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DUAL FORMULATION OF THE UTILITY MAXIMIZATION
PROBLEM: THE CASE OF NONSMOOTH UTILITY

BY B. BOUCHARD, N. TOUZI AND A. ZEGHAL

CREST, CREST and CEREMADE

We study the dual formulation of the utility maximization problem in
incomplete markets when the utility function is finitely valued on the whole
real line. We extend the existing results in this literature in two directions.
First, we allow for nonsmooth utility functions, so as to include the shortfall
minimization problems in our framework. Second, we allow for the presence
of some given liability or a random endowment. In particular, these results
provide a dual formulation of the utility indifference valuation rule.

1. Introduction. Given a concave nondecreasing functionU , finitely valued
on the whole real line, we study the dual formulation of the utility maximization
problem

sup
θ∈H

EU(X
x,θ
T − B).

Here,Xx,θ is the wealth process produced by an initial capitalx together with an
admissible trading strategyθ ∈ H andB is a given bounded contingent claim,
which can also be interpreted as a random endowment. We refer to [17] for an
intuitive presentation of the dual problem, although this overview does not address
the existence issue.

This problem has been addressed [7]in the context of exponential utility
functions. The case of arbitrary smooth utility functions, satisfying the Inada
conditions, was studied [18] whenB = 0. The case of a boundedB was add-
ressed [1] in the presence of transaction costs.

In this article, we focus on the case where the utility function is not assumed to
be smooth. Such situations arise naturally in financial markets with transaction
costs as argued in [5]. They also appear in many problems in frictionless in-
complete markets, such as the shortfall minimization problems studied in [2], [3],
[8] and [15], among others.

Our main contribution is the extension of the duality result in [18] and [14] to
the above context. In particular, it provides a dual formulation for the Hodges and
Neuberger utility-based price; see [9], [1] and [14], among others.

This result is obtained by approximating the utility function by a sequence
of utility functions with bounded negative domain. As a by-product, we prove
an extension, to the nonsmooth case, of the duality result of [12], which was
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NONSMOOTH UTILITY MAXIMIZATION 679

formulated for utility functions with positive effective domain andB = 0. We
finally discuss the important issue of the choice of the set of admissible strategies,
as addressed in [7] and [19]. We show that the conclusions in [19] extend imme-
diately to our context.

The article is organized as follows. The precise formulation of the problem is
presented in Section 2. The main duality results are reported in Section 3 and the
discussion on the set of admissible strategies is contained in Section 4. The proofs
are collected in the remaining sections.

2. Problem formulation.

2.1. The financial market. Let T be a finite time horizon and let(�,F ,P )

be a complete probability space endowed with a filtrationF = {Ft , 0 ≤ t ≤ T }
satisfying the usual conditions.

The financial market consists of one bank account, with constant priceS0,
normalized to unity, andd risky assetsS1, . . . , Sd . As usual, there is no loss of
generality in normalizing the nonrisky asset price process, since we may always
choose it as numeraire under very mild conditions. We denoteS := (S1, . . . , Sd)

the price process of thed risky assets. The vector processS = {St ,0 ≤ t ≤ T } is
assumed to be a(0,∞)d -valued semimartingale on the filtered probability space
(�,F ,F,P ). Moreover, we assume that the condition

Me(S) := {Q ∼ P :S is aQ-local martingale} �= ∅(2.1)

holds. This condition is intimately relatedto the absence of arbitrage opportunities
on the security market; see [6].

A trading strategyθ is an element ofL(S), the set of allRd -valued predictable
processes which are integrable with respect toS. In economic words, each
componentθi

t represents the number of shares of theith risky asset held at timet .
Given a trading strategyθ ∈ L(S) and initial capitalx ∈ R, it follows from the

self-financing condition that the wealth process is defined by

X
x,θ
t := x +

∫ t

0
θr dSr.

The possible terminal values of such wealth processes are collected in the set

X(x) := {
X ∈ L0 :X = X

x,θ
T for someθ ∈ L(S)

}
.

To exclude arbitrage opportunities, it is well known that we need to impose some
lower bound on the wealth process. We therefore introduce the subset ofX(x),

Xb(x) := {X ∈ X(x) :‖X−‖∞ < ∞}.
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2.2. The utility maximization problem. Let U be a nonconstant, nondecreas-
ing, concave function defined and finite on the whole real line:

dom(U) := {x ∈ R : |U(x)| < ∞} = R.

Observe thatU is not assumed to be smooth.
In this article, we focus on the problem of maximizing the expected utility

from terminal wealth for an agent subject to some liabilityB ∈ L∞. We refer to
[14] and [10] for possible extension in the unbounded case. Since existence may
fail to hold inXb(x) (even in the smooth utility case withB = 0), we follow [18]
by defining the setXU (x) of random variablesX ∈ L0 such that there exists a
sequenceXn ∈ Xb(x) that satisfies

U(Xn − B) → U(X − B) in L1.

We then define the utility maximization problem

V (x) := sup
X∈XU(x)

EU(X − B).

Observe that, with this definition,V (x) is also the supremum of the expected
terminal wealth overXb(x). We conclude this section with some examples of
interest in the literature which fit in our framework.

EXAMPLE 2.1 (Smooth utility functions, no liability). WhenU is continu-
ously differentiable, strictly concave andB = 0, the above problem has been ad-
dressed in [18]. The particular exponential utility caseU(x) = −e−ηx has been
extensively studied in [7] and [11].

EXAMPLE 2.2 (Smooth utility functions with liability). WhenU is contin-
uously differentiable and strictly concave, the extension toB �= 0 has been per-
formed in [1] and [14]. The main result of this article improves the results of [14]
by allowing for a nonsmooth utility functionU .

EXAMPLE 2.3 (Shortfall utility). Let� be a convex nondecreasing function
defined on the nonnegative real line. The shortfall minimization problem is defined
by

inf
X∈Xb(x)

E�([B − X]+).

We refer to [2], [3], [8] and [15], among others. DefiningU(x) = −�(x−),
we see that this problem fits inour framework under mild conditions on�; see
Example 2.4.
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2.3. The dual problem. Let Ũ be the Legendre–Fenchel transform defined by

Ũ (y) := sup
x∈R

U(x) − xy

and observe that dom(Ũ ) ∩ (−∞,0) = ∅. We assume that the utility functionU
satisfies

inf
⋃
x∈R

∂U(x) = 0 and r := sup
⋃
x∈R

∂U(x) /∈ ⋃
x∈R

∂U(x),(2.2)

which can be stated equivalently oñU as

int[dom(Ũ )] = (0, r) and r /∈ dom(Ũ ).(2.3)

Without loss of generality, we may assume that

U(0) > 0(2.4)

so thatŨ > 0. Observe thatr > 0 sinceU is not constant. The natural set of dual
variables is

Y+ := {
(y,Y ) ∈ R+ × L0+ :EXY ≤ xy for all x ∈ R+ andX ∈ X+(x)

}
,(2.5)

the positive polar of the set of nonnegative elements ofX(x):

X+(x) := X(x) ∩ L0+.(2.6)

However, since we are dealing with a utility function finitely defined on the real
line, it turns out that

Ỹ+ := {(y,Y ) ∈ Y+ :EY = y}(2.7)

is the appropriate set of dual variables, as was observed in [18]. This set is
clearly nonempty because it contains all pairs(1, Y ), whereY = dQ/dP with
Q ∈ Me(S).

We define the dual problem

W(x) := inf
(y,Y )∈Ỹ+

E[Ũ (Y ) + xy − YB].

Clearly, we have

W(x) ≥ V (x) for all x ∈ R.(2.8)

The purpose of this article is to find conditions under which equality holds in
the above inequality and to relate the solutions of both problems by the classical
Fenchel duality results.
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EXAMPLE 2.4 (Back to shortfall utility). In the case of the shortfall utility
functionU(x) := −�(x−), we directly compute that

Ũ (y) := − inf
x≥0

(
�(x) − xy

)
.

Observe that inf
⋃

x∈R ∂U(x) = 0 so that this example fits in our framework as
long as� is not linear near+∞. For instance, for�(x) = x2, we compute directly
thatŨ (y) = y2/4 and dom(Ũ ) = [0,∞). However, the caseU(x) = −x− studied
in [2] is not covered here.

2.4. Asymptotic elasticity in the nonsmooth case. As in [12] and [18], we need
conditions on the asymptotic elasticity of the utility function to prove the required
duality relationship. In the nonsmooth case, it is argued [5] that these conditions
have to be written on the conjugate functionŨ . We then define

AE0(Ũ ) := lim sup
y↘0

sup
q∈∂Ũ(y)

|q|y
Ũ(y)

and AEr(Ũ ) := lim sup
y↗r

sup
q∈∂Ũ(y)

|q|y
Ũ(y)

,

wherer is the right boundary of the domain ofŨ ; see (2.3). We show in Lemma 2.2
that the asymptotic elasticity condition AEr (Ũ) < ∞ together with (2.3) implies
that the domain of̃U is unbounded. We start with the following lemma.

LEMMA 2.1. Let f be a convex function with int[dom(f )] ⊂ (0, r) for some
r ∈ (0,∞] \ dom(f ). For k = (k1, k2) ∈ R+ × R+ define

f k(y) := f (y) − k1y + k2, y ∈ dom(f ).

Then:

(i) If f (0+) > 0, then AE0(f ) < ∞ ⇒ AE0(f
k) < ∞.

(ii) If f (r−) > 0 and lim inf y↗r min∂Ũ(y) = ∞, then AEr (f ) < ∞ ⇒
AEr (f

k) < ∞.

PROOF. (i) Assume that AE0(f ) < ∞. Then there exists a constantC > 0
such that, for all sufficiently smally > 0 and allq ∈ ∂f (y), |q|y ≤ Cf (y). It
follows that, for smally > 0,

|q − k1|y ≤ |q|y + k1y ≤ C
(
f (y) + k2 − k1y

) + (C + 1)k1y ≤ C
(
1+ f k(y)

)
.

Sincef (0+) > 0, there exists someε > 0 such thatf k(y) = f (y) + k2 − k1y > ε

for smally > 0 and therefore

|q − k1|y
f k(y)

≤ C

(
1

f k(y)
+ 1

)
≤ C

(
1

ε
+ 1

)
.

The result follows.
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(ii) Assume that AEr (f ) < ∞. Then there exists a constantC > 0 such that, for
all y in a neighborhood ofr andq ∈ ∂f (y), |q|y ≤ Cf (y). This implies

qy − k1y ≤ C
(
f (y) + k2 − k1y

) + (C − 1)k1y = Cf k(y) + (C − 1)k1y.

Sincey > 0, it follows that

q − k1 ≤ Cf k(y)/y + (C − 1)k1.

Since lim infy↗r min∂f (y) = ∞ andq ∈ ∂f (y), we see that, on a neighborhood
of r , q − k1 > 0, f k(y) > 0 andf k(y)/y > ε for someε > 0. It follows that

|q − k1|y
f k(y)

≤ C + (C − 1)k1

f k(y)/y
≤ C + (C − 1)

k1

ε
,

which concludes the proof.�

REMARK 2.1. LetU be a concave function onR satisfying (2.2) and let̃U be
the associated Fenchel transform. Then, writing that−x ∈ ∂Ũ(y) ⇒ y ∈ ∂U(x)

(see, e.g., [16]) implies that lim infy↗r min∂Ũ(y) = ∞. In view of (2.3), we see
that Lemma 2.1 applies forf = Ũ . For later purposes, observe that this implies
thatŨ is nondecreasing nearr ∈ (0,∞].

LEMMA 2.2. Assume that the conjugate function satisfies (2.3)as well as the
asymptotic elasticity condition AEr(Ũ ) < ∞. Then r = +∞.

PROOF. We assume thatr < ∞ and work toward a contradiction.

