, M h () x| <een)

—A A
< c*(e on + Elx/l_[nl X{e—éns‘xlnn‘<epn})

A

c*(e—mn +e”’"P(|x’l‘In| > e—(Sn))
c*(e—mn +Ce—(d—)\p)n)’

wherec* = h*/ h,, h* = maxh andh, = mink. By the lemma of Borel-Cantelli
we conclude that for alt € S,

A

. v
im = >p>0 P,-a.s.

n—oo p

This verifies condition (C2).

Finally, we check condition (C3) fog > 2. The casey = 1 has already been
treated in Example 4.2. We shall show that #ioe=2¢ + 1 andvv e R, V§ > 0,
VyeS,Ve>0,

(4.9) inf Py(Jxm — y| <&, |vm —v| <8) > 0.
xesS

Indeed, withL (z) = z/|z|, consider
Po(lxm — ¥l < & [vm — v| < 8) =Py (x'T € Ty ¢ ),

wherel'y s = {z € R?\ {0} :|L(z) — y| <&, |log|z| — v| < §}. For everyy € §
and everyv € R, this set is a nonempty open set RY, because the vector
o=¢e"yel, s (VYveR,Vé>0,VyeS, Ve > 0). This implies that the
Lebesgue measure bf, . 5 is positive. By Lemma A.6 we conclude that

inf P, (x'TT,, € Ty ¢.5) > 0.

xes

This ensures (4.9), which implies condition (C3).]

Define G(x,t) = G(x,t)/h(x), whereh(-) > 0 satisfies equation (3.7) with
positive A for which x (1) = 1. Further, recall that by Remark o4 ArY1+ 41,
where Y1 = {2 + Y 23 A2 -+ Ax—18 IS independent ofAq, ¢1) and Y1 Ly,
Therefore,

!

e
/ u)‘P(x’AlYl +x'c1 > u)du
0

(4.10) ~
=:Go(x,t) + g(x,1),
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where, setting; = x’A1Y1 andty = x'¢3,

t

e
/ uP(t1 > u) du,
0

Golx, 1) = h(x)et
(4.11)

!

_ 1 [
glx,t) = W/O u 'y (x,u)du
with ¥ (x, u) = P(t1 + 12 > u) — P(11 > u).

PROPOSITION 4.4. Assume that condition$D0)—(D2) are satisfied and
ag + aqz > 0.Then

(4.12) Gx,t) = Exgxnt—uvy).
n=0

PrROOF Lemmas 3.1-3.3 ensure the existence of positive solutions of equa-
tions (2.4) and (3.7) which are used in the definition of the meaBtire(4.3).
Now consider firsGo(x, t). Mappingu > u/|x’A1| and usingr; =x"A1/[x’ Ay,
we obtain
x'Aq|*
h(x)ez—log\x’Al\

=E,G(x1, 1 —log|x’A1)).

- e'/|x' A
Go(x,t)=E f u*P(x1Y > u)du
0

Let B(S x R) be a linear space of bounded measurable functfHasR — R.
Define the linear operat@ : B(S x R) — B(S x R) by

O(f)(x,1) = Ey f(x1,1 — v1),

where we have used thaet = u1 = log|x’A1|. Next, recall that by Proposition 4.3,
condition (C1) holds for the measure (4.3). This implies thatitiepower of the
operator® is defined by®™ (f)(x,t) = E, f (xn,t — v,). Then equation (4.10)
translates into the renewal equatiGiix, 1) = ©(G)(x, t) + g(x, t) and we obtain
for all n € N iteratively,

G, =0"(G)(x, 1) +g(x, 1) + O (x, ) + -+ O P(g)(x, ).
Moreover, condition (DO) implies lig., » E|IT,,| = 0, giving

OM(G)(x,1) =E,G(xp, t — vp)

1 e
— pres t_/ u*P(x'T1,Y > u)du — 0, n— 0o.
x)e Jo

This implies (4.12). O
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LEMMA 4.5. Assume the conditions of Theor@d. Then for every € S,
there exists
. 1. 1
lim G(x,t):h(x)—/n(a’z)—
t—>00 ﬂ S

® -1
e Jo u* Yz, u)du

=h(x)y* >0.
Hereh(-) > O satisfies equatiofB.7)with positiveA for whichk (1) =1, > 0is
defined in(4.7)and 7 (-) is the stationary measure of the Markov process,>o
under the distributiorP as defined ir{4.3).

