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DUAL FORMULATION OF THE UTILITY MAXIMIZATION
PROBLEM: THE CASE OF NONSMOOTH UTILITY

By B. BOUCHARD, N. TouzI AND A. ZEGHAL
CREST, CREST and CEREMADE

We study the dual formulation of the utility maximization problem in
incomplete markets when the utility function is finitely valued on the whole
real line. We extend the existing results in this literature in two directions.
First, we allow for nonsmoth utility functions, so asotinclude the shortfall
minimization problems in our framework. Second, we allow for the presence
of some given liallity or a random endowment. In particular, these results
provide a dual formulation of the utility indifference valuation rule.

1. Introduction. Given a concave nondecreasing functidnfinitely valued
on the whole real line, we study the dual formulation of the utility maximization
problem

SUpEU (X3 — B).

OeH
Here,X*Y is the wealth process produced by an initial capitédgether with an
admissible trading strategy € # and B is a given bounded contingent claim,
which can also be interpreted as a random endowment. We refer to [17] for an
intuitive presentation of the dual problem, although this overview does not address
the existence issue.

This problem has been addressed [T]the context of gponenti# utility
functions. The case of arbitrary smooth utility functions, satisfying the Inada
conditions, was studied [18] wheB = 0. The case of a boundell was add-
ressed [1] in the presence of transaction costs.

In this article, we focus on the case where the utility function is not assumed to
be smooth. Such situations arise naturally in financial markets with transaction
costs as argued in [5]. They also appear in many problems in frictionless in-
complete markets, such as the shortfall minimization problems studied in [2], [3],
[8] and [15], among others.

Our main contribution is the extension of the duality result in [18] and [14] to
the above context. In particular, it provides a dual formulation for the Hodges and
Neuberger utility-based price; see [9], [1] and [14], among others.

This result is obtained by approximating the utility function by a sequence
of utility functions with bounded negative domain. As a by-product, we prove
an extension, to the nonsmooth case, of the duality result of [12], which was
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NONSMOOTH UTILITY MAXIMIZATION 679

formulated for utility functions with positive effective domain ad= 0. We
finally discuss the important issue of the choice of the set of admissible strategies,
as addressed in [7] and [19]. We show that the conclusions in [19] extend imme-
diately to our context.

The article is organized as follows. The precise formulation of the problem is
presented in Section 2. The main duality results are reported in Section 3 and the
discussion on the set of admissible strategies is contained in Section 4. The proofs
are collected in the remaining sections.

2. Problem formulation.

2.1. The financial market. Let T be a finite time horizon and €2, ¥, P)
be a complete probability space endowed with a filtrafioa: {#;, 0 <t < T}
satisfying the usual conditions.

The financial market consists of one bank account, with constant ﬁﬂpe
normalized to unity, and risky assetss?, ..., S¢. As usual, there is no loss of
generality in normalizing the nonrisky asset price process, since we may always
choose it as numeraire under very mild conditions. We defiote (st ..., 54y
the price process of the risky assets. The vector proce$s= {S;,0 <t <T}is
assumed to be €, co)?-valued semimartingale on the filtered probability space
(2, F,F, P). Moreover, we assume that the condition

(2.1) M(S) :={Q ~ P:Sis aQ-local martingal¢# &

holds. This condition is intimately related the absence of atibhge oppaunities
on the security market; see [6].

A trading strategy is an element oL (S), the set of allR?-valued predictable
processes which are integrable with respectStoln economic words, each
componen®’ represents the number of shares ofitherisky asset held at time

Given a trading strategy € L(S) and initial capitalx € R, it follows from the
self-financing condition that the wealth process is defined by

t
X0 =x +f 6,dS;.
0
The possible terminal values of such wealth processes are collected in the set

X(x) :={X e L°: X = X}.? for somes) € L(S)}.

To exclude arbitrage opportunities, it is well known that we need to impose some
lower bound on the wealth process. We therefore introduce the subX&k pf

Xp(x) :=={X € X(x) | X [loo < 00}.
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2.2. The utility maximization problem. Let U be a nonconstant, nondecreas-
ing, concave function defined and finite on the whole real line:

domU) := {x e R:|U(x)| < o0} = R.

Observe that is not assumed to be smooth.

In this article, we focus on the problem of maximizing the expected utility
from terminal wealth for an agent subject to some liabiltye L°°. We refer to
[14] and [10] for possible extension in the unbounded case. Since existence may
fail to hold in X, (x) (even in the smooth utility case with = 0), we follow [18]
by defining the sefXy (x) of random variablest € L° such that there exists a
sequence,, € X (x) that satisfies

UX,—B)—U(X—-B) inL%.
We then define the utility maximization problem

V(x):= sup EU(X — B).
XeXy(x)
Observe that, with this definitionl/ (x) is also the supremum of the expected

terminal wealth ovelX;(x). We conclude this section with some examples of
interest in the literature which fit in our framework.

ExXAMPLE 2.1 (Smooth utility functions, no liability). Whet is continu-
ously differentiable, strictly concave amtl= 0, the above problem has been ad-
dressed in [18]. The partical exponential tility case U (x) = —e~™ has been
extensively studied in [7] and [11].

EXAMPLE 2.2 (Smooth utility functions with liability). Whe/ is contin-
uously differentiable and strictly concave, the extensioBtet 0 has been per-
formed in [1] and [14]. The main result of this article improves the results of [14]
by allowing for a nonsmoth utility functionU.

ExampPLE 2.3 (Shortfall utility). Let¢ be a convex nondecreasing function
defined on the nonnegative real line. The shortfall minimization problem is defined

by
inf  E¢([B — X]1).
XeXp(x)
We refer to [2], [3], [8] and [15], among others. Defining(x) = —£(x7),

we see that this problem fits iour framework under mild conditions of) see
Example 2.4.
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2.3. Thedual problem. Let U be the Legendre—Fenchel transform defined by

U(y) :=supU(x) — xy
xeR

and observe that doffy) N (—oo, 0) = &. We assume that the utility functiot
satisfies

(2.2) inf | JoUx)=0 and r:=supl JoU) ¢ | ]oUx),
xeR xeR xeR

which can be stated equivalently 6has

(2.3) int{dom(U)] = (0,r) and r ¢ domU).
Without loss of generality, we may assume that

(2.4) U@ >0

so thatU > 0. Observe that > 0 sinceU is not constant. The natural set of dual
variables is

(25) Yi:={(»Y)eRy x L?r:EXY <xyforallx e Ry andX € X4 (x)},
the positive polar of the set of nonnegative elementSaf):
(2.6) X4 (x) := X (x) N LY.

However, since we are dealing with a utility function finitely defined on the real
line, it turns out that

(2.7) Yi:={(,Y)eY,LEY =y}

is the appropriate set of dual variables, as was observed in [18]. This set is
clearly nonempty because it contains all paitsY), whereY = dQ/dP with
0 € M(S).

We define the dual problem

W(x):= inf  E[UY)+xy—YB].
(. Y)eYy
Clearly, we have
(2.8) W(x) > V(x) for all x e R.

The purpose of this article is to finconditions under which equality holds in
the above inequality and to relate the solutions of both problems by the classical
Fenchel duality results.
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ExXAMPLE 2.4 (Back to shortfall utility). In the case of the shortfall utility
functionU (x) := —£(x ™), we directly compute that

U(y) = — inf (£(x) — xy).

Observe that inf),.gr U (x) = 0 so that this example fits in our framework as
long ast is not linear near-co. For instance, fof (x) = x2, we compute directly
thatU(y) = y2/4 and donil) = [0, co). However, the cas¥ (x) = —x~ studied

in [2] is not covered here.

2.4. Asymptotic elasticity in the nonsmooth case.  Asin [12] and [18], we need
conditions on the asymptotic elasticity of the utility function to prove the required
duality relationship. In the nonsmooth case, it is argued [5] that these conditions
have to be written on the conjugate functin We then define

AEq(U) :=limsup sup |~q|y and AE(U):=limsup sup |~q|y ,

YN0 4eal(y) U(y) v/ qedl(y) Uy

wherer is the right boundary of the domain g}f see (2.3). We show in Lemma 2.2
that the asymptotic elasticity condition A&/) < oo together with (2.3) implies
that the domain ot/ is unbounded. We start with the following lemma.

LEMMA 2.1. Let f bea convex function with intfdom(f)] c (0, r) for some
r € (0,00] \ dom( f). For k = (k1, k2) € Ry x R, define

X i=fO) —kiy +ka,  y edom(f).
Then:

(i) If £(0+) > 0,then AEg(f) < oo = AEq(f*) < oc.
@iy If f(r—) > 0 and liminf, » mindU(y) = oo, then AE,(f) < o0 =
AE, (f*) < .

PROOF (i) Assume that Ag(f) < oo. Then there exists a constafit> 0
such that, for all sufficiently smaly > 0 and allg € af(y), |gly < Cf(y). It
follows that, for smally > 0,

lg —kily < |qly +kiy < C(f(y) + kz — kyy) + (C + Dk1y < C(1+ f*(»)).