STEP 1. We first prove that we can assume w.l.o.g. thatŨ is positive and
nondecreasing nearr . To see this, defineUk(x) = U(x − k1) + k2 for k =
(k1, k2) ∈ R+ ×R+. From (2.3), observe that we can choosek such thatUk(0) > 0
and max∂Uk(0) < r , so thatŨ k is positive and nondecreasing nearr . Using
Lemma 2.1 and Remark 2.1, we can then reduce the statement of the lemma to
Ũ k(y) = Ũ (y) − k1y + k2 since dom(Ũ ) = dom(Ũ k) and AEr (Ũ ) < ∞ implies
AEr(Ũ

k) < ∞.

STEP 2. From Step 1, we can assume thatŨ is positive and nondecreasing
nearr . Now observe that AEr (Ũ ) < ∞ implies the existence of some constantC

such that max∂Ũ(y)/Ũ(y) ≤ C for all y ∈ [r ′, r) for somer ′ < r . Then, for
all y ∈ [r ′, r), Ũ (y) ≤ αeCy for some realα. Since r < ∞, this implies that
Ũ (r−) < ∞. We conclude the proof by observing that anyx′ ∈ ∂Ũ(r−) satisfies
r ∈ ∂U(−x′) by the classical connection between the gradients ofU andŨ ; see,
for example, [16]. This contradicts (2.3).�
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In view of this result, we rewrite (2.3) as

int[dom(Ũ )] = (0,∞).(2.9)

The following result is an extension to the nonsmooth case of the implications
of the asymptotic elasticity conditions derived in [18]. We postpone its proof to
Section 7.

LEMMA 2.3. Let f be a positive convex function, with cl[dom(f )] = R+.
Assume further that f is nonincreasing near 0, nondecreasing near ∞ and
satisfies the asymptotic elasticity conditions

AE0(f ) < ∞ and AE∞(f ) < ∞.(2.10)

Then for all 0 < µ0 < µ1 < ∞, there exists a constant C > 0 such that:

(i) f (µy) ≤ Cf (y) for all µ ∈ [µ0,µ1] and y > 0;
(ii) y|q| ≤ Cf (y) for all y > 0 and q ∈ ∂f (y).

3. The main result.

3.1. Utility functions with unbounded domain.

REMARK 3.1. Up to now, we have not assumed thatS is locally bounded. In
turns out that this technical assumption is not needed for our result. However,
as pointed out in Remark 2.6 of [18], the set of strategiesXU may not be
adapted whenS is not locally bounded. More precisely, we can construct easy
examples where the primal problem has a natural solution outsideXU and the
restriction of the strategies toXU leads to a zero investment strategy as an optimal
solution, which makes no sense from an economic point of view. For instance,
set B = 0 and consider a market with one risky assetS1 such thatS1 = 1 on
[0, T ) andS1

T is normally distributed (assuming now that prices can be negative),
that is,S1 jumps atT . Then, it is easily checked thatXb(x) = {x} and therefore
V (x) = U(x), that is, the optimal strategy inXU (x) is X∗ = x. Assuming that
U is strictly concave and smooth. SinceX+(r) = {r} for r ≥ 0, we see that
(y∗, Y∗) = (U ′(x),U ′(x)) ∈ Ỹ+. SinceŨ (U ′(x)) + xU ′(x) = U(x), we also see
that the usual duality holds and that(y∗, Y∗) is optimal forW(x), and we easily
check that all the requirements of Theorem 3.1 are satisfied, except thatY∗/y∗ = 1
does not define a local martingale measure ifES1

T �= 1.

In view of this remark, we assume in this subsection thatS is locally bounded.
This will prevent the above described phenomenon.

REMARK 3.2. Define the sequence of stopping timesτn := inf{t ≥ 0 :|St | > n}.
SinceS is locally bounded, we haveSi

τn
∈ Xb(S

i
0) and−Si

τn
∈ Xb(−Si

0). By de-

finition of Ỹ+, we deduce that, for each(y,Y ) ∈ Ỹ+ with y > 0, the measure
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Q := (Y/y) · P ∈ Ma(S), the set of all local martingale measures forS which are
absolutely continuous with respect toP .

THEOREM 3.1. Let U be a nonconstant concave nondecreasing function,
finitely valued in R, satisfying (2.4) and such that the associated Fenchel
transform Ũ satisfies (2.9) as well as the asymptotic elasticity conditions (2.10).
Given some bounded contingent claim B, consider the optimization problems

V (x) := sup
X∈XU (x)

EU(X − B) and W(x) := inf
(y,Y )∈Ỹ+

E[Ũ (Y ) + yx − YB].

Assume further that W(x) < ∞ for some x ∈ R. Then:

(i) Existence holds for the dual problem W(x), that is,

W(x) = E[Ũ (Y∗) − Y∗B + xy∗] for some (y∗, Y∗) ∈ Ỹ+.

Moreover, if y∗ > 0, then Q∗ = Y∗
y∗ · P ∈ Ma(S).

(ii) Existence holds for the portfolio optimization problem V (x), that is,

V (x) = E[U(X∗ − B)] for some X∗ ∈ XU (x).

(iii) The above solutions are related by

X∗ ∈ B − ∂Ũ(Y∗), P -a.s. and E[X∗Y∗] = xy∗,

so that the duality relationship V (x) = W(x) holds.
(iv) If Y∗ > 0, P -a.s., then X∗ = X

x,θ
T for some θ ∈ L(S), where Xx,θ is a

uniformly integrable martingale under the measure Q∗ := Y∗
y∗ · P ∈ Me(S).

The proof of this result is reported in Section 5.

REMARK 3.3. It is immediately checked that

W(x) < ∞ for somex ∈ R

{
if and only if E[Ũ(Y )] < ∞ for some(y,Y ) ∈ Ỹ+,

if and only if W(x) < ∞ for all x ∈ R.

We next focus on the attainability issue of Theorem 3.1(iv). Clearly, since
Ũ (0) = U(∞), it follows from Remark 3.3 thatY∗ > 0 wheneverU(∞) = ∞.
More generally, we prove the following sufficient condition in Section 5.

PROPOSITION 3.1. Assume that L := inf{l :U(l) = U(∞)} = ∞. In the
context of Theorem 3.1,assume further that Ỹ+ contains some (ȳ, Ȳ ) satisfying

EŨ(Ȳ ) < ∞ and Ȳ > 0, P -a.s.

Then Y∗ > 0, P -a.s.
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REMARK 3.4. We now discuss the uniqueness issue when the utility func-
tion U is strictly concave. Observe thatXU is a priori not convex. However, we see
in this remark that this property holds if we restrict to the set of optimal strategies,
thus providing uniqueness. LetX1∗ andX2∗ be two solutions of the utility maxi-
mization problem and letX1

n, X2
n ∈ Xb(x) be such thatU(Xi

n −B) → U(Xi∗ −B)

in L1, i ∈ {1,2}. SinceU is increasing, we see that, possibly after passing to sub-
sequences,Xi

n → Xi∗, P -a.s.,i ∈ {1,2}. Since, for allλ ∈ (0,1),

U
(
λX1

n + (1− λ)X2
n − B

) ≥ λU(X1
n − B) + (1− λ)U(X2

n − B)

→ λU(X1∗ − B) + (1− λ)U(X2∗ − B) in L1

andλX1
n + (1− λ)X2

n ∈ Xb(x), it follows that

V (x) = lim
n→∞EU

(
λX1

n + (1− λ)X2
n − B

)
and

U
(
λX1

n + (1− λ)X2
n − B

) → U
(
λX1∗ + (1− λ)X2∗ − B

)
in L1,

V (x) = EU
(
λX1∗ + (1− λ)X2∗ − B

) = λEU(X1∗ − B) + (1− λ)EU(X2∗ − B).

It follows that, in the case whereU is strictly concave, there is a unique solution
to the utility maximization problem. However, ifU is not smooth, the Fenchel
transformŨ is not strictly convex and uniqueness in the dual problem is not
guaranteed. We continue this discussion in Remark 4.2. We thank an anonymous
referee for pointing out this important issue.

To prove Theorem 3.1, we use the methodology of [18], which consists of
approximatingU by utility functionsUn that have a domain bounded from below.
Set

Un := U on dom(Un) := (−n,∞) for n ≥ 2‖B‖∞,

so thatUn converges toU and dom(Un) is bounded from below. Let̃Un be the
associated Fenchel transform

Ũn(y) := sup
x∈R

(
Un(x) − yx

)
.

Observe that our approximating utility functions are nonsmooth and that

Un = U on dom(Un) and Ũn = Ũ on∂Un dom(Un).(3.1)

We follow [1] by defining

xn := x + n

2
and Bn := B + n

2
,
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together with the corresponding approximating optimization problems

Vn(x) := sup
X∈C(xn)

EUn(X − Bn),

Wn(x) := inf
(y,Y )∈Y+

EŨn(Y ) − YBn + xny,

whereY+ is defined in (2.5) and

C(x) := {
X ∈ L0+ − L∞ :EXY ≤ xy for all (y,Y ) ∈ Y+

}
.

The reason for introducing the sequences(xn)n and(Bn)n appears in Lemma 5.4.

REMARK 3.5. SinceY+ contains all pairs(1, dQ/dP ) for Q ∈ Me(S), it
follows from the classical dual formulation of the superreplication problem that

C(x) ⊂ {
X ∈ L0+ − L∞ :X ≤ Xs P -a.s. for someXs ∈ Xb(x)

};
that is, all contingent claims inC(x) can be superreplicated starting from the
initial capitalx. By definition ofY+, the reverse inclusion holds for nonnegative
contingent claims, so that

C(x) ∩ L0+ = {
X ∈ L0+ :X ≤ Xs for someXs ∈ X+(x)

}
.

The first step in the proof of Theorem 3.1 is to establish existence for the above
approximating control problems as well as the duality connection between them.
This is the main object of the following subsection.

3.2. Utility functions with bounded negative domain. We now concentrate on
the case where the utility function has a domain which is bounded from below.

THEOREM 3.2. Let β ≥ 0 be an arbitrary constant and consider some con-
tingent claim B with ‖B‖∞ ≤ β. Let U be a nonconstant concave nondecreasing
function with

cl[dom(U)] = [−2β,∞), U(∞) > 0, cl[dom(Ũ )] = R+
and satisfying the asymptotic elasticity condition AE0(Ũ ) < ∞. Consider the
optimization problems

V (x) := sup
X∈C(x)

EU(X − B) and W(x) := inf
(y,Y )∈Y+

E[Ũ(Y ) + yx − YB].

Assume that W(x) < ∞ for some x > 0. Then:

(i) Existence holds for the dual problem W(x), that is,

W(x) = E[Ũ (Y∗) + y∗x − Y∗B] for some (y∗, Y∗) ∈ Y+.
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(ii) Existence holds for the optimization problem V (x), that is,

V (x) = E[U(X∗ − B)] for some X∗ ∈ C(x) such that X∗ − B ≥ −2β.

Moreover, if X∗ ≥ 0, then X∗ ∈ X+(x).
(iii) The above solutions are related by

X∗ ∈ B − ∂Ũ(Y∗), P -a.s. and E[X∗Y∗] = xy∗,
so that the duality relationship V (x) = W(x) holds.

The proof is postponed to Section 6.

REMARK 3.6. The technical assumptionU(∞) > 0 can clearly be relaxed by
adding a constant toU .

REMARK 3.7. Corollary 6.3 states that the solution of the dual problem,
introduced in Theorem 3.2, satisfiesY∗ > 0 P -a.s. wheneverL := inf{l :U(l) =
U(∞)} = ∞.

REMARK 3.8. As in Remark 3.4, we assume thatU is strictly concave, so that
the solution to the utility maximization problem is unique. Recalling that, for all
(X,y,Y ) ∈ C(x)×Y+, EXY ≤ xy, we see by similar arguments as in Remark 4.2
that uniqueness holds in the dual problem outside of the set whereŨ ′ is constant.

REMARK 3.9. Let us specialize the discussion of Theorem 3.2 to the case
B = 0.

1. First letβ = 0. Then, obviously,X∗ is nonnegative and therefore

V (x) = sup
X∈X+(x)

EU(X) = EU(X∗).