PROOF We apply Theorem 4.1 1o (4.12). Conditions (C1)—(C4) hold;for 1
by Example 4.2 and Proposition 4.3. It remains to show that the fungtmimen
by (4.11) satisfies condition (4.1). By Lemma A.10 follows tlgéat, ) > 0 and
therefore

1
lg(x, )| =g(x,1) < h—(gi(x, 1+ g5(x,1)),

whereh, = min,cs h(x) and, withn(t) = e’ for someu > 0,
t t

* 1 ¢ A 1 ¢ A
gl(x,t)z—/ u P(t1>u—n(t))du—;/o u*P(t1 > u)du,

et Jo
At
g5(x, 1) = mp(tz > n(r)).
We show that these functions satisfy for sufficiently large0 the inequality
(4.13) gl (x,1) <ce ¥

for constants:, ¢1 > 0. First notice that it follows immediately from Lemma 3.2
that«(6) < 1 for every 1< 6 < A. Hence by the defintion of(9) in (2.5), for
everyv € (k(0), 1), there exists som€ = C,, > 0 such that for alk € N,

E|A1---Anl? < CV.
From this and Hdélder’s inequality we obtain, for arbitrary- O,
Elal” < E|A1"E|ve)”

. 6
< 2 1g| A, (E|s1|9 + E( D Az Ak—l”fk'> )

k=3

o0
<2°71E|A,)’ (E|sl|9 + CElg]" Y p 0h=2k=2
k=3

. 01
y ( » pe(k—Z)/(e—l)) )

k=3
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Now choose in the last term = v/?) Then for every 1< 6 < 1, there exists
somem(#) > 0 such that

(4.14) SupE|t1|? = supE|x’A1Y1|® < m(6) < .

xes xes

We study now the functiogj (x, r). Indeed, for sufficiently large> 0, we have

1 re—n@ N
gI(X,l‘)S—t/O (n(t) + u)"P(t1 > u) du
e

1 ¢ )+t
__;/ ukP(t1>u)du+%
e 0 e
A+l
- c(n(t))
Se—
1 re—n(@)
+~ W (14 n@u™)" = 1)P(ry > u) du
e Jn(t)
t r+1 t e'—n(t)
gci(n( )t) +M*&t) w0 du E|ry |
e e Jnw
) m@n ()
Se— T+ M~y
< ce-Gnoy M *’;1(9) Rt

where

M*= sup (1+x)*—1)/x, s=xr—6 and c=2"+1.

O<x<1
To obtain (4.13) for the functiop] (x, t), choose the paramete¥sndu such that
S4+pu<landO<pu< @+r)"1L

The functiong;(x, 1) satisfies inequality (4.13), because for every- 0 by
condition (D3),

SUPE|72|™ = SUPE|(x)181" < E|&1]|™ < o0,

x€eS xes
where(x)1 denotes the first coordinate ofe S. On the other hand, if —> —oo,
we have immediately from definition (4.11),

et

(x,1) < 1/ *d 1
g(x, _h*efou u_he

*

At

and, hence, condition (4.1) holds.
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Furthermore, taking into account thatis equivalent to Lebesgue measute
on S (see Lemma A.9), by Theorem 4.1 and Lemma A.10 we conclude

im S0 _im G
t—>00 h(x) t—>00
1 +0oo
=E/Sﬁ(dz>/_ 2(z, ) ds
1. Y B
=E Sﬂ(dZ)% 0 u" Y (z,u)du
=y*>0. O

The proof of the following lemma is an immediate consequence of the monotone
density theorem in regular variation (see, e.g., [2], Theorem 1.7.2).

LEMMA 4.6. Assume the conditions of Theor@#. Then for every € S,
there exists

lim #PQX'Y > 1) =y*h(x) > 0,

—00

with 2(-) andy* as in Lemmat.5.

EXAMPLE 4.7 (Continuation of Example 4.2). Lemmas 4.5 and 4.6 imply
Theorem 2.4 with the limiting constant

*_E & }L—l(W(]-’M)-i_W(_l’u))
v _,8_/0 u du.

2
Symmetry of the distribution of implies thaty (1, u) = v (—1, u), hence

1 [e%e}
lim FP(Y > 1) == / WYY > u) — Plags?s > u)) du
t—00 B Jo

foranyx € S ={1, —1}.
Note that this special case is already covered by Theorem 2.3 of [10].

