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Typical protocols for peer-to-peer file sharing over the Internet
divide files to be shared into pieces. New peers strive to obtain a
complete collection of pieces from other peers and from a seed. In
this paper we investigate a problem that can occur if the seeding rate
is not large enough. The problem is that, even if the statistics of the
system are symmetric in the pieces, there can be symmetry breaking,
with one piece becoming very rare. If peers depart after obtaining a
complete collection, they can tend to leave before helping other peers
receive the rare piece. Assuming that peers arrive with no pieces,
there is a single seed, random peer contacts are made, random useful
pieces are downloaded, and peers depart upon receiving the complete
file, the system is stable if the seeding rate (in pieces per time unit)
is greater than the arrival rate, and is unstable if the seeding rate is
less than the arrival rate. The result persists for any piece selection
policy that selects from among useful pieces, such as rarest first, and
it persists with the use of network coding.

1. Introduction. Peer-to-peer (P2P) communication in the Internet
is provided through the sharing of widely distributed resources typically
involving end users’ computers acting as both clients and servers. In an
unstructured peer-to-peer network, such as BitTorrent [2], a file is divided
into many pieces. Seeds, which hold all pieces, distribute pieces to peers.
New peers continually arrive into the network; they simultaneously download
pieces from a seed or other peers and upload pieces to other peers. Peers
exit the system after they collect all pieces.

Determining whether a given P2P network is stable can be difficult.
Roughly speaking, the aggregate transfer capacity scales up in proportion
to the number of peers in the network, but it has to be in the right places.
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Many P2P systems have performed well in practice, and they incorporate a
variety of mechanisms to help achieve stability. A broad problem, which we
address in part, is to provide a better understanding of which mechanisms
are the most effective under various network settings. These mechanisms
include

• Rarest first piece selection policies, such as the one implemented in
BitTorrent, whereby peers determine which pieces are rarest among
their neighbors and preferentially download such pieces.

• Tit-for-tat participation constraints, such as the one implemented in
BitTorrent, whereby peers are choked off from receiving pieces from
other peers unless they upload pieces to those same peers. This mech-
anism provides an important incentive for peers to participate in up-
loading pieces, but it may also be beneficial in balancing the distribu-
tion of pieces.

• Peers dwelling in the network after completing download, to provide
extra upload capacity.

• Network coding [1, 4], whereby data pieces are combined to form coded
pieces, giving peers numerous ways to collect enough information to
recover the original data file.

This paper determines what parameter values yield stability for a simple
model of a P2P file sharing network. The main model does not include
the enhancements mentioned in the previous paragraph, but extensions and
discussion regarding the above mechanisms are given. The model includes a
fixed seed in the network that uploads with a constant rate. New peers arrive
according to a Poisson process, and have no pieces at the time of arrival.
Random peer contact is assumed; each peer contacts a randomly selected
target peer periodically. Random useful piece selection is also assumed; each
peer chooses which piece to download uniformly at random from the set
of pieces that its selected target has and it itself does not have. As in the
BitTorrent system, we assume that new peers arrive with no pieces; in effect
a peer must first obtain a piece from another peer or the fixed seed before
it can begin uploading to other peers. We also assume that peers depart as
soon as they have completed their collection.

In a P2P network, the last few pieces to be downloaded by a peer are
often rare in the network, so it usually takes the peer a long time to finish
downloading. This phenomenon has been referred to as the delay in endgame
mode [2] (or last piece problem). We refer to the specific situation that
there are many peers in the network and most of them are missing only
one piece which is the same for all peers, as the missing piece syndrome. In
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that situation, peers lucky enough to get the missing piece usually depart
immediately after getting the piece, so their ability to spread the missing
piece is limited.

The main result in this paper is to show, as suggested by the missing
piece syndrome, that the bottleneck for stability is the upload capacity of
the seed. Specifically, if the arrival rate of new peers is greater than the seed
upload rate, the number of peers in the system converges to infinity almost
surely; if the arrival rate of new peers is less than the seed upload rate, the
system is positive recurrent and the mean number of peers in the system in
equilibrium is finite. The next section gives the precise problem formulation,
simulation results illustrating the missing piece syndrome, and the main
proposition. The proposition is proved in Sections 3 and 4, with the help
of some lemmas given in the appendix. Section 5 provides extensions of the
result, including consideration of the enhancement mechanisms mentioned
above. In particular, it is shown that the region of network stability is not
increased if rarest first piece selection policies, or network coding policies,
are applied. Section 5 also provides a conjecture regarding a refinement of
the main proposition for the borderline case when the arrival rate is equal
to the seeding rate; it is suggested that whether the system is stable then
depends on the rate that peers contact each other.