Since f(0+) > 0, there exists some> 0 such thatf*(y) = f(y) +kp —kiy > ¢
for smally > 0 and therefore

lg —kily ( 1 ) (1 )
c 1)<c(=+1).
) = ) L P

The result follows.
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(i) Assume that AE(f) < oo. Then there exists a constant- 0 such that, for
all y in a neighborhood of andg € 3f (y), lgly < Cf(y). This implies

qy —k1y < C(f(y) + k2 — k1y) + (C — Dk1y = Cr*(y) + (C — Dkyy.
Sincey > 0, it follows that
g —k1 < CfE)/y +(C = D

Since liminf, -, mindf(y) = oo andq € af (y), we see that, on a neighborhood
ofr,q —ki>0, f¥(y) > 0 andf*(y)/y > ¢ for somee > 0. It follows that

lg —kaly o (C — 1)k1
FE) fE»/y
which concludes the proof.[]

+(C - 1)—

REMARK 2.1. LetU be a concave function di satisfying (2.2) and let/ be
the associated Fenchel transform. Then, yvriting thate U (y) = y € 9U (x)
(see, e.g., [16]) implies that liminf-, mindU (y) = co. In view of (2.3), we see
that Lemma 2.1 applies fof = U. For later purposes, observe that this implies
thatU is nondecreasing neare (0, oo].

LEMMA 2.2, Assumethat the conjugate function satisfies (2.3) as well asthe
asymptotic elasticity condition AE, (U) < oco. Then r = 4-oc0.

PROOFE We assume that < oo and work toward a contradiction.

STeEP 1. We first prove that we can assume w.l.o.g. thats positive and
nondecreasing near. To see this, defind/*(x) = U(x — k1) + ko for k =
(k1, k2) € R4 x R... From (2.3), observe that we can choésich that/*(0) > 0
and maXUX(0) < r, so thatU* is positive and nondecreasing nearUsing
Lemma 2.1 and Remark 2.1, we can then reduce the statement of the lemma to
Uk(y) = U(y) — k1y + k2 since donil/) = dom(U¥) and AE.(U) < oo implies
AE, (U%) < oo.

STEP 2. From Step 1, we can assume thais positive and nondecreasing
nearr. Now observe that ARU) < oo implies the existence of some constaht
such that maﬁU(y)/U(y) < C for all y € [r/,r) for somer’ < r. Then, for
all yer,r), Uy) < «eCY for some reale. Sincer < o0, this implies that
U(r—) < oo. We conclude the proof by observing that arye 9U (—) satisfies
r € 3U (—x') by the classical connection between the gradients ahdU; see,
for example, [16]. This contradicts (2.3)1
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In view of this result, we rewrite (2.3) as
(2.9) int{dom(U)] = (0, 00).

The following result is an extension to the nonsmooth case of the implications
of the asymptotic elasticity conditions derived in [18]. We postpone its proof to
Section 7.

LEMMA 2.3. Let f be a positive convex function, with cl[dom(f)] = R;..
Assume further that f is nonincreasing near 0, nondecreasing near co and
satisfies the asymptotic elasticity conditions

(2.10) AEo(f) <oo and AEs(f) < oo.
Thenfor all 0 < g < w1 < 00, there exists a constant C > 0 such that:

() f(uy) <Cf(y) forall u € [uo, nal andy > 0;
(i) ylgl <Cf(y)forall y>0andg € df(y).

3. Themain result.
3.1. Utility functions with unbounded domain.

REMARK 3.1. Up to now, we have not assumed tlas locally bounded. In
turns out that this technical assumption is not needed for our result. However,
as pointed out in Remark 2.6 of [18], the set of stratedi@s may not be
adapted whers is not locally bounded. More precisely, we can construct easy
examples where the primal problem has a natural solution oufsideand the
restriction of the strategies & leads to a zero investment strategy as an optimal
solution, which makes no sense from an economic point of view. For instance,
set B = 0 and consider a market with one risky asSétsuch thatS* = 1 on
[0, T) andS% is normally distributed (assuming now that prices can be negative),
that is, 1 jumps at7. Then, it is easily checked th&fy(x) = {x} and therefore
V(x) = U(x), that is, the optimal strategy iy (x) is X, = x. Assuming that
U is strictly concave and smooth. Sin¢é, (r) = {r} for r > 0, we see that
(ys, Yi) = (U’ (x), U'(x)) € Y. SinceU (U’ (x)) + xU’(x) = U(x), we also see
that the usual duality holds and th@t,, Y,) is optimal for W (x), and we easily
check that all the requirements of Theorem 3.1 are satisfied, excepiihat= 1
does not define a local martingale measurESf} #+1.

In view of this remark, we assume in this subsection thet locally bounded.
This will prevent the above described phenomenon.

REMARK 3.2. Define the sequence of stopping timgs=inf{r > 0:|S,| > n}.
Sinces is locally bounded, we havg, € X, (S)) and—S. € X,(—S). By de-
finition of Y., we deduce that, for eacly, ¥Y) € Y. with y > 0, the measure
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Q:=(Y/y) - PeM*S), the set of all local martingale measures $owhich are
absolutely continuous with respect ko

THEOREM 3.1. Let U be a nonconstant concave nondecreasing function,
finitely valued in R, satisfying (2.4) and such that the associated Fenchel
transform U satisfies (2.9) as well as the asymptotic elasticity conditions (2.10).
Given some bounded contingent claim B, consider the optimization problems

V(x):= sup EU(XX—B) and W(x):= inf E[U()+ yx—YB].
XeXy () (y.Y)evy

Assume further that W (x) < oo for somex € R. Then:
(i) Existence holdsfor the dual problem W (x), that is,
W(x) = E[U(Y,) — Y,B +xy,]  for some(y,.Y.) €Y.

Moreover, if y, > 0, then 0, = §— . P e MY(S).
(ii) Existence holdsfor the portfolio optimization problem V (x), that is,

V(x)=E[U(Xs— B)] for some X, € Xy (x).
(iii) The above solutions are related by
X.€B—03U(Y), P-as. and E[X.Y.]=xys,

so that the duality relationship V (x) = W(x) holds.
(iv) If Y, >0, P-as, then X, = X}.% for some 6 € L(S), where X*¢ isa
uniformly integrable martingale under the measure Q. := ’y/— - P e ME(S).

The proof of this result is reported in Section 5.

REMARK 3.3. Itis immediately checked that

if and only if E[U(Y)] < oo for some(y, Y) € Y,

W(x) < oo forsomex e R . )
if and only if W(x) < oo for all x € R.

_ We next focus on the attainability issue of Theorem 3.1(iv). Clearly, since
U(0) = U(c0), it follows from Remark 3.3 that, > 0 wheneverU (c0) = oo.
More generally, we prove the following sufficient condition in Section 5.

PROPOSITION 3.1. Assume that L :=inf{{:U() = U(co)} = oo. In the
context of Theorem 3.1, assume further that Y ;. contains some (y, Y) satisfying

EU({Y)<oo and Y >0, P-as.
ThenY, > 0, P-as.
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REMARK 3.4. We now discuss the uniqueness issue when the utility func-
tion U is strictly concave. Observe thady is a priori not convex. However, we see
in this remark that this property holds if we restrict to the set of optimal strategies,
thus providing uniqueness. L&t! and X2 be two solutions of the utility maxi-
mization problem and lex?, X2 e X (x) be such that/ (X! — B) — U(X. — B)
in L1, i € {1, 2. SinceU is increasing, we see that, possibly after passing to sub-
sequencesY! — Xi, P-a.s.,i € {1, 2}. Since, for all» € (0, 1),

UGX +@Q—-1)X2-B) > \UXE—B)+ (1-MNUX?—-B)
S AWX-B)+A-nUX2-B) inL!
andaXt+ (1—21)X2 € Xp(x), it follows that
V() = lim EU(X; + (1= W)X} - B)
and

UrXi4+@1-0X2-B) > UGX+@-0X2-B) inL%

V(x)=EU(MX + @A -1)X%2 - B)=AEU(X} - B)+ (1—A)EU(X?— B).

It follows that, in the case whel& is strictly concave, there is a unique solution

to the utility maximization problem. However, f is not smooth, the Fenchel
transformU is not strictly convex and uniqueness in the dual problem is not
guaranteed. We continue this discussion in Remark 4.2. We thank an anonymous
referee for pointing out this important issue.

To prove Theorem 3.1, we use the methodology of [18], which consists of
approximating by utility functionsU,, that have a domain bounded from below.
Set

U, =U on domU,) := (—n, 00) forn > 2|| Bl 0o,

so thatU, converges tdJ/ and doniU,) is bounded from below. Let/, be the
associated Fenchel transform

Un(y) = SUP(U (x) = yx).
Observe that our approximating utylifunctions are nonsmooth and that
31) U,=U ondomU, and U,=U  onjU,domU,).
We follow [1] by defining

n n
xn:=x+§ and Bn=B+§,
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together with the corresponding approximating optimization problems

V,(x):= sup EU,(X — By,
XeC(xy,)

Wo(x):= inf  EU,(Y)—YB,~+x,y,
(y.Y)eY

whereY ; is defined in (2.5) and
Cx):={XeLl —L®:EXY <xyforall (y,¥) €Y}

The reason for introducing the sequen¢egs, and(B,),, appears in Lemma 5.4.
REMARK 3.5. SinceY contains all pairg1,dQ/dP) for Q € M(S), it
follows from the classical dual formulation of the superreplication problem that

C(x) C{XeL? —L®:X < X* P-a.s. for some&X® € Xp(x)};

that is, all contingent claims i®(x) can be superreplicated starting from the
initial capital x. By definition ofY ., the reverse inclusion holds for nonnegative
contingent claims, so that

ex)NLY ={xeLl:X < X* for someX® € X (x)}.
The first step in the proof of Theorem 3.1 is to establish existence for the above

approximating control problems as well as the duality connection between them.
This is the main object of the following subsection.

3.2. Utility functions with bounded negative domain. We now concentrate on
the case where the utility function has a domain which is bounded from below.