APPENDIX
Al. A smplesufficient condition for (D4).

PROOF OF PROPOSITION 2.3. Letl = inf{k > 1:|cx| > 0}. For n > [,
setr, =Y i ckék. If x| > O, then by the condition of this propositiepé; has
a symmetric densityy (-), continuously differentiable with derivative, (-) < 0
on[0, oo). Thereforer; has a symmetric density, which is nonincreasing@®mo).
We proceed by induction. Suppose that, has a symmetric density,, (),
nonincreasing oo, co). We show thatr,, has a density with these properties.
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Indeed, ifc, = 0, thent, = 7,1 and we have the same distribution fey.
Consider now the cage,| > 0. By the properties op, (-) and ofep,,_,(-), we can
write the densityp,, (-) of 7, in the following form:

¥, (2) = /o Pn(z+u)pr, () du+ /O Pn(z —u)pr, () du

0
+ / pultt — e ()du, 7> 0.
Z

Therefore the derivative of this function equals

¢ (@)= f P ) (9e 1 —2) — pr_ (4 +2))dut

Z
Z
+ /o P (e, G~ 1) —gn Ju+2)du<0,  z>0,

sincep; (-) < 0 andg,, ,(-) is nonincreasing ofi0, o). Therefore we obtained
that for alln > [, the r.v.t, has a symmetric continuously differentiable density,
which is nonincreasing oii0, co). Moreover, sincer = lim,, . 17, a.s. and
the sequencey., (-)),> is uniformly bounded, that is,

Sup ¢y, (z) < ¢ (0) < oo,

z€R,n>1

we have that for every bounded measurable funggiovith finite support inR

Jim_ /_ 2 (2)dz = /_ 2(Dpe () dz,

where ¢, (-) is the density ofr. Since&; has a continuous density, is also
continuous. Therefore, forQ a < b, we have for all 0< § < a,

b+46 a+é
f ¢e(2)dz — f 0 (2)dz
b—§ a—>_§

b+ a+s
= lim (/17—6 qo,n(z)dz—/ 5 %n(Z)dZ>

n—o0 _
<0.
Sinceg, (+) is continuous, we conclude
| 1 b+6 a+8 0
b) — = lim — dz — dz ) <0.
o) = pe@=lm ([ Cge@az- [ p@az) o

A2. Gaussian linear random coefficient models.

PROOF OF PROPOSITION2.6. It is evident that conditions (D1)-(D4) hold
for this model witho1 > 0, which implies condition (D2).



THE TAIL OF ARANDOM COEFFICIENT MODEL 993

To show that the conditional correlation matrix (2.6) is positive definite a.s.
take somex € R? such thate’Rx = 0. Then forll, = A1--- Ag, k e N, andB as
defined in (2.6),

o0
x'Bx + Zx/HkBl'I;x =0.
k=1
If we denote by(x); the ith coordinate ofx € R?, the equality above means

that (IT x)1 = O for all k € N. Set6(x) = (IT;x)1 for k € N andfp(x) = (x)1.
Because of the special form of the matrices (1.6) one can show by induction that

o1 Ok —1(x) + - +agr{x)1 + ()1, i 1<k <gq,
(A1) G(x)= .
o1 Ok—1(x) + -+ otgk—g+1)bk—g (x), If k>q.

Consequenly, iby(x) =0 forall 0 < k < ¢, then(x)1 = --- = (x), = 0. From

this we, conclude that’Rx = 0 impliesx = 0, which means thar is positive
definite a.s. O

A3. Auxiliary propertiesof IT,, = A1 ---A,. We study the asymptotic prop-
erties of6,(x) as defined in (A.1). First recall the classical Anderson inequality;
see [13], page 214.

LEMMA A.1 (Anderson’s inequality). Let ¢ be a tv. with symmetric continu-
ous densitywhich is nonincreasing of0, co). Then for every € R anda > 0,

P(s +cl=a)=P(s| = a).

LEMMA A.2. Assume modgll.1), such that conditiongD1) and (D2) hold
andaZ 4+ o7 > 0. Then for every, > 0 andk € N,

(A.2) lim  sup P(|6x(x)| <8)=0.

8=0)(x)1|>u

Furthermorefor k = ¢ we have

(A.3) lim supP(l6,(x)| <8) =0, lim supP, (16, (x)| < 8) =0,
§—0 §—>0,cs

x> p

whereP is defined in(4.3).

