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THE TAIL OF THE STATIONARY DISTRIBUTION OF A RANDOM
COEFFICIENT AR(q) MODEL1
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Munich University of Technology and Université de Rouen

We investigate a stationary random coefficient autoregressive process.
Using renewal type arguments tailor-made for such processes, we show that
the stationary distribution has a power-law tail. When the model is normal, we
show that the model is in distribution equivalent to an autoregressive process
with ARCH errors. Hence, we obtain the tail behavior of any such model of
arbitrary order.

1. Introduction. We consider the following random coefficient autoregres-
sive model:

yn = α1nyn−1 + · · · + αqnyn−q + ξn, n ∈ N,(1.1)

with random variables (r.v.’s)αin = ai + σiηin, whereai ∈ R andσi ≥ 0. Set

αn = (α1n, . . . , αqn)
′, ηn = (η1n, . . . , ηqn)

′,

where throughout the paper all vectors are column vectors and “′ ” denotes
transposition. We suppose that the sequences of coefficient vectors(ηn)n∈N and
noise variables(ξn)n∈N are independent and both sequences are i.i.d. with

Eξ1 = Eηi1 = 0 and Eξ2
1 = Eη2

i1 = 1, i = 1, . . . , q.(1.2)

We are interested in the existence of a stationary version of the process(yn)n∈N,
represented by a r.v.y∞ and its properties. In this paper we investigate the
tail behavior

P(y∞ > t) ast → ∞.(1.3)

This is, in particular, the first step for an investigation of the extremal behavior
of the corresponding stationary process, which we will study in a forthcoming
paper. Stationarity of (1.1) is guaranteed by condition (D0) below. To obtain the
asymptotic behavior of the tail ofy∞ we embed(yn)n∈N into a multivariate setup.
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SetYn = (yn, . . . , yn−q+1)
′. Then the multivariate process(Yn) can be consid-

ered in the much wider context of random recurrence equations of the type

Yn = AnYn−1 + ζn, n ∈ N,(1.4)

where(An, ζn)n∈N is an i.i.d. sequence, theAn are i.i.d. random(q × q)-matrices
and theζn are i.i.d.q-dimensional vectors. Moreover, for everyn, the vectorYn−1
is independent of(An, ζn).

Such equations play an important role in many applications as, for example, in
queueing; see [4] and in financial time series; see [8]. See also [5] for an interesting
review article with a wealth of examples.

If the Markov process defined in (1.4) has a stationary distribution andY has
this stationary distribution, then certain results are known on the tail behavior ofY .
In the one-dimensional case (q = 1), Goldie [10] has derived the tail behavior ofY

in a very elegant way by a renewal type argument: the tail decreases like a power-
law. For the multivariate model, Kesten [14] and Le Page [17] show—under certain
conditions on the matricesAn—that tλ P(x′Y > t) is asymptotically equivalent to
a renewal function, that is,

tλ P(x′Y > t) ∼ G(x, t) = Ex

∞∑
n=0

g(xn, t − vn) ast → ∞,(1.5)

where “∼” means that the quotient of both sides tends to a positive constant. Note
that if we setx′ = (1,0, . . . ,0), then we obtain again (1.3). Hereg(·, ·) is some
continuous function satisfying condition (4.1),(xn)n≥0 and(vn)n≥0 are stochastic
processes, defined in (1.10) and (1.11).

In model (1.1) we haveζn = (ξn,0, . . . ,0)′ and

An =
(

α1n · · · αqn

Iq−1 0

)
, n ∈ N,(1.6)

whereIq−1 denotes the identity matrix of orderq − 1.
Standard conditions for the existence of a stationary solution to (1.4) are given

in [15] (see also [11]) and require that

E log+ |A1| < ∞ and E log+ |ζ1| < ∞(1.7)

and that the top Lyapunov exponent

γ̃ = lim
n→∞n−1 log|A1 · · ·An| < 0.(1.8)

In our case, conditions (1.7) are satisfied. Moreover, we can replace (1.8) by the
following simpler condition; see, for example, [20].

(D0) The eigenvalues of the matrix

EA1 ⊗ A1(1.9)

have moduli less than one, where “⊗” denotes the Kronecker product
of matrices.
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In the context of model (1.1) under the assumption that, for anyn ≥ 1,
det(An) �= 0 a.s., the processes(xn)n≥0 and(vn)n≥0 are defined as

x0 = x ∈ S, x′
n = x′

n−1An

|x′
n−1An| = x′A1 · · ·An

|x′A1 · · ·An| , n ∈ N,(1.10)

and

v0 = 0, vn =
n∑

i=1

ui = log|x′A1 · · ·An|,
(1.11)

un = log|x′
n−1An|, n ∈ N.

Here| · | denotes the Euclidean norm inRq and|A|2 = trAA′ is the corresponding
matrix norm; we denote, furthermore,S = {z ∈ R

q : |z| = 1} and x = x/|x|
for x �= 0.

Since GARCH models are commonly used as volatility models, modelling
the (positive) standard deviation of a financial time series, Kesten’s work can be
applied to such models; see, for example, [6]. Kesten [14, 15] proved and applied
a key renewal theorem to the right-hand side of (1.5) under certain conditions
on the functiong, the Markov chain(xn)n≥0 and the stochastic process(vn)n≥0;
a special case is the random recurrence model (1.4) withP(An > 0) = 1, for
all n ∈ N. By completely different, namely, point process methods, Basrak, Davis
and Mikosch [1] show that for a stationary model (1.4)—again with positive
matricesAn—the stationary distribution has a (multivariate) regularly varying tail.
Some special examples have been worked out as ARCH(1) and GARCH(1,1);
see [10, 12, 19].

The random coefficient model (1.1), however, does not necessarily satisfy the
positivity condition on the matricesAn; see Section 2 for examples. On the other
hand, it is a special case within Kesten’s very general framework. Consequently,
we derived a new key renewal theorem in the spirit of Kesten’s results, but
tailor-made for Markov chains with compact state space, general matricesAn

and functionsg satisfying condition (4.1) (see [16], Theorem 2.1). We apply this
theorem to the random coefficient model (1.1).

The paper is organized as follows. Our main results are stated in Section 2.
We give weak conditions implying a power-law tail for the stationary distribution
of the random coefficient model (1.1). For the Gaussian model (all random
coefficients and noise variables are Gaussian) we show that model (1.1) is in
distribution equivalent to an autoregressive model with ARCH errors of the same
order as the random coefficient model. Since the limit variable of the random
recurrence model (1.6) is obtained by iteration, products of random matrices have
to be investigated. This is done in Section 3. In Section 4 we check the sufficient
conditions and apply the key renewal theorem from [16] to model (1.1). Some
auxiliary results are summarized in the Appendix.
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2. Main results. Our first result concerns stationarity of the multivariate
process(Yn)n∈N given by (1.4). We need some notions from Markov process
theory, which can be found, for example, in [18]. The following result is an
immediate consequence of Theorem 3 of [9].

THEOREM 2.1. Consider model(1.1) with An given by (1.6), and ζn =
(ξn,0, . . . ,0)′. We assume that the independent sequences{ηin,1 ≤ i ≤ q,n ∈ N}
and(ξn)n∈N are both i.i.d. satisfying(1.2)and thatξ1 has a positive density onR.
If (D0) holds, thenYn = (yn, . . . , yn−q+1)

′ converges in distribution to

Y = ζ1 +
∞∑

k=2

A1 · · ·Ak−1ζk.(2.1)

Moreover, (Yn)n∈N is uniformly geometric ergodic.

REMARK 2.2. (i) From (2.1) we obtain

Y
d= A1Y1 + ζ1,(2.2)

whereY1 = ζ2 + ∑∞
k=3A2 · · ·Ak−1ζk

d= Y andY1 is independent of(A1, ζ1).
(ii) Since E((A1 · · ·An) ⊗ (A1 · · ·An)) = (E(A1 ⊗ A1))

n condition (D0)
guarantees that

E|A1 · · ·An|2 ≤ ce−γ n(2.3)

for some constantsc, γ > 0. From this follows that the series in (2.1) converges
a.s. and the second moment ofY is finite; see Theorem 4 of [9].

We require the following additional conditions for the distributions of the
coefficient vectors(ηn)n∈N and the noise variables(ξn)n∈N in model (1.1).

(D1) The r.v.’s {ηin,1 ≤ i ≤ q,n ∈ N} are i.i.d. with symmetric continuous
positive densityφ(·), which is nonincreasing onR+ and moments of all
order exist.

(D2) For somem ∈ N we assume thatE(α11 − a1)
2m = σ 2m

1 Eη2m
11 ∈ (1,∞).

In particular,σ1 > 0.
(D3) The r.v.’s(ξn)n∈N are i.i.d. andE|ξ1|m < ∞ for all m ≥ 2.
(D4) For every real sequence(ck)k∈N with 0 <

∑∞
k=1 |ck| < ∞, the r.v. τ =∑∞

k=1 ckξk has a symmetric density, which is nonincreasing onR+.

Condition (D4) looks ratherawkward and complicated to verify. Therefore,
we give a simple sufficient condition, which is satisfied by many distributions.
The proof is given in Section A1.

PROPOSITION 2.3. If the r.v. ξ1 has bounded, symmetric densityf , which
is continuously differentiable with bounded derivativef ′ ≤ 0 on [0,∞), then
condition(D4) holds.
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The following is our main result.

THEOREM 2.4. Consider model (1.1), with An given by (1.6), and
ζn = (ξn,0, . . . ,0)′. We assume that the sequences{ηin,1 ≤ i ≤ q,n ∈ N} and
{ξn, n ∈ N} are independent, that conditions(D0)–(D4) hold and thata2

q +σ 2
q > 0.

Then the distribution of the vector(2.1)satisfies

lim
t→∞ tλP(x′Y > t) = h(x), x ∈ S.

The functionh(·) is strictly positive and continuous onS and the parameterλ is
given as the unique positive solution of

κ(λ) = 1,(2.4)

where for some probability measureν onS

κ(λ) := lim
n→∞(E|A1 · · ·An|λ)1/n =

∫
S

E|x′A1|λν(dx),(2.5)

and the solution of(2.4)satisfiesλ > 2.

The following model describes an important special case.