We are in the context of the portfolio optimization problem of [12], except that
the utility function is not assumed to be smooth. Hence, Theorem 3.2 extends
the corresponding results to the nonsmooth utility case. It is also easy to check
that we have the additional result

W(x) = inf
y>0

inf
Q∈Me(S)

E

[
Ũ

(
y

dQ

dP

)
+ yx

]
by the same arguments as in [12].

2. Forβ > 0 andx > −2β, the same argument as in [18], Section 2, shows that
existence holds for the problem

sup
X∈Xb(x)

EU(X)

and that the solutionX∗ of the above problem is related to the solutionX̄∗ of the
problem defined on the utility functionU(·−2β) with initial wealthx̄ = x +2β

by X∗ = X̄∗ − 2β.
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3. Because of the connection between‖B‖∞ and the domain ofU , and the
nature of the set of primal variablesC(x), Theorem 3.2 does not compare to
[4] and [10].

4. Complements on the set of admissible strategies in the unbounded
domain case. Following [18], we now consider alternative sets of admissible
strategies for the problem of Section 3.1. In view of Remark 3.1, we assume that
S is locally bounded. Recall from Remark 3.2 that, under this condition, for each
(y,Y ) ∈ Ỹ+ with y > 0, the measureQ := (Y/y) · P ∈ Ma(S).

Let x ∈ R be some fixed initial capital and assume that the conditions of
Theorem 3.1 hold, so that solutionsX∗ of V (x) and (y∗, Y∗) of W(x) do exist
and satisfy the conditions of the theorem. Then, ify∗ > 0, the induced measure

Q∗ := Y∗
y∗

· P ∈ Ma

Ũ
(S) :=

{
Q ∈ Ma(S) :EŨ

(
dQ

dP

)
< ∞

}
.

Throughout this section, we assume thatY∗ satisfies the additional condition

Y∗ > 0, P -a.s.,

so thaty∗ > 0, Q∗ ∈ Me(S) and

W(x) = inf
y>0

Q∈Me(S)

E

[
Ũ

(
y

dQ

dP

)
− By

dQ

dP

]
+ xy.

The measureQ∗ is the so-called minimal local martingale measure associated to
the problemṼ (y∗), where

Ṽ (y) := inf
(y,Y )∈Ỹ+

E[Ũ (Y ) − YB].

Under the assumptionY∗ > 0, we also know from Theorem 3.1 thatX∗ = X
x,θ∗
T

for someθ∗ ∈ L(S).
A simple restatement of Theorem 3.1(iii) and (iv) reveals that

the wealth processXx,θ∗ is a uniformly integrable martingale underQ∗,
and

V (x) = inf
y>0

Ṽ (y) + xy so thatx ∈ −∂Ṽ (y∗),

where we used the (obvious) convexity ofṼ . The following sets of strategies were
studied in [7] and [19]:

H1(x) := {
θ ∈ L(S) :U(X

x,θ
T − B) ∈ L1 andXx,θ is aQ∗-supermartingale

}
,

H ′
1(x) := {

θ ∈ H1(x) :Xx,θ is aQ∗-martingale
}
,

H2(x) := {
θ ∈ H1(x) :Xx,θ is a supermartingale under allQ ∈ Ma

Ũ
(S)

}
.
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We now have the following extension of [19] to the nonsmooth utility context of
this article.

1. Clearly, sinceEU(X
x,θ
T − B) ≤ W(x) for all θ ∈ H1(x) andθ∗ ∈ H ′

1(x) ⊂
H1(x), it follows that

V (x) = max
θ∈H1(x)

EU(X
x,θ
T − B) = max

θ∈H ′
1(x)

EU(X
x,θ
T − B).

2. Also, observe thatXb(x) ⊂ {Xx,θ
T : θ ∈ H2(x)}. Therefore,

V (x) ≤ sup
θ∈H2(x)

EU(X
x,θ
T − B)

≤ inf
y>0,Q∈Ma

Ũ
(S)

E

[
Ũ

(
y

dQ

dP

)
− y

dQ

dP
B + yx

]

≤ E

[
Ũ

(
y∗

dQ∗
dP

)
− y∗

dQ∗
dP

B + y∗x
]

= W(x) = V (x).

Hence equality holds in all the above inequalities. In particular, this proves that

V (x) = sup
θ∈H2(x)

EU(X
x,θ
T − B).

3. We now prove thatθ∗ ∈ H2(x) so that

V (x) = max
θ∈H2(x)

EU(X
x,θ
T − B).(4.1)

Let F be the conjugate of the functionx �→ U(x − ‖B‖∞), that is,

F :y �→ Ũ (y) − y‖B‖∞.

Arguing as in Lemma 5.1, we may assume without loss of generality that

F(0) > 0, F is nonincreasing near 0,(4.2)

AE0(F ) < ∞ and AE∞(F ) < ∞.(4.3)

Notice that, by Remark 2.1 and (2.9),F is clearly nondecreasing near+∞.

To see that (4.1) holds, it suffices to prove that the conjugate functionṼ inherits
the asymptotic elasticity conditions AE0(Ṽ ) < ∞ and AE+∞(Ṽ ) < ∞ from the
functionŨ . In view of the above assumptions (4.2), we need to show that

for all 0 < µ0 < µ1, there exists someC > 0,
(4.4)

Ṽ (λy) ≤ CṼ (y) for all λ ∈ [µ0,µ1] andy > 0.

With this property ofṼ , the proof of Proposition 2.2 in [19] applies immediately
to the nonsmooth case.
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The characterization of the asymptotic elasticity conditions of Lemma 2.3
holds for F by (4.2), (4.3) and the fact that it is nondecreasing near+∞. Let
(y,Y ε) ∈ Ỹ+ be such that

E[Ũ(Y ε) − Y εB] ≤ Ṽ (y) + ε.

Fix 0 < µ0 < µ1. Then, by Lemma 2.3 and (4.3), there exists someC > µ1 such
that for allλ ∈ [µ0,µ1],

Ṽ (y) + ε ≥ E[F(Y ε) + Y ε(‖B‖∞ − B)] ≥ 1

C
E[F(λY ε) + Y ε(‖B‖∞ − B)]

= 1

C
E[Ũ (λY ε) − λY εB] +

(
1− λ

C

)
E[Y ε(‖B‖∞ − B)]

≥ 1

C
E[Ũ (λY ε) − λY εB] ≥ 1

C
Ṽ (λy)

and (4.4) follows by arbitrariness ofε > 0.

REMARK 4.1. It is known from [19] that considering sets of admissible
strategies such as{

θ ∈ L(S) :Xx,θ is aQ-supermartingale (resp. martingale)

under someQ ∈ Me(S)
}

may lead to paradoxical results from an economic point of view. They are therefore
not discussed in this article.

REMARK 4.2. We continue the discussion on the uniqueness issue of
Remark 3.4. It follows from the above analysis that ifS is locally bounded and
y∗ > 0, then we are reduced to considering the setsH2(x) for the primal problem
andMa

Ũ
(S) for the dual problem. Recall from Remark 3.4 that ifU is strictly

concave, then uniqueness holds in the utility maximization problem. Then, writing
E[(dQ/dP )Xx,θ∗] ≤ x for all Q ∈ Ma

Ũ
(S), we see that a necessary and sufficient

condition forQ to be optimal for the dual problem is that

E

[
dQ

dP
X

x,θ∗
T

]
= x and X

x,θ∗
T ∈ −∂Ũ

(
y∗

dQ

dP

)
.

It follows that if U is strictly concave and thereforẽU is continuously differen-
tiable, the optimum for the dual problem is unique outside of the set whereŨ ′ is
constant, that is,{y ≥ 0 :y ∈ ∂U(x), for somex whereU is not differentiable}.
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5. Proofs for the unbounded negative domain case. In this section, we
report the proofs of Theorem 3.1 and Proposition 3.1. We split the proof of
Theorem 3.1 into different lemmas. We start by a convenient reduction of the
problem.

LEMMA 5.1. Suppose that statements (i)–(iv) of Theorem 3.1 hold for
x > ‖B‖∞ and Ũ nonincreasing near 0. Then Theorem 3.1holds.

PROOF. First notice from (2.9) andU(0) > −∞, that for all sufficiently large
k = (k1, k2), the shifted utility functionUk : z ∈ R �→ U(z − k1) + k2 satisfies
max∂Uk(0) > 0 andUk(0) > 0. It follows that the associated Fenchel transform
function Ũ k is positive and, by the classical connection between the gradients
∂Uk and∂Ũk (see, e.g., [16]), that̃Uk is nonincreasing near 0.

Now, choosek so that the additional conditionxk := x + k1 > ‖B‖∞ holds.
By Lemma 2.1 and Remark 2.1,Ũ k satisfies the asymptotic elasticity condition of
Theorem 3.1; see (5.1). By assumption of the lemma, it follows that Theorem 3.1
holds for the problems

V k(xk) := sup
X∈XU (xk)

EUkt (X − B)

and

Wk(xk) := inf
(y,Y )∈Ỹ+

E
(
Ũ k(Y ) − YB

) + yxk.

We denote by(yk∗, Y k∗ ) (resp.Xk∗) the solution of the problemWk(xk) [resp.
V k(xk)]. Observing that fory ≥ 0,

−∂Ũk(y) = −∂Ũ(y) + k1, Ũ k(y) = Ũ (y) − yk1 + k2,(5.1)

it is easily checked that(y∗, Y∗) := (yk∗, Y k∗ ) (resp.X∗ := Xk∗ − k1) is optimal for
the problemW(x) [resp.V (x)] and that these quantities satisfy all the statements
of Theorem 3.1. �

In view of this result, we assume from now on that

x > ‖B‖∞, Ũ is positive and nonincreasing near 0.

We recall from Remark 2.1 and (2.9) that

Ũ is nondecreasing near+∞,

so that the conditions of Lemma 2.3 hold forŨ .

REMARK 5.1. We isolate the following arguments which will be used
repeatedly.
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(i) SinceX+(1) contains the constant random variable 1, we have

EY ≤ y for all (y,Y ) ∈ Y+(5.2)

and, for all constantM > 0,

the family{(y,Y ) ∈ Y+ : |y| ≤ M} is bounded inL1(P ).

(ii) Then, for any sequence(yn,Yn)n ⊂ Y+ with bounded(yn)n, it follows
from the Komlòs lemma together with the convexity ofY+ and Fatou’s lemma
that

there is a sequence(ỹn, Ỹn) ∈ conv{(yk, Yk), k ≥ n}
such thatP -a.s.(ỹn, Ỹn) → (ỹ, Ỹ ) ∈ Y+.

We now apply Theorem 3.2 to the approximating nonsmooth utility functionUn

for somen ≥ 2‖B‖∞. Obviously, AE0(Ũn) = AE0(Ũ ) < ∞ by (3.1). We need to
check only thatWn(x) < ∞. In view of Remark 3.3, this is a consequence of the
following lemma.

LEMMA 5.2. The sequence (Wn(x))n is nondecreasing and bounded from
above by W(x).

PROOF. Fix m > n ∈ N and consider some(y,Y ) ∈ Y+. Since {Ũn} is
increasing andy ≥ EY , we obtain

E[Ũn(Y ) + yxn − YBn] ≤ E[Ũm(Y ) + yxn − YBn] + m − n

2
(y − EY)

= E[Ũm(Y ) + yxm − YBm].
It follows that(Wn(x))n is nondecreasing. Now fix(y,Y ) ∈ Ỹ+ andn ∈ N. Since
Ũn ≤ Ũ ,

E[Ũn(Y ) + yxn − YBn] ≤ E[Ũ (Y ) + yx − YB] + n

2
(y − EY).