The model in this paper is similar to the flat case of the open system
of Massoulié and Vojnović [9, 10]. The model in [9, 10] is slightly different
in that, rather than having a fixed seed, it assumes that new peers each
arrive with a randomly selected piece. A fluid model, based on the theory
of density-dependent jump Markov processes (see [7]), is derived and stud-
ied in [9, 10]. It is shown that there is a finite resting point of the fluid
ordinary differential equation. The analysis in this paper is different and
complementary. Rather than appealing to fluid limits, we focus on direct
stochastic analysis methods, namely using coupling to prove transience for
some parameter values and the Foster-Lyapunov stability criterion to prove
positive recurrence for complementary parameter values. Furthermore, our
work shows the importance of considering asymmetric sample paths even
for symmetric system dynamics. Forthcoming work described in [17] pro-
vides analysis of P2P networks with peers having pieces upon arrival, as in
[9, 10], and with peers remaining for some time in the system after obtaining
a complete collection.

Some other works related to stability and the missing piece syndrome
are the following. The instability phenomenon identified in this paper was
discovered independently by Norros et al. [13]. Norros et al. [13] proved a
version of our main proposition for a similar model, for the case of two pieces.
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In the model of [13] a peer receives one piece on arrival, with the distribu-
tion of the piece number (either one or two) being determined by sampling
uniformly from the group consisting of a fixed seed and the population of
peers already in the system.

Menasché et al [11] pointed out that in their simulation studies, their
“smooth download assumption” and “swarm sustainability” break down if
the seed upload rate is not sufficiently large. Leskelä et al. [8] investigate
stability conditions for a single piece file, or a two piece file when the pieces
are obtained sequentially, when peers remain in the system for some time
after obtaining the piece. The earliest papers to analytically study unstruc-
tured peer-to-peer files systems with arrivals of new peers are [14, 15]. These
papers provide simple models in which a two dimensional differential equa-
tion is used that does not take into account the stages of service as peers
gain more pieces.

2. Model formulation and simulations. The model in this paper
is a composite of models in [9, 10, 16]. It incorporates Poisson arrivals,
fixed seed, random uniform contacts, and random useful piece selection, as
follows. The parameters of the model are an integer K ≥ 1 and strictly
positive constants λ, µ, and Us.

• There are K pieces and F = {1, . . . ,K}, so that F indexes all the
pieces.

• The set of proper subsets of F is denoted by C.
• A peer with set of pieces c, for some c ∈ C, is called a type c peer.
• A type c peer becomes a type c ∪ {i} peer if it downloads piece i for

some i 6∈ c.
• A Markov state is x = (xc : c ∈ C), with xc denoting the number

of type c peers, |x| denoting the number of peers in the system, and
S = Z

C
+ denoting the state space of the system.

• Peers arrive exogenously one at a time with no pieces; the times of
arrival form a rate λ Poisson process.

• Each peer contacts other peers, chosen uniformly at random from
among all peers, for opportunities to download a piece (i.e. pull) from
the other peers, according to a Poisson process of rate µ > 0. Math-
ematically, an equivalent assumption is the following. Each peer con-
tacts other peers, chosen uniformly at random from among all peers,
for opportunities to upload a piece (i.e. push) to the other peers, ac-
cording to a Poisson process of rate µ > 0.

• Downloads are modeled as being instantaneous. This assumption is
reasonable in the context of the previous assumption.
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• Random useful piece selection is used, meaning that when a peer of
type c has an opportunity to download a piece from a peer of type s,
the opportunity results in no change of state if s ⊂ c. Otherwise, the
type c peer downloads one piece selected at random from s − c, with
all |s− c| possibilities having equal probability.

• There is one fixed seed, which at each time in a sequence of times
forming a Poisson process of rate Us, selects a peer at random and
uploads a random useful piece to the selected peer.

• Peers leave immediately after obtaining a complete collection.