DEFINITION 2.5. If in model (1.1) all coefficients and the noise are Gaussian;
that is,ηi1 ∼ N (0,1) for i = 1, . . . , q andξ1 ∼ N (0,1), we call the model (1.1)
a Gaussian linear random coefficient model.

The proof of the following result is given in Section A2.

PROPOSITION 2.6. We assume the Gaussian model(1.1) with σ1 > 0.
This process satisfies conditions(D1)–(D4). Furthermore, under condition(D0),
the conditional correlation matrix ofY is given by

R = E(YY ′|Ai, i ≥ 1) = B +
∞∑

k=2

A1 · · ·Ak−1BA′
k−1 · · ·A′

1,(2.6)

where

B =


1 0 · · · 0
0 0 · 0
· · · ·
0 0 · 0

 .

Moreover, R is positive definite a.s., that is, the vector Y is conditionally
nondegenerate Gaussian andE|Y |2 < ∞.

We show that the Gaussian model is in distribution equivalent to an autore-
gressive model with uncorrelated Gaussian errors, which we specify as an autore-
gressive process with ARCH errors, an often used class of models for financial
time series.
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LEMMA 2.7. Define for the sameq ∈ N, ai ∈ R, σi ≥ 0 as in model(1.1),

xn = a1xn−1 + · · · + aqxn−q +
√

1+ σ 2
1x2

n−1 + · · · + σ 2
q x2

n−qεn, n ∈ N,(2.7)

with the same initial values(x0, . . . , x−q+1) = (y0, . . . , y−q+1) as for the pro-
cess (1.1). Furthermore, let (εn)n∈N be i.i.d. N (0,1) r.v.’s with initial val-
ues (x0, . . . , x−q+1) independent of the sequence(εn)n∈N. Then the stochastic
processes(xn)n≥0 and the Gaussian linear random coefficient model(1.1) have
the same distribution.

PROOF. We can rewrite model (1.1) in the form

yn = a1yn−1 + · · · + aqyn−q +
√

1+ σ 2
1y2

n−1 + · · · + σ 2
q y2

n−qε̃n, n ∈ N,(2.8)

where

ε̃n = ξn + σ1yn−1η1n + · · · + σqyn−qηqn√
1+ σ 2

1y2
n−1 + · · · + σ 2

q y2
n−q

, n ∈ N,

are i.i.d.N (0,1). This can be seen by calculating characteristic functions.�

REMARK 2.8. (i) Since det(An) = αqn = aq + σqηqn, the condition
a2
q + σ 2

q > 0 and condition (D1) guarantee that det(An) �= 0 a.s.
(ii) For q = 1, model (2.7) was investigated in [3] by different, purely analytic

methods. Stationarity of the model was shown fora2
1+σ 2

1 < 1. Under quite general
conditions on the noise variables, defining

κ(λ) = E|a1 + σ1ε|λ,(2.9)

the equationκ(·) = 1 has a unique positive solutionλ and the tail of the stationary
r.v. x∞ satisfies

lim
t→∞ tλP(x∞ > t) = c.

Moreover, this also covers infinite variance cases, that is,λ can be any posi-
tive value.

(iii) Kesten proved a result similar to Theorem 2.4 for the process (1.4)
(see [14], Theorem 6) under the following condition: There existsm > 0 such
that E(λ∗)m ≥ 1, whereλ∗ = λmin(A1A

′
1) is the minimal eigenvalue ofA1A

′
1.

However, for the matrix of the form (1.6) we calculate

λ∗ = inf|z|=1
z′A1A

′
1z

= inf|z|=1

{q−1∑
j=1

(αj1z1 − zj+1)
2 + α2

q1z
2
1

}
≤

q∑
j=2

z2
j = 1 a.s.,
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λ∗ ≤
(

1+
q−1∑
j=1

α2
j1

)−1

α2
q1 a.s.

In the Gaussian case, when theηin are all i.i.d.N (0,1) with σ1 > 0 the second
inequality impliesP(λ∗ < 1) > 0. ThereforeE(λ∗)m < 1 for any m > 0. This
means, however, that Kesten’s Theorem 6 does not apply to the Gaussian linear
random coefficient model.

3. Products of random matrices. In this section we investigate the func-
tion κ(λ) as defined in (2.5) for matrices(Aj )j∈N presented in (1.6) derived from

model (1.1). Notice thatA1 · · ·An
d= An · · ·A1 for all n ∈ N, since theAj are i.i.d.

Furthermore, for any functionf :Rq → R, we writef (x′) = f (x) for all x ∈ R
q .

For the following lemma we adapted the corresponding proof from [17].

LEMMA 3.1. Assume that conditions(D1) and (D2) are satisfied and
a2
q + σ 2

q > 0. Then there exists some probability measureν on S such that for
everyλ > 0,

κ(λ) := lim
n→∞(E|A1 · · ·An|λ)1/n =

∫
S

E|x′A1|λν(dx) > 0.

PROOF. Denote byB(S) the set of bounded measurable functions and byC(S)

the set of continuous functions onS. Define, forλ > 0,

Qλ : B(S) → B(S) by Qλ(f )(x) = E|x′A1|λf (x′A1)(3.1)

for x ∈ S andf ∈ B(S), wherev = v/|v| for v �= 0. Notice that, iff is continuous,
then alsoQλ(f ) is continuous, that is,Qλ : C(S) → C(S). Denote byP (S) the
set of probability measures onS. SinceS is compact inR

q , P (S) is a compact
convex set with respect to the weak topology. Furthermore, for every probability
measureσ ∈ P (S), we define the measureTσ ∈ P (S) by

Tσ (f ) =
∫
S
f (x)Tσ (dx) =

∫
S Qλ(f )(x)σ (dx)∫
S Qλ(e)(x)σ (dx)

,(3.2)

wheree(x) ≡ 1, f ∈ B(S). The operatorTσ :P (S) → P (S) is continuous with
respect to the weak topology and, by the Schauder–Tykhonov theorem (see [7],
page 450), there exists a fixpointν ∈ P (S) such thatTν = ν, that is,Tν(f ) = ν(f )

for all f ∈ B(S). This implies that∫
S
Qλ(f )(x)ν(dx) = κ(λ)

∫
S
f (x)ν(dx),

where

κ(λ) =
∫
S
Qλ(e)(x)ν(dx).



978 C. KLÜPPELBERG AND S. PERGAMENCHTCHIKOV

Notice that for alln ∈ N,∫
S
Q

(n)
λ (f )(x)ν(dx) = κn(λ)

∫
S
f (x)ν(dx).(3.3)

Here Q(n) is the nth power of the operatorQ. From (3.1) follows for every
f ∈ B(S)

Q
(n)
λ (f )(x) = E|x′A1 · · ·An|λf (x′A1 · · ·An), x ∈ S.(3.4)

Therefore, by (3.3)κn(λ) = ∫
S Q

(n)
λ (e)(x)ν(dx) = ∫

S E|x′A1 · · ·An|λν(dx). This
implies thatκn(λ) ≤ E|A1 · · ·An|λ. On the other hand, we have

κn(λ) = E|A1 · · ·An|λ
∫
S
|x′Bn|λν(dx),(3.5)

whereBn = A1 · · ·An/|A1 · · ·An|. We show that

c∗ = inf|B|=1

∫
S
|x′B|λν(dx) > 0.(3.6)

Indeed [taking into account that
∫
S |x′B|λν(dx) is a continuous function ofB],

if c∗ = 0, there existsB with |B| = 1 such that
∫
S |x′B|λν(dx) = 0, which

means thatν{x ∈ S :x′B �= 0} = 0. SetN = {x ∈ S :x′B = 0} andg(x) = χN c ,
whereN c = S \ N andχA denotes the indicator function of a setA. If N �= ∅,
there exist vectorsb1 �= 0, . . . , bl �= 0 with 1≤ l ≤ q, such that

N ⊂ {x ∈ R
q :x′B = 0} = {x ∈ R

q :x′b1 = 0, . . . , x′bl = 0}.
Furthermore, by (3.3), we obtain, for alln ∈ N,∫

S
Q

(n)
λ (g)(x)ν(dx) = κn(λ)

∫
S
g(x)ν(dx) = 0.

By (3.4) this implies forn = 2q + 1

E
∫
S
|x′A1 · · ·A2q+1|λg(x′A1 · · ·A2q+1)ν(dx)

=
∫
N

E|x′A1 · · ·A2q+1|λg(x′A1 · · ·A2q+1)ν(dx)

= 0.

Sinceν(N ) = 1, there exists somex ∈ N such thatx′A1 · · ·A2q+1 ∈ N a.s., that
is, for all 1≤ j ≤ l,

P(x′A1 · · ·A2q+1bj = 0) = 1.
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By Lemma A.5 this is only possible ifbj = 0, for all 1≤ j ≤ l; that is, ifB = 0.
But this contradicts|B| = 1. Thus we obtained (3.6). Consequently,

E|An · · ·A1|λ ≥ κn(λ)

= E|An · · ·A1|λ
∫
S
|x′Bn|λν(dx)

≥ c∗E|An · · ·A1|λ,
that is,

κ(λ) ≤ (E|An · · ·A1|λ)1/n ≤ κ(λ)

(c∗)1/n

and from this inequality Lemma 3.1 follows by taking the limit asn → ∞. �

LEMMA 3.2. Assume that conditions(D0)–(D2)are satisfied anda2
q+ σ 2

q > 0.
Then equation(2.4)has a unique positive solution.

PROOF. Denote�(n) = An · · ·A1 = (�ij (n)). Then�11(n) = (α1n − a1) ×
�11(n−1)+µn, whereµn = a1�11(n−1)+α2n�21(n−1)+· · ·+αqn�q1(n−1)

independent ofη1n. By the binomial formula and condition (D1) (which implies
that all odd moments ofη are equal to zero) we have for arbitrarym ∈ N

with C
j
2m = (2m

j

)
,

E
(
�11(n)

)2m =
m∑

j=0

C
2j
2mE

((
α1(n) − a1

)2j )
E

((
�11(n − 1)

)2j
µ2(m−j)

n

)
≥ s(m)E

(
�11(n − 1)

)2m
,

where by condition (D2)s(m) = E(α1n − a1)
2m > 1 for somem > 1. Thus

E(�11(n))2m ≥ s(m)n, that is, E|�(n)|2m ≥ E(�11(n))2m ≥ s(m)n, which im-
plies that

κ(2m) = lim
n→∞

(
E|�(n)|2m

)1/n ≥ s(m) > 1.