PrROOF We show first that for 1< j < ¢ and for everye > 0 such
thaté/e — 0 as§ — 0,

(A.4) lim supP(|6; (x)] <. 10;-1(0)| = €) = 0.

—YxeR4
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Recall thatg(x) = (x)1. To prove (A.4) notice first that by (A.1)

0j(x) =n1j010;-1(x) +m;(x),
mj(x)=ai0;_1(x) +oazj-1)0j-2(x) + - +oajr{x)1+ (X)jr1X{j<q)}-
Moreover, condition (D2) implies that; > 0 and therefore by Anderson’s

inequality, [taking into account thaf;; is independent 0b;_1(x) andm ;(x)]
we obtain

P(16;(x)] <8, 10j-1(x)| > €)
=P(In1j010j—1(x) +m;(x)| <8, 10j—1(x)| > €)
< P(ln;| <8/ (eon)).
From this and condition (D1) we obtaiA@). Then (A.2) follows by induction.
Nextwe show (A.3). Introduce fédr> 0 and 1< j < g the setd"s = ﬂ’lf.zl [s,
wherel'; s ={|0;(x)| <€} fore; =¢€;(6) = 87/4. Notice that (A.4) implies
lim supP(TjsN Fj_l,a) =0.

8—>OXER¢1
Seta™ = max . <, lo;;| and defineF, = {|ay1| > v}, By = {a® < N}. Take for
any fixedv > 0, N > 0 the setl's N F,, N By. The definition of6; (x) in (A.1)
implies that on this sgkk| — 0 as§ — 0. Hence, if—as in (A.3)—x| > u, there
existség = So(u, v, N) > 0 such thal"s N F, " By = & for all § < §y. Therefore
for thisé > 0 and forx € R? with |x| > u, we obtain

P(16,(x)| < 8)

q
<PTs) + Z P(TjsN F;_l,(s)
=2

q
<P(lag(D] <v) +P@* > N)+ > P(sNT;j_15)
j=2

*

q
+ Z PT;sNTj—1s).

Ea
= P(|aq +ogng1l <v) +
N =

Notice that the conditions2 + 2 > 0 and (D1) guarantee that the first term in
the last line tends to zero as— 0. Hence, we obtain the first limiting equality
in (A.3). The second equality follows from the first and the definition (4.8).

In the following lemma we compute the conditional densityl‘tqux in RY
with respect to the random vectpr= p(x) = H;x.
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LEMMA A.3. Assume thatD1) and(D2) hold, aZ + 6 > O andx # 0. Then
the random vectoﬂ'I’Zqu has conditionalP-density p1(z|p(x)) = f(z, p(x))
with respect tqo (x). The functionf (-, -) :R? x RY — [0, c0) is given by

A5 ,y)=E 'L y),
(A.5) fzy) |detT|pO(Z y)
where
Hlg+1) @2(g+1) - Cg(g+1)
(A.6) T = : : 0
Ag-13 g3 - 0
g2 0 0

andforz =(z1,...,zg) eRY, y=(y1,...,yy) €R?

q
po(z,y) = l_[ 0i(Zjlzj-1,--121,¥)s
j=1

1 zi—m;(z,y)
A7) @i(zilzi—1,+-,21,Y) = X{jz;_11>0E d’( J j )’
ASTALS {lzj—1/>0} o112 1] o121

m1(z, y) = ai1y1+ y2, and forj > 1,
mj(z,y) = a1zj-1+oz(i-n2j-2 "+ &j1y1+ Yj+1X(i<q)s
wherezg = y1 and the density is defined in conditiofD1).

PROOF Let x = (x1,...,x4) € R? such thatx, # 0. We show that the
vector H;+1x has densityf(-,x) as defined in (A.5). To this end we show

first that x'TI,4+1 = 6(x)'T, where the matrix7T is defined in (A.6) and
0(x) = (64(x),...,01(x)) e RY. By the definition of A; in (1.6) we have
(x'My41)g = (x'TyAg41)g = agg+1(x'TIg)1 and for 1< j < g — 1,
(X'Tyq1)j = (X' TgAgs1)j = jg+1) (X' Ty 1 + (x'TIg) j+1
= = Ujg+1)0g (X) + -+ ag-1)(+2)0+1(%) + g+ (x).