Given a state x, let T0(x) denote the new state resulting from the arrival
of a new peer. Given c ∈ C, 1 ≤ i ≤ K such that i /∈ c, and a state x

such that xc ≥ 1, let Tc,i(x) denote the new state resulting from a type
c peer downloading piece i. The positive entries of the generator matrix
Q = (q(x,x′) : x,x′ ∈ S) of the Markov process are given by:

q(x, T0(x)) = λ

q(x, Tc,i(x)) =
xc
|x|

(
Us

K − |c|
+ µ

∑

s:i∈s

xs
|s− c|

)

if xc > 0 and i /∈ c.

To provide some intuition, we present some simulation results. Figure 1
shows simulations of the system for Us = µ = 1 and K = 40 pieces. The first
plot shows apparently stable behavior. After an initial spike, the number of
peers in the system seems to hover around 30 (for λ = 0.6) or 45 (for
λ = 0.8), which by Little’s law is consistent with a mean time in system
around 50 to 60 time units (or about 25% to 50% larger than the sum of
the download times). However, the second plot shows that for λ = 1.2 or
λ = 1.4, the number of peers in the system does not appear to stabilize,
but rather to grow linearly. The explanation for this instability is indicated
in Figure 2, which shows the time-averaged number of peers that held each
given piece during the simulations, for λ = 0.6 in the first plot and for
λ = 1.4 in the second plot. The first plot shows that the 40 pieces had
nearly equal presence in the peers, with piece 7 being the least represented.
The second plot shows that 39 pieces had nearly equal presence and most
of the peers had these pieces most of the time, but only a small number
of peers held piece 3. The following proposition, which is the main result
of this paper, confirms that the intuition behind the simulation results is
correct.
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Fig 1. Number of peers vs. time. The first plot is for λ = 0.6 (dashed) and λ = 0.8 (solid),
and the second is for λ = 1.2 (dashed) and λ = 1.4 (solid).

Proposition 2.1. (i) If λ > Us then the Markov process is transient,
and the number of peers in the system converges to infinity with probability
one. (ii) If λ < Us the Markov process with generator Q is positive recurrent,
and the equilibrium distribution π is such that

∑
x
π(x)|x| < ∞.

In the remainder of this section, we give an intuitive explanation for the
proposition, which also guides the proof. We first give an intuitive justifi-
cation of Proposition 2.1(i), so assume λ > Us. Under this condition, even-
tually, due to random fluctuations, there will be many peers in the system
that are all missing the same piece. While any of the K pieces could be the
missing one, to be definite we focus on the case that the peers are missing
piece one. A peer is said to be in the one club, or to be a one-club peer, if
it has all pieces except piece one. We consider the system starting from an
initial state in which there are many peers in the system, and all of them
are in the one club. The system then evolves as shown in Figure 3. The
large size of the box showing the one club indicates that most peers are one
club peers. A peer not in the one club is said to be a young peer, and a
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Fig 2. Average number of peers holding each piece for the duration of the simulations.
The first plot is for λ = 0.6 and the second is for λ = 1.4. The dashed lines indicate
time-average number of peers in system.

Fig 3. Flows of peers and pieces. Solid lines indicate flows of peers; dashed lines indicate
flows of pieces.

young peer is said to be normal if it does not have piece one and infected if
it does have piece one. Since there are so many one club peers to download
from, a peer doesn’t stay young very long; most of the young peers join the
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one club soon after arrival. However, due to the fixed seed uploading pieces,
some of the normal young peers become infected peers. Those infected peers
can infect yet more young peers, thereby forming a branching process. But
typically the infected young peers do not infect other young peers, so that
the branching process is highly subcritical. Therefore, the rate of departures
from the one club due to uploads of piece one from infected peers is small.
Therefore, most peers eventually enter the one club, and the main way that
peers leave the one club is to receive piece one directly from the fixed seed.
So the long term arrival rate at the one club is close to λ and the departure
rate from the one club is close to Us. Therefore, the one club can grow at rate
close to λ− Us, while the number of young peers will stay about constant.
These ideas are made precise in the proof.