We show now that logκ(λ) is convex for allλ > 0 and, hence, continuous onR+.
To see the convexity, set

ςn(λ) = 1

n
logE|�(n)|λ, λ > 0,

and recall that logκ(λ) = limn→∞ ςn(λ). Then for α ∈ (0,1) and β = 1 − α

we obtain by Hölder’s inequality, forλ,µ > 0,

ςn(αλ + βµ) ≤ αςn(λ) + βςn(µ).

By Remark 2.2(ii) condition (D0) implies (2.3), which ensures thatκ(µ) < 1 for
all 0 < µ ≤ 2. Therefore equation (2.4) has a unique positive root.�
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The proof of the following lemma is a simplification of Step 2 of Theorem 3
of [15] adapted to model (1.1); see also [17], Step 2 of Proposition 1.2.

LEMMA 3.3. Assume that conditions(D1) and (D2) are satisfied and
a2
q + σ 2

q > 0. For everyλ > 0 there exists a continuous functionh(·) > 0 such
that forQλ as defined in(3.2),

Qλ(h)(x) = κ(λ)h(x), x ∈ S.(3.7)

The functionh is unique up to a positive constant. Moreover, for q = 1, it is
independent ofx.

PROOF. For q = 1 we haveS = {1,−1} and it is easy to deduce that any
solution of (3.7) is constant onS. Forq ≥ 2 we first recall the notation of the proof
of Lemma 3.1, in particular (3.5) and (3.6). Set, forλ > 0,

sn(x) = Q
(n)
λ (e)(x)

κn(λ)
= E|x′A1 · · ·An|λ

κn(λ)
, x ∈ S.

Using (3.5) and (3.6), we obtain supx∈S sn(x) ≤ 1/c∗.
Notice that for any(q × q)-matrix A andλ > 0, choosingλ∗ = min(λ,1),∣∣|x′A|λ − |y′A|λ∣∣ ≤ max(1, λ)|x − y|λ∗ |A|λ, x, y ∈ S,

which implies |sn(x) − sn(y)| ≤ (max(1, λ)/c∗)|x − y|λ∗ . By the principle
of Arzéla–Ascoli there exists a sequence(nk)k∈N with nk → ∞ ask → ∞ and
a continuous functionh(·), such thathk(x) := ∑nk

j=1 sj (x)/nk → h(x) uniformly
for x ∈ S and

Qλ(h)(x) = lim
k→∞Qλ(hk)(x) = lim

k→∞
1

nk

nk∑
j=1

Qλ(sj )(x)

= lim
k→∞

κ(λ)

nk

nk∑
j=1

sj+1(x) = κ(λ)h(x).

If h(x) = 0, for somex ∈ S, thenQ
(n)
λ (h)(x) = 0 for all n ∈ N, that is,

E|x′A1 · · ·An|λh(xn) = 0,

wherex′
n = x′A1 · · ·An, which means thath(xn) = 0, P-a.s., for alln ∈ N. From

Lemma A.9, whereπ(·) denotes the invariant measure of the Markov chain
(xn)n≥0, we conclude

Exh(xn) = 0 ∀n ∈ N �⇒ lim
n→∞ Exh(xn) =

∫
S
h(z)π(dz) = 0

�⇒ lim
k→∞

∫
S
hk(z)π(dz) =

∫
S
h(z)π(dz) = 0.
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But on the other hand,∫
S
hk(z)π(dz) = 1

nk

nk∑
j=1

1

κj (λ)

∫
S
Q

(j)
λ (e)(z)π(dz)

= 1

nk

nk∑
j=1

1

κj (λ)
E|A1 · · ·Aj |λ

∫
S

|z′A1 · · ·Aj |λ
|A1 · · ·Aj |λ π(dz)

≥ c1
1

nk

nk∑
j=1

E|A1 · · ·Aj |λ
κj (λ)

≥ c1,

where c1 = inf|B|=1
∫
S |z′B|λπ(dz). Assume thatc1 = 0. Then there exists

a matrixB with |B| = 1, such thatπ(N c ∩ S) = 0 for N = {x ∈ R
q :x′B = 0}.

Denote by�(·) the Lebesgue measure onS, then �(N ∩ S) = 0 becauseN
is a linear subspace ofRq . By Lemma A.9 π is equivalent to�; that is,
π(N ∩ S) = 0. This implies thatπ(S) = π(N c ∩ S) + π(N ∩ S) = 0, which
contradictsπ(S) = 1. Hence,c1 > 0 andh(x) > 0 for all x ∈ S.

Now assume that there exists some positive functiong �= h satisfying equa-
tion (3.7). Define�n = A1 · · ·An. Then for everyn ∈ N, we have

g(x) = Q
(n)
λ (g)(x)

κn(λ)
= E|x′�n|λg(x′�n)

κn(λ)
= h(x)

κn(λ)
Ẽxf (x′�n), x ∈ S,

wheref (z) = g(z)/h(z), and for everyn ∈ N,

Ẽxf (x′�n) = 1

h(x)
E|x′�n|λh(x′�n)f (x′�n), x ∈ S,

that is,Ẽx denotes expectation with respect to the measure defined in (4.7). Since
the representation forg holds for alln (therefore forn = 2q + 1), the functiong is
continuous by Lemma A.7. Define

ρ = sup
x∈S

g(x)

h(x)
= g(x0)

h(x0)
and l(x) = ρh(x) − g(x), x ∈ S.

Notice thatl(x) ≥ 0 andl(x0) = 0. Next set

L(y) = l(y)

h(y)
= Qλ(l)(y)

κ(λ)h(y)
= · · · = Q

(n)
λ (l)(y)

κn(λ)h(y)
= Q

(n)
λ (hL)(y)

κn(λ)h(y)
, y ∈ S.

We write

sup
y∈S

L(y) = L(y0) = Q
(n)
λ (hL)(y0)

κn(λ)h(y0)
,

equivalently, forx′
n = y′

0�n, E|y′
0�n|λh(xn)L(xn) = L(y0)h(y0)κ

n(λ). More-
over, (3.7) implies thatE|y′

0�n|λh(xn) = κn(λ)h(y0) for this sequence(xn)n≥0
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and therefore E|y′
0�n|λh(xn)(L(y0) − L(xn)) = 0. Thus, for all n ∈ N,

L(xn) = L(y0) P-a.s. and thereforeEy0L(xn) = EL(y′
0�n) = L(y0). By Lem-

ma A.9, withπ(·) the invariant measure of(xn)n≥0, we get∫
S
L(z)π(dz) = lim

n→∞ Ey0L(xn) = L(y0).

SinceL(·) is continuous and the measureπ(·) is equivalent to Lebesgue measure,
we have

L(y0) = L(z) = L(x0) = l(x0)

h(x0)
= 0, z ∈ S.

Thusl(z) = 0 for all z ∈ S and Lemma 3.3 follows. �

4. Renewal theorem for the associated Markov chain. The next result is
based on the renewal theorem in [16] for the stationary Markov chain(xn)n≥0

and the processes(vn)n≥0 and (un)n≥1 as defined in (1.10) and (1.11), re-
spectively. Some general properties of(xn)n≥0 are summarized in Section A4.
Let g :S × R → R be a continuous bounded function satisfying

∞∑
l=−∞

sup
x∈S

sup
l≤t≤l+1

|g(x, t)| < ∞.(4.1)

The renewal theorem in [16] gives the asymptotic behavior of the renewal function

G(x, t) = Ex

∞∑
k=0

g(xk, t − vk)

under the following conditions:

(C1) For the processes(xn)n≥0 and(un)n≥1 define theσ -algebras

F0 = σ {x0}, Fn = σ {x0, x1, u1, . . . , xn, un}, n ∈ N.

Here the initial valuex0 is a r.v., which is independent of(An)n∈N.
For every bounded measurable functionf :

∏∞
i=0(S × R) → R and for every

Fn-measurable r.v.�,

E
(
f (�, xn+1, un+1, . . . , xn+l , un+l, . . . )|Fn

)
(4.2)

= Exnf (�, xn+1, un+1, . . . , xn+l, un+l , . . . ) =: �(xn,�),

that is, �(x,a) = Exf (a, x1, u1, . . . , xl, ul, . . . ) for all x ∈ S and a ∈ R.
Moreover, if form ∈ N the functionf : (S × R)m → R is continuous, then
�(x) = Exf (x1, u1, . . . , xm,um) is continuous onS.
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(C2) There exists a probability measureπ(·) onS, which is equivalent to Lebesgue
measure such that∥∥P(n)

x (·) − π(·)∥∥ → 0, n → ∞,

for all x ∈ S, where‖µ‖ = sup|f |≤1
∫
S f (y)µ(dy) denotes total variation of

any measuresµ on S. Moreover, there exists a constantβ > 0 such that for
all x ∈ S

lim
n→∞

vn

n
= β, Px-a.s.

(C3) There exists some numberm ∈ N such that for allν ∈ R and for allδ > 0
there existyν,δ ∈ S andε0 = ε0(ν, δ) > 0 such that∀0< ε < ε0

inf
x∈Bδ,ν

Px(|xm − yν,δ| < ε, |vm − ν| < δ) > 0,

whereBδ,ν = {x ∈ S : |x − yν,δ| < δ}.
(C4) There exists somel ∈ N such that the function�1(x, t) = Ex�(xl, vl, t)

satisfies

sup
|x−y|<ε

sup
t∈R

|�1(x, t) − �1(y, t)| → 0, ε → 0,

for every bounded measurable function� :S × R × R → R.

THEOREM 4.1 ([16]). Assume that conditions(C1)–(C4)are satisfied. Then
for any functiong satisfying(4.1),

lim
t→∞ G(x, t) = lim

t→∞ Ex

∞∑
k=0

g(xk, t − vk) = 1

β

∫
S
π(dx)

∫ ∞
−∞

g(x, t) dt.