THEOREM 3.2. Let 8 > 0 be an arbitrary constant and consider some con-
tingent claim B with || B||»c < 8. Let U be a nonconstant concave nondecreasing
function with

cll[domU)] = [—28, 00), U(oo) > 0, clldomU)] =R,

and satisfying the asymptotic elasticity condition AEq(U) < co. Consider the
optimization problems

V(x):= sup EU(X—-B) and W(x):= inf E[U(Y)+ yx—YB].
XeC(x) (y,Y)eY

Assumethat W (x) < oo for somex > 0. Then:

(i) Existence holdsfor the dual problem W (x), that is,
W(x) = E[U(Yy) + yxx — Y4B]  for some (yy, Yi) € Y.
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(i) Existence holdsfor the optimization problem V (x), that is,
V(x) = E[U(X, — B)] for some X, € C(x) suchthat X, — B > —26.

Moreover, if X, > 0,then X, € X (x).
(iii) The above solutions are related by

X, € B—03U(Y,), P-as. and E[X.Y.]=xys,
so that the duality relationship V (x) = W(x) holds.

The proof is postponed to Section 6.

REMARK 3.6. The technical assumpti@i(oco) > 0 can clearly be relaxed by
adding a constant tt/.

REMARK 3.7. Corollary 6.3 states that the solution of the dual problem,
introduced in Theorem 3.2, satisfi®s > 0 P-a.s. wheneveL :=inf{l:U(]) =
U(0c0)} = o0.

REMARK 3.8. Asin Remark 3.4, we assume thais strictly concave, so that
the solution to the utility maximization problem is unique. Recalling that, for all
X,y,Y)eCx)x Y4, EXY <xy,we see by similar arguments as in Remark 4.2
that uniqueness holds in the dual problem outside of the set vilegeconstant.

REMARK 3.9. Let us specialize the discussion of Theorem 3.2 to the case
B=0.

1. Firstletg =0. Then, obviouslyX, is nonnegative and therefore

Vix)= sup EUX)=EU(X,).
XeXi(x)
We are in the context of the portfolio optimization problem of [12], except that
the utility function is not assumed to be smooth. Hence, Theorem 3.2 extends
the corresponding results to the nonsmooth utility case. It is also easy to check
that we have the additional result

W(x)=inf inf E[U( dQ) + ]
M 20 geres) Yap) Tt
by the same arguments as in [12].
2. Forg > 0 andx > —28, the same argument as in [18], Section 2, shows that
existence holds for the problem
sup EU(X)
XeXp(x)
and that the solutioX, of the above problem is related to the solutionof the

problem defined on the utility functiali (- — 28) with initial wealthx = x +28
by X, =X, —28.
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3. Because of the connection betwelgB| ., and the domain o/, and the
nature of the set of primal variabléx), Theorem 3.2 does not compare to
[4] and [10].

4. Complements on the set of admissible strategies in the unbounded
domain case. Following [18], we now consider alternative sets of admissible
strategies for the problem of Section 3.1. In view of Remark 3.1, we assume that
S is locally bounded. Recall from Remark 3.2 that, under this condition, for each
(y,Y) € Y4 with y > 0, the measur@® := (Y/y) - P € M(S).

Let x € R be some fixed initial capital and assume that the conditions of
Theorem 3.1 hold, so that solutioidg, of V(x) and (ys, Yx) of W(x) do exist
and satisfy the conditions of the theorem. Then,it- 0, the induced measure

Q. = % - P e ME(S):= {Q € M“(S):EU(Z—%) < oo}.
Throughout this section, we assume thiasatisfies the additional condition
Y. >0, P-a.s,
so thaty, > 0, Q. € M*(S) and

_ 7(,42) _ 5,42
Wx) = y”l]:) E[U(ydp) Bydpi|+xy.

QeM(S)

The measurd), is the so-called minimal local martingale measure associated to
the problemV (y,), where

V(y):= inf E[U(Y)-YB].
(y5Y)EY+

x,04

Under the assumptiok, > 0, we also know from Theorem 3.1 that, = X,
for somed* € L(S).
A simple restatement of Theorem 3.1(iii) and (iv) reveals that

the wealth procesg™% is a uniformly integrable martingale undér,,
and
Vix)= infOV(y) + xy so thatx € —9V (yy),
y>

where we used the (obvious) convexityi6f The following sets of strategies were
studied in [7] and [19]:

H1(x):={0 € L(S): U(X’}’e —B)eLtandx*?is aQ.-supermartingale

Hy(x) := {0 € H1(x): X" is aQ,-martingald,

Ho(x) := {0 € H1(x): X* is a supermartingale under gl € ,M“U(S)}.
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We now have the following extension of [19] to the nonsmooth utility context of
this article.

1. Clearly, sinceEU(X’}’e — B) < W(x) for all € #1(x) and b, € H;j(x) C
F1(x), it follows that

Vx)= max EUX:’—B)= max EUXYY - B).
OeH1(x) e H] (x)

2. Also, observe tha¥p(x) C {X’;*e 0 € #H2(x)}. Therefore,

Vx)< sup EUXL’—B)
OeHr(x)

. ~( dQ dQ ]
< inf E\lUly—|—y—B
_y>0,Qe<M;‘7(S) [ (ydP> ydP X
~( dQ dQ
= E[U(y* dP*) —vgp B +y*x} =W =V,
Hence equality holds in all the above inequalities. In particular, this proves that

Vx)= sup EUX}’ - B).
O eFHo(x)

3. We now prove thad, € #>(x) so that

4.1 V(x)= max EUXY — B).
4.1) (x) g max, (X7 )

Let F be the conjugate of the function— U (x — || B|l«o), that is,
Fiyr> U = ylBlo-
Arguing as in Lemma 5.1, we may assume without loss of generality that
4.2 F(0) >0, F is nonincreasing near, 0
(4.3) AEo(F) <oo and AE(F) < oo.
Notice that, by Remark 2.1 and (2.9),is clearly nondecreasing ne#&po.

To see that (4.1) holds, it suffices to prove that the conjugate funttioherits
the asymptotic elasticity conditions AB/) < co and AE, (V) < oo from the
functionU'. In view of the above assumptions (4.2), we need to show that

forall 0 < ug < 1, there exists som€ > 0,
(4.4) 3 y
V(Ay) <CV(y) for all A € [uo, n1] andy > 0.

With this property ofV/, the proof of Proposition 2.2 in [19] applies immediately
to the nonsmooth case.
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The characterization of the asymptotic elasticity conditions of Lemma 2.3
holds for F by (4.2), (4.3) and the fact that it is nondecreasing neas. Let
(y, Y?) € Y be such that

E[U(Y®) —Y Bl <V(y) +e.

Fix 0 < uo < w1. Then, by Lemma 2.3 and (4.3), there exists sa@me 11 such
that for allA € [, 1],

- 1
V(y)+e>E[FY*)+Y*(|Blloc — B)] > ZE[F(XYS) +Y*(IIBllcc — B)]
1 T & & A e _
= ZEI0GY) =3B+ (1= Z)EIY* (1Bl - B)
> EE[U(M/S) —AY®B]> l\7@ )
z - =V
and (4.4) follows by arbitrariness ef> 0.

REMARK 4.1. It is known from [19] that considering sets of admissible
strategies such as

{6 € L(S) : X*% is a Q-supermartingale (resp. martingale)
under some € M¢(S)}

may lead to paradoxical results from an economic point of view. They are therefore
not discussed in this article.

REMARK 4.2. We continue the discussion on the unigueness issue of
Remark 3.4. It follows from the above analysis thafSifs locally bounded and
v« > 0, then we are reduced to considering the gétéx) for the primal problem
and M%(S) for the dual problem. Recall from Remark 3.4 thatlifis strictly
concave, then uniqueness holds in the utility maximization problem. Then, writing
E[(dQ/dP)X*%] <xforall Q e M%(S), we see that a necessary and sufficient
condition forQ to be optimal for the dual problem is that

dQ _«.o, 0. ~( dQ

It follows that if U is strictly concave and therefoié is continuously differen-
tiable, the optimum for the dual problem is unique outside of the set witieig
constant, thatigy > 0:y € dU (x), for somex whereU is not differentiablé.
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5. Proofs for the unbounded negative domain case. In this section, we
report the proofs of Theorem 3.1 and Proposition 3.1. We split the proof of
Theorem 3.1 into different lemmas. We start by a convenient reduction of the
problem.

LEMMA 5.1. Suppose that statements (i)—(iv) of Theorem 3.1 hold for
x > || Blloo @nd U nonincreasing near 0. Then Theorem 3.1 holds.

PROOF  First notice from (2.9) an@ (0) > —oo, that for all sufficiently large
k = (k1, k2), the shifted utility functionU*:z € R — U(z — k1) + k» satisfies
maxdU*(0) > 0 andU*(0) > 0. It follows that the associated Fenchel transform
function U* is positive and, by the classical connection between the gradients
dU* andaU* (see, e.g., [16]), thal* is nonincreasing near 0.

Now, choosek so that the additional conditioxy, := x + k1 > || B||s holds.
By Lemma 2.1 and Remark 2.0} satisfies the asymptotic elasticity condition of
Theorem 3.1; see (5.1). By assumption of the lemma, it follows that Theorem 3.1
holds for the problems

V() := sup EU*#1(X — B)
XeXy ()

and

Wh() == inf E(U*(Y) - YB) + yx.
(v, Y)eY4

We denote by(yX, Y¥) (resp. X¥) the solution of the problenW*(x;) [resp.
V¥(x1)]. Observing that foly > 0,

(5.1) —0U () =00 + ki, UX(y) =U(y) — yk1+ ko,

it is easily checked thaty,, Y.) := (X, Y¥) (resp.X, := XX — k;) is optimal for
the problemW (x) [resp.V (x)] and that these quantities satisfy all the statements
of Theorem 3.1. O

In view of this result, we assume from now on that
x> || Bloo, U is positive and nonincreasing near 0
We recall from Remark 2.1 and (2.9) that
Uis nondecreasing near oo,

so that the conditions of Lemma 2.3 hold gt

REMARK 5.1. We isolate the following arguments which will be used
repeatedly.
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(i) SinceX (1) contains the constant random variable 1, we have
(5.2) EY <y forall (y,Y)e Y4
and, for all constan#/ > 0,
the family{(y, Y) € Y, :|y| < M} is bounded in.1(P).