This givesx'T1, ;1 =6(x)'T. Next note thati2 + o2 > 0 implies

q q
|detT| =[] leg G + DI =[] lag +oqng(j + DI >0, P-a.s.
j=1 j=1

Immediately by (A.1) the vectof(x) is measurable with respect to{a;;, 1 <
i <qg,1<k<gq,i+k=<g+ 1}. Hence,T is independent o (x). Therefore
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to prove that the vecto]ﬂ/qu has densityf (-, x), it suffices to prove thad(x)
has densitypg(-, x) as in (A.7). Indeed, ift1 # 0, then condition (D2) guaran-
teeScrl2 > 0 andf1(x) = a11x1+ x2 has positive density1 (-|x) as defined in (A.7).
This implies thatd;(x) # 0 a.s., and thereforéx(x) = a1201(x) + a21x1 + x3
has conditional densityg, (z2|01(x)) = ¢2(z2/01(x), x), where the functiorp; is
also defined in (A.7). Similarly, we can show that, (z;(6;-1(x), ..., 01(x)) =
@j(zjl10j-1(x),...,01(x), x) for every 2< j < q. Therefored (x) = (6,(x), ...,
01(x))’ has density (A.7) ilR? providedx; # 0.

To complete the proof we recall that (A.3) impligs(x))1 = 6, (x) # 0 a.s. for
every vectorx # 0. Therefore, taking into account that thg are i.i.d. ando(x)
independent ofA, 1, ..., A2,+1}, we obtain that the conditional [with respect
to p(x)] density of the vectoH/Zqu = (Ag+1--- A2g+1) p(x) equalsf (-, p(x))
a.s.forx 2#0. O

The following result is an immediate consequence of the definitidhinf(4.3)
and Lemma A.5.

COROLLARY A.4. Under the conditions of Lemma.3, the random vec-
tor H/2q+1x has a conditionaP-density with respect tp(x) given by

Ah =
(A.8) ﬁl(ZIp)=|Z|A7(Z_)p1(zlp), z,peRY, z#0,p#0,
lo|*h(p)

for p1(z|x) as defined in LemmA.3.
LEMMA A.5. Assume that condition®1) and (D2) hold andaZ2 + o2 > 0.
Then forb, x € R? andx #£ 0,
P(x/l_lzq+1b =0>0 — b=0.

PROOF Lemma A.3 implies that
P(x'TI2g+1b = 0) = EP(x'TI2441b = 0| p(x))

=E p1(zlp(x))dz.
{zeR4 : 7/b=0}

If this probability is positive, then there exists a vecpe RY with (o)1 # 0,
such that

/ p1(zlp)dz > 0.
{zeR4 : 7/b=0}

This is possible if and only ifh = 0 since the Lebesgue measure of the set
{zeRY:b'z =0} equalsto zero forabh #0. O

Denote by mes) the Lebesgue measurelRy.
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LEMMA A.6. Assume that conditiongD1l) and (D2) hold, ¢ > 2 and
ag + qu > 0. Then there exists sondg > 0 such that for all0 < § < &g,

im; P(x'TI2g11 € B) > p«(8)us(B),
(A.9) = o
;21; Py (x'TI2g41 € B) = py(8)jis(B),
for every measurable s@& C RY. Here p..(§), p«(8) > 0and

us(B) =E /Q x5 T)dz,
(A.10) jis(B)=E / TV s (' T) dz,
Qs

L={y=01....,y) eRT:6<|yj| <871 j=1....q)

and the matrixT" is defined in(A.6). Moreoveryif megB) > 0, then there exists
somedg > 0 such thatus(B) > 0andjis(B) > 0forall 0 < 4§ < 8o.

PrRoor From Lemma A.3 we know that for a some<® < 1,

P(x'TI2g4+1 € B) = EP(x'TI2g41 € Blp(x))= Ex{p(x)eks 18 (0 (X)),
whereKs = {y = (y1,...,y4) € R?:8 <|y1] and|y| <§~1} and