We apply this renewal theorem to

G(x, t) = 1

et

∫ et

0
uλP(x′Y > u)du, x ∈ S, t ∈ R,

where the vectorY is given by (2.1) andλ is the unique positive solution of (2.4).
This definition corresponds to an exponential change of measure, equivalently,

to an exponential tilting of the bivariate Markov process(xn, vn)n≥0 as follows.
Denote byẼx the expectation with respect to the probability measureP̃x , which is
defined by

ẼxF (x1, u1, . . . , xn, un)
(4.3)

= 1

h(x)
E|x′A1 · · ·An|λh(xn)F (x1, u1, . . . , xn, un)
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for each measurable functionF . Then by Kolmogorov’s extensioñP and Ẽ are
the corresponding quantities [asP and E are for (xn, vn)n≥0] of the Markov
chain(x̃n, ṽn)n≥0 defined by then-step transition densities

p̃(n)
x,v(dy, dw) = eλwh(y)

eλvh(x)
p(n)

x,v(dy, dw),

where p
(n)
x,v(dy, dw) is the n-step transition density of the original Markov

chain(xn, vn)n≥0.
In order to apply Theorem 4.1 we need to check conditions (C1)–(C4).
However, before we treat the general case for arbitrary dimensionq, we con-

sider the caseq = 1 in the next example.

EXAMPLE 4.2. Consider model (1.1) forq = 1 and 0< a2
1 + σ 2

1 < 1,
then condition (D0) holds. Define(xn)n≥0, (vn)n≥0 and (un)n∈N as in (1.10)
and (1.11), respectively. Assume that conditions (D1) and (D2) are satisfied.
In this case the functionκ(·) is defined by (2.9), and Lemma 3.2 implies that
equationκ(λ) = 1 has a unique positive solution. From Lemma 3.3 we conclude
that only constant functions satisfy equation (3.7), and we simply seth(x) = 1
in (4.3). This case is special in the sense thatS = {1,−1}, that is, the sphere
degenerates to two points, and we define the “Lebesgue measure” onS as any
point measure with�(1) > 0 and�(−1) > 0. By the ergodic theorem for finite
Markov chains one can directly (without Lemma A.9) conclude that the Markov
chain (xn)n≥1 [defined in (1.10)] is uniformly geometric ergodic with unique
invariant distributionπ = π̃ = (1/2,1/2) with respect to both measuresP andP̃,
that is, the condition (C2) (with respect tõP) holds withβ = E|α11|λ log|α11|,
which is positive (cf. [10], Lemma 2.2).

To show condition (C3) for the measureP̃, setm = 1 andyν,δ = 1 for ν > 0
andδ > 0. Therefore, taking into account that by condition (D1) the r.v.α11 has a
positive density, we obtain the inequality in condition (C3) for any 0< ε < 1.

PROPOSITION4.3. Consider model(1.1)with (xn)n≥0, (vn)n≥0 and(un)n∈N

defined in(1.10)and (1.11),respectively. Assume that conditions(D0)–(D2) are
satisfied anda2

q + σ 2
q > 0. Then conditions(C1)–(C4)hold with respect to the

measurẽPx generated by the finite-dimensional distributions(4.3).

PROOF. First recall�n = A1 · · ·An andx′
n = x′�n = x′�n/|x′�n| andv′

n =
log |x′�n|. For every bounded measurable function�(xn, vn, t) = f (x′�n, t),
with f (z, t) = �(z, log|z|, t), we have by Lemma A.7 immediately that condi-
tion (C4) holds.

Next we check (C1). Forn, l ∈ N we have

x′
n+l = x′

nAn+1 · · ·An+l

|x′
nAn+1 · · ·An+l| = hl(xn,An+1, . . . ,An+l)
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and

un+l = log|x′
n+l−1An+l| = log

∣∣∣∣ x′
nAn+l−1 · · ·An+1

|x′
nAn+l−1 · · ·An+1|An+l

∣∣∣∣
= gl(xn,An+1, . . . ,An+l).

Now for every functionf :
∏∞

i=0(S × R) → R and some� − Fn measurable r.v.�
we calculate

f (�, xn+1, un+1, . . . , xn+l, un+l, . . . )

= f
(
�,h1(xn,An+1), g1(xn,An+1), . . . ,

hl(xn,An+1, . . . ,An+l), gl(xn,An+1, . . . ,An+l), . . .
)

= f1(�, xn,An+1, . . . ,An+l , . . . ).

Therefore,E(f (�, xn+1, un+1, . . . )|Fn) = E(f1(�, xn,An+1, . . . )|Fn) = �(xn,�),
where [notice that(�, xn) is independent of(An+1, . . . ,An+l, . . . )]

�(x,a) = Ef1(a, x,An+1, . . . ) = Ef1(a, x,A1, . . . )

= Ef
(
a,h1(x,A1), g1(x,A1), . . .

) = Exf (a, x1, u1, . . . ).

This and (4.3) implies for everym ∈ N and every bounded functionfm :R × (S ×
R)m → R,

Ẽx

(
fm(�, xn+1, un+1, . . . , xn+m,un+m)|Fn

) = �m(xn,�),(4.4)

where�m(x, a) = Ẽx(fm(a, x1, u1, . . . , xm,um)).
Denote by µx the measure on the cylindricσ -algebra B in

∏∞
i=0(S ×

R) generated by the finite-dimensional distributions of(x1, u1, . . . , xk, uk) [de-
fined by (4.3) with initial valuex] on Bk , whereBk is the Borelσ -algebra
on (S × R)k and B = σ {⋃∞

k=1 Bk}. Let furthermoreµx|Fn be the conditional
(on Fn) infinite-dimensional distribution of(xn+1, un+1, . . . , xn+k, un+k, . . . ).
Equality (4.4) implies that the finite-dimensional distributions of the mea-
sureµx|Fn coincide with the finite-dimensional distributions of the measureµxn ;
that is,µx|Fn ≡ µxn on B. This implies(4.2) for the measure defined in (4.3).
Furthermore, the definitions of(xn)n∈N and(vn)n∈N imply that for every continu-
ousf also�(x) = Ẽxf (x1, v1, . . . , xm, vm) is continuous inx ∈ S. Hence condi-
tion (C1) holds.

Next we check condition (C2) forq ≥ 2. The caseq = 1 has been treated
in Example 4.2. We first show

sup
x∈S

Ẽx(log |x′A1|)2 < ∞.(4.5)

To see this notice that for everyλ > 0,

sup
x∈R

|x|λ(log|x|)2

1+ |x|λ+1
=: c∗ < ∞.
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Hence for everyx ∈ S,

Ẽx(log |x′A1|)2 = 1

h(x)
E|x′A1|λh(x′A1)(log|x′A1|)2

≤ c∗ h∗

h∗
(1+ E|A1|λ+1) < ∞,

whereh∗ = infx∈S h(x) andh∗ = supx∈S h(x). This implies (4.5).
Define

f (x) = 1

h(x)
E|x′A1|λ log |x′A1|h(x′A1) = Ẽx log|x′A1|,

andmk = log |x′
k−1Ak| − f (xk−1), then

vn

n
= 1

n

n∑
k=1

f (xk−1) + 1

n

n∑
k=1

mk := ςn + 1

n

n∑
k=1

mk.(4.6)

By the strong law of large numbers for square integrable martingales and (4.5) the
last term in (4.6) converges to zeroP̃x -a.s. for anyx ∈ S. By Lemma A.9(xn)n∈N

is positive Harris recurrent with respect to the measureP̃x as defined in (4.3).
Hence we can apply the ergodic theorem to the first term of the right-hand side
of (4.6) (see Theorem 17.0.1, page 411 in [18]). This term then converges to the
expectation off with respect to the invariant measureπ̃ :

lim
n→∞ςn = β =

∫
S
π̃(dz)

1

h(z)
E|z′A1|λ log|z′A1|h(z′A1), π̃ -a.s.(4.7)

This implies∫
S

P̃x

(
lim

n→∞
vn

n
= β

)
π̃(dx) =

∫
S

P̃x

(
lim

n→∞ςn = β

)
π̃(dx) = 1.

By Lemma A.9 the measurẽπ is equivalent to Lebesgue measure, hence

P̃x

(
lim

n→∞
vn

n
= β

)
= 1(4.8)

for �-almost allx ∈ S. From condition (C1) we conclude

P̃x

(
lim

n→∞
vn

n
= β

)
= Ẽxf (xl, vl),

wherel = 2q + 1, and

f (x, v) = P̃x

(
lim

n→∞
vn + v

n
= β

)
.

By condition (C4) the functionP̃x(limn→∞ vn

n
= β) is continuous onS and

therefore (4.8) holds for allx ∈ S.
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It remains to show that the constantβ in (4.7) is positive. By (2.3) there
exist c > 0 and γ > 0 such thatE|�n|2 ≤ ce−γ n. Chooseδ > 0 such that
d = γ − 2δ > 0. Then by Chebyshev’s inequality,

P(|x′�n| ≥ e−δn) ≤ e2δnE|x′�n|2 ≤ e2δnE|�n|2 ≤ ce−dn.

Moreover, for every 0< ρ < d/λ andx′
n = x′�n, we have

P̃x(|x′�n| < eρn) = h−1(x)E|x′�n|λh(xn)χ{|x′�n|<eρn}
≤ c∗(

e−λδn + E|x′�n|λχ{e−δn≤|x′�n|<eρn}
)

≤ c∗(
e−λδn + eλρnP(|x′�n| ≥ e−δn)

)
≤ c∗(

e−λδn + ce−(d−λρ)n
)
,

wherec∗ = h∗/h∗, h∗ = maxh andh∗ = minh. By the lemma of Borel–Cantelli
we conclude that for allx ∈ S,

lim
n→∞

vn

n
≥ ρ > 0 P̃x-a.s.

This verifies condition (C2).
Finally, we check condition (C3) forq ≥ 2. The caseq = 1 has already been

treated in Example 4.2. We shall show that form = 2q + 1 and∀ ν ∈ R, ∀ δ > 0,
∀y ∈ S, ∀ ε > 0,

inf
x∈S

P̃x(|xm − y| < ε, |vm − ν| < δ) > 0.(4.9)

Indeed, withL(z) = z/|z|, consider

P̃x(|xm − y| < ε, |vm − ν| < δ) = P̃x(x
′�m ∈ �y,ε,δ),

where�y,ε,δ = {z ∈ R
q \ {0} : |L(z) − y| < ε, | log|z| − ν| < δ}. For everyy ∈ S

and everyν ∈ R, this set is a nonempty open set inRq , because the vector
z0 = eνy ∈ �y,ε,δ (∀ ν ∈ R, ∀ δ > 0, ∀y ∈ S, ∀ ε > 0). This implies that the
Lebesgue measure of�y,ε,δ is positive. By Lemma A.6 we conclude that

inf
x∈S

P̃x(x
′�m ∈ �y,ε,δ) > 0.