To understand why the system is stable for λ < Us, the rough idea is to
show that whenever there are many peers in the system, no matter what
the distribution of pieces they hold, the system moves towards emptying
out. If there are many peers in the system, one of the following two cases
holds. The first case is that most of the peers have the same number, say
ko, of pieces. Intuitively, the worst case would be for all peers with ko pieces
to have identical collections of pieces, in which case no peer with ko pieces
would be useful to another. However, if λ < Us, such a state can’t persist,
because peers with ko pieces get additional pieces from the fixed seed at an
aggregate rate near Us, while the long term rate that new peers with exactly
ko pieces can appear is less than or equal to λ. If the system is not in the first
case just described, then there are at least two sizeable groups of peers, so
that all the peers in the first group have one number of pieces and all peers
in the second group have some larger number of pieces. Then all peers in the
second group can be helpful to any peer in the first group, so that there will
be a large rate of downloads. Thus, if there are many peers in the system,
no distribution of the pieces they hold can persist. To prove stability, it is
still necessary to show that the state can’t spiral out to ever increasing loads
through some quasi-periodic behavior. This is achieved through the use of
a potential function and the Foster-Lyapunov stability criterion.

3. Proof of instability if λ > Us. Proposition 2.1(i) is proved in this
section; it can be read independently of the proof of Proposition 2.1(ii) in
the next section. The proof follows along the lines of the intuitive explana-
tion given just after the statement of the proposition in Section 2, and an
additional explanation of the proof is provided in a remark at the end of
the section. Assume λ > Us. If K = 1, the system reduces to an M/M/1
queueing system with arrival rate λ and departure rate Us, in which case the
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number of peers in the system converges to infinity with probability one. So
for the remainder of this proof assume K ≥ 2. To begin:

• Select ǫ > 0 so that 3ǫ < λ− Us.
• Select ξ > 0 so that ǫ− 4KξUs > 0, and

(3.1) ρ <
1

2
where ρ = 2ξ(K − 1).

It follows from (3.1) that ξ < 0.5.
• Select ǫo small enough that ǫo

λ−Us−3ǫ < ξ.
• Select B large enough that

eλ[2(K−1)/µ+1]2−B

1− 2−ǫo
≤ 0.1,(3.2)

64K2ξUs

2B(ǫ− 4KξUs)
≤ 0.1,(3.3)

λ

2Bǫ
≤ 0.1, and

Us

2Bǫ
≤ 0.1.(3.4)

• Select No large enough that B
No−3B ≤ ξ.

We shall use the notions of one club, young peer, and infected young peer,
as described in the paragraph after Proposition 2.1. For a given time t ≥ 0,
define the following random variables:

• At : cumulative number of arrivals, up to time t
• Nt : number of peers at time t
• Yt : number of young peers at time t
• Dt : cumulative number of uploads of piece one by infected peers, up

to time t
• Zt : cumulative number of uploads of piece one by the fixed seed, up

to time t

The system is modeled by an irreducible, countable-state Markov process.
A property of such random processes is that either all states are transient, or
no state is transient. Therefore, to prove Proposition 2.1(i), it is sufficient to
prove that some particular state is transient. With that in mind, we assume
that the initial state is the one with No peers, and all of them are one-club
peers. Let τ be the extended stopping time defined by τ = min{t ≥ 0 : Yt ≥
ξNt}, with the usual convention that τ = ∞ if Yt < ξNt for all t. It suffices
to prove that

(3.5) P{τ = ∞ and lim
t→∞

Nt = +∞} ≥ 0.6.
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The equation (3.5) depends on the transition rates of the system out of
states such that Y < ξN. Thus, we can and will prove (3.5) instead for an
alternative system, that has the same initial state, and the same out-going
transition rates for all states such that Y < ξN, as the original system. The
alternative system is defined by modifying the original system by letting
the rate of downloads from the set of one-club peers by each young peer be
µmax{N−Y

N , 12}, and the aggregate rate of downloads from the fixed seed to
the set of young peers be Usmin{ Y

N , ξ}. Note that the rates used for this
definition are equal to the original ones on the states such that Y < ξN, as
required. The alternative system has the following two properties:

1. Each young peer receives opportunities to download from one-club
peers at rate greater than or equal to µ/2.

2. The fixed seed contacts the entire population of young peers at aggre-
gate rate less than or equal to ξUs.

For the remainder of this proof we consider the alternative system, but for
brevity of notation, use the same notation for it as for the original system,
and refer to it as the original system.

The following four inequalities will be established, for ǫ, ξ, ǫo, B, and No

satisfying the conditions given near the beginning of the section.