(i) Then, for any sequencey,, Y,), C Y with bounded(y,),, it follows
from the Komlos lemma together with the convexityYf and Fatou’s lemma
that

there is a sequencg,,, Y,) € con{(yx, Yx), k > n}
such thatP-a.s(3,, Y,) — (5, ¥) € Y .
We now apply Theorem 3.2 to the apgimating nonsmodtutility function U,
for somen > 2|| B||«. Obviously, AR(U,) = AEq(U) < oo by (3.1). We need to

check only thatW, (x) < oco. In view of Remark 3.3, this is a consequence of the
following lemma.

LEMMA 5.2. The sequence (W, (x)), is nondecreasing and bounded from
above by W (x).

PROOF Fix m > n € N and consider soméy, Y) € Y. Since {U,} is
increasing ang > EY, we obtain

E[U(Y) + yxp — Y By] < E[Up(Y) + yxn — Y By + ’"—Q"(y —EY)

= E[Upn(Y) + yxm — Y By1.

It follows that (W, (x)), is nondecreasing. Now figy, Y) € Y. andn € N. Since
Un S U!

EL,(Y) +yxs = YB,] < ELU(Y) + yx = Y B+ 5(y — EY).
The required result follows from the fact thet = y andY, c Y. O

We are then in the context of Theorem 3.2. Throughout this section, we denote
by (., Y,) € Y4 a solution of problenW,(x) and byX,, € C(x,) a solution of
problemV, (x) that satisfy the assertions of Theorem 3.2. We recall the connection
between these solutions. From (3.1), it follows that

(5.3)  W,(x) = E[U(Yy) + Xnyn — Yu Byl = Vi (x) = E[U (X, — By)],

(5.4) X,eB,—0dU,Y,)=B,—03U, and E[X,Yy]=X,yn.
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By Remark 3.5, there exist sonk € X(x,) that satisfyX® > X,,, P-a.s. We
denote byV,’ (x) the associated expected utility:

Vi(x):= EUy(X5 — By) = EU(X — By).
Observing thalk} —n/2 e X (x), we directly see that
(5.5) Va(x) <V, (x) < V(x).

The following result follows from the same argument as in Step 2 of [18].
LEMMA 5.3. Thesequence (Y,,), isuniformly integrable.

The next result completes the proof of Theorem 3.1(i) and prepares for the proof
of the remaining items.

LEMMA 5.4. (i) There is a sequence (3, ¥,, J,) € cond (v, Y, U (Yi)),
k > n} such that

s Vs ) = (34 Ye, U(Yy)) € Yy x LYR), P-as.andin L1,

(i) (y«, Yy) isoptimal for W (x), thatis, (y«, Yx) € Y4, and E[U (Ys) + ysx —
Y.B] = W(x).
(iii) V,(x) = W,(x) t W(x) =V (x) <ooand Vi(x) = V(x).

PrROOF

SteEP1. By (5.2), (5.3), Lemma 5.2 and the positivity Gf it follows that
n
00> W(x) = (x —[[Blloc)yn + E(yn — EYy).

This proves thaty, — y. > 0 andy, — EY,, — 0 along some subsequence,
asx — |Bllco >0, y, >0 andy, — EY,, > 0. The existence of a sequence
(Bus ¥) € cON{(vk, Yi), k > n}, which converge®-a.s. to(ys, Yx) € Y, follows
from Remark 5.1(ii). From Lemma 5.3, the convergencé,pfo Y, holds inL!
and therefore Y, = y,., proving that(y,, Y;) € Y .

STEP2. LetC be such that for alt > 2||B|| 0,
Un(Yn) — Y4B = Up(—B) > —C > —oc.

Let (M'f,)n,k denote the coefficients of the convex combination that defines the se-
quencegy,, Yn. Using Fatou’s lemma, the inequality > EY;, Step 1 and (3.1),
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we get

E(ﬁ(Y*)+y*x_Y*B)

< E(Iinrrl)ipof Z M’;(U(Yk) + Vix — YkB)>

k>n
(5.6) =liminf E ( Y i Ok (V) + yix — YkB)>
k>n

<liminf > uk( E[Oc(Y0) + x—YB]+§( —EY))
=i P My k\ Lk Yk k 2 Yk k
=liminf Y uk Wi (x) < W(x) < oo.

n—oo

k>n

Since(ys, Yy) € \?+, it is optimal for W(x). By Lemma 5.2 and (5.3), it follows
that

(5.7) E(U(Yy) + ysx — YuB) = W(x) = lim 4 W, (x) = lim 1V, ().

STepP 3. The above argument also proves that,stp -, M’;U(Yk) =
SUR, E Yisp K10 (Y1)l < 00. We can, therefore, find a sequenck e
conv) 4>, Mf‘f](Yk), I > n} which convergesP-a.s. to some/, € LY(R,). By
combining the convex combination, we can always assume(maﬁ?n, fn) €
con((k. Y. U(Y0)), k > n}. i

We now prove that the latter convergence holdd.inand thatU (Y,) = J..
Becausedl is convex, we have, > U(Y,) and therefore/, > U(Y,). On the
other hand, it follows from (5.6) and the uniform integrability(&},), thatE J.. =
EU(Y,).HencelU (Y,) = J,. Finally, since(J,,), is nonnegative, convergésa.s.
to J, andEfn — E J,, the convergence holds it

STEP4. It follows from (2.8), (5.7) and (5.5) that
V) W) = im Ve < lim Vi) < V),

which concludes the proof.[]

We continue the proof of Theorem 3.1 by turning to the sequences
(Xn)n and(X;),. Set

Zn = (Xn - Bn)l{Y*>0} + Ll{Y*:O},
(5.8)
Zy = (X, — B)ly,~0 + L1jy,—0,
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where L := inf{l € [0,00]:U() = U(x)} € R U {+o0}. We then use the
convention

Lx0=0 so thaty (0) = U(L) — L x 0 is valid

LEMMA 5.5. Thereisasequence (Z,, Z3) € con(Zx, Z}), k > n} such that
(Zn. Z5) — (X, — B, X —B),  P-as.
With E[X,Y,] <xy, and E[X’Y,] <xys.
Moreover, X, — B <L, X, —B<Land X, =X, =L on{Y,=0}.

ProOFR

STEP1. We first prove the required result for the sequeitg, . Recall that
on the event setY, > 0}, Z, € —aU,(Y,) = —aU(Y,) for all n [see (3.1)]. By
Lemma 2.3 and the convexity &f, it follows that for allZ, € —0U (Y,.),

Z, Y Ly, ~0) < 1Zal YLy, >v.>00 + | Zo| Y diy, >0 Ly, <v,)
< C(Un(Yn) + U (XYy)).
By Lemma 5.4, (5.2) and the fact that> || B, this provides

(5.9)

SUPE[Z, Y] < oo.
n

Also notice that the equalitg Y, = y, implies that

(510) E[ZnY*l{Y*>O}] = E[(Xn - Bn)l{y*>0}Y*] <xys — E[Y\B]

since X, € C(x,). It follows that sup EY,|Z|1y,~0y < co. Hence, there exists
a convex combinatiorY*an{y*>o} e conv{Y.Zily,~0), kK > n} that converges
P-a.s. It follows that there exist son¥&.(=: X, — B) such thalZ, — Z., P-a.s.,
Z. < L and Z,1;y,—qy = L. By combining the convex combinations, we may

assume that thg coefficients that defirig and J, are the same. Recall from
Lemma 5.4 that, is uniformly integrable. Then, we deduce from (5.9) that

(5.11) the sequencé;Y*l{y*>o} is uniformly integrable.
SinceE[Z,Y.1y,~0] < xy« — E[BY,], it follows from Fatou’s lemma that
E[Z:Y,]= E[Z*Y*l{Y*>O}] <xy« — E[BY,].
STEP 2. Since(ys, Yx) € Y4 and X3 € X (x,), we clearly haveEY, Z! <

y«x — EY,B. We then observe thaZ;)~ < Z, and the required results of the
sequence&Z,), follow by the same argument as above.]
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LEMMA 5.6. Let X, =X and
X, € B—03U(Y,), P-as., EX.Y,=xy,,
sothat EU(Xy — B) =V (x) = W(x) = E[U(Ys) — Y. B + xy,]. Moreover,
Y.Z5 - Y.(X,—B) inLY(P).

PROOF

STEP1l. We first prove that
(5.12) X. € B—03U(Y,), P-a.s. and EX,Y,=xy,.
Notice that by (3.1) and Lemma 2.3,
U(Z) " Ly,~011iv,~0 = Un(Zn) Ly~ 01 1(r,~0}
(5.13) < (Un(Yn) +1Zy1Y2) Ly, >0, 117, >0)
< CUL(Yy).