I5(0) = /R XB@paelp)dz
—E / %8G T)poz. p) dz
R4

>E /Q x5 T) polz, p)dz.
P

Next we show forK§ = R? \ K,

lim supP(p(x) € K§) =0,
(A.11) xes
lim supP,(p(x) € K5) =0.
8—>0,¢c9

Indeed, we have

P(p(x) € K§) <P(I{p(0))1] < 8) +P(lp(x)| > 87Y)
< SUpP(|6, (x)| < 8) + 8(E|A1])?.
xeS
(A.3) gives the limits in (A.11).
Notice that (A.7) implies that,.(8) = inf,cq; rek; po(z, x) > O for every
8 > 0, which yieldsP(x'TIz; 11 € B) > M.(8)P(p(x) € Ks)us(B). From this
and (A.11) we obtain the first inequality in (A.9). Similarly, we prove the second.
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Let B be a measurable set iR?. By the monotone convergence theorem
we have

Slimo ws(B) = megB)E|detT |,

lim fis(B) = / 12 x5 (2) dz E|detT| 2.
§—0 R4
Since| detT| < oo a.s., this implies the second part of the lemmal.
The following lemma is needed to verify condition (C4).
LEMMA A.7. Assume that condition®1) and (D2) hold andaq2 + crqz > 0.
Then
®(x, 1) =E, f (x'Tlpg41, 1), xeS,teR,

is uniformly continuous ors for every measurable bounded functigit S x
R — R; thatis,

lim sup sup|®(x,t) — P(y,1)|=0.

&90u—y5$teR

ProoORr Let V:R? — [0, 0) be a continuous function such thltz) =0
for |z] > 1 and [p, V(z)dz = 1. For somee € (0,1), define K. = {y €
RI:[(y)1l = €, |yl < 1/e}, ve = €/4 and ge(x) = [y1<1 Xk (x + ve))V(y) dy.
Theng, : R? — [0, 1] is continuous, such thaf (x) < XKesa(X) andg,.(x) =
1—g(x) < Xk (%) for every x € R7. We can represent the functioh in
the following form:

O (x,1) = Ex f(x'TIgg41, 1) = Exge (p(x)) f (x'Tzg41, 1) + Ac(x),

where Ac(x) = Exg.(o(x)) f(x'TIz;41,1). By (A.11), setting f* = suplf|,
we obtain

A =sUp|Ac(x)| < f*supP,(p(x) € K§,) — 0, e — 0.

xes xes

From the definition of in (4.3) we obtain

~ 1
Exge(p(x) f (x'T2g41,1) = @Ege (p(x)) f1(x'TI2g41, 1),

where f1(z, 1) = |z|*h(Z) f (z, ). By Lemma A.3 we can represent this term as
Ee (p(0)A1(x Tz 1.0 =E [ Frc.0wele, o) dz

= EW(p(x).1)
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with f1(z,1) = Ef1(2'T,1) and ¥e(z, p) = po(z, p)ge(p). Here ¥, allows
the representation

o0 = [ TaGovepdz+ [ FicoweG.p)dz
8 )

(A.12)
= ‘I’e,s(p, 1)+ Ae,s(,O, 1),

where Qs = {y e R7:8 < |(y);] <8671, j =1,...,q}. Next we show that for
everye > 0,

(A.13) lim sup P(6(p) € ©25) =0.
8~ PEKe/4

To this end note

sup P(8(p) € )
PEKe/4

q
<> sup P(l6;(p)l <38)+ sup P(16(p)| > 1/5)
j=1l(p)1lze/4 |p|<4/e

q
<> sup P(16;(p)l <8)+5 sup EI6(p)l.
iZ1ltp)lze/4 lpl<4/e

By the definition of9(p) in (A.1) we find for everyn > 0 some constant, > 0
such that

sup E|9(,0)|m = Cm/em < 00.
lpl<4/e

Therefore the limit relation (A.2) implies (A.13). Moreover, notice that the last
inequality yields

lim Sur/) EX{|9(10)|>N}|0(10)|)" =0.

N=00|p|<d/e
Next we estimateé\ s (p, 7) as defined in (A.12). Taking into account that
[F1 Dl < FREIT b = £zl

we obtain forp € R? andN > 0,

8001 = fige(o) [ IV poz. p)dz
§

= [18c(0EIB(O)" xi0(pyess)
< i Xtpekoa (N*P(O(p) € Q5) + Exqoco) =m0 (0)").
This together with (A.13) ensures for every- 0,

fs= sup |Acs(p,t)]—0 ass — 0.
' peRY 1eR
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From this we conclude fot, y € S such thatx — y| < n and foru > 0,
<E[n ) We s(0(x), 1) = h X0 Wes(p(y), 1)| + 2% + 2A¢ s
< W slh o) — )+ 247 +2A%