The required result follows from the fact thatEY = y andỸ+ ⊂ Y+. �

We are then in the context of Theorem 3.2. Throughout this section, we denote
by (yn,Yn) ∈ Y+ a solution of problemWn(x) and byXn ∈ C(xn) a solution of
problemVn(x) that satisfy the assertions of Theorem 3.2. We recall the connection
between these solutions. From (3.1), it follows that

Wn(x) = E[Ũ(Yn) + xnyn − YnBn] = Vn(x) = E[U(Xn − Bn)],(5.3)

Xn ∈ Bn − ∂Ũn(Yn) = Bn − ∂Ũ(Yn) and E[XnYn] = xnyn.(5.4)
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By Remark 3.5, there exist someXs
n ∈ Xb(xn) that satisfyXs

n ≥ Xn, P -a.s. We
denote byV s

n (x) the associated expected utility:

V s
n (x) := EUn(X

s
n − Bn) = EU(Xs

n − Bn).

Observing thatXs
n − n/2 ∈ Xb(x), we directly see that

Vn(x) ≤ V s
n (x) ≤ V (x).(5.5)

The following result follows from the same argument as in Step 2 of [18].

LEMMA 5.3. The sequence (Yn)n is uniformly integrable.

The next result completes the proof of Theorem 3.1(i) and prepares for the proof
of the remaining items.

LEMMA 5.4. (i) There is a sequence (ŷn, Ŷn, Ĵn) ∈ conv{(yk, Yk, Ũ (Yk)),

k ≥ n} such that

(ŷn, Ŷn, Ĵn) → (
y∗, Y∗, Ũ (Y∗)

) ∈ Ỹ+ × L1(R+), P -a.s. and in L1.

(ii) (y∗, Y∗) is optimal for W(x), that is, (y∗, Y∗) ∈ Ỹ+, and E[Ũ(Y∗)+ y∗x −
Y∗B] = W(x).

(iii) Vn(x) = Wn(x) ↑ W(x) = V (x) < ∞ and V s
n (x) → V (x).

PROOF.

STEP 1. By (5.2), (5.3), Lemma 5.2 and the positivity ofŨ , it follows that

∞ > W(x) ≥ (x − ‖B‖∞)yn + n

2
(yn − EYn).

This proves thatyn → y∗ ≥ 0 and yn − EYn → 0 along some subsequence,
as x − ‖B‖∞ > 0, yn ≥ 0 and yn − EYn ≥ 0. The existence of a sequence
(ŷn, Ŷn) ∈ conv{(yk, Yk), k ≥ n}, which convergesP -a.s. to(y∗, Y∗) ∈ Y+, follows
from Remark 5.1(ii). From Lemma 5.3, the convergence ofŶn to Y∗ holds inL1

and thereforeEY∗ = y∗, proving that(y∗, Y∗) ∈ Ỹ+.

STEP 2. LetC be such that for alln ≥ 2‖B‖∞,

Ũn(Yn) − YnB ≥ Un(−B) ≥ −C > −∞.

Let (µk
n)n,k denote the coefficients of the convex combination that defines the se-

quence(ŷn, Ŷn)n. Using Fatou’s lemma, the inequalityyk ≥ EYk, Step 1 and (3.1),
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we get

E
(
Ũ(Y∗) + y∗x − Y∗B

)
≤ E

(
lim inf
n→∞

∑
k≥n

µk
n

(
Ũ (Yk) + ykx − YkB

))

≤ lim inf
n→∞ E

( ∑
k≥n

µk
n

(
Ũk(Yk) + ykx − YkB

))

≤ lim inf
n→∞

∑
k≥n

µk
n

(
E[Ũk(Yk) + ykx − YkB] + k

2
(yk − EYk)

)
= lim inf

n→∞
∑
k≥n

µk
nWk(x) ≤ W(x) < ∞.

(5.6)

Since(y∗, Y∗) ∈ Ỹ+, it is optimal forW(x). By Lemma 5.2 and (5.3), it follows
that

E
(
Ũ (Y∗) + y∗x − Y∗B

) = W(x) = lim
n→∞ ↑ Wn(x) = lim

n→∞ ↑ Vn(x).(5.7)

STEP 3. The above argument also proves that supn E
∑

k≥n µk
nŨ(Yk) =

supn E
∑

k≥n µk
n|Ũ (Yk)| < ∞. We can, therefore, find a sequencêJk ∈

conv{∑k≥l µ
k
l Ũ (Yk), l ≥ n} which convergesP -a.s. to someJ∗ ∈ L1(R+). By

combining the convex combination, we can always assume that(ŷn, Ŷn, Ĵn) ∈
conv{(yk, Yk, Ũ (Yk)), k ≥ n}.

We now prove that the latter convergence holds inL1 and thatŨ(Y∗) = J∗.
BecauseŨ is convex, we haveĴn ≥ Ũ (Ŷn) and thereforeJ∗ ≥ Ũ (Y∗). On the
other hand, it follows from (5.6) and the uniform integrability of(Yn)n thatEJ∗ =
EŨ(Y∗). Hence,Ũ (Y∗) = J∗. Finally, since(Ĵn)n is nonnegative, convergesP -a.s.
to J∗ andEĴn → EJ∗, the convergence holds inL1.

STEP 4. It follows from (2.8), (5.7) and (5.5) that

V (x) ≤ W(x) = lim
n→∞Vn(x) ≤ lim

n→∞V s
n (x) ≤ V (x),

which concludes the proof.�

We continue the proof of Theorem 3.1 by turning to the sequences
(Xn)n and(Xs

n)n. Set

Zn := (Xn − Bn)1{Y∗>0} + L1{Y∗=0},
(5.8)

Zs
n := (Xs

n − Bn)1{Y∗>0} + L1{Y∗=0},
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where L := inf{l ∈ [0,∞] :U(l) = U(∞)} ∈ R ∪ {+∞}. We then use the
convention

L × 0 = 0 so thatŨ (0) = U(L) − L × 0 is valid.

LEMMA 5.5. There is a sequence (Ẑn, Ẑ
s
n) ∈ conv{(Zk,Z

s
k), k ≥ n} such that

(Ẑn, Ẑ
s
n) → (X∗ − B,Xs∗ − B), P -a.s.

with E[X∗Y∗] ≤ xy∗ and E[Xs∗Y∗] ≤ xy∗.

Moreover, X∗ − B ≤ L, Xs∗ − B ≤ L and X∗ = Xs∗ = L on {Y∗ = 0}.

PROOF.

STEP 1. We first prove the required result for the sequence(Zn)n. Recall that
on the event set{Y∗ > 0}, Zn ∈ −∂Ũn(Yn) = −∂Ũ (Yn) for all n [see (3.1)]. By
Lemma 2.3 and the convexity of̃U , it follows that for allZ∗ ∈ −∂Ũ (Y∗),

Z−
n Y∗1{Y∗>0} ≤ |Zn|Yn1{Yn>Y∗>0} + |Z∗|Y∗1{Y∗>0}1{Yn≤Y∗}

(5.9)
≤ C

(
Ũn(Yn) + Ũ (Y∗)

)
.

By Lemma 5.4, (5.2) and the fact thatx > ‖B‖∞, this provides

sup
n

E[Z−
n Y∗] < ∞.

Also notice that the equalityEY∗ = y∗ implies that

E
[
ZnY∗1{Y∗>0}

] = E
[
(Xn − Bn)1{Y∗>0}Y∗

] ≤ xy∗ − E[Y∗B](5.10)

sinceXn ∈ C(xn). It follows that supk EY∗|Zk|1{Y∗>0} < ∞. Hence, there exists
a convex combinationY∗Ẑn1{Y∗>0} ∈ conv{Y∗Zk1{Y∗>0}, k ≥ n} that converges
P -a.s. It follows that there exist someZ∗(=: X∗ − B) such thatẐn → Z∗, P -a.s.,
Z∗ ≤ L and Z∗1{Y∗=0} = L. By combining the convex combinations, we may
assume that the coefficients that defineẐn and Ĵn are the same. Recall from
Lemma 5.4 thatĴn is uniformly integrable. Then, we deduce from (5.9) that

the sequencêZ−
n Y∗1{Y∗>0} is uniformly integrable.(5.11)

SinceE[ZnY∗1{Y∗>0}] ≤ xy∗ − E[BY∗], it follows from Fatou’s lemma that

E[Z∗Y∗] = E
[
Z∗Y∗1{Y∗>0}

] ≤ xy∗ − E[BY∗].

STEP 2. Since(y∗, Y∗) ∈ Ỹ+ andXs
n ∈ Xb(xn), we clearly haveEY∗Zs

n ≤
y∗x − EY∗B. We then observe that(Zs

n)
− ≤ Z−

n and the required results of the
sequence(Zs

n)n follow by the same argument as above.�
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LEMMA 5.6. Let X∗ = Xs∗ and

X∗ ∈ B − ∂Ũ(Y∗), P -a.s., EX∗Y∗ = xy∗,
so that EU(X∗ − B) = V (x) = W(x) = E[Ũ(Y∗) − Y∗B + xy∗]. Moreover,

Y∗Ẑs
n → Y∗(X∗ − B) in L1(P ).

PROOF.

STEP 1. We first prove that

X∗ ∈ B − ∂Ũ(Y∗), P -a.s. and EX∗Y∗ = xy∗.(5.12)

Notice that by (3.1) and Lemma 2.3,

U(Zn)
+1{Y∗>0}1{Yn>0} = Un(Zn)

+1{Y∗>0}1{Yn>0}
≤ (

Ũn(Yn) + |Zn|Yn

)
1{Y∗>0}1{Yn>0}(5.13)

≤ CŨn(Yn).

Let (µk
n) be the coefficients of the convex combination defined in Lemma 5.4(i).

Since, by Remark 3.7,Yn > 0 wheneverU(∞) = ∞, we deduce from the above
inequalities that {∑

k≥n

µk
nU(Zk)

}+
1{Y∗>0} ≤ C(1+ Ĵn),

which is uniformly integrable by Lemma 5.4. It follows from Lemma 5.4, (5.3),
the definition ofZn in (5.8), Fatou’s lemma, the concavity ofU and Lemma 5.5
that

W(x) = lim
n→∞E

[ ∑
k≥n

µk
nU(Xk − Bk)

]

≤ lim
n→∞E

[ ∑
k≥n

µk
n

(
U(Zk)1{Y∗>0} + U(∞)1{Y∗=0}

)]

≤ E

[
lim sup
n→∞

∑
k≥n

µk
n

(
U(Zk)1{Y∗>0} + U(∞)1{Y∗=0}

)]

≤ E
[

lim
n→∞U(Ẑn)

]
= EU(Z∗).

(5.14)

By Lemmas 5.5 and 5.4(ii), we get that

W(x) ≤ EU(Z∗) ≤ E[Ũ(Y∗) + Z∗Y∗] ≤ E[Ũ(Y∗) − Y∗B + xy∗] = W(x).

Then equality holds and (5.12) follows.
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STEP 2. From (5.11) and the fact thatZs
n ≥ Zn, we see that

the sequence{Y∗(Ẑs
n)

−, n ≥ 0} is uniformly integrable.(5.15)

We also recall thatXs
n ∈ Xb(xn) and therefore

EẐs
nY∗ ≤ xy∗ − EY∗B.(5.16)

It then follows from Fatou’s lemma together with Step 1 of this proof that
EXs∗Y∗ ≤ xy∗ = EX∗Y∗ so thatE(Xs∗ − X∗)Y∗ ≤ 0. SinceXs∗ − X∗ ≥ 0 and
X∗ = Xs∗ on {Y∗ = 0} by Lemma 5.5, this providesX∗ = Xs∗, P -a.s.

STEP 3. It remains to prove theL1(P ) convergence of the sequence(Y∗Ẑs
n)n.

To see this, apply Fatou’s lemma in (5.16) and use the equalityEX∗Y∗ = xy∗. The
result is

E[Y∗Ẑs
n] → E[Y∗(X∗ − B)].

SinceẐs
n → Zs∗ = Z∗, P -a.s. by Step 2 of this proof, the required result follows

from (5.15). �

LEMMA 5.7. We have∑
k≥n

µk
nU(Xn − Bn) → U(X∗ − B) in L1,

where (µk
n) are the coefficients of the convex combination defined in Lemma 5.4(i).