Let (1¥) be the coefficients of the convex combination defined in Lemma 5.4(j).
Since, by Remark 3.7, > 0 whenevelU (c0) = 0o, we deduce from the above
inequalities that

+
{Z MIZU(Zk)} Liy,=0y < C(L+ Jy),

k>n

which is uniformly integrable by Lemma 5.4. It follows from Lemma 5.4, (5.3),
the definition ofZ, in (5.8), Fatou's lemma, the concavity of and Lemma 5.5
that

W(x) = lim E [ Y uhUu Xy - Bk):|

k>n

< lim_ ELX: 1 (U(ZLy,=0) + U(OO)]-{Y*:O}):|
>n

(5.14)
<E [Iim supd | uk(U(Z)Lyy,=0 + U(Oo)l{y*:O})}

"0 k>n
< E[ Jim, U2y
= EU(Z,).
By Lemmas 5.5 and 5.4(ii), we get that
W(x) < EU(Zy) < E[U(Y:) + Z.Yil < EIU(Yx) — YaB + xy.] = W (x).
Then equality holds and (5.12) follows.
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Step2. From (5.11) and the fact that > Z,, we see that
(5.15) the sequenc{eY*(Zj;)‘, n > 0} is uniformly integrable
We also recall thak} € X, (x,) and therefore
(5.16) EZSY, < xy, — EY.B.

It then follows from Fatou’s lemma together with Step 1 of this proof that
EX}Y, < xy, = EX,Y, so thatE(X] — X,)Y, <0. SinceX;] — X, >0 and
X« = X on{Y, =0} by Lemma 5.5, this provide¥, = X}, P-a.s.

STeEP3. Itremains to prove thel(P) convergence of the sequer(deZ;j)n.
To see this, apply Fatou’s lemma in (5.16) and use the equaltyY, = xy.. The
result is

E[Y,Z5] — E[Yy(X, — B)].
Sinceig — Z$ =Z,, P-a.s. by Step 2 of this proof, the required result follows
from (5.15). O
LEMMA 5.7. Wehave
Y wku(X, - B,) > U(X,—B) inL!,

k>n

where (%) arethe coefficients of the convex combination definedin Lemma 5.4(i).

PrRoOOF Setl, =U(X, — B,). By Remark 3.7Y,, > 0 wheneveU (c0) = co.
From Lemma 2.3 and (5.3), it follows that

[L]T <[UX, — B)I Lyy,~0p +C
(517) = 0n(Yn)1{Yn>O} + |Xn - Bnlynl{Y,,>0} +C
<C(1+U,(Yy)

for some constar@ > 0. Hence, by Lemma 5.2, (5.2) and the fact that || B|| o,
it follows that sup E[I,"] < co. Since

SUp|E 1| =SUp|EU,(Xn — By)| = sup|Vy(x)| < oo,
n n n
by Lemma 5.4, it follows that

SUpE|l,| < oo.
n

Hence, we can find a sequenaf,ee con{I, k > n} that convergesP-a.s.
to somel,. By combining the convex combinations, we can assume that the
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coefficients that defind,, Z, and J, are the same. Since by concavity &f
I, <U(Z,), we have
I, <U(Z,).

Moreover, because the sequelig), is uniformly integrable (see Lemma 5.4), it
follows from (5.17) that([/,]1), is uniformly integrable. Using (5.14W (x) =
EU(Z,) (see Lemma 5.6) and Fatou’s lemma, we obtain B¥&@{(Z,) < EI, and
therefore

U(Zy) = I..
Since, by (5.14)E I, — EU(Z,), we obtain thaf,, - U(Z,) in L. O

We are now able to complete the proof of Theorem 3.1(ii).

COROLLARY 5.1. Let X8 := X5 —n/2and X3 := Y., b Xy, where (u¥)
are the coefficients of the convex combination defined in Lemma 5.4(i). Then
X exXy(x) and UK —B)—>UX,—B) inLh

n

PROOF BylLemma 5.5, Lemma 5.6 and the concavitylaf
> upU(X, — By) <U(X} — B)

k>n
=U(Z)— U(XS— B)=U(X, — B), P-a.s.
By Lemma 5.4 and the fact th&t!’ € Xp(x), this provides
V() =limE Y upU(X, — By) <lim EU(X; — B) < V(x),

k>n

The required result follows from thel(P) convergence result of Lemma 5.7

Items (ii) and (iii) of Theorem 3.1 are obtained by combining Corollary 5.1 with
Lemma 5.6. We conclude the proof of Theorem 3.1 by verifying item (iv).

LEMMA 5.8. Assumethat Y, > 0, P-a.s. Then X, = X% for some6 e L(S),

where X*-? isa uniformly integrable martingale under Q. := % - P.

PROOF SetH,=Y./y,. Fort < T, define
M; = E[H: X«|F:].

Since,E[H,| X«|] < oo by Lemmas 5.6 and 2.3, this defines a proddsshich is a
uniformly integrable martingale yndQ* := H, - P. Also notice from Lemma 5.6
that Mo = x. Finally recall thatX] € X;(x) and, by Lemma 5.6 ang, > O,

X=2+B—>X, inL%0Q,).
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The proof is now completed by the same argument as in Step 10 of [IB].

The proof of Theorem 3.1 is complete. We conclude this section with the proof
of Propositian 3.1.

PROOF OFPROPOSITION3.1. The casé/(co) = oo already was discussed
in Section 3. We then assume tliatis bounded from above.

STteEP 1. We first prove thatdl/(0) = {—oco}. To see this, observe that
becausel/ is bounded from above, nondecreasing and concave, we have that
oU (4+00) = {0}. Now suppose that 8 dU (x) for some finitex. ThenU (x) =
U (c0) by concavity ofU and L < x, which contradicts the assumption of the
lemma. The required result follows from the classical connection between the
generalized gradients &f andU .

STEP2. Let(y,, Y,) be the solution o#¥ (x) and dgfine(yg, Ye) :=e(y, Y)~+
(1—&)(ys Yo for somee € (0, 1/2). By convexity ofU, we have(y,, Y,) € Y
andU(Y,) € LL. Set

X. :=essinfX e L%: X € B—aU(Y,)},

and observe thaB — X, € aU(Y,) and X, — Xo, P-a.s. withXg := essin{X ¢
L% XeB — U (Y} We now use the optimality ofy., Y,) together with the
convexity ofU. The result is

0> 1-[E (U(Y*) + yx — YiB) — E(U(YE) + yex — Y. G)]
(5.18) ¢

> E(Ys = 1)(B — Xo) + (3x — D).
We prove later that

([(Ys = Y)(B = X£)] ™ )g_, -1/, is uniformly bounded in.*,

(5.19) _

E[Y[Xo— B] ]<
and
(5.20) E[Y.(Xo— B)] < o0,

so that (5.18) implies tha Y (Xo — B)* < co. SinceY > 0, P-a.s. and, by Step 1
of this proof,Xo — B = 400 on {Y, = 0} this proves that, > 0, P-a.s.

STeEP 3. We now prove (5.19). Sinckg; > 0, U is convex andc — (x)~ is
nonincreasing, it follows that for af € —oU (Y) andZ, € —3oU (Y,),

[Y(X: — B)]” <Y|Z| + Y| Zi|1y,~0.
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By the same type of argument, we obtain that forzlle —U((1— &)Yy,
[=Yu(Xe — B)]I” < YilZel =201 — &) Yil Ze|.
By Lemma 2.3, this provides
[(¥ =Y )(Xe = B)I” <[¥(Xe — B)]” +[~Yu(Xe = B)I™
<CUXY)+CUYx)+2CU((1—-¢e)Y)ly,~0
<CUY)+ CU(Y,) +2C?U(Y,) € L .
The previous inequalities also prove the second claim of (5.19) since

X, — Xo, P-a.s.

STEP 4. It remains to prove (5.20). Sinck is valued inB — aU(Y,) and
Xo < X,, it follows from the definition ofU together with the nondecrease 6f
that

U(Y.) =U(Xo— B) — Yu(Xo— B) <U (X« — B) — Yu(Xo — B),
so thatEY.(Xo — B) < V(x) — EU(Y,) < oco. O
6. Utility functions with bounded negative domain. In this section, we
proceed to the proof of Theorem 3.2 which was the starting point of the proof of
Theorem 3.1. We warn the reader that many notations from the previous sections
will be used in this section for different objects.

The effective domains of the utility function and the associated Fenchel
transform are now assumed to satisfy

cldomU)) =[—2B8,00) and cldomU)) =R,.
Recall that we have assumed
(6.1) U (+00) > 0,
so thatlU (0+) > 0. The following remark collects some propertiedaf
REMARK 6.1. (i) The functiony — U(y) — 28y is nonincreasing and

positive near O.
(i) By Lemma?2.1,

AEo(U() <oo = AE(U()—28") < 0.

It follows from Lemma 4.1 in [5] that the asymptotic elasticity condition
AEo(U) < oo is equivalent to the existence of two constapts- 0 andyg > 0
such that

Uuy) —2Buy < " (U(y) —2By)  forall u e (0,1]andy € (0, yol.
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(i) Applying the latter characterization tgg and using the nonincrease
property (i), we see that

U(y0) = 2By0 =< U(1ey0) — 2Buyo < 1”7 [U (yo) — 2Byol
for any arbitraryu € (0, 1). This proves thal/ (yo) — 28yo > 0 and, by (i),
U(y)—28y>0 forall y € (0, yol.

(iv) Fix y € (0,00). Then, using a compactness argument, we deduce from
the characterization (ii) of the asymptotic elasticity conditiong&E) < oo that
there exist positive constants> 0 andC; > 0 such that

Uuy) —2Buy < ’[U(y) —2By+C5]1  forall € [1/2, 1] andy € (0, y).

6.1. Approximation by quadratic inf convolution. The main difficulty arises
from the nonsmoothness d@f inherited fromU. To handle this problem, we
introduce the quadratic inf convolution:

U, (y) := By + inf (U(z) —Bz+ EIy - zlz).
z>0 2
ThenU, is finitely defined orR, strictly convex and

(6.2) U,(y)<U(y) forally>0.

We report from [5] the following properties df, which will be used in the
subsequent analysis.