This ensures (4.9), which implies condition (C3).�

Define G̃(x, t) = G(x, t)/h(x), whereh(·) > 0 satisfies equation (3.7) with

positiveλ for which κ(λ) = 1. Further, recall that by Remark 2.2Y d= A1Y1 + ζ1,

where Y1 = ζ2 + ∑∞
k=3A2 · · ·Ak−1ζk is independent of(A1, ζ1) and Y1

d= Y .
Therefore,

G̃(x, t) = 1

h(x)et

∫ et

0
uλP(x′A1Y1 + x′ζ1 > u)du

(4.10)
=: G̃0(x, t) + g(x, t),
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where, settingτ1 = x′A1Y1 andτ2 = x′ζ1,

G̃0(x, t) = 1

h(x)et

∫ et

0
uλP(τ1 > u)du,

(4.11)

g(x, t) = 1

h(x)et

∫ et

0
uλψ(x,u) du

with ψ(x,u) = P(τ1 + τ2 > u) − P(τ1 > u).

PROPOSITION 4.4. Assume that conditions(D0)–(D2) are satisfied and
a2
q + σ 2

q > 0. Then

G̃(x, t) =
∞∑

n=0

Ẽxg(xn, t − vn).(4.12)

PROOF. Lemmas 3.1–3.3 ensure the existence of positive solutions of equa-
tions (2.4) and (3.7) which are used in the definition of the measureP̃ in (4.3).
Now consider firstG̃0(x, t). Mappingu �→ u/|x′A1| and usingx′

1 = x′A1/|x′A1|,
we obtain

G̃0(x, t) = E
|x′A1|λ

h(x)et−log|x′A1|
∫ et /|x′A1|

0
uλP(x′

1Y > u)du

= ẼxG̃(x1, t − log |x′A1|).
Let B(S × R) be a linear space of bounded measurable functionsS × R → R.
Define the linear operator� : B(S × R) → B(S × R) by

�(f )(x, t) = Ẽxf (x1, t − v1),

where we have used thatv1 = u1 = log|x′A1|. Next, recall that by Proposition 4.3,
condition (C1) holds for the measure (4.3). This implies that thenth power of the
operator� is defined by�(n)(f )(x, t) = Ẽxf (xn, t − vn). Then equation (4.10)
translates into the renewal equationG̃(x, t) = �(G̃)(x, t) + g(x, t) and we obtain
for all n ∈ N iteratively,

G̃(x, t) = �(n)(G̃)(x, t) + g(x, t) + �(g)(x, t) + · · · + �(n−1)(g)(x, t).

Moreover, condition (D0) implies limn→∞ E|�n| = 0, giving

�(n)(G̃)(x, t) = ẼxG̃(xn, t − vn)

= 1

h(x)et

∫ et

0
uλP(x′�nY > u)du → 0, n → ∞.

This implies (4.12). �
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LEMMA 4.5. Assume the conditions of Theorem2.4. Then for everyx ∈ S,
there exists

lim
t→∞G(x, t) = h(x)

1

β

∫
S
π̃(dz)

1

h(z)

∫ ∞
0

uλ−1ψ(z,u) du

= h(x)γ ∗ > 0.

Hereh(·) > 0 satisfies equation(3.7)with positiveλ for whichκ(λ) = 1, β > 0 is
defined in(4.7)and π̃(·) is the stationary measure of the Markov process(xn)n≥0

under the distributioñP as defined in(4.3).

PROOF. We apply Theorem 4.1 to (4.12). Conditions (C1)–(C4) hold forq ≥ 1
by Example 4.2 and Proposition 4.3. It remains to show that the functiong given
by (4.11) satisfies condition (4.1). By Lemma A.10 follows thatg(x, t) ≥ 0 and
therefore

|g(x, t)| = g(x, t) ≤ 1

h∗
(
g∗

1(x, t) + g∗
2(x, t)

)
,

whereh∗ = minx∈S h(x) and, withn(t) = eµt for someµ > 0,

g∗
1(x, t) = 1

et

∫ et

0
uλP

(
τ1 > u − n(t)

)
du − 1

et

∫ et

0
uλP(τ1 > u)du,

g∗
2(x, t) = eλt

λ + 1
P

(
τ2 > n(t)

)
.

We show that these functions satisfy for sufficiently larget > 0 the inequality

g∗
i (x, t) ≤ ce−c1t(4.13)

for constantsc, c1 > 0. First notice that it follows immediately from Lemma 3.2
that κ(θ) < 1 for every 1< θ < λ. Hence by the defintion ofκ(θ) in (2.5), for
everyν ∈ (κ(θ),1), there exists someC = Cν > 0 such that for alln ∈ N,

E|A1 · · ·An|θ ≤ Cνn.

From this and Hölder’s inequality we obtain, for arbitraryρ > 0,

E|τ1|θ ≤ E|A1|θE|Y1|θ

≤ 2θ−1E|A1|θ
(

E|ξ1|θ + E

( ∞∑
k=3

|A2 · · ·Ak−1||ξk|
)θ)

≤ 2θ−1E|A1|θ
(

E|ξ1|θ + CE|ξ1|θ
∞∑

k=3

ρ−θ(k−2)νk−2

×
( ∞∑

k=3

ρθ(k−2)/(θ−1)

)θ−1)
.
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Now choose in the last termρ = ν1/(2θ). Then for every 1< θ < λ, there exists
somem(θ) > 0 such that

sup
x∈S

E|τ1|θ = sup
x∈S

E|x′A1Y1|θ < m(θ) < ∞.(4.14)

We study now the functiong∗
1(x, t). Indeed, for sufficiently larget > 0, we have

g∗
1(x, t) ≤ 1

et

∫ et−n(t)

0

(
n(t) + u

)λP(τ1 > u)du

− 1

et

∫ et

0
uλP(τ1 > u)du + (n(t))λ+1

et

≤ c
(n(t))λ+1

et

+ 1

et

∫ et−n(t)

n(t)
uλ

((
1+ n(t)u−1)λ − 1

)
P(τ1 > u)du

≤ c
(n(t))λ+1

et
+ M∗ n(t)

et

∫ et−n(t)

n(t)
uλ−θ−1du E|τ1|θ

≤ c
(n(t))λ+1

et
+ M∗ m(θ)n(t)

δe(1−δ)t

≤ ce−(1−µ(λ+1))t + M∗m(θ)

δ
e−(1−δ−µ)t,

where

M∗ = sup
0<x≤1

(
(1+ x)λ − 1

)
/x, δ = λ − θ and c = 2λ + 1.

To obtain (4.13) for the functiong∗
1(x, t), choose the parametersδ andµ such that

δ + µ < 1 and 0< µ < (1+ λ)−1.
The functiong∗

2(x, t) satisfies inequality (4.13), because for everym > 0 by
condition (D3),

sup
x∈S

E|τ2|m = sup
x∈S

E|〈x〉1ξ1|m ≤ E|ξ1|m < ∞,

where〈x〉1 denotes the first coordinate ofx ∈ S. On the other hand, ift → −∞,
we have immediately from definition (4.11),

g(x, t) ≤ 1

h∗et

∫ et

0
uλ du ≤ 1

h∗
eλt

and, hence, condition (4.1) holds.
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Furthermore, taking into account thatπ̃ is equivalent to Lebesgue measure�

onS (see Lemma A.9), by Theorem 4.1 and Lemma A.10 we conclude

lim
t→∞

G(x, t)

h(x)
= lim

t→∞ G̃(x, t)

= 1

β

∫
S
π̃(dz)

∫ +∞
−∞

g(z, s) ds

= 1

β

∫
S
π̃(dz)

1

h(z)

∫ +∞
0

uλ−1ψ(z,u) du

= γ ∗ > 0. �

The proof of the following lemma is an immediate consequence of the monotone
density theorem in regular variation (see, e.g., [2], Theorem 1.7.2).

LEMMA 4.6. Assume the conditions of Theorem2.4. Then for everyx ∈ S,
there exists

lim
t→∞ tλP(x′Y > t) = γ ∗h(x) > 0,

with h(·) andγ ∗ as in Lemma4.5.

EXAMPLE 4.7 (Continuation of Example 4.2). Lemmas 4.5 and 4.6 imply
Theorem 2.4 with the limiting constant

γ ∗ = 1

β

∫ ∞
0

uλ−1 (ψ(1, u) + ψ(−1, u))

2
du.

Symmetry of the distribution ofξ implies thatψ(1, u) = ψ(−1, u), hence

lim
t→∞ tλP(xY > t) = 1

β

∫ ∞
0

uλ−1(P(Y > u) − P(α11Y1 > u)
)
du

for anyx ∈ S = {1,−1}.
Note that this special case is already covered by Theorem 2.3 of [10].

APPENDIX

A1. A simple sufficient condition for (D4).

PROOF OF PROPOSITION 2.3. Let l = inf{k ≥ 1 :|ck| > 0}. For n ≥ l,
setτn = ∑n

k=l ckξk. If |ck| > 0, then by the condition of this propositionckξk has
a symmetric densitypk(·), continuously differentiable with derivativep′

k(·) ≤ 0
on[0,∞). Thereforeτl has a symmetric density, which is nonincreasing on[0,∞).
We proceed by induction. Suppose thatτn−1 has a symmetric densityϕτn−1(·),
nonincreasing on[0,∞). We show thatτn has a density with these properties.
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Indeed, if cn = 0, then τn = τn−1 and we have the same distribution forτn.
Consider now the case|cn| > 0. By the properties ofpn(·) and ofϕτn−1(·), we can
write the densityϕτn(·) of τn in the following form:

ϕτn(z) =
∫ ∞

0
pn(z + u)ϕτn−1(u) du +

∫ z

0
pn(z − u)ϕτn−1(u) du

+
∫ ∞
z

pn(u − z)ϕτn−1(u) du, z > 0.