PROOF. SetIn = U(Xn −Bn). By Remark 3.7,Yn > 0 wheneverU(∞) = ∞.
From Lemma 2.3 and (5.3), it follows that

[In]+ ≤ [U(Xn − Bn)]+1{Yn>0} + C

≤ Ũn(Yn)1{Yn>0} + |Xn − Bn|Yn1{Yn>0} + C(5.17)

≤ C
(
1+ Ũn(Yn)

)
for some constantC > 0. Hence, by Lemma 5.2, (5.2) and the fact thatx > ‖B‖∞,
it follows that supn E[I+

n ] < ∞. Since

sup
n

|EIn| = sup
n

|EUn(Xn − Bn)| = sup
n

|Vn(x)| < ∞,

by Lemma 5.4, it follows that

sup
n

E|In| < ∞.

Hence, we can find a sequenceÎn ∈ conv{Ik, k ≥ n} that convergesP -a.s.
to someI∗. By combining the convex combinations, we can assume that the
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coefficients that definêIn, Ẑn and Ĵn are the same. Since by concavity ofU ,
În ≤ U(Ẑn), we have

I∗ ≤ U(Z∗).
Moreover, because the sequence(Ĵn)n is uniformly integrable (see Lemma 5.4), it
follows from (5.17) that([În]+)n is uniformly integrable. Using (5.14),W(x) =
EU(Z∗) (see Lemma 5.6) and Fatou’s lemma, we obtain thatEU(Z∗) ≤ EI∗ and
therefore

U(Z∗) = I∗.
Since, by (5.14),EÎn → EU(Z∗), we obtain that̂In → U(Z∗) in L1. �

We are now able to complete the proof of Theorem 3.1(ii).

COROLLARY 5.1. Let Xs′
n := Xs

n − n/2 and X̂s′
n := ∑

k≥n µk
nX

s′
k , where (µk

n)

are the coefficients of the convex combination defined in Lemma 5.4(i). Then

X̂s′
n ∈ Xb(x) and U(X̂s′

n − B) → U(X∗ − B) in L1.

PROOF. By Lemma 5.5, Lemma 5.6 and the concavity ofU ,∑
k≥n

µk
nU(Xn − Bn) ≤ U(X̂s′

n − B)

= U(Ẑs
n) → U(Xs∗ − B) = U(X∗ − B), P -a.s.

By Lemma 5.4 and the fact that̂Xs′
n ∈ Xb(x), this provides

V (x) = lim
n

E
∑
k≥n

µk
nU(Xn − Bn) ≤ lim

n
EU(X̂s′

n − B) ≤ V (x).

The required result follows from theL1(P ) convergence result of Lemma 5.7.�

Items (ii) and (iii) of Theorem 3.1 are obtained by combining Corollary 5.1 with
Lemma 5.6. We conclude the proof of Theorem 3.1 by verifying item (iv).

LEMMA 5.8. Assume that Y∗ > 0,P -a.s. Then X∗ = X
x,θ
T for some θ ∈ L(S),

where Xx,θ is a uniformly integrable martingale under Q∗ := Y∗
y∗ · P .

PROOF. SetH∗ = Y∗/y∗. For t ≤ T , define

Mt := E[H∗X∗|Ft ].
Since,E[H∗|X∗|] < ∞ by Lemmas 5.6 and 2.3, this defines a processM which is a
uniformly integrable martingale underQ∗ := H∗ ·P . Also notice from Lemma 5.6
thatM0 = x. Finally recall thatX̂s′

n ∈ Xb(x) and, by Lemma 5.6 andY∗ > 0,

X̂s′
n = Ẑs

n + B → X∗ in L1(Q∗).
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The proof is now completed by the same argument as in Step 10 of [18].�

The proof of Theorem 3.1 is complete. We conclude this section with the proof
of Proposition 3.1.

PROOF OFPROPOSITION 3.1. The caseU(∞) = ∞ already was discussed
in Section 3. We then assume thatU is bounded from above.

STEP 1. We first prove that∂Ũ(0) = {−∞}. To see this, observe that
becauseU is bounded from above, nondecreasing and concave, we have that
∂U(+∞) = {0}. Now suppose that 0∈ ∂U(x) for some finitex. ThenU(x) =
U(∞) by concavity ofU and L ≤ x, which contradicts the assumption of the
lemma. The required result follows from the classical connection between the
generalized gradients ofU andŨ .

STEP 2. Let(y∗, Y∗) be the solution ofW(x) and define(yε, Yε) := ε(ȳ, Ȳ )+
(1 − ε)(y∗, Y∗) for someε ∈ (0,1/2). By convexity ofŨ , we have(yε, Yε) ∈ Ỹ+
andŨ (Yε) ∈ L1. Set

Xε := ess inf
{
X ∈ L0 :X ∈ B − ∂Ũ(Yε)

}
,

and observe thatB − Xε ∈ ∂Ũ(Yε) andXε → X0, P -a.s. withX0 := ess inf{X ∈
L0 :X ∈ B − ∂Ũ(Y∗)}. We now use the optimality of(y∗, Y∗) together with the
convexity ofŨ . The result is

0 ≥ 1

ε

[
E

(
Ũ(Y∗) + y∗x − Y∗B

) − E
(
Ũ (Yε) + yεx − YεG

)]
(5.18)

≥ E(Y∗ − Ȳ )(B − Xε) + (y∗ − ȳ)x.

We prove later that([(Y∗ − Ȳ )(B − Xε)]−)
0<ε<1/2 is uniformly bounded inL1,

(5.19)
E[Ȳ [X0 − B]−] < ∞

and

E[Y∗(X0 − B)] < ∞,(5.20)

so that (5.18) implies thatEȲ (X0 −B)+ < ∞. SinceȲ > 0,P -a.s. and, by Step 1
of this proof,X0 − B = +∞ on {Y∗ = 0} this proves thatY∗ > 0, P -a.s.

STEP 3. We now prove (5.19). SinceYε > 0, Ũ is convex andx �→ (x)− is
nonincreasing, it follows that for allZ ∈ −∂Ũ(Ȳ ) andZ∗ ∈ −∂Ũ (Y∗),

[Ȳ (Xε − B)]− ≤ Ȳ |Z| + Y∗|Z∗|1Y∗>0.
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By the same type of argument, we obtain that for allZε ∈ −∂Ũ ((1− ε)Y∗),

[−Y∗(Xε − B)]− ≤ Y∗|Zε| ≤ 2(1− ε)Y∗|Zε|.
By Lemma 2.3, this provides

[(Ȳ − Y∗)(Xε − B)]− ≤ [Ȳ (Xε − B)]− + [−Y∗(Xε − B)]−
≤ CŨ(Ȳ ) + CŨ(Y∗) + 2CŨ((1− ε)Y∗)1Y∗>0

≤ CŨ(Ȳ ) + CŨ(Y∗) + 2C2Ũ(Y∗) ∈ L1.

The previous inequalities also prove the second claim of (5.19) since
Xε → X0, P -a.s.

STEP 4. It remains to prove (5.20). SinceX0 is valued inB − ∂Ũ(Y∗) and
X0 ≤ X∗, it follows from the definition ofŨ together with the nondecrease ofU

that

Ũ (Y∗) = U(X0 − B) − Y∗(X0 − B) ≤ U(X∗ − B) − Y∗(X0 − B),

so thatEY∗(X0 − B) ≤ V (x) − EŨ(Y∗) < ∞. �

6. Utility functions with bounded negative domain. In this section, we
proceed to the proof of Theorem 3.2 which was the starting point of the proof of
Theorem 3.1. We warn the reader that many notations from the previous sections
will be used in this section for different objects.

The effective domains of the utility function and the associated Fenchel
transform are now assumed to satisfy

cl(dom(U)) = [−2β,∞) and cl(dom(Ũ )) = R+.

Recall that we have assumed

U(+∞) > 0,(6.1)

so thatŨ (0+) > 0. The following remark collects some properties ofŨ .

REMARK 6.1. (i) The functiony �→ Ũ (y) − 2βy is nonincreasing and
positive near 0.

(ii) By Lemma 2.1,

AE0(Ũ (·)) < ∞ �⇒ AE0
(
Ũ (·) − 2β·) < ∞.

It follows from Lemma 4.1 in [5] that the asymptotic elasticity condition
AE0(Ũ ) < ∞ is equivalent to the existence of two constantsγ > 0 andy0 > 0
such that

Ũ (µy) − 2βµy ≤ µ−γ (
Ũ (y) − 2βy

)
for all µ ∈ (0,1] andy ∈ (0, y0].
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(iii) Applying the latter characterization toy0 and using the nonincrease
property (i), we see that

Ũ (y0) − 2βy0 ≤ Ũ(µy0) − 2βµy0 ≤ µ−γ [Ũ (y0) − 2βy0]
for any arbitraryµ ∈ (0,1). This proves that̃U(y0) − 2βy0 ≥ 0 and, by (i),

Ũ (y) − 2βy ≥ 0 for all y ∈ (0, y0].
(iv) Fix ȳ ∈ (0,∞). Then, using a compactness argument, we deduce from

the characterization (ii) of the asymptotic elasticity condition AE0(Ũ ) < ∞ that
there exist positive constantsγ > 0 andCȳ > 0 such that

Ũ (µy) − 2βµy ≤ µ−γ [Ũ (y) − 2βy + Cȳ] for all µ ∈ [1/2,1] andy ∈ (0, ȳ).

6.1. Approximation by quadratic inf convolution. The main difficulty arises
from the nonsmoothness of̃U inherited fromU . To handle this problem, we
introduce the quadratic inf convolution:

Ũn(y) := βy + inf
z≥0

(
Ũ (z) − βz + n

2
|y − z|2

)
.

ThenŨn is finitely defined onR, strictly convex and

Ũn(y) ≤ Ũ(y) for all y ≥ 0.(6.2)

We report from [5] the following properties of̃Un which will be used in the
subsequent analysis.

PROPERTY6.1. For all y ∈ R, there exists a unique zn(y) ≥ 0 such that

Ũn(y) = Ũ (zn(y)) − β
(
zn(y) − y

) + n

2
|zn(y) − y|2.

PROPERTY6.2. (i) For all x > 0 and y ∈ R, we have

|zn(y) − y|2 ≤ 4

n
[Ũn(y) − βy + xy + C]

for some constant C.
(ii) Let (yn)n be a sequence converging to y ∈ dom(Ũ ). Then

zn(yn) → y.

(iii) Let (yn)n be a sequence converging to y. Suppose further that zn(yn) →y.
Then

Ũn(yn) → Ũ (y).

PROPERTY6.3. Function Ũn is continuously differentiable on R and

DŨn(y) = n
(
y − zn(y)

) + β ∈ ∂Ũ(zn(y)).
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REMARK 6.2. From Remark 6.1 and Property 6.3 of the inf convolution, we
deduce that

y �→ Ũn(y) − 2βy is nonincreasing.

PROPERTY 6.4. Suppose that AE0(Ũ ) < ∞. Then there exist some y0 > 0
and some positive constants γ and C such that, for all n ≥ 1,

Ũn(µy) − βµy ≤ µ−γ [C + Ũn(y) − βy] for all µ ∈ [1/2,1] and y ∈ (0, y0]
and

−(
DŨn(y) − β

)
y ≤ C

(
1+ Ũn(y) − βy

)
for all y ∈ (0, y0].

PROOF. The second inequality follows from the first by the same type
of arguments as in the proof of Lemma 2.3(ii) (see the Appendix). We now
concentrate on the first inequality. We setgn(y) := Ũn(y) − βy and g(y) :=
Ũ (y) − βy.

STEP 1. Lety0 > 0 be defined as in Remark 6.1. Fix 0< y ≤ y0 and define

fn(z) := g(z) + n

2
|y − z|2.