PROPERTY6.1. For all y € R, there exists a unique z,,(y) > 0 such that

~ ~ n
Un() = U(en() = Ban () = 3) + Slan () = y12
PROPERTY6.2. (i) For all x > 0and y € R, we have

4 .
|22 (y) — yI% < —[Un(y) = By +xy +C]

for some constant C. ~
(i) Let (y,), beasequence convergingto y e dom(U). Then

Zn(Yn) = y.

(i) Let (y,), beaseguenceconvergingto y. Supposefurther that z,, (y,) — y.
Then

Un(yn) = U ().

PROPERTY6.3. Function U, iscontinuously differentiable on R and
DU (y) =n(y — za() + B € 30 (za ().
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REMARK 6.2. From Remark 6.1 and Property 6.3 of the inf convolution, we
deduce that

y+ U,(y) —2By is nonincreasing.

PROPERTY 6.4. Suppose that AEy(U) < co. Then there exist some yg > 0
and some positive constants y and C such that, for all n > 1,

Un(1y) — By < W Y[C +Un(y) — Byl forall ue[l/2,11and y € (0, yol
and

—(DU,(y) — B)y < C(L+Un(y) — By)  forall y e (0, yol.

PRoOOF The second inequality follows from the first by the same type
of arguments as in the proof of Lemma 2.3(ii) (see the Appendix). We now
concentrate on the first inequality. We sgi(y) := U,(y) — By and g(y) :=
U(y) — By.

STEP1. Letyp> 0 be defined as in Remark 6.1. Fix0Oy < yp and define
n 2
fn(@):=g(@) + 51y =2l
We first prove thatf, is increasing orzg, co), where

70 :=2y0 + |B — maxdg(yo)| < oo

is independent of: > 1 and O< y < yg. Consider some arbitrary > zo and
g1 € 3f,,(z). Then there exist somg € d(g — B-)(z) such that

1 1
—q1=—(q2+pB)+(z—y).
n n

Since the majg — 8-) is nonincreasing, by Remark 6.1(i), it follows thgt< 0.
Since it is also convex angd> yg > y, we get

1
;qﬁqzﬂz—y)ZmaXag(yo)—ﬂ+z—yozz—zo+yo>0

sinceyp > 0 andz > zo. This proves that, for alk > 1 and O< y < yo, f, is
increasing orizg, o) and therefore

gn(pny) = _inf <g(2) + Zluy —z| )
0<z<z0 2
(6.3)
forall (y, u) € (0, yol x [1/2,1], n > 1.
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STEP2. Fix(y, ) € (0, yol x [1/2, 1]. By (6.3), we see that

gn(uy) = _inf <g(z)+ﬁluy—1|2)= in (g(uz)+uzzly—2|2),
0<z<zo 2 0<z<2 2

f
<7=2z0

where the second equality is obtained by a trivial change of variable and the fact
thatu > 1/2. Using Remark 6.1(iv) witly = 2z9, we deduce that there exist some
C > 0 andy > 0, such that

inf <M"’(C +g(z) — Bz) + Brz + M2f|y — zlz)-
<210 2

<z=

gn(py) < o
Sinceu < u™7Y anduzﬂ’ <1, this provides

. _ n
gn(uy) < _inf (u Y(C+g(2) + uPsly — z|2>
0<z<2zp 2

. n _
SM_V[CJr inf (g(z)+—ly—ZI2)} =pn" 7 (C+ g (y)),
0<z<2z9 2
where the last inequality follows from (6.3) agairi]

By substitutingU,, for U in the definition of the dual problem
(6.4) Wx):= inf E[UXY)—YB+xy]
(. Y)eYy

of Theorem 3.2, we define a sequence of approximate dual problems:
(6.5) Wy(x):= inf  E[U,(Y)—YB+xyl.
v, Y)eYy

6.2. Existence in the dual problem. The purpose of this section is to prove
that the approximate dual problef,(x) has a solution, for each, and to
define a solution for the dual probleWi(x) as a limit of these solutions in some
appropriate sense.

The following preliminary result will be used frequently.

LEMMA 6.1. Let 8 =0. Then there exists a sequence of functions (¢, )1<n<oo
such that, for all sufficiently large n,

On: (_0n (0), +OO) — (0, o0) with x”_)moo ¢n)§x) — 0
and
E[¢n(Un(1)7)]<C+y  forall (3.¥) €Yy withy >0

for some C > 0 independent of n, with the convention Uy, = U. In particular, for
all M > 0 and large n, the family {U,(Y)™, (y,Y) € Y, |y| < M} is uniformly
integrable.
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The proof of this result is reported in Section 6.4. We now establish existence
in the approximate dual probleni, and convergence of these solutions (in some
sense) to some solution ¥ (x). These results will be established under the
following assumptions.

STANDING ASSUMPTIONS OF SECTION 6.2. ||Blleo < B,x > 0 and
W(x) < oo.

LEMMA 6.2. For sufficiently large n, existence holds for the problem W, (x),
that is,

W, (x) = E[U,(Yy) + yux — Y, B]  for some (y,, Y,) € Y.

PROOF Letn > 1 be a fixed integer and letyy, Yi)r be a minimizing
sequence oW, (x). Then, from (6.2), we have
—E[U,(Yx) — Y4 B]™ + xyt
(6.6) N
SEUYr) = YViBl +xye Wy (x) +1<W(x) + 1.

Step 1. We first prove that the sequence), is bounded so that, by
Remark 5.1, there is a sequen@g, Y;) € con{(y;, Y;), j > k} which converges
P-a.s.to soméy, ¥) e Y.

() The case3 > 0 is easily dealt with since, with the notation of Property 6.1,
(6.7) Un (Vi) = U (2a (V) — Bza (Vi) + Y = U(—B) + BYi,
so that (6.6) together with the conditi¢iB ||, < 8 provide

Xy <U(—p) +W(kx)+ 1

Sincex is positive andy; is nonnegative, this proves that the sequengé; is
bounded.
(i) We then concentrate on the cgée- 0. Let¢, be the function introduced in
Lemma 6.1. Then for akk > 0, there exists some&, > 0 such that
&n(x) 1

> — for x > xq,
X €

and then,
X =< X0 +5¢n(x)1{x2xo} <Xxo+ &Pn(x) Vx>0,

for sufficiently largexp andr. Using Lemma 6.1, we then compute that, for some
C >0,

EU,(Y))™ <x0+ E¢u(Un(Y)™) < x0+(C + yi).
Plugging this inequality in (6.6), we obtain
(6.8) =8y <Wx)+1+x0+e¢C.
By choosings = x/2 > 0, we see that the sequenge); is bounded.



706 B. BOUCHARD, N. TOUZI AND A. ZEGHAL

STEP 2. Combining Lemma 6.1, (6.7) and > ||B|~, We see that the
sequence (U, (Y;) — ¥xB)~,k > 0} is uniformly integrable. Let(u]) be the
coefficients of the convex combination defini(ﬁ@). By Fatou’s lemma, together
with the convexity ofU,,, we get

Wy (x) < E[U,(Y) — Y B] + x§
< |ikm inf E[U, (Yx) — Yi Bl + x 9%
—00
< liminf ;{M,{EUn(Yj) —YjB+xy; = Wy(x),
since(y;, Y;); is a minimizing sequence d¥, (x). This proves thaty, ) is a
solution of W, (x). O
REMARK 6.3. For later use, observe that the same arguments as in Step 2 of
the above proof show that, for sufficiently large
the family {(U,(Y) — YB) ™ :(y,Y) € Y4, |y| < M} is uniformly integrable
forall M > 0.
The next lemma completes the proof of Theorem 3.2(i).
LEMMA 6.3. Let(y,, ;) beasolution of W, (x). Then there exists a sequence
(Yn» Yn) € con((yx, Yx), k > n) such that
(6.9) Gns Y) = 0w Yo) €Yy,  P-as

Moreover, (yx, Yy) isa solution of the problem W (x).
PrROOFR

Step 1. We first argue as in the previous proof to show that the sequence
(yn)n is bounded so that, by Remark 5.1, there is a sequé&mggl,) €
con{(y;, Y;), j = n} which converged-a.s. to somey,, Yy) € Y 4.

By definition of (y,,, Y;,), we have
—E[Uy(Yy) = YuBl™ +xyy < E[Uy(Yy) — Yu Bl + xyn = Wy (x) < W(x).

The cases > 0 is easily solved by observing that,(Y,) — Y,B > U(—p) as
in (6.7). As for the cas@ = 0, we again argue as in the previous proof to derive
the analogue of (6.8) with=x/2 > O:

Xy <2W(x) 4+ 2x0 + xC < 2W(x) 4+ 2xg + xC for all largen
and someC > 0 independent af. This provides the required bound 6y,),,.
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STEP 2. Setg(y) := U(y) — By. Using Property 6.1 of the quadratic inf
convolution, we see that

2(zn(Yn)) — Yu(B — B) = Uy(Y,) — Y, B — %|zn<?n) — V|? < U, (¥,) — ¥, B.

Let (A{;)‘,-z,, be coefficients of the above convex combination that defipey;,)

from (y;, ¥;) j=n. From the convexity olJ, and the increase df, in n, we get
from the previous inequality

(6.10) g(za(¥)) — Yu(B —B) < Uy(¥,) — ¥, B < > A[U;(Y;) — Y;B].

jzn
Then, taking expected values, we see that

E[8(z4(Yn)) — Y,(B — B)1 < E[Uy(Yy) — Y, B]

(6.11) < D MW (x) — xy;]
j=n
< W(x) —xyn.

We now use the claim (the proof of which will be carried out in Step 3 below)
(6.12) the sequenclg(z,(Y,)) — Y,(B — B)]17), is uniformly integrable.