Therefore the derivative of this function equals

ϕ′
τn

(z) =
∫ ∞
z

p′
n(u)

(
ϕτn−1(u − z) − ϕτn−1(u + z)

)
du

+
∫ z

0
p′

n(u)
(
ϕτn−1(z − u) − ϕτn−1(u + z)

)
du ≤ 0, z > 0,

sincep′
n(·) ≤ 0 andϕτn−1(·) is nonincreasing on[0,∞). Therefore we obtained

that for alln ≥ l, the r.v.τn has a symmetric continuously differentiable density,
which is nonincreasing on[0,∞). Moreover, sinceτ = limn→∞ τn a.s. and
the sequence(ϕτn(·))n≥l is uniformly bounded, that is,

sup
z∈R,n≥l

ϕτn(z) ≤ ϕτl
(0) < ∞,

we have that for every bounded measurable functiong with finite support inR

lim
n→∞

∫ ∞
−∞

g(z)ϕτn(z) dz =
∫ ∞
−∞

g(z)ϕτ (z) dz,

whereϕτ (·) is the density ofτ . Sinceξ1 has a continuous density,ϕτ is also
continuous. Therefore, for 0< a < b, we have for all 0< δ < a,∫ b+δ

b−δ
ϕτ (z) dz −

∫ a+δ

a−δ
ϕτ (z) dz

= lim
n→∞

(∫ b+δ

b−δ
ϕτn(z) dz −

∫ a+δ

a−δ
ϕτn(z) dz

)
≤ 0.

Sinceϕτ (·) is continuous, we conclude

ϕτ (b) − ϕτ (a) = lim
δ→0

1

2δ

(∫ b+δ

b−δ
ϕτ (z) dz −

∫ a+δ

a−δ
ϕτ (z) dz

)
≤ 0. �

A2. Gaussian linear random coefficient models.

PROOF OF PROPOSITION 2.6. It is evident that conditions (D1)–(D4) hold
for this model withσ1 > 0, which implies condition (D2).
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To show that the conditional correlation matrix (2.6) is positive definite a.s.
take somex ∈ R

q such thatx′Rx = 0. Then for�k = A1 · · ·Ak , k ∈ N, andB as
defined in (2.6),

x′Bx +
∞∑

k=1

x′�kB�′
kx = 0.

If we denote by〈x〉i the ith coordinate ofx ∈ R
q , the equality above means

that 〈�′
kx〉1 = 0 for all k ∈ N. Setθk(x) = 〈�′

kx〉1 for k ∈ N andθ0(x) = 〈x〉1.
Because of the special form of the matrices (1.6) one can show by induction that

θk(x) =
{

α1kθk−1(x) + · · · + αk1〈x〉1 + 〈x〉k+1, if 1 ≤ k < q,

α1kθk−1(x) + · · · + αq(k−q+1)θk−q(x), if k ≥ q.
(A.1)

Consequenly, ifθk(x) = 0 for all 0≤ k ≤ q, then〈x〉1 = · · · = 〈x〉q = 0. From

this we, conclude thatx′Rx = 0 impliesx = 0, which means thatR is positive
definite a.s. �

A3. Auxiliary properties of �n = A1 ···An. We study the asymptotic prop-
erties ofθk(x) as defined in (A.1). First recall the classical Anderson inequality;
see [13], page 214.

LEMMA A.1 (Anderson’s inequality). Letς be a r.v. with symmetric continu-
ous density, which is nonincreasing on[0,∞). Then for everyc ∈ R anda > 0,

P(|ς + c| ≤ a) ≤ P(|ς | ≤ a).

LEMMA A.2. Assume model(1.1), such that conditions(D1) and (D2) hold
anda2

q + σ 2
q > 0. Then for everyµ > 0 andk ∈ N,

lim
δ→0

sup
|〈x〉1|>µ

P
(|θk(x)| < δ

) = 0.(A.2)

Furthermore, for k = q we have

lim
δ→0

sup
|x|>µ

P
(|θq(x)| < δ

) = 0, lim
δ→0

sup
x∈S

P̃x

(|θq(x)| < δ
) = 0,(A.3)

whereP̃ is defined in(4.3).

PROOF. We show first that for 1≤ j ≤ q and for every ε > 0 such
thatδ/ε → 0 asδ → 0,

lim
δ→0

sup
x∈Rq

P
(|θj (x)| < δ, |θj−1(x)| ≥ ε

) = 0.(A.4)
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Recall thatθ0(x) = 〈x〉1. To prove (A.4) notice first that by (A.1)

θj (x) = η1j σ1θj−1(x) + mj(x),

mj (x) = a1θj−1(x) + α2(j−1)θj−2(x) + · · · + αj1〈x〉1 + 〈x〉j+1χ{j<q}.

Moreover, condition (D2) implies thatσ1 > 0 and therefore by Anderson’s
inequality, [taking into account thatη1j is independent ofθj−1(x) and mj(x)]
we obtain

P
(|θj (x)| < δ, |θj−1(x)| ≥ ε

)
= P

(|η1j σ1θj−1(x) + mj(x)| < δ, |θj−1(x)| ≥ ε
)

≤ P
(|η1j | < δ/(εσ1)

)
.

From this and condition (D1) we obtain (A.4). Then (A.2) follows by induction.
Next we show (A.3). Introduce forδ > 0 and 1≤ j ≤ q the sets�δ = ⋂q

j=1�j,δ,

where�j,δ = {|θj (x)| < εj } for εj = εj (δ) = δj/q . Notice that (A.4) implies

lim
δ→0

sup
x∈Rq

P(�j,δ ∩ �c
j−1,δ) = 0.

Setα∗ = maxi+j≤q |αij | and defineFν = {|αq1| ≥ ν}, BN = {α∗ ≤ N}. Take for
any fixedν > 0, N > 0 the set�δ ∩ Fν ∩ BN . The definition ofθj (x) in (A.1)
implies that on this set|x| → 0 asδ → 0. Hence, if—as in (A.3)—|x| ≥ µ, there
existsδ0 = δ0(µ, ν,N) > 0 such that�δ ∩ Fν ∩ BN = ∅ for all δ ≤ δ0. Therefore
for this δ > 0 and forx ∈ R

q with |x| > µ, we obtain

P
(|θq(x)| < δ

)
≤ P(�δ) +

q∑
j=2

P(�j,δ ∩ �c
j−1,δ)

≤ P
(|αq(1)| < ν

) + P(α∗ > N) +
q∑

j=2

P(�j,δ ∩ �j−1,δ)

≤ P(|aq + σqηq1| < ν) + Eα∗

N
+

q∑
j=2

P(�j,δ ∩ �j−1,δ).

Notice that the conditionsa2
q + σ 2

q > 0 and (D1) guarantee that the first term in
the last line tends to zero asν → 0. Hence, we obtain the first limiting equality
in (A.3). The second equality follows from the first and the definition (4.3).�

In the following lemma we compute the conditional density of�′
2q+1x in R

q

with respect to the random vectorρ = ρ(x) = �′
qx.
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LEMMA A.3. Assume that(D1) and(D2) hold, a2
q + σ 2

q > 0 andx �= 0. Then
the random vector�′

2q+1x has conditionalP-densityp1(z|ρ(x)) = f (z,ρ(x))

with respect toρ(x). The functionf (·, ·) :Rq × R
q → [0,∞) is given by

f (z, y) = E
1

|detT |p0(z
′T −1, y),(A.5)

where

T =


α1(q+1) α2(q+1) · · · αq(q+1)

...
...

... 0
α(q−1)3 αq3 · · · 0

αq2 0 · · · 0

(A.6)

and forz = (z1, . . . , zq) ∈ R
q , y = (y1, . . . , yq) ∈ R

q

p0(z, y) =
q∏

j=1

ϕj (zj |zj−1, . . . , z1, y),

ϕj (zj |zj−1, . . . , z1, y) = χ{|zj−1|>0}E
1

σ1|zj−1|φ
(

zj − mj(z, y)

σ1zj−1

)
,(A.7)

m1(z, y) = a1y1 + y2, and forj > 1,

mj (z, y) = a1zj−1 + α2(j−1)zj−2 · · · + αj1y1 + yj+1χ{j<q},

wherez0 = y1 and the densityφ is defined in condition(D1).

PROOF. Let x = (x1, . . . , xq)′ ∈ R
q such thatxq �= 0. We show that the

vector �′
q+1x has densityf (·, x) as defined in (A.5). To this end we show

first that x′�q+1 = θ(x)′T , where the matrixT is defined in (A.6) and
θ(x) = (θq(x), . . . , θ1(x))′ ∈ R

q . By the definition of Aj in (1.6) we have
〈x′�q+1〉q = 〈x′�qAq+1〉q = αq(q+1)〈x′�q〉1 and for 1≤ j ≤ q − 1,

〈x′�q+1〉j = 〈x′�qAq+1〉j = αj (q+1)〈x′�q〉1 + 〈x′�q〉j+1

= · · · = αj (q+1)θq(x) + · · · + α(q−1)(j+2)θj+1(x) + αq(j+1)θj (x).

This givesx′�q+1 = θ(x)′T . Next note thata2
q + σ 2

q > 0 implies

|detT | =
q∏

j=1

|αq(j + 1)| =
q∏

j=1

|aq + σqηq(j + 1)| > 0, P-a.s.

Immediately by (A.1) the vectorθ(x) is measurable with respect toσ {αik,1 ≤
i ≤ q,1 ≤ k ≤ q, i + k ≤ q + 1}. Hence,T is independent ofθ(x). Therefore
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to prove that the vector�′
q+1x has densityf (·, x), it suffices to prove thatθ(x)

has densityp0(·, x) as in (A.7). Indeed, ifx1 �= 0, then condition (D2) guaran-
teesσ 2

1 > 0 andθ1(x) = α11x1+x2 has positive densityϕ1(·|x) as defined in (A.7).
This implies thatθ1(x) �= 0 a.s., and thereforeθ2(x) = α12θ1(x) + α21x1 + x3
has conditional densitypθ2(z2|θ1(x)) = ϕ2(z2|θ1(x), x), where the functionϕ2 is
also defined in (A.7). Similarly, we can show thatpθj

(zj |θj−1(x), . . . , θ1(x)) =
ϕj (zj |θj−1(x), . . . , θ1(x), x) for every 2≤ j ≤ q. Thereforeθ(x) = (θq(x), . . . ,

θ1(x))′ has density (A.7) inRq providedx1 �= 0.
To complete the proof we recall that (A.3) implies〈ρ(x)〉1 = θq(x) �= 0 a.s. for

every vectorx �= 0. Therefore, taking into account that theAn are i.i.d. andρ(x)

independent of{Aq+1, . . . ,A2q+1}, we obtain that the conditional [with respect
to ρ(x)] density of the vector�′

2q+1x = (Aq+1 · · ·A2q+1)
′ρ(x) equalsf (·, ρ(x))

a.s. forx �= 0. �

The following result is an immediate consequence of the definition ofP̃ in (4.3)
and Lemma A.5.