We first prove thatfn is increasing on(z0,∞), where

z0 := 2y0 + |β − max∂g(y0)| < ∞
is independent ofn ≥ 1 and 0< y ≤ y0. Consider some arbitraryz ≥ z0 and
q1 ∈ ∂fn(z). Then there exist someq2 ∈ ∂(g − β·)(z) such that

1

n
q1 = 1

n
(q2 + β) + (z − y).

Since the map(g − β·) is nonincreasing, by Remark 6.1(i), it follows thatq2 ≤ 0.
Since it is also convex andz ≥ y0 ≥ y, we get

1

n
q1 ≥ q2 + (z − y) ≥ max∂g(y0) − β + z − y0 ≥ z − z0 + y0 > 0

sincey0 > 0 andz ≥ z0. This proves that, for alln ≥ 1 and 0< y ≤ y0, fn is
increasing on[z0,∞) and therefore

gn(µy) = inf
0≤z≤z0

(
g(z) + n

2
|µy − z|2

)
(6.3)

for all (y,µ) ∈ (0, y0] × [1/2,1], n ≥ 1.
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STEP 2. Fix (y,µ) ∈ (0, y0] × [1/2,1]. By (6.3), we see that

gn(µy) = inf
0≤z≤z0

(
g(z) + n

2
|µy − z|2

)
= inf

0≤z≤2z0

(
g(µz) + µ2n

2
|y − z|2

)
,

where the second equality is obtained by a trivial change of variable and the fact
thatµ ≥ 1/2. Using Remark 6.1(iv) with̄y = 2z0, we deduce that there exist some
C > 0 andγ > 0, such that

gn(µy) ≤ inf
0≤z≤2z0

(
µ−γ

(
C + g(z) − βz

) + βµz + µ2n

2
|y − z|2

)
.

Sinceµ ≤ µ−γ andµ2+γ ≤ 1, this provides

gn(µy) ≤ inf
0≤z≤2z0

(
µ−γ

(
C + g(z)

) + µ2n

2
|y − z|2

)

≤ µ−γ

[
C + inf

0≤z≤2z0

(
g(z) + n

2
|y − z|2

)]
= µ−γ (

C + gn(y)
)
,

where the last inequality follows from (6.3) again.�

By substitutingŨn for Ũ in the definition of the dual problem

W(x) := inf
(y,Y )∈Y+

E[Ũ (Y ) − YB + xy](6.4)

of Theorem 3.2, we define a sequence of approximate dual problems:

Wn(x) := inf
(y,Y )∈Y+

E[Ũn(Y ) − YB + xy].(6.5)

6.2. Existence in the dual problem. The purpose of this section is to prove
that the approximate dual problemWn(x) has a solution, for eachn, and to
define a solution for the dual problemW(x) as a limit of these solutions in some
appropriate sense.

The following preliminary result will be used frequently.

LEMMA 6.1. Let β = 0. Then there exists a sequence of functions (φn)1≤n≤∞
such that, for all sufficiently large n,

φn :
(−Ũn(0),+∞) → (0,∞) with lim

x→∞
φn(x)

x
= ∞

and

E
[
φn

(
Ũn(Y )−

)] ≤ C + y for all (y,Y ) ∈ Y+ with y > 0

for some C > 0 independent of n, with the convention Ũ∞ = Ũ . In particular, for
all M > 0 and large n, the family {Ũn(Y )−, (y,Y ) ∈ Y+, |y| ≤ M} is uniformly
integrable.
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The proof of this result is reported in Section 6.4. We now establish existence
in the approximate dual problemsWn and convergence of these solutions (in some
sense) to some solution ofW(x). These results will be established under the
following assumptions.

STANDING ASSUMPTIONS OF SECTION 6.2. ‖B‖∞ ≤ β,x > 0 and
W(x) < ∞.

LEMMA 6.2. For sufficiently large n, existence holds for the problem Wn(x),
that is,

Wn(x) = E[Ũn(Yn) + ynx − YnB] for some (yn,Yn) ∈ Y+.

PROOF. Let n ≥ 1 be a fixed integer and let(yk, Yk)k be a minimizing
sequence ofWn(x). Then, from (6.2), we have

−E[Ũn(Yk) − YkB]− + xyk
(6.6)

≤ E[Ũn(Yk) − YkB] + xyk ≤ Wn(x) + 1 ≤ W(x) + 1.

STEP 1. We first prove that the sequence(yk)k is bounded so that, by
Remark 5.1, there is a sequence(ŷk, Ŷk) ∈ conv{(yj , Yj ), j ≥ k} which converges
P -a.s. to some(ŷ, Ŷ ) ∈ Y+.

(i) The caseβ > 0 is easily dealt with since, with the notation of Property 6.1,

Ũn(Yk) ≥ Ũ (zn(Yk)) − βzn(Yk) + βYk ≥ U(−β) + βYk,(6.7)

so that (6.6) together with the condition‖B‖∞ ≤ β provide

xyk ≤ U(−β)− + W(x) + 1.

Sincex is positive andyk is nonnegative, this proves that the sequence(yk)k is
bounded.

(ii) We then concentrate on the caseβ = 0. Letφn be the function introduced in
Lemma 6.1. Then for allε > 0, there exists somex0 > 0 such that

φn(x)

x
≥ 1

ε
for x ≥ x0,

and then,

x ≤ x0 + εφn(x)1{x≥x0} ≤ x0 + εφn(x) ∀x ≥ 0,

for sufficiently largex0 andn. Using Lemma 6.1, we then compute that, for some
C > 0,

EŨn(Yk)
− ≤ x0 + εEφn

(
Ũn(Yk)

−) ≤ x0 + ε(C + yk).

Plugging this inequality in (6.6), we obtain

(x − ε)yk ≤ W(x) + 1+ x0 + εC.(6.8)

By choosingε = x/2 > 0, we see that the sequence(yk)k is bounded.
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STEP 2. Combining Lemma 6.1, (6.7) andβ ≥ ‖B‖∞, we see that the
sequence{(Ũn(Ŷk) − ŶkB)−, k ≥ 0} is uniformly integrable. Let(µj

k) be the
coefficients of the convex combination defining(Ŷk). By Fatou’s lemma, together
with the convexity ofŨn, we get

Wn(x) ≤ E[Ũn(Ŷ ) − ŶB] + xŷ

≤ lim inf
k→∞ E[Ũn(Ŷk) − ŶkB] + xŷk

≤ lim inf
k→∞

∑
j≥k

µ
j
kEŨn(Yj ) − YjB + xyj = Wn(x),

since(yj , Yj )j is a minimizing sequence ofWn(x). This proves that(ŷ, Ŷ ) is a
solution ofWn(x). �

REMARK 6.3. For later use, observe that the same arguments as in Step 2 of
the above proof show that, for sufficiently largen,

the family
{(

Ũn(Y ) − YB
)− : (y,Y ) ∈ Y+, |y| ≤ M

}
is uniformly integrable

for all M > 0.

The next lemma completes the proof of Theorem 3.2(i).

LEMMA 6.3. Let (yn,Yn) be a solution of Wn(x). Then there exists a sequence
(ȳn, Ȳn) ∈ conv((yk, Yk), k ≥ n) such that

(ȳn, Ȳn) → (y∗, Y∗) ∈ Y+, P -a.s.(6.9)

Moreover, (y∗, Y∗) is a solution of the problem W(x).

PROOF.

STEP 1. We first argue as in the previous proof to show that the sequence
(yn)n is bounded so that, by Remark 5.1, there is a sequence(ȳn, Ȳn) ∈
conv{(yj , Yj ), j ≥ n} which convergesP -a.s. to some(y∗, Y∗) ∈ Y+.

By definition of(yn,Yn), we have

−E[Ũn(Yn) − YnB]− + xyn ≤ E[Ũn(Yn) − YnB] + xyn = Wn(x) ≤ W(x).

The caseβ > 0 is easily solved by observing that̃Un(Yn) − YnB ≥ U(−β) as
in (6.7). As for the caseβ = 0, we again argue as in the previous proof to derive
the analogue of (6.8) withε = x/2 > 0:

xyn ≤ 2W(x) + 2x0 + xC ≤ 2W(x) + 2x0 + xC for all largen

and someC > 0 independent ofn. This provides the required bound on(yn)n.



NONSMOOTH UTILITY MAXIMIZATION 707

STEP 2. Setg(y) := Ũ (y) − βy. Using Property 6.1 of the quadratic inf
convolution, we see that

g(zn(Ȳn)) − Ȳn(B − β) = Ũn(Ȳn) − ȲnB − n

2

∣∣zn(Ȳn) − Ȳn

∣∣2 ≤ Ũn(Ȳn) − ȲnB.

Let (λ
j
n)j≥n be coefficients of the above convex combination that define(ȳn, Ȳn)

from (yj , Yj )j≥n. From the convexity ofŨn and the increase of̃Un in n, we get
from the previous inequality

g(zn(Ȳn)) − Ȳn(B − β) ≤ Ũn(Ȳn) − ȲnB ≤ ∑
j≥n

λj
n[Ũj (Yj ) − YjB].(6.10)

Then, taking expected values, we see that

E[g(zn(Ȳn)) − Ȳn(B − β)] ≤ E[Ũn(Ȳn) − ȲnB]
≤ ∑

j≥n

λj
n[Wj(x) − xyj ](6.11)

≤ W(x) − xȳn.

We now use the claim (the proof of which will be carried out in Step 3 below)

the sequence([g(zn(Ȳn)) − Ȳn(B − β)]−)n is uniformly integrable.(6.12)

Recalling thatg(·) + β· = Ũ (·) and using Property 6.2 of the quadratic inf
convolution, it follows from Fatou’s lemma and (6.11) that

E[Ũ (Y∗) − Y∗B] + xy∗ ≤ lim inf
n→∞ E[Ũn(Ȳn) − ȲnB] + xȳn

(6.13)
≤ lim sup

n→∞
E[Ũn(Ȳn) − ȲnB] + xȳn ≤ W(x).

Since(y∗, Y∗) ∈ Y+, this proves that(y∗, Y∗) is the solution of the problemW(x).

STEP 3. To complete the proof, it remains to check (6.12). As in the previous
proof, the caseβ > 0 is easily solved by observing thatg(zn(Ȳn)) = Ũ (zn(Ȳn)) −
βzn(Ȳn) ≥ U(−β), so that

g(zn(Ȳn)) − Ȳn(B − β) ≥ U(−β) + Ȳn(β − B) ≥ U(−β),

since‖B‖∞ ≤ β. We then concentrate on the caseβ = B = 0. Letφ := φ∞ be the
function introduced in Lemma 6.1. Then

E
[
φ

(
Ũ (zn(Ȳn))

−)] ≤ C + E[zn(Ȳn)] ≤ C + ȳn + E[zn(Ȳn) − Ȳn].(6.14)

By the first part of this proof, the sequence(ȳn)n is bounded. We next use
Property 6.2(i) of the quadratic inf convolution together with (6.11) andβ ≥ ‖B‖∞
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to see that

E
∣∣zn(Ȳn) − Ȳn

∣∣2 ≤ 4

n
E[C + Ũn(Ȳn) − βȲn + xȲn]

≤ 4

n
E[C + Ũn(Ȳn) − BȲn + xȳn]

≤ 4

n
[C + W(x)].

In particular, this proves that the sequence(E[zn(Ȳn) − Ȳn])n is bounded. Hence
the right-hand side term of (6.14) is bounded. Sinceφ(x)/x → ∞ asx → ∞, this
proves (6.12) by the la Vallée–Poussin theorem.�

REMARK 6.4. For later use, observe that the arguments of Step 4 of the above
proof also hold if we replace(ȳn, Ȳn) with (yn,Yn). It follows that the sequence
([g(zn(Yn)) − Yn(B − β)]−)n is uniformly integrable. Using Property 6.1 as in
Step 2, we see that

g(zn(Yn)) − Yn(B − β) ≤ Ũn(Yn) − YnB,

so that

the sequence
([Ũn(Yn) − YnB]−)

n is uniformly integrable.(6.15)

COROLLARY 6.1. Wn(x) → W(x).