Recalling thatg(-) + 8- = U(-) and using Property 6.2 of the quadratic inf
convolution, it follows from Fatou’s lemma and (6.11) that

E[U(Y*) —YiB]+xy, < Iilrllorlf E[Un(yn) - YnB] + XYn
(6.13) o ~
<limsupE[U,(Y,) — Y, Bl + xy, < W(x).

n—oo

Since(yy, Y4) € Y 4, this proves thaty,, Y,) is the solution of the probleri¥ (x).

Step3. To complete the proof, it remains to check (6.12). As in the previous
proof, the casg > O is easily solved by observing thatz, (Y,,)) = U (zx(Yn)) —
Bzn(Yn) = U(—p), so that

8z (Yn) = Yu(B — B) = U(=P) + V(B — B) = U(—),

since||B|l« < B. We then concentrate on the cgse- B =0. Let¢ := ¢ be the
function introduced in Lemma 6.1. Then

(614) E[‘p(ﬁ(zn(in))_)] <C+ E[Zn(Yn)] <CHy,+ E[Zn(Yn) - Yn]

By the first part of this proof, the sequen¢g,),, is bounded. We next use
Property 6.2(i) of the quadratic inf convolution together with (6.11) Anrd|| B|| oo
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to see that

_ _ 4 - _ _
Ekﬂn)—nfszEKW%hﬂw—ﬂn+xn]

IS

=< _E[C+0n(in) - BYn +xynl

NS

<-[C+WXx)]

S

In particular, this proves that the sequer&éz, (Y,,) — Y,1), is bounded. Hence
the right-hand side term of (6.14) is bounded. Sin¢e)/x — co asx — oo, this
proves (6.12) by the la Vallée—Poussin theoreml

REMARK 6.4. For later use, observe that the arguments of Step 4 of the above
proof also hold if we replacéy,, Y,,) with (y,, ¥;,). It follows that the sequence
([g(zn(Yy)) — Yo (B — B)])x is uniformly integrable. Using Property 6.1 as in
Step 2, we see that

8(zn(¥n)) = Yo(B — B) < Un(Y,) — Y, B,
so that

(6.15) the sequenc@U, (Y,) — Y, B]™), is uniformly integrable.
COROLLARY 6.1. W,(x) —> W(x).

PrRoOOF Recall that the sequen¢®,(x)), is hondecreasing. Sind&, (x) <
W(x), we haveW, (x) — Wx(x) for someWy,(x) < W(x). The result is then
obtained by combining (6.11) and (6.13) in the above pro0f.

COROLLARY 6.2. Let (yu, ¥,) be asolution of W, (x) and let (y., Yx) bethe
limit gefiged inLemma6.3.Set J, := U, (Y,) — Y, B. Thenthere exists a sequence

Gns Yn) = (s Ve, pP-as. and J,—> UY.) —Y.B inLYP).
PROOF From Lemma 6.3, there exists a sequetige ¥;,) € conv((yx, Yx),
k > n) which convergesP-a.s. to a solution(y,, Y) of W(x). Denote by

(A7, k > n) the coefficients that define the convex combination and/et:=
> kon Mg k-

STEP 1. We first prove the existence of a sequetge Yy, J,) € conv(yk,
Yk, Ji), k > n) and a random variablé, € L1(P) such that

(6.16) (Bu, Y, J) > (vs, Yeo J»)  and  EJ, — EU(Y.)—Y.B, P-as.
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To see this, observe that

EJy=) MIWex) —xy] = W) —xy.=EU(Y,) ~ Y,B

k>n

by Corollary 6.1. Also, it follows from (6.10) that
J_n_ = [g(zn(in)) - Yn(B - ﬁ)]_7

whereg(-) = U(-) — B-. Since the sequence on the right-hand side is uniformly
integrable by (6.12), this shows that

(6.17) (J7)), is uniformly integrable
and therefore bounded ib'. i
Since|J,| = J, + 2J,, the above arguments show that the sequéigk, is
bounded inL1, and (6.16) follows from the Komlds lemma.
STEP2. We now prove that
(6.18) J.=U(Y,) — Y,B.

By convexity of U, and increase ofU,),, we see thati, > U,(Y,) — ¥, B. This
proves, first, that/, ]~ < [U,(Y,) — Y, B]™ is uniformly integrable by Remark 6.3
and, therefore,

EJ.< lim EJ,=EU(Y,) — Y.B
n—oo

by Fatou's lemma. This also proves that > U(Y,) — Y«B by Property 6.2,
and (6.18) follows.

STeP 3. In the previous steps, we have proved that— U(Y,) — Y4B,
pP-as,EJ, — EU(Yy) — Y4B, and([J,]7), is uniformly integrable. This provides
thatJ, > U(Y,) — Y,Bin L. O

6.3. Existencefor theinitial problem. We now turn to the solution of the initial
problemV (x). To do this this, we appeal to the following assumptions:

STANDING ASSUMPTIONS OFSECTION 6.3. M*¢(S) # & and AR (U) < oo.

We first start by a characterization of the optimality of,,Y,) for the
problemW, (x). Recall that/,, is continuously differentiable by Property 6.3.

LEMMA 6.4. Let (y,,Y,) be a solution of W,(x) and set X, :=
—DU,(Y,)+ B. Then:

() EX,Y —xy<EX,Y,—xy,=0forall (y,Y)eY,.
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(i) There exists a sequence X, € conu Xy, k > n) such that X,, — X, for
some X, in C(x).

PrROOF

STEP 1. We first show that (ii) follows easily from (i). Le@ :=Y - P be
an arbitrary measure im¢(S) so that(1,Y) € Y,. Since—38 < X,,, we have
E[|X,|Y] < E[X,Y] + 2E[YX, ] <x + 6B by (5.2) and (i). It follows that
the sequencéX,), is bounded inL1(Q), and the existence of a converging
convex combination follows from the Komlos lemma. Using again (i), we have
EX,Y —xy <0 for all (y,Y) € Y, and, thereforeEX,Y < xy follows from
Fatou’s lemma. ClearlyX, > —3p and, thereforeX, € C(x).

STEP2. We prove in Step 3 of this proof that

EXy(Y =Y,) <x(y—yy,)  forall(y,¥Y)eY,.
Applying this inequality to(y, Y) = 2(y,, Y,) € Y, we see thaE X, Y, < xy,.
Similarly, by taking(y, Y) = 2=1(y,, ¥,) € Y, we obtain the converse inequality
and thenE X,,Y,, = xy,. This provides the required result.
STEP3. Let(y,Y) €Y, be fixed and define for small> 0O,
G Yi) =@ —&) (o, Ya) +e(v, ¥) and Xj:=—DU,(Y;)+ B.
Clearly,(y5,Y?) € Y4 and as \( 0, we haveY?, X°) — (Y,, X,), P-a.s. By the

n

optimality of (y,, Y,) for the problemW,, (x) and the convexity of/,, we have
0> e E[Un(Y,) — Un(Yy) = B(Yy = Y146 x (v — )
> EX,(Y —Yy) —x(y — yn)-
In the rest of this proof, we show that
(6.19) the sequenc@X; (Y — Y,)]7), is uniformly integrable,

which provides the required result by sendintp zero in the last inequality and
using Fatou’s lemma.

Let o be a given parameter if®, 1/4) and 0< ¢ < «. We denotey, := o + ¢.
By convexity ofU, together with Remark 6.2, we see that

Un((L—ae)Yy) = Up (Y +a(Y — V) — e Y DU, (Y +a(Y — 1y))
> U, (YE +a(Y — Y,)) — 20.BY.
Using again the convexity df,,, we get
Un(L—ae)Yy) = Up(YE) +aDU (Y)Y — Y,) — 2B Y

(6.20)
=J—aX,(Y =Y, —a: Y28 — B) + (1 — )Y, B,
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where we sef} := ﬁ,,(Y;f) —Y? B. We now use the asymptotic elasticity condition
AEq(U) < oo together with Property 6.4 and Remark 6.2 to obtain

Un((1—ae)Yy) < (1= 0e) 7 [C + Un(Yn) — BYuldiy, <yo)
F{U (1= ) V) — 2(1 — ) Yu B} Ly, 2 30)
+ (1 — )Y B(1+ 1y, y0)
SCH+A—0a) 70U (YT + 21— )Y, B
for someC > 0. It follows from (6.20) that
aXi(Y —Y) = Jf — Y28 — B) + (1— )Y, B
—C—(1—a) U (Yt =201 — )Y,
>—C—[Jf]" = (1= 20) 77U, (Y)" — 2aY (28 — B)
+(1-2a)Y,(8+ B) — 3Y,8,

where we used the assumpti¢i® | < 8. This provides (6.19) by observing
thaty, ¥, andU,(Y,)" are integrableB is bounded, and the familg{/¢]7),
is uniformly integrable by Remark 6.3]

LEMMA 6.5. Let X, beasin the previouslemma. Then
EX.Y,=xy.,, X.€B—0U(Y,), P-as. and EU(X.—B)=V(x).
Moreover, V(x) = W(x).

PROOF  Let ($p, Yu, Xp, Jn) € CONM(yx, Yi, Xk, Jx), k > n} be the sequence
defined in Corollary 6.2 and Lemma 6.4 (clearly, we can assume that the convex
combinations are the same in both results). Defipex) := inf,~o Un(y) + xy
and observe thdl, < U. Set

I, :=Uy(X, — B)

and let/, be the corresponding convex combination.

STeEP1. We claim that
(6.21) the sequencef,j)n is uniformly integrable.