COROLLARY A.4. Under the conditions of LemmaA.3, the random vec-
tor �′

2q+1x has a conditional̃P-density with respect toρ(x) given by

p̃1(z|ρ) = |z|λh(z)

|ρ|λh(ρ)
p1(z|ρ), z, ρ ∈ R

q, z �= 0, ρ �= 0,(A.8)

for p1(z|x) as defined in LemmaA.3.

LEMMA A.5. Assume that conditions(D1) and (D2) hold anda2
q + σ 2

q > 0.
Then forb, x ∈ R

q andx �= 0,

P(x′�2q+1b = 0) > 0 �⇒ b = 0.

PROOF. Lemma A.3 implies that

P(x′�2q+1b = 0) = EP
(
x′�2q+1b = 0|ρ(x)

)
= E

∫
{z∈Rq : z′b=0}

p1
(
z|ρ(x)

)
dz.

If this probability is positive, then there exists a vectorρ ∈ R
q with 〈ρ〉1 �= 0,

such that ∫
{z∈Rq : z′b=0}

p1(z|ρ)dz > 0.

This is possible if and only ifb = 0 since the Lebesgue measure of the set
{z ∈ R

q :b′z = 0} equals to zero for allb �= 0. �

Denote by mes(·) the Lebesgue measure inR
q .
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LEMMA A.6. Assume that conditions(D1) and (D2) hold, q ≥ 2 and
a2
q + σ 2

q > 0. Then there exists someδ0 > 0 such that for all0< δ < δ0,

inf
x∈S

P(x′�2q+1 ∈ B) ≥ p∗(δ)µδ(B),

(A.9)
inf
x∈S

P̃x(x
′�2q+1 ∈ B) ≥ p̃∗(δ)µ̃δ(B),

for every measurable setB ⊆ R
q . Herep∗(δ), p̃∗(δ) > 0 and

µδ(B) = E
∫
�δ

χB(z′T )dz,

µ̃δ(B) = E
∫
�δ

|z′T |λχB(z′T )dz,(A.10)

�δ = {y = (y1, . . . , yq)
′ ∈ R

q : δ ≤ |yj | ≤ δ−1, j = 1, . . . , q},
and the matrixT is defined in(A.6). Moreover, if mes(B) > 0, then there exists
someδ0 > 0 such thatµδ(B) > 0 andµ̃δ(B) > 0 for all 0 < δ < δ0.

PROOF. From Lemma A.3 we know that for a some 0< δ < 1,

P(x′�2q+1 ∈ B) = EP
(
x′�2q+1 ∈ B|ρ(x)

)≥ Eχ{ρ(x)∈Kδ}IB(ρ(x)),

whereKδ = {y = (y1, . . . , yq)
′ ∈ R

q : δ ≤ |y1| and|y| ≤ δ−1} and

IB(ρ) =
∫

Rq
χB(z)p1(z|ρ)dz

= E
∫

Rq
χB(z′T )p0(z, ρ) dz

≥ E
∫
�δ

χB(z′T )p0(z, ρ) dz.

Next we show forKc
δ = R

q \ Kδ,

lim
δ→0

sup
x∈S

P
(
ρ(x) ∈ Kc

δ

) = 0,

(A.11)
lim
δ→0

sup
x∈S

P̃x

(
ρ(x) ∈ Kc

δ

) = 0.

Indeed, we have

P
(
ρ(x) ∈ Kc

δ

) ≤ P
(|〈ρ(x)〉1| < δ

) + P
(|ρ(x)| > δ−1)

≤ sup
x∈S

P
(|θq(x)| < δ

) + δ(E|A1|)q .

(A.3) gives the limits in (A.11).
Notice that (A.7) implies thatM∗(δ) = infz∈�δ,x∈Kδ

p0(z, x) > 0 for every
δ > 0, which yieldsP(x′�2q+1 ∈ B) ≥ M∗(δ)P(ρ(x) ∈ Kδ)µδ(B). From this
and (A.11) we obtain the first inequality in (A.9). Similarly, we prove the second.
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Let B be a measurable set inRq . By the monotone convergence theorem
we have

lim
δ→0

µδ(B) = mes(B)E|detT |−1,

lim
δ→0

µ̃δ(B) =
∫

Rq
|z|λχB(z) dzE|detT |−1.

Since|detT | < ∞ a.s., this implies the second part of the lemma.�

The following lemma is needed to verify condition (C4).

LEMMA A.7. Assume that conditions(D1) and (D2) hold anda2
q + σ 2

q > 0.
Then

�(x, t) = Ẽxf (x′�2q+1, t), x ∈ S, t ∈ R,

is uniformly continuous onS for every measurable bounded functionf :S ×
R → R; that is,

lim
ε→0

sup
|x−y|≤ε

sup
t∈R

|�(x, t) − �(y, t)| = 0.

PROOF. Let V :Rq → [0,∞) be a continuous function such thatV (z) = 0
for |z| ≥ 1 and

∫
Rq V (z) dz = 1. For someε ∈ (0,1), define Kε = {y ∈

R
q : |〈y〉1| ≥ ε, |y| ≤ 1/ε}, νε = ε/4 andgε(x) = ∫

|y|≤1 χKε (x + νεy)V (y) dy.
Then gε : R

q → [0,1] is continuous, such thatgε(x) ≤ χKε/4(x) and gε(x) =
1 − gε(x) ≤ χKc

4ε
(x) for every x ∈ R

q . We can represent the function� in
the following form:

�(x, t) = Ẽxf (x′�2q+1, t) = Ẽxgε(ρ(x))f (x′�2q+1, t) + �ε(x),

where �ε(x) = Ẽxgε(ρ(x))f (x′�2q+1, t). By (A.11), setting f ∗ = sup|f |,
we obtain

�∗
ε = sup

x∈S

|�ε(x)| ≤ f ∗ sup
x∈S

P̃x

(
ρ(x) ∈ Kc

4ε

) → 0, ε → 0.

From the definition of̃E in (4.3) we obtain

Ẽxgε(ρ(x))f (x′�2q+1, t) = 1

h(x)
Egε(ρ(x))f1(x

′�2q+1, t),

wheref1(z, t) = |z|λh(z)f (z, t). By Lemma A.3 we can represent this term as

Egε(ρ(x))f1(x
′�2q+1, t) = E

∫
Rq

f 1(z, t)ψε

(
z,ρ(x)

)
dz

= E�ε

(
ρ(x), t

)
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with f 1(z, t) = Ef1(z
′T, t) and ψε(z,ρ) = p0(z, ρ)gε(ρ). Here �ε allows

the representation

�ε(ρ, t) =
∫
�δ

f 1(z, t)ψε(z, ρ) dz +
∫
�c

δ

f 1(z, t)ψε(z, ρ) dz

(A.12)
= �ε,δ(ρ, t) + �ε,δ(ρ, t),

where�δ = {y ∈ R
q : δ ≤ |〈y〉j | ≤ δ−1, j = 1, . . . , q}. Next we show that for

everyε > 0,

lim
δ→0

sup
ρ∈Kε/4

P
(
θ(ρ) ∈ �c

δ

) = 0.(A.13)

To this end note

sup
ρ∈Kε/4

P
(
θ(ρ) ∈ �c

δ

)

≤
q∑

j=1

sup
|〈ρ〉1|≥ε/4

P
(|θj (ρ)| < δ

) + sup
|ρ|≤4/ε

P
(|θ(ρ)| > 1/δ

)

≤
q∑

j=1

sup
|〈ρ〉1|≥ε/4

P
(|θj (ρ)| < δ

) + δ sup
|ρ|≤4/ε

E|θ(ρ)|.

By the definition ofθ(ρ) in (A.1) we find for everym > 0 some constantcm > 0
such that

sup
|ρ|≤4/ε

E|θ(ρ)|m ≤ cm/εm < ∞.

Therefore the limit relation (A.2) implies (A.13). Moreover, notice that the last
inequality yields

lim
N→∞ sup

|ρ|≤4/ε

Eχ{|θ(ρ)|>N}|θ(ρ)|λ = 0.

Next we estimate�ε,δ(ρ, t) as defined in (A.12). Taking into account that

|f 1(z, t)| ≤ f ∗h∗E|T |λ|z|λ = f ∗
1 |z|λ,

we obtain forρ ∈ R
q andN > 0,

|�ε,δ(ρ, t)| ≤ f ∗
1 gε(ρ)

∫
�c

δ

|z|λp0(z, ρ) dz

= f ∗
1 gε(ρ)E|θ(ρ)|λχ{θ(ρ)∈�c

δ}

≤ f ∗
1 χ{ρ∈Kε/4}

(
NλP

(
θ(ρ) ∈ �c

δ

) + Eχ{|θ(ρ)|>N}|θ(ρ)|λ)
.