PROOF. Recall that the sequence(Wn(x))n is nondecreasing. SinceWn(x) ≤
W(x), we haveWn(x) → W∞(x) for someW∞(x) ≤ W(x). The result is then
obtained by combining (6.11) and (6.13) in the above proof.�

COROLLARY 6.2. Let (yn,Yn) be a solution of Wn(x) and let (y∗, Y∗) be the
limit defined in Lemma 6.3.Set Jn := Ũn(Yn)−YnB. Then there exists a sequence
(ŷn, Ŷn, Ĵn) ∈ conv((yk, Yk, Jk), k ≥ n) such that

(ŷn, Ŷn) → (y∗, Y∗), P -a.s. and Ĵn → Ũ (Y∗) − Y∗B in L1(P ).

PROOF. From Lemma 6.3, there exists a sequence(ȳn, Ȳn) ∈ conv((yk, Yk),

k ≥ n) which convergesP -a.s. to a solution(y∗, Y∗) of W(x). Denote by
(λn

k, k ≥ n) the coefficients that define the convex combination and letJ̄n :=∑
k≥n λn

kJk .

STEP 1. We first prove the existence of a sequence(ŷn, Ŷn, Ĵn) ∈ conv((yk,

Yk, Jk), k ≥ n) and a random variableJ∗ ∈ L1(P ) such that

(ŷn, Ŷn, Ĵn) → (y∗, Y∗, J∗) and EĴn → EŨ(Y∗)−Y∗B, P -a.s.(6.16)
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To see this, observe that

EJ̄n = ∑
k≥n

λn
k [Wk(x) − xyk] �⇒ W(x) − xy∗ = EŨ(Y∗) − Y∗B

by Corollary 6.1. Also, it follows from (6.10) that

J̄−
n ≤ [

g(zn(Ȳn)) − Ȳn(B − β)
]−

,

whereg(·) = Ũ (·) − β·. Since the sequence on the right-hand side is uniformly
integrable by (6.12), this shows that

(J̄−
n )n is uniformly integrable(6.17)

and therefore bounded inL1.
Since|J̄n| = J̄n + 2J̄−

n , the above arguments show that the sequence(J̄n)n is
bounded inL1, and (6.16) follows from the Komlòs lemma.

STEP 2. We now prove that

J∗ = Ũ(Y∗) − Y∗B.(6.18)

By convexity ofŨn and increase of(Ũn)n, we see that̂Jn ≥ Ũn(Ŷn) − ŶnB. This
proves, first, that[Ĵn]− ≤ [Ũn(Ŷn)− ŶnB]− is uniformly integrable by Remark 6.3
and, therefore,

EJ∗ ≤ lim
n→∞EĴn = EŨ(Y∗) − Y∗B

by Fatou’s lemma. This also proves thatJ∗ ≥ Ũ (Y∗) − Y∗B by Property 6.2,
and (6.18) follows.

STEP 3. In the previous steps, we have proved thatĴn → Ũ (Y∗) − Y∗B,
P -a.s,EĴn → EŨ(Y∗)−Y∗B, and([Ĵn]−)n is uniformly integrable. This provides
that Ĵn → Ũ (Y∗) − Y∗B in L1. �

6.3. Existence for the initial problem. We now turn to the solution of the initial
problemV (x). To do this this, we appeal to the following assumptions:

STANDING ASSUMPTIONS OFSECTION 6.3. Me(S) �= ∅ and AE0(Ũ ) < ∞.

We first start by a characterization of the optimality of(yn,Yn) for the
problemWn(x). Recall thatŨn is continuously differentiable by Property 6.3.

LEMMA 6.4. Let (yn,Yn) be a solution of Wn(x) and set Xn :=
−DŨn(Yn)+ B. Then:

(i) EXnY − xy ≤ EXnYn − xyn = 0 for all (y,Y ) ∈ Y+.
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(ii) There exists a sequence X̂n ∈ conv(Xk, k ≥ n) such that X̂n → X∗ for
some X∗ in C(x).

PROOF.

STEP 1. We first show that (ii) follows easily from (i). LetQ := Y · P be
an arbitrary measure inMe(S) so that(1, Y ) ∈ Y+. Since−3β ≤ Xn, we have
E[|Xn|Y ] ≤ E[XnY ] + 2E[YX−

n ] ≤ x + 6β by (5.2) and (i). It follows that
the sequence(Xn)n is bounded inL1(Q), and the existence of a converging
convex combination follows from the Komlòs lemma. Using again (i), we have
EX̂nY − xy ≤ 0 for all (y,Y ) ∈ Y+ and, therefore,EX∗Y ≤ xy follows from
Fatou’s lemma. Clearly,X∗ ≥ −3β and, therefore,X∗ ∈ C(x).

STEP 2. We prove in Step 3 of this proof that

EXn(Y − Yn) ≤ x(y − yn) for all (y,Y ) ∈ Y+.

Applying this inequality to(y,Y ) = 2(yn,Yn) ∈ Y+, we see thatEXnYn ≤ xyn.
Similarly, by taking(y,Y ) = 2−1(yn,Yn) ∈ Y+, we obtain the converse inequality
and thenEXnYn = xyn. This provides the required result.

STEP 3. Let (y,Y ) ∈ Y+ be fixed and define for smallε > 0,

(yε
n, Y

ε
n ) = (1− ε)(yn,Yn) + ε(y,Y ) and Xε

n := −DŨn(Y
ε
n ) + B.

Clearly,(yε
n, Y

ε
n ) ∈ Y+ and asε ↘ 0, we have(Y ε

n ,Xε
n) → (Yn,Xn), P -a.s. By the

optimality of (yn,Yn) for the problemWn(x) and the convexity of̃Un, we have

0 ≥ ε−1E[Ũn(Yn) − Ũn(Y
ε
n ) − B(Yn − Y ε

n )] + ε−1x(yn − yε
n)

≥ EXε
n(Y − Yn) − x(y − yn).

In the rest of this proof, we show that

the sequence
([Xε

n(Y − Yn)]−)
ε is uniformly integrable,(6.19)

which provides the required result by sendingε to zero in the last inequality and
using Fatou’s lemma.

Let α be a given parameter in(0,1/4) and 0≤ ε ≤ α. We denoteαε := α + ε.
By convexity ofŨn together with Remark 6.2, we see that

Ũn((1− αε)Yn) ≥ Ũn

(
Y ε

n + α(Y − Yn)
) − αεYDŨn

(
Y ε

n + α(Y − Yn)
)

≥ Ũn

(
Y ε

n + α(Y − Yn)
) − 2αεβY.

Using again the convexity of̃Un, we get

Ũn((1− αε)Yn) ≥ Ũn(Y
ε
n ) + αDŨn(Y

ε
n )(Y − Yn) − 2βαεY

(6.20)
= J ε

n − αXε
n(Y − Yn) − αεY (2β − B) + (1− αε)YnB,
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where we setJ ε
n := Ũn(Y

ε
n )−Y ε

nB. We now use the asymptotic elasticity condition
AE0(Ũ ) < ∞ together with Property 6.4 and Remark 6.2 to obtain

Ũn((1− αε)Yn) ≤ (1− αε)
−γ [C + Ũn(Yn) − βYn]1{Yn≤y0}

+ {
Ũn((1− αε)Yn) − 2(1− αε)Ynβ

}
1{Yn≥y0}

+ (1− αε)Ynβ
(
1+ 1{Yn≥y0}

)
≤ C + (1− αε)

−γ Ũn(Yn)
+ + 2(1− αε)Ynβ

for someC > 0. It follows from (6.20) that

αXε
n(Y − Yn) ≥ J ε

n − αεY (2β − B) + (1− αε)YnB

− C − (1− αε)
−γ Ũn(Yn)

+ − 2(1− αε)Ynβ

≥ −C − [J ε
n ]− − (1− 2α)−γ Ũn(Yn)

+ − 2αY (2β − B)

+ (1− 2α)Yn(β + B) − 3Ynβ,

where we used the assumption‖B‖∞ ≤ β. This provides (6.19) by observing
that Y , Yn and Ũn(Yn)

+ are integrable,B is bounded, and the family([J ε
n ]−)ε

is uniformly integrable by Remark 6.3.�

LEMMA 6.5. Let X∗ be as in the previous lemma. Then

EX∗Y∗ = xy∗, X∗ ∈ B −∂Ũ(Y∗), P -a.s. and EU(X∗ −B) = V (x).

Moreover, V (x) = W(x).

PROOF. Let (ŷn, Ŷn, X̂n, Ĵn) ∈ conv{(yk, Yk,Xk, Jk), k ≥ n} be the sequence
defined in Corollary 6.2 and Lemma 6.4 (clearly, we can assume that the convex
combinations are the same in both results). DefineUn(x) := infy≥0 Ũn(y) + xy

and observe thatUn ≤ U . Set

In := Un(Xn − B)

and letÎn be the corresponding convex combination.

STEP 1. We claim that

the sequence(Î+
n )n is uniformly integrable.(6.21)

Before proving this, let us complete the proof of the lemma by repeating the
argument of the proof of Lemma 5.6. By Lemma 6.4,EXnYn = xyn and, therefore,

Wn(x) = E[Ũn(Yn) + xyn − YnB] = EUn(Xn − B) = EIn.
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SinceWn(x) → W(x) = E[Ũ (Y∗) + xy∗ − Y∗B], it follows from (6.21), Fatou’s
lemma and the fact thatX∗ ∈ C(x) [see Lemma 6.4(ii)] that

W(x) = E[Ũ (Y∗) + xy∗ − Y∗B]
≤ E

[
lim sup

n
În

]
≤ E

[
lim sup

n
U(X̂n − B)

]
= EU(X∗ − B) ≤ V (x) ≤ W(x),

where we used the fact thatUn ≤ U and the concavity ofU . Then equality holds
in the above inequalities and the required results follow.

STEP 2. We now prove (6.21). We first need a preliminary result. Fixε > 0
and observe that

Un(x) ≤ Ũn(ε) + εx for all x > −2β.

Since by Property 6.2̃Un(ε) → Ũ (ε) ∈ R, it follows that

Un(x) ≤ C + εx for all x > −2β

for someC > 0. SinceŨn is convex andUn is nondecreasing, we deduce that

Un

(−DŨn(y)
) ≤ Un

(−DŨn(y0)
) ≤ C − εDŨn(y0) for all y ≥ y0.

Now observe thatDŨn(y0) is bounded uniformly inn by Properties 6.2 and 6.3
together with the closedness of{(x, y) :x ∈ ∂Ũ(y)} (see, e.g., [16]). It follows that
there exists someC > 0 such that

Un

(−DŨn(y)
) ≤ C for all y ≥ y0 andn ≥ 1.(6.22)

We can now conclude the proof of (6.21). SinceXn − B = −DŨn(Yn), it follows
from Property 6.4 and (6.22) that, on{Yn > 0},

In ≤ C1Yn≥y0 + {
Jn + [(Xn − B) + β]Yn + (B − β)Yn

}
1Yn≤y0

≤ C + {
Jn + C[1 + Ũn(Yn) − Ynβ] + (B − β)Yn

}
1Yn≤y0

≤ 2C + (C + 1)|Jn|,
where we used the fact thatB − β ≤ 0. It follows that

Î+
n ≤ |̂Jn| = Ĵn + 2

(
Ĵ−

n

)
,

where |̂Jn| (resp. Ĵ−
n ) is the convex combination in conv{|Jk|, k ≥ n} (resp.

conv{J−
k , k ≥ n}) corresponding tôIn. SinceŨn(0) = Un(∞) and Ũ (Yn) < ∞,

it follows that Yn > 0, P -a.s. wheneverUn(∞) = ∞. Therefore,I+
n is bounded

on {Yn = 0}. In view of this, we obtain immediately (6.21) from the uniform
integrability of the sequences(Ĵn)n and(J−

n )n; see Corollary 6.2 and (6.15).�
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COROLLARY 6.3. Suppose that L := inf{l ≥ 0 :U(l) = U(+∞)} = +∞.
Then Y∗ > 0, P -a.s.