Before proving this, let us complete the proof of the lemma by repeating the
argument of the proof of Lemma 5.6. By Lemma &4, Y,, = xy, and, therefore,

W, (x) = E[Uy(Yy) + xy, — Yy Bl = EU,(X, — B) = EI,.
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SinceW, (x) — W(x) = E[U(Yx) + xy« — Y, B], it follows from (6.21), Fatou’s
lemma and the fact th&, € C(x) [see Lemma 6.4(ii)] that

W (x) = E[U(Ys) + xy. — YiB]

<E [Iim supfn]
< E[Iim supU (X, — B)}

=EU(Xsx— B) =V(x) W),

where we used the fact that, < U and the concavity of/. Then equality holds
in the above inequalities and the required results follow.

STEP 2. We now prove (6.21). We first need a preliminary result. &ix 0
and observe that

Uy(x) <Uy(e) +ex  forallx > —28.
Since by Property 6.2/, (¢) — U (¢) € R, it follows that
U,(x) <C+ex forall x > —28
for someC > 0. SinceU,, is convex andJ,, is nondecreasing, we deduce that
Un(=DUn()) < Up(—DUy(y0)) <C —eDU,(yo)  forally > yo.

Now observe thaD U, (yo) is bounded uniformly im by Properties 6.2 and 6.3
together with the closedness{gk, y) :x € dU (y)} (see, e.g., [16]). It follows that
there exists som€ > 0 such that

(6.22) Uy(~=DU,(y)) <C  forally > ypandn > 1.

We can now conclude the proof of (6.21). Sincg— B = —DU,(Y,), it follows
from Property 6.4 and (6.22) that, ¢F, > O},

I, < Cly,>y +{Jn + [(Xn — B) + B1Y, + (B — B)Y, |1y, <y,

< C+{Jy +Cl1+ Uy (Yn) — YuB1+ (B — B) Y} 1y, <y,

<2CH+ (CH+ D)\ Jyul,
where we used the fact tht— g < 0. It follows that

Lf <[T=Jdu+2(7,),

where [J,| (resp.jn:) is the convex combipation in cofiy|, k = n} (resp.
conv{J, , k > n}) corresponding td,. SinceU, (0) = U,(oc0) and U (Y,) < oo,
it follows thatY,, > 0, P-a.s. whenevet/, (co) = co. Therefore,/,/ is bounded

on {¥, = 0}. In view of this, we obtain immediately (6.21) from the uniform
integrability of the sequencés,, ), and(J,"),; see Corollary 6.2 and (6.15)[]
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COROLLARY 6.3. Suppose that L :=inf{l > 0:U () = U(+00)} = +o00.
ThenY, > 0, P-as.

PROOF The casd/(c0) = o is easily treated because it implies tii&i0) =
+o00. We then concentrate on the case wh&rés bounded. By Step 1 of the
proof of Proposition 3.1 (see the end of Section 5), it follows from the condition
L = +oo thatdU (0) = {—o0}.

Let Py:= Yo - P be an arbitrary measure it¢(S). From Lemma 6.4, we have
E[YoX,] < x. SinceX, > B — 28, this proves thaE[Yy(X,) "] < co. However,

X, = 400 on the event setY* = 0}. Hence Po[Y, = 0] = 0 and the proof is
complete. O

We are now able to complete the proof of Theorem 3.2(ii) and (iii).

LEMMA 6.6. Thereexistsarandomvariable X, € C(x) that satisfies
xys=EX,Ys, X.€B—-03U(Y,), P-as. and EU(X.—B)=V(x).
Moreover, if X, > 0, then X, € X4 (x).

PrRoOOF

STep1. Combining Lemmas 6.4 and 6.5, we see tkiat= X, € C(x) and
satisfies the announced requirements.

STEP 2. We now assume that, > 0, P-a.s. By Remark 3.5, there exists
someX, € X, (x) such thatX, > X4, P-a.s. SinceX(x) C C(x), we have
EX.Y, < xy, = EX.Y, and thereforeX,. = X, on {Y, > 0}. We next consider
two cases.

2.1. Assume first thatl ;= inf{l > 0:U() = U(+o0)} = +oo. Then, from
Corollary 6.3,Y, > 0, P-a.s. It follows thatX, = X,, P-a.s. and the
requirement of the lemma holds fat, := X,.

2.2. If L < o0, thenY, may be zero with positive probability. However, since
X.=X.on{Y,>0}andX, — B € —aU(Y,), we have

E[X.Y.)=xy., and (X,—B)AL=(X.—B)AL.
SinceU (x) = U (L) for x > L, this proves that
X,eB—-09U(Y,) and U(X.—B)=U(X,— B), P-a.s.

Hence, the required result holds B .= X,
This completes the proof of Theorem 3.2(ii) and (jii}]
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6.4. Proof of Lemma 6.1 The last statement of the lemma follows from a
direct application of the la Vallée—Poussin theorem. Lebe a fixed integer
in [1, co] and consider the two following cases.

CASE 1. Suppose thdl,(+o00) = —occ. Then
Uy, (0, 00) — (—00, U,(0)) is convex and decreasing.

Observe that this is valid even for the case: oo, wherel?oO = U is not strictly
convex. Let

On: (—0,, (0), +00) — (0, o)

be the inverse of-U,. By direct computation, we see that for @ll, Y) € Y, with
y >0,

E[¢n(U,(Y)7)] = E[¢n(maxo0, —U,(Y)})]
< E[maxX¢,(0), Y}]
< ¢,(0) + E[Y] < ¢,(0) +y.

Recall thatU(0) = U(+oc) > 0 by (6.1), so thatp,,(0) < co. By increase
of (U,),, we deduce thaip,), is increasing and therefotfg, (0) < ¢oo (0) < c0.

It remains to prove that lig. o [¢, (x)/x] = oo or, equivalently, by a trivial
change of variable,

(6.23) lim —2

Y=+ —U,(y) B

Let us consider separately the cases oo andn < co.

1. If n = o0, then by an easy extension of I'H6pital’s rule to the nonsmooth case,
we see that

-1
. o . T
lim > liminf  inf —=I|m|nf[ sup q:| .
YT —Up(y) Y7 qe-aUm4d YT Lye—ai(y

Now, recall thatl (co) = U (0) = —oo, and therefore lim,qinf dU (x) = oo
and lim,_, sup—aU (y) = 0 by the classical connection between the general-
ized gradients o/ andU. This provides (6.23).

2. If n < 00, then by I'Hbpital’s rule together with Property 6.3 (with= 0), we
see that

(6.24) lim Y im —_—,
y—+400 _Un(y) y—+00 _n(y - Zn(y))
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wherez, (y) is defined in Property 6.1. Now, from the definition@fand U,
together with (6.2), we have

n 2 ~ n 2
Ux) —xz,(y) + §|Zn()’) -y = U@z (y) + §|Zn()’) -yl
=U,(y) <U(y)

forall x > 0. Then

n 2 ~
Sl =yI"=Um) - U@ +x(za(y) — y) +xy

- x> n 2
<UQ) — U(X)+xy+7 +Z|Zn(y) =I5

where we used the trivial inequality < na?/4 + b2/n. This provides

2
n 2 ~ | x|
len(y) —y°=<U(®y) —U(x)+xy+7-

In particular, takinge = £, € —dU (y), we havel (y) — U (%) + yX, =0 and

A2
|xy| 2
sup |gl|°.

qe—aU(y)

=

S|

an(y) — yI2 <
4" ~ n
SinceU(0) = —o0, it folloyvs that inf{|p|: p € 90U (x)} — 400 asx \ 0 and

therefore sufig|:q € —9U(y)} — 0 asy oo by the classical connection

between the generalized gradientgiodindU . Hence, the last inequality proves
thatn|z,(y) — y| > 0 asy " oo, and (6.23) follows from (6.24).

CASE 2. We now consider the case whérg(+oo) > —oo. We reduce the
problem to that of Case 1 by defining the function

(~Un7Y2),  for—U,0) <z<—U,(+00),

Inl2) = Y (2), forz > —0n(+00),

whereyr, is chosen so thﬁzin(x)/x — +o0 asx " oo. Itis immediately checked
that the inequalityE[¢, (U, (Y) )] < ¢,(0) + y holds with this definition ofp,,.
Finally, arguing as in Case 1, we can cho0gg),, such that,,(0) < ¢ (0) < 0.

7. Theasymptotic elasticity conditions. In this section we prove Lemma 2.3
which has been used extensively for the proof of our main result.
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PROOF OFLEMMA 2.3.

STeEP1l. From the nonincrease gfnear zero, we have

AEq(f) =limsup sup -4y

310 qeaf(n S )
This is in agreement with the definition of [5], where Lemma 4.1 states that the
asymptotic elasticity condition Agff) < oo is equivalent to the existence of
yo > 0 andg > 0 such that

fuy) <uPf@y)  forallp<1andy < yo.

STEP 2. By a similar argument to Lemma 4.1 in [5], we also obtain a
characterization of the asymptotic elasticity condition AH) < co by the
existence ofy; > 0 andg > 0 such that

fuy)<pff@y)  forallp>1andys <y.

STEP 3. Since f is nondecreasing nearoo and nonincreasing near O,
it follows from Steps 1 and 2 that statement (i) of Lemma 2.3 holds for all
y € (0, yo]l U [y1, o0) (after possibly changingg and y1). Since f(y) > 0, the
inequality of (i) holds on the intervalyg, y1) by a simple compactness argument.

STEP 4. We finally prove (ii). Giveny > 0, let ¢ be an arbitrary element
of af (y). By convexity of f together with (i), we have

(m=Dyg < fuy) — f(») =(C =D f(y)

for all u € [271, 2]. The required result is obtained by taking the values 2 and
w=2"1 0O
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