This together with (A.13) ensures for everyε > 0,

�∗
ε,δ = sup

ρ∈Rq ,t∈R

|�ε,δ(ρ, t)| → 0 asδ → 0.
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From this we conclude forx, y ∈ S such that|x − y| ≤ η and forµ > 0,

|�(x, t) − �(y, t)|
≤ E

∣∣h−1(x)�ε,δ

(
ρ(x), t

) − h−1(y)�ε,δ

(
ρ(y), t

)∣∣ + 2�∗
ε + 2�∗

ε,δ

≤ �∗
ε,δ|h−1(x) − h−1(y)| + 2�∗

ε + 2�∗
ε,δ

+ q

δλ
f ∗

1 mes(�δ)E sup
z∈�δ

∣∣ψε

(
z,ρ(x)

) − ψε

(
z,ρ(y)

)∣∣,
where �∗

ε,δ = sup|�ε,δ|. Since ψε(·, ·) and ρ(·) are uniformly continuous
on �δ × R

q and on S, respectively, taking the limits limε→0 limδ→0 limη→0
implies Lemma A.7. �

A4. General Markov properties of (xn)n∈N. We consider now the Markov
chain (xn)n∈N as defined in (1.10). Criteria for uniform ergodicity are based on
“small” sets. A set� ∈ B(S) is called asmall setif there exists anm ∈ N and
a nontrivial measureνm on B(S) [i.e., νm(S) > 0] such thatPm(x,A) ≥ νm(A)

for all x ∈ � andA ∈ B(S). As a general reference on Markov processes, we refer
to [18].

LEMMA A.8. Assume that conditions(D1) and (D2) hold, q ≥ 2 and
a2
q + σ 2

q > 0. Then the following hold:

(a) The distribution of the random vectorx2q+1 has the following properties:
let A be a measurable set inS and denote by�(·) the Lebesgue measure onB(S),
then:

(i) if �(A) > 0, then infy∈S Py(x2q+1 ∈ A) > 0 and infy∈S P̃y(x2q+1 ∈
A) > 0;

(ii) if �(A) = 0, then Py(x2q+1 ∈ A) = 0 and P̃y(x2q+1 ∈ A) = 0 for
all y ∈ S.

(b) The Markov chain(xn)n∈N (with respect to both measuresP and P̃) is
�-irreducible and aperiodic. Moreover, every measurable subset ofS is small.

PROOF. (a) Recall thatx′
n = x′�n/|x′�n|. Note that for everyx ∈ S and

every measurable setA ∈ S,

Px(x2q+1 ∈ A) = P(x′�2q+1 ∈ BA),

P̃x(x2q+1 ∈ A) = P̃x(x
′�2q+1 ∈ BA),

whereBA = L−1(A) = {y ∈ R
q \ {0} :L(y) ∈ A} andL(y) = y/|y|. From (A.9)

we obtain for some 0< δ < 1,

P2q+1(x,A) ≥ p∗(δ)µδ(BA) = νδ(A),
(A.14)

P̃2q+1(x,A) ≥ p̃∗(δ)µ̃δ(BA) = ν̃δ(A)

for positive constantsp∗(δ) andp̃∗(δ).
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Next we show

�(A) > 0 �⇒ mes(BA) > 0.(A.15)

Recall thatq ≥ 2, hence, if�(A) > 0, there exists a open setV ⊆ A ⊆ S

with �(V ) > 0. Then L−1(V ) ⊆ BA, but this set is open and nonempty
in R

q [L(·) is a continuous function onRq \ {0} and V ⊂ L−1(V )], therefore
mes(L−1(V )) > 0, which gives (A.15). If mes(BA) > 0, then, by Lemma A.6,
there exists someδ > 0 such thatµδ(BA) > 0 andµ̃δ(BA) > 0. Then (i) follows
from (A.14). Next we show that

�(A) = 0 �⇒ mes(BA) = 0.(A.16)

Assume that mes(BA) > 0. Then there exists an open setV ⊂ BA with
mes(V ) > 0. By definition of BA the imageU = L(V ) = {L(y) y ∈ V } ⊆ A.
We show thatU is an open set inS. Indeed, forz0 ∈ U there existsy0 ∈ V such
that z0 = L(y0) = y0/|y0|. SinceV is open, there exists someδ > 0 such that
{y ∈ R

q : |y − y0| < δ} ⊂ V . Setε = δ/|y0| and takez ∈ S such that|z − z0| < ε.
Note that foryz = |y0|z we haveL(yz) = z and

|yz − y0| = |y0||z − z0| < |y0|ε = δ.

Hence, yz ∈ V and thereforez ∈ U , that is, {z ∈ S : |z − z0| < ε} ⊂ U .
ConsequentlyU = L(V ) is an open set inS. For q ≥ 2, the Lebesgue measure
of any open nonempty set inS is positive. This is a contradiction to�(A) = 0
and, hence, (A.14) holds. Furthermore, if mes(BA) = 0, then by Lemma A.3 and
Corollary A.4,

Py(x2q+1 ∈ A) = EP
(
y′�2q+1 ∈ BA|ρ(y)

)
= E

∫
BA

p1
(
z|ρ(y)

)
dz = 0,

P̃y(xq+1 ∈ A) = ẼyP̃y

(
y′�2q+1 ∈ BA|ρ(y)

)
= Ẽy

∫
BA

p̃1
(
z|ρ(y)

)
dz = 0.

(b) Note that (i) and (ii) immediately imply�-irreducibility and aperiodicity.
From inequalities (A.14) we conclude then that every measurable subset inS

is small. �

LEMMA A.9. Assume that conditions(D1) and (D2) hold, q ≥ 2 and
a2
q + σ 2

q > 0. Then the Markov chain(xn)n≥0 with state spaceS is positive

Harris recurrent and uniformly geometric ergodic with respect toP (and P̃).
It has invariant measureπ(·) [and π̃(·), resp.], which is equivalent to Lebesgue
measure�(·) onS.
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PROOF. DefineV :Rq → [1,∞) by V (y) = 1+ |〈y〉1|. Then

ExV (x1) = 1+ Eς(x) = L(x)V (x),

whereς(x) = |〈x′A1〉1|/|x′A1| andL(x) = (1+Eς(x))/V (x). Sincea2
q +σ 2

q > 0

implies thatα2
q1 > 0, P-a.s., we obtain

lim|〈x〉1|→1 :x∈S
L(x) = 1

2

(
1+ E

|α11|
|α1|

)

≤ 1

2

(
1+ E

|α11|√
α2

11 + α2
q1

)
< 1.

Thus, there existr > 0 andε < 1 such that sup|〈x〉1|>r L(x) < 1− ε, and we obtain
thatV (·) satisfies on the set� = {x ∈ S : |〈x〉1| ≤ r}:

sup
x∈�

∫
S
V (y)p(x, dy) < ∞

and, for someε ∈ (0,1),∫
S
V (y)p(x, dy) < (1− ε)V (x) for all x ∈ �c.

By the second part of Lemma A.8 every subset ofS is small. Since(xn)n≥0 is
aperiodic,(xn)n≥0 is uniformly geometric ergodic with respect toP (see [18],
page 355). In the same way uniform geometric ergodocity of(xn)n≥0 with respect
to P̃ can be shown. Therefore,(xn)n≥0 has stationary distributionsπ(·) andπ̃(·),
respectively. Next we use Lemma A.8(a) to show thatπ , respectively,π̃ are
equivalent to Lebesgue measure onS. If π(A) = limn→∞ Px(xn ∈ A) = 0 and
�(A) > 0, then by Lemma A.8(a)(i), we obtain the following contradiction

π(A) = lim
n→∞ Px(xn+2q+1 ∈ A) = lim

n→∞

∫
S

Py(x2q+1 ∈ A)P(n)(x, dy)

≥ inf
y∈S

Py(x2q+1 ∈ A) > 0.

Next, if �(A) = 0, then by Lemma A.8(a)(ii),

π(A) = lim
n→∞ Px(xn+2q+1 ∈ A)

= lim
n→∞

∫
S

Py(x2q+1 ∈ A)P(n)(x, dy) = 0.

Hence,π(·) and �(·) are equivalent onS. In the same way we obtain the
equivalence of̃π(·) and�(·) onS. �
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A5. A property of ψ .

LEMMA A.10. If conditions(D0) and (D4) hold, then the functionψ(x,u)

defined in (4.11) is nonnegative, and for all x = (〈x〉1, . . . , 〈x〉q)′ ∈ S with
〈x〉1 �= 0,

mes
({u ≥ 0 :ψ(x,u) > 0}) > 0,(A.17)

wheremes(·) denotes Lebesgues measure onR.

PROOF. By definition we haveψ(x,u) = P(τ1 + τ2 > u) − P(τ1 > u)

with τ1 = x′A1Y1 and τ2 = x′ζ1 = 〈x〉1ξ1. If 〈x〉1 = 0, then τ2 = 0, and
thereforeψ0(x,u) = 0. We show thatψ0(x,u) ≥ 0 if 〈x〉1 �= 0. By conditioning
on τ2 we get

ψ(x,u) =
∫ ∞

0

(
P(u − t < τ1 ≤ u) − P(u < τ1 ≤ u + t)

)
pτ2(t) dt

=
∫ ∞

0
δ(u, t)pτ2(t) dt,

where pτ2(·) is the density ofτ2, which is by condition (D4) symmetric and
nonincreasing on[0,∞). SettingA = σ {Ai, i ∈ N}, again by condition (D4), the
conditional densitypτ1(·|A) of τ1 is symmetric and nonincreasing onR+ a.s.
Therefore the nonconditional densitypτ1(·) of τ1 have the same properties. Thus
for 0 ≤ t ≤ u, we have

δ(u, t) =
∫ u

u−t
pτ1(a) da −

∫ u+t

u
pτ1(a) da

=
∫ u

u−t

(
pτ1(a) − pτ1(a + t)

)
da ≥ 0.

On the other hand, fort > u, we get

δ(u, t) =
∫ 0

u−t
pτ1(a) da +

∫ u

0
pτ1(a) da −

∫ u+t

u
pτ1(a|A) da

=
∫ t−u

0

(
pτ1(a) − pτ1(a + 2u)

)
da

+
∫ u

0

(
pτ1(a) − pτ1(a + u)

)
da

≥ 0,

again sincepτ1(·|A) is nonincreasing onR+. This proves the first part of
the lemma.
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We show now (A.17). Leta0 > 0 such thatpτ1(a0 − s) > pτ1(a0 + s) for
every 0< s < a0 and 0< t0 < a0 such thatP(τ2 > t0) > 0. Then fort0 < t < a0
anda0 < u < a0 + t0/2,

δ(u, t) =
∫ u

u−t

(
pτ1(a) − pτ1(a + t)

)
da

≥
∫ a0

a0−t0/2

(
pτ1(a) − pτ1(a + t0)

)
da

> 0.

This implies (A.17) immediately. �
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