PROOF. The caseU(∞) = ∞ is easily treated because it implies thatŨ (0) =
+∞. We then concentrate on the case whereU is bounded. By Step 1 of the
proof of Proposition 3.1 (see the end of Section 5), it follows from the condition
L = +∞ that∂Ũ(0) = {−∞}.

Let P0 := Y0 · P be an arbitrary measure inMe(S). From Lemma 6.4, we have
E[Y0X∗] ≤ x. SinceX∗ ≥ B − 2β, this proves thatE[Y0(X∗)+] < ∞. However,
X∗ = +∞ on the event set{Y ∗ = 0}. HenceP0[Y∗ = 0] = 0 and the proof is
complete. �

We are now able to complete the proof of Theorem 3.2(ii) and (iii).

LEMMA 6.6. There exists a random variable X̄∗ ∈ C(x) that satisfies

xy∗ = EX̄∗Y∗, X̄∗ ∈ B −∂Ũ(Y∗), P -a.s. and EU(X̄∗ −B) = V (x).

Moreover, if X̄∗ ≥ 0, then X̄∗ ∈ X+(x).

PROOF.

STEP 1. Combining Lemmas 6.4 and 6.5, we see thatX̄∗ := X∗ ∈ C(x) and
satisfies the announced requirements.

STEP 2. We now assume thatX∗ ≥ 0, P -a.s. By Remark 3.5, there exists
someX̃∗ ∈ X+(x) such thatX̃∗ ≥ X∗, P -a.s. SinceX+(x) ⊂ C(x), we have
EX̃∗Y∗ ≤ xy∗ = EX∗Y∗ and thereforeX̃∗ = X∗ on {Y∗ > 0}. We next consider
two cases.

2.1. Assume first thatL := inf{l ≥ 0 :U(l) = U(+∞)} = +∞. Then, from
Corollary 6.3, Y∗ > 0, P -a.s. It follows thatX̃∗ = X∗, P -a.s. and the
requirement of the lemma holds forX̄∗ := X∗.

2.2. If L < ∞, thenY∗ may be zero with positive probability. However, since
X̃∗ = X∗ on {Y∗ > 0} andX∗ − B ∈ −∂Ũ (Y∗), we have

E[X̃∗Y∗] = xy∗ and (X̃∗ − B) ∧ L = (X∗ − B) ∧ L.

SinceU(x) = U(L) for x ≥ L, this proves that

X̃∗ ∈ B − ∂Ũ(Y∗) and U(X̃∗ − B) = U(X∗ − B), P -a.s.

Hence, the required result holds forX̄∗ := X̃∗.
This completes the proof of Theorem 3.2(ii) and (iii).�
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6.4. Proof of Lemma 6.1. The last statement of the lemma follows from a
direct application of the la Vallée–Poussin theorem. Letn be a fixed integer
in [1,∞] and consider the two following cases.

CASE 1. Suppose that̃Un(+∞) = −∞. Then

Ũn : (0,∞) → (−∞, Ũn(0)
)

is convex and decreasing.

Observe that this is valid even for the casen = ∞, whereŨ∞ = Ũ is not strictly
convex. Let

φn :
(−Ũn(0),+∞) → (0,∞)

be the inverse of−Ũn. By direct computation, we see that for all(y,Y ) ∈ Y+ with
y > 0,

E
[
φn

(
Ũn(Y )−

)] = E
[
φn

(
max{0,−Ũn(Y )})]

≤ E[max{φn(0), Y }]
≤ φn(0) + E[Y ] ≤ φn(0) + y.

Recall that Ũ (0) = U(+∞) > 0 by (6.1), so thatφ∞(0) < ∞. By increase
of (Ũn)n, we deduce that(φn)n is increasing and thereforeφn(0) ≤ φ∞(0) < ∞.

It remains to prove that limx→∞[φn(x)/x] = ∞ or, equivalently, by a trivial
change of variable,

lim
y→+∞

y

−Ũn(y)
= ∞.(6.23)

Let us consider separately the casesn = ∞ andn < ∞.

1. If n = ∞, then by an easy extension of l’Hôpital’s rule to the nonsmooth case,
we see that

lim
y→∞

y

−Ũn(y)
≥ lim inf

y→∞ inf
q∈−∂Ũ(y)

1

q
= lim inf

y→∞

[
sup

q∈−∂Ũ(y)

q

]−1

.

Now, recall thatŨ (∞) = U(0) = −∞, and therefore limx→0 inf ∂U(x) = ∞
and limy→∞ sup−∂Ũ(y) = 0 by the classical connection between the general-
ized gradients ofU andŨ . This provides (6.23).

2. If n < ∞, then by l’Hôpital’s rule together with Property 6.3 (withβ = 0), we
see that

lim
y→+∞

y

−Ũn(y)
= lim

y→+∞
1

−n(y − zn(y))
,(6.24)



NONSMOOTH UTILITY MAXIMIZATION 715

wherezn(y) is defined in Property 6.1. Now, from the definition ofŨ andŨn

together with (6.2), we have

U(x) − xzn(y) + n

2
|zn(y) − y|2 ≤ Ũ(zn(y)) + n

2
|zn(y) − y|2

= Ũn(y) ≤ Ũ(y)

for all x > 0. Then

n

2
|zn(y) − y|2 ≤ Ũ (y) − U(x) + x

(
zn(y) − y

) + xy

≤ Ũ (y) − U(x) + xy + |x|2
n

+ n

4
|zn(y) − y|2,

where we used the trivial inequalityab ≤ na2/4+ b2/n. This provides

n

4
|zn(y) − y|2 ≤ Ũ (y) − U(x) + xy + |x|2

n
.

In particular, takingx = x̂y ∈ −∂Ũ(y), we haveŨ (y) − U(x̂y) + yx̂y = 0 and

n

4
|zn(y) − y|2 ≤ |x̂y |2

n
≤ 1

n
sup

q∈−∂Ũ(y)

|q|2.

SinceU(0) = −∞, it follows that inf{|p| :p ∈ ∂U(x)} → +∞ asx ↘ 0 and
therefore sup{|q| :q ∈ −∂Ũ(y)} → 0 asy ↗ ∞ by the classical connection
between the generalized gradients ofU andŨ . Hence, the last inequality proves
thatn|zn(y) − y| → 0 asy ↗ ∞, and (6.23) follows from (6.24).

CASE 2. We now consider the case whereŨn(+∞) > −∞. We reduce the
problem to that of Case 1 by defining the function

φn(z) :=
{

(−Ũn)
−1(z), for − Ũn(0) ≤ z ≤ −Ũn(+∞),

ψn(z), for z ≥ −Ũn(+∞),

whereψn is chosen so thatφn(x)/x → +∞ asx ↗ ∞. It is immediately checked
that the inequalityE[φn(Ũn(Y )−)] ≤ φn(0) + y holds with this definition ofφn.
Finally, arguing as in Case 1, we can choose(ψn)n such thatφn(0) ≤ φ∞(0) < ∞.

7. The asymptotic elasticity conditions. In this section we prove Lemma 2.3
which has been used extensively for the proof of our main result.
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PROOF OFLEMMA 2.3.

STEP 1. From the nonincrease off near zero, we have

AE0(f ) = lim sup
y↓0

sup
q∈∂f (y)

−qy

f (y)
.

This is in agreement with the definition of [5], where Lemma 4.1 states that the
asymptotic elasticity condition AE0(f ) < ∞ is equivalent to the existence of
y0 > 0 andβ > 0 such that

f (µy) ≤ µ−βf (y) for all µ ≤ 1 andy ≤ y0.

STEP 2. By a similar argument to Lemma 4.1 in [5], we also obtain a
characterization of the asymptotic elasticity condition AE∞(f ) < ∞ by the
existence ofy1 > 0 andβ > 0 such that

f (µy) ≤ µβf (y) for all µ ≥ 1 andy1 ≤ y.

STEP 3. Since f is nondecreasing near+∞ and nonincreasing near 0,
it follows from Steps 1 and 2 that statement (i) of Lemma 2.3 holds for all
y ∈ (0, y0] ∪ [y1,∞) (after possibly changingy0 and y1). Sincef (y) > 0, the
inequality of (i) holds on the interval(y0, y1) by a simple compactness argument.

STEP 4. We finally prove (ii). Giveny > 0, let q be an arbitrary element
of ∂f (y). By convexity off together with (i), we have

(µ − 1)yq ≤ f (µy) − f (y) ≤ (C − 1)f (y)

for all µ ∈ [2−1,2]. The required result is obtained by taking the valuesµ = 2 and
µ = 2−1. �
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[4] CVITANI Ć, J., SCHACHERMAYER, W. and WANG, H. (2001). Utility maximization in
incomplete markets with random endowment.Finance and Stochastics 5 259–272.

[5] DEELSTRA, G., PHAM , H. and TOUZI, N. (2001). Dual formulation of the utility maximiza-
tion problem under transaction costs.Ann. Appl. Probab. 11 1353–1383.

[6] DELBAEN, F. and SHACHERMAYER, W. (1998). The fundamental theorem of asset pricing for
unbounded stochastic processes.Math. Ann. 312 215–250.



NONSMOOTH UTILITY MAXIMIZATION 717

[7] DELBAEN, F., GRANDITS, P., REINLÄNDER, T., SAMPERI, D., SCHWEIZER, M. and
STRICKER, C. (2002). Exponential hedgingand entropic penalties.Math. Finance 12
99–123.

[8] FÖLLMER, H. and LEUKERT, P. (2000). Efficient hedging: Cost versus shortfall risk.Finance
and Stochastics 4 117–146.

[9] HODGES, S. and NEUBERGER, A. (1989). Optimal replication of contingent claims under
transaction costs.Review of Futures Markets 8 222–239.

[10] HUGONNIER, J. and KRAMKOV, D. (2001). Optimal investment with a random endowment in
incomplete markets. Unpublished manuscript.

[11] KABANOV, YU. and STRICKER, C. (2002). On the optimal portfolio for the exponential utility
maximization: Remarks to the six-author paper.Math. Finance 12 125–134.

[12] KRAMKOV, D. and SCHACHERMAYER, W. (1999). The asymptotic elasticity of utility
functions and optimal investment in incomplete markets.Ann. Appl. Probab. 9 904–950.

[13] KRAMKOV, D. and SCHACHERMAYER, W. (2001). Necessary and sufficient conditions in the
problem of optimal investment in incomplete markets. Unpublished manuscript.

[14] OWEN, M. (2002). Utility based optimalhedging in incomplete markets.Ann. Appl. Probab.
12 691–709.

[15] PHAM , H. (2000). Minimizing shortfall risk and applications to finance and insurance
problems.Ann. Appl. Probab. 12 143–172.

[16] ROCKAFELLAR, R. T. (1970).Convex Analysis. Princeton Univ. Press.
[17] ROGERS, L. C. G. (2001). Duality in constrained optimal investment and consumption

problems: A synthesis. Lectures presented at the Workshop on Financial Mathematics
and Econometrics, Montreal.

[18] SCHACHERMAYER, W. (2001). Optimal investment in incomplete markets when wealth may
become negative.Ann. Appl. Probab. 11 694–734.

[19] SCHACHERMAYER, W. (2001). How potential investments may change the optimal portfolio
for the exponential utility. Unpublished manuscript.

B. BOUCHARD

LFA-CRESTAND UNIVERSITÉ PARIS 6
15 BOULEVARD GABRIEL PERI

92245 MALAKOFF CEDEX

FRANCE

E-MAIL : bouchard@ccr.jussieu.fr

N. TOUZI

LFA-CREST
15 BOULEVARD GABRIEL PERI

92245 MALAKOFF CEDEX

FRANCE

E-MAIL : touzi@ensae.fr

A. ZEGHAL

CEREMADE
UNIVERSITÉ PARIS DAUPHINE

PLACE DU MARECHAL DE

LATTRE DE TASIGNY

75016 PARIS

FRANCE

E-MAIL : zeghal@ceremade.dauphine.fr