P{At > −B + (λ− ǫ)t for all t ≥ 0} ≥ 0.9(3.6)

P{Zt < B + (Us + ǫ)t for all t ≥ 0} ≥ 0.9(3.7)

P{Yt < B + ǫot for all t ≥ 0} ≥ 0.9(3.8)

P{Dt < B + ǫt for all t ≥ 0} ≥ 0.9(3.9)

Let E be the intersection of the four events on the left sides of (3.6)-(3.9).
Since Nt is greater than or equal to the number of peers in the system that
don’t have piece one, on E , Nt ≥ No+At−Dt−Zt > No−3B+(λ−Us−3ǫ)t
for all t ≥ 0. Therefore, on E , for any t ≥ 0,

Yt

Nt
<

B + ǫot

No − 3B + (λ− Us − 3ǫ)t

≤ max

{
B

No − 3B
,

ǫo
λ− Us − 3ǫ

}
≤ ξ.

Thus, E is a subset of the event in (3.5). Therefore, if (3.6)-(3.9) hold,
P{E} ≥ 0.6, and (3.5) is implied. So to complete the proof, it remains to
prove (3.6)-(3.9).

The process A is a Poisson process with rate λ, and Z is stochastically
dominated by a Poisson process with rate Us. Thus, both (3.6) and (3.7)
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follow from Kingman’s moment bound (see Lemma 6.1 in the appendix)
and the conditions in (3.4) on B.

Turning next to the proof of (3.8), we shall use the following observation
about stochastic domination (the notion of stochastic domination is reviewed
in the appendix). The observation is a mathematical version of the statement
that the number of young peers remains roughly bounded because peers
don’t stay young for long.

Lemma 3.1. The process Y is stochastically dominated by the number of
customers in an M/GI/∞ queueing system with initial state zero, arrival
rate λ, and service times having the Gamma distribution with parameters
K − 1 and µ/2.

Proof. The idea of the proof is to show how, with a possible enlargement
of the underlying probability space, an M/GI/∞ system can be constructed
on the same probability space as the original system, so that for any time t,
Yt is less than or equal to the number of peers in the M/GI/∞ system. Let
the M/GI/∞ system have the same arrival process as the original system–it
is a Poisson process of rate λ. For any young peer, the intensity of downloads
from the one club (i.e. from any peer in the one club) is always greater than
or equal to µ/2 for the original system, where we use the fact 1− ξ > 1/2,
which is true by (3.1) and the assumption K ≥ 2. We can thus suppose
that each young peer has an internal Poisson clock, which generates ticks
at rate µ/2, and is such that whenever the internal clock of a young peer
ticks, that young peer downloads a piece from the one club. We declare that
a peer remains in the M/GI/∞ system until its internal clock ticks K − 1
times. This gives the correct service time distribution, and the service times
of different peers in the M/GI/∞ system are independent, as required. A
young peer can possibly leave the original system sooner than it leaves the
M/GI/∞ system, because a young peer in the original system can possibly
download pieces at times when its internal clock doesn’t tick. But if a young
peer is still in the original system, it is in the M/GI/∞ system.

Given this lemma, (3.8) follows from Lemma 6.2 with m in the lemma
equal to 2(K − 1)/µ, and ǫ in the lemma equal to ǫo, and (3.2). It remains
to prove (3.9).

Consider the following construction of a stochastic system that is similar
to the original one, with random variables that have similar interpretations,
but with different joint distributions. We call it the comparison system. It
focuses on the infected peers and the uploads by infected peers, and it is
specified in Table 1.
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Table 1

Specification of comparison system

Original system Comparison system

The fixed seed creates infected peers at a
rate less than ξUs.

The fixed seed creates infected peers at
rate ξUs.

An infected peer creates new infected
peers at a rate less than ξµ.

An infected peer creates new infected
peers at rate ξµ.

An infected peer uploads piece one to one-
club peers at a rate less than or equal to µ.

An infected peer uploads piece one to one-
club peers at rate µ.

Just after a peer becomes infected, it re-
quires at most K − 1 additional pieces,
and the rate for acquiring those pieces is
greater than or equal to µ/2.

After a new infected peer arrives, it must
download K−1 additional pieces, and the
rate for acquiring those pieces is µ/2.