’

+ %ffmeiﬂs)E SUp|Ye (z, p(x)) — Ve (z, p(1))

7€
where W7 s = sup|W.s|. Since ¥(-,-) and p(-) are uniformly continuous

on Q5 x R? and on S, respectively, taking the limits lim,glims_olim,_.q
implies Lemma A.7. O

A4. General Markov propertiesof (x,)zen. We consider now the Markov
chain (x,),cn as defined in (1.10). Criteria for uniform ergodicity are based on
“small” sets. A sefl” € B(S) is called asmall setif there exists anm € N and
a nontrivial measure,, on B(S) [i.e., v,;(S) > 0] such thatP™(x, A) > v,,(A)
forallx eI andA € B(S). As a general reference on Markov processes, we refer
to [18].

LEMMA A.8. Assume that conditiongD1l) and (D2) hold, ¢ > 2 and
a2+ o2 > 0.Then the following hold

(@) The distribution of the random vectap, 1 has the following properties
let A be a measurable set ifiand denote by () the Lebesgue measure @&15),
then

(i) if A(A) > 0, theninfycsPy(xz541 € A) > 0 and infyes Py (xz41 €
A) > 0; B

(i) if A(A) =0, then Py(x2,41 € A) =0 and Py(x2441 € A) = 0 for
all yesS.

(b) The Markov chain(x,),cy (With respect to both measurésand P) is
A-irreducible and aperiodicMoreoverevery measurable subset$fs small

ProoF (a) Recall thaty, = x'I1,/|x'T1,|. Note that for everyc € S and
every measurable sdte S,

Py(x2g+1 € A) = P(x'TI2441 € Ba),

Py (x2941 € A) = Py (x'TIzg11 € By),
whereBy = L71(A) = {y e R7\ {0}: L(y) € A} andL(y) = y/|y|. From (A.9)
we obtain for some & § < 1,

P2+1(x, A) > p.(8)ps(Ba) = vs(A),
(A.14) _—
P2 (x, A) > p.(8)ts(Ba) = Ds(A)

for positive constantp, (8) and p.(§).
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Next we show
(A.15) A(A)>0 = megB,y)>0.

Recall thatg > 2, hence, if A(A) > 0, there exists a open st C AC S
with A(V) > 0. Then L=1(V) € By, but this set is open and nonempty
in RY [L(-) is a continuous function ofk? \ {0} and V c L~1(V)], therefore
mesgL~1(V)) > 0, which gives (A.15). If mesB,4) > 0, then, by Lemma A.6,
there exists somé& > 0 such thafus(B4) > 0 andjis(B4) > 0. Then (i) follows
from (A.14). Next we show that

(A.16) A(A)=0 = megB,y)=0.

Assume that mé&8,) > 0. Then there exists an open s&t C B4 with
megV) > 0. By definition of B4 the imageU = L(V) ={L(y) y e V} C A.
We show thaty is an open set ir§. Indeed, forzg € U there existgyg € V such
that zo = L(yo) = yo/|yol. SinceV is open, there exists sonde> 0 such that
{yeR?:|y — yo| <8} C V. Sete =§/|yo| and takez € § such thatz — zg| < ¢.
Note that fory, = |yo|z we haveL(y,) =z and

|y: — yol = |yollz — zol < |yole =34.

Hence, y, € V and thereforez € U, that is, {z € S:|z — z0| < &} C U.
Consequentlyy = L(V) is an open set ir§. For g > 2, the Lebesgue measure
of any open nonempty set ifi is positive. This is a contradiction ta(A) =0
and, hence, (A.14) holds. Furthermore, if igs) = 0, then by Lemma A.3 and
Corollary A.4,

Py(x2g+1 € A) = EP(y'TI2 41 € Balp(y))
=E[ pilelp)dz=0,
By
Py (xg+1 € A) =E,Py(y'Tlzg11 € Balp(y))

—E, /B 51(zlp (7)) dz = 0.

(b) Note that (i) and (ii) immediately imply -irreducibility and aperiodicity.
From inequalities (A.14) we conclude then that every measurable subset in
is small. [J

LEMMA A.9. Assume that condition§D1) and (D2) hold, ¢ > 2 and
aq2+oq2> 0. Then the Markov chainx,),>0 with state spaceS is positive
Harris recurrent and uniformly geometric ergodic with respectRo(and P).