It should be clear to the reader that both the original system and the
comparison system can be constructed on the same underlying probability
space such that any infected peer in the original system at a given time is
also in the comparison system. When such a peer becomes infected in the
original system, we require that it also arrives to the comparison system, it
discards all pieces it may have downloaded before becoming infected, and it
subsequently ignores all opportunities to download except those occurring
at the times its internal clock (described in the proof of Lemma 3.1) ticks.
Because infected young peers possibly stay longer in the comparison system
than in the original system, some of the peers in the comparison system
correspond to peers that already departed from the original system. There
can also be some infected peers in the comparison system that never existed
in the original system because the arrival rate of infected peers to the com-
parison system is greater than the arrival rate for the original system. But
whenever there is an infected peer in the original system, that peer is also
in the comparison system, and the following property holds. Whenever any
one of the following events happens in the original system, it also happens
in the comparison system:

• The fixed seed creates an infected peer.
• An infected peer creates an infected peer
• An infected peer uploads piece one to a one-club peer

Events of the second and third type just listed correspond to the two possi-
ble ways that infected peers can upload piece one. Therefore, the property
implies the following lemma, where D̂ is the cumulative number of uploads
of piece one by infected peers, up to time t, in the comparison system.

Lemma 3.2. The process (Dt : t ≥ 0) is stochastically dominated by
(D̂t : t ≥ 0).
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We can identify two kinds of infected peers in the comparison system–
the root peers, which are those created by the fixed seed, and the infected
peers created by other infected peers. We can imagine that each root peer
affixes its unique signature on the copy of piece one that it receives from the
fixed seed. The signature is inherited by all copies of piece one subsequently
generated from that piece through all generations of the replication process,
in which infected peers upload piece one when creating new infected peers. In
this way, any upload of piece one by an infected peer can be traced back to a
unique root peer. In summary, the jumps of D̂ can be partitioned according
to which root peer generated them. Of course, the jumps of D̂ associated

with a root peer happen after the root peer arrives. Let (
̂̂
Dt : t ≥ 0) denote

a new process which results when all of the uploads of piece one generated
by a root peer (in the comparison system) are counted at the arrival time

of the root peer. Since
̂̂
D counts the same events as D̂, but does so earlier,

D̂t ≤
̂̂
Dt for all t ≥ 0. In view of this and Lemma 3.2, it is sufficient to prove

(3.9) with D replaced by
̂̂
D.

The random process
̂̂
D is a compound Poisson process. Jumps occur at the

arrival times of root peers in the comparison system, which form a Poisson

process of rate ξUs. Let J denote the size of the jump of
̂̂
D associated with a

typical root peer. The distribution of J can be described by referring to an
M/GI/1 queueing system with arrival rate ξµ and service times having the
distribution of a random variable X̂ which has the Gamma distribution with
parameters K − 1 and µ/2. Note that ρ in (3.1) is the usual load factor for
the reference queueing system: ρ = ξµE[X̂]. The reference queueing system
is similar to the number of infected peers in the comparison system, except
that the customers in the M/GI/1 queueing system are served one at a
time. We have J = J1 + J2, where

• J1 is the number of infected peers that are descendants of the root
peer (not counting the root peer itself.) That includes peers directly
created by the root peer, peers created by peers created by the root
peer, and so on, for all generations. J1 has the same distribution as
the number of customers in a busy period of the reference queueing
system, not counting the customer that started the busy period.

• J2 is the number of uploads of piece one to one-club peers by either
the root peer or any of the descendants of the root peer. The sum of all
the times that the root peer and its descendants are in the comparison
system is the same as the duration, L, of a busy period of the reference
queueing system. While in the comparison system, those peers upload
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piece one to the one club with intensity µ. So E[J2] = µE[L] and
E[J2

2 ] = µ2E[L]2 + µE[L].

Using this stochastic description, the formulas for the busy period in an
M/GI/1 queueing system ((6.3) and (6.4) in the appendix), and the facts
ρ < 1/2, E[X̂ ] = 2(K − 1)/µ, and Var(X̂) = (K − 1)(2/µ)2, yields

E[J ] = E[J1] +E[J2] =
1 + µE[X̂ ]

1− ρ
− 1

≤ 2[1 + 2(K − 1)] ≤ 4K

and

E[J2
1 ] ≤ E[(J1 + 1)2] =

1 + (ξUs)
2Var(X̂)

(1− ρ)3
≤

1 + ρ2

(1− ρ)3

E[J2
2 ] = E[E[J2

2 |L]] = µE[L] + µ2E[L2]

=
µE[X̂ ]

1− ρ
+

µ2E[X̂2]

(1− ρ)3

E[J2]

= E[(J1 + J2)
2] ≤ 2{E[J2

1 ] + E[J2
2 ]}

≤ 16{2 + µE[X̂] + µ2E[X̂2]}

= 16
{
2 + 2(K − 1) + 4(K − 1) + 4(K − 1)2

}

= 16
{
4K2 − 2K

}
≤ 64K2

Thus,
̂̂
D is a compound Poisson process with arrival rate of batches equal

to ξUs and batch sizes with first and second moments of the batch sizes
bounded by 4K and 64K2 respectively. Hence, (3.9) with D replaced by
̂̂
D follows from Corollary 6.1 and (3.3). The proof of Proposition 2.1(i) is
complete.

Remark 3.1. We briefly explain why the comparison system was in-
troduced in the above proof, to provide a better understanding of the proof
technique. The intuitive idea behind the definition of the comparison system
is that it is based on worst case assumptions regarding the number of peers
that are infected by the fixed seed (i.e. the number of root peers) and the
number of uploads of piece one that can be caused by each root peer. The
advantage is then that the arrivals of root peers form a Poisson process and
the total number of uploads of piece one that can be traced back to different
root peers are independent in the comparison system, so that Kingman’s
bound for compound Poisson processes, which is a form of the law of large
numbers, can be applied.
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4. Proof of stability if λ < Us. Proposition 2.1(ii) is proved in this
section, using the version of the Foster-Lyapunov stability criterion given in
the appendix, and the intuition given in the last paragraph of Section 2.

If V is a function on the state space S, then QV is the correspond-
ing drift function, defined by QV (x) =

∑
y:y 6=x

q(x,y)[V (y) − V (x)]. If, as
usual, the diagonal entries of Q are defined to make the row sums zero, then
the drift function is also given by matrix-vector multiplication: QV (x) =∑

y
q(x,y)V (y).

Suppose λ < Us. Given a state x, let ni(x) =
∑

c∈C:|c|=i xc. That is, ni(x)
is the number of peers with precisely i pieces. When the dependence on
x is clear, we write ni instead of ni(x). We shall use the Foster-Lyapunov
criteria with the following potential function: V (x) =

∑K−1
i=0 biΦi(x) where

b0, . . . , bK−1 are positive constants and Φi(x) =
(n0+···+ni)

2

2 .
Let Di(x) denote the sum, over all ni peers with i pieces, of the download

rates of those peers. Since any peer with i+ 1 or more pieces always has a
useful piece for a peer with i pieces, it follows that Di(x) ≥ di(x), where

(4.1) di(x) =
ni

(
Us + µ

∑K−1
j=i+1 nj

)

|x|
.

We shall write di instead of di(x). We have

QΦi(x)

≤
λ
[
(n0 + · · · + ni + 1)2 − (n0 + · · ·+ ni)

2
]

2
+

di
[
(n0 + · · ·+ ni − 1)2 − (n0 + · · ·+ ni)

2
]

2

= (λ− di) [n0 + · · ·+ ni] +
λ+ di

2

≤ λ

[
n0 + · · ·+ ni +

1

2

]
−

(
ni −

1

2

)
di

Since QV =
∑K−1

i=0 biQΦi it follows that

(4.2) QV (x) ≤
aoλ

2
+

(
λ

K−1∑

i=0

niai

)
−

K−1∑

i=0

(
ni −

1

2

)
bidi

where ai = bi + · · · + bK−1 for 0 ≤ i ≤ K − 1. In what follows, assume that
the constants b0, . . . , bn are chosen so that 1 = bK−1 < bK−2 < · · · < b1 < b0
and

(4.3) bi >

(
λ

Us − λ

)
ai+1 for 0 ≤ i ≤ K − 2.
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Since ai+1 = ai − bi, (4.3) is equivalent to

(4.4) Usbi − λai > 0 for 0 ≤ i ≤ K − 2.

The following two lemmas and their proofs correspond to the two cases
described in the intuitive description given in the last paragraph of Section 2.

Lemma 4.1. There exist positive values η, ǫ, and L so that QV (x) ≤
−ǫ|x| whenever: |x| ≥ L and, for some i, ni ≥ (1− η)|x|.

Lemma 4.2. Let η be as in Lemma 4.1. There exist positive values ǫ′ and
L′ so that QV (x) ≤ −ǫ′|x| whenever: |x| ≥ L′ and, for all i, ni ≤ (1− η)|x|.