It has invariant measurer (-) [and 7 (-), resp], which is equivalent to Lebesgue
measureA(-) on S.



1002 C. KLUPPELBERG AND S. PERGAMENCHTCHIKOV
PrROOF DefineV:R? — [1,00) by V(y) =1+ |{y)1]. Then
ExV(x1) =1+Eg(x)=L(x)V(x),
whereg (x) = |(x’A1)1]/|x’A1| andL(x) = (1+Eg(x))/ V (x). Sincea?+ ¢ > 0

implies thate2 21> 0,P-a.s., we obtain

, 1 |0611I)
lim L(x (1 E——
[(x)1]—>1:x€S () = 2 |oeq]

1( lorga] )

< [1+E——| <1

2 Jodi+ag;

Thus, there exist > 0 ande < 1 such that SURy, [>r L(x) <1—¢€,and we obtain

thatV(-) satisfiesonthe sét={x € S:|{x)1] <r}:

sup| V(y)p(x,dy) <oo

xerrJs

and, for some € (0, 1),
[V dy <a-ove  forallxer
S

By the second part of Lemma A.8 every subsetSat small. Since(x,),>o0 IS

aperiodic, (x,),>0 is uniformly geometric ergodic with respect B (see [18],
page 355). In the same way uniform geometric ergodociiyf,>o with respect
to P can be shown. Thereforey,),>0 has stationary distributions(-) andz (-),

respectively. Next we use Lemma A.8(a) to show thatrespectively,7 are
equivalent to Lebesgue measure ®nlf 7 (A) = lim,,_ o Py (x, € A) =0 and
A(A) > 0, then by Lemma A.8(a)(i), we obtain the following contradiction

7(A)= lim Px(xpi24+1 € A) = lim_ /S Py (x2g41 € AP (x,dy)
> inf Py(xoq41€ A) > 0.
yes
Next, if A(A) =0, then by Lemma A.8(a)(ii),
m(A) = lim Pr(xXnt24+1 € A)
= lim fP (x29+1 € AP (x,dy) =

Hence,n(-) and A(-) are equivalent onS. In the same way we obtain the
equivalence oft (-) andA(-) onS. O
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Ab. A property of .

LEMMA A.10. If conditions(DO) and (D4) hold, then the functiony (x, u)

defined in(4.11) is nonnegativeand for all x = ((x)1,..., (x)4)" € S with
(x)1#0,
(A.17) meg{u > 0:y (x,u) > 0}) > 0,

wheremegq-) denotes Lebesgues measurdion

PROOF By definition we havey (x,u) = P(t1 + 12 > u) — P(11 > u)
with 71 = x’A1Y7 and o = x'¢1 = (x)1£1. If (x)1 = 0, then1, = 0, and
thereforeyo(x, u) = 0. We show thatyg(x, u) > 0 if (x)1 ## 0. By conditioning
on 1 we get

o0

Y(x, u) =/O (Pu—t<t1<u)—Pu<t1<u+1))p,()dt

=/0°oa(u,r>pf2<z)dr,

where p.,(-) is the density ofrp, which is by condition (D4) symmetric and
nonincreasing ofi0, co). SettingA = o {A;, i € N}, again by condition (D4), the
conditional densityp., (-|]4) of 1 is symmetric and nonincreasing dh,. a.s.
Therefore the nonconditional density, (-) of r1 have the same properties. Thus
for0 <t <u, we have

S(u,t) = /u: Dr(a)da —/M

= fit(pfl(a) — pry(a +1))da > 0.

u-+t+t
Pry (@) da

On the other hand, far> u, we get
0 u u-+t
s, = [ pa(@da +f0 pa@da~ [ pyalA)da
r—u
= [ (ra@ = pata+20)da

Z 05

again sincep, (-|4) is nonincreasing orRy. This proves the first part of
the lemma.
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We show now (A.17). Letg > O such thatp;,(ag — s) > pr(ao + s) for
every O< s < ag and O< #p < ag such thatP(r2 > 19) > 0. Then fortg < ¢t < ag
andag < u < ag +1t9/2,

6<u,r>=f" (pey(@) — pey(a+1))da

—t

> /ao (pr(@) = pry(a+1to))da
a 2

o—fo/

> 0.
This implies (A.17) immediately. O]
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