Lemmas 4.1 and 4.2 imply that QV (x) < −min{ǫ′, ǫ}|x| whenever |x| >
max{L,L′}, so that Q and V satisfy the conditions of Proposition 6.1 with
f(x) = min{ǫ′, ǫ}|x| and g(x) = B1{|x||≤max{L,L′}} where B = max{QV (x) :
|x| ≤ max{L,L′}}. Therefore, to complete the proof of Proposition 2.1(ii)
it remains to prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. It suffices to prove the lemma for an arbitrary
choice of i. So fix i ∈ {0, 1, 2, . . . K − 1}, and consider a state x such that
ni/|x| > 1 − η (and, in particular, ni ≥ 1). Then for any j 6= i, nj/ni =
(nj/|x|)(|x|/ni) <

η
1−η . Use (4.1) and (4.2) and an interchange of summation

(
∑K−1

i=0

∑K−1
j=i+1 =

∑K−1
j=1

∑j−1
i=0 ) to get

QV (x)

≤
a0λ

2
+ ni


ai +

K−1∑

j=0,j 6=i

nj

ni
aj


λ−

(
ni −

1

2

)
bidi

≤
a0λ

2
+ niai

(
1 +

Ka0
ai

η

1− η

)
λ

(4.5)

−

(
ni −

1

2

)
bi
ni

(
Us + µ

∑K−1
j=i+1 nj

)

|x|

≤
a0λ

2

+ni

{
ai

(
1 +

Ka0
ai

η

1− η

)
λ− bi(1− η)Us +

biUs

2|x|

}

Notice that according to (4.4),

lim
η→0

{
ai

(
1 +

Ka0
ai

η

1− η

)
λ− bi(1− η)Us

}

= aiλ− biUs < 0,
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and

lim
|x|→∞

biUs

2|x|
= 0.

Thus, if η is small enough and |x| is large enough, the quantity within braces
in (4.5) is negative. Therefore, if η and ǫ are small enough, and L is large
enough,

QV (x) ≤
a0λ+ ni{aiλ− biUs}

2
≤ −ǫ|x|

under the conditions of the lemma, whenever |x| ≥ L. Lemma 4.1 is proved.

Proof of Lemma 4.2. Let η be given by Lemma 4.1, and consider a
state x such that ni/|x| ≤ 1− η for all i. It follows that there exists i1 and

i2 with 0 ≤ i1 < i2 ≤ K − 1 such that ni1 ≥
η|x|
K and ni2 ≥ η|x|

K . Then

QV (x)

≤
a0λ

2
+ |x|a0Kλ−

(
ni1 −

1

2

)
bi1di1

=
a0λ

2
+ |x|a0Kλ

(4.6)

−

(
ni1 −

1

2

)
bi1

ni1(Us + µ
∑K−1

j=i1+1 nj)

|x|

≤
a0λ

2
+ |x|a0Kλ−

(
η|x|

K
−

1

2

)
bi1

η2|x|

K2
µ

≤
a0λ

2
+ |x|

{
a0Kλ+

b0µ

2

}
−
( η

K

)3
|x|2µ

The conclusion of the lemma follows because of the term in (4.6) that is
quadratic in |x|.

5. Generalization and discussion.

5.1. General piece selection policies. A piece selection policy is used by
a peer to choose which piece to download whenever it contacts another
peer. The random useful piece selection policy is assumed above, but the
results extend to a large class of piece selection policies. Essentially the only
restriction needed is that if the contacted peer has a useful piece for the
contacting peer, then a useful piece must be downloaded. This restriction
is similar to a work conserving restriction in the theory of service systems.
In particular, the results hold for a broad class of rarest first piece selection
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policies. Peers can estimate which pieces are more rare in a distributed way,
by exchanging information with the peers they contact. Even more general
policies would allow the piece selection to depend in an arbitrary way on
the piece collections of all peers. Interestingly enough, the results extend
even to seemingly bad piece selection policies. For example, it includes the
sequential piece selection policy, in which peers obtain the pieces in order,
beginning with piece one. The sequential policy can be viewed as a most
abundant first useful piece selection policy, or just the opposite of rarest
piece first.

To be specific, consider the following family H of piece selection policies.
Each policy in H corresponds to a mapping h from C × (C ∪{F})×S to the
set of probability distributions on F , satisfying the usefulness constraint:

∑

i∈B−A

hi(A,B,x) = 1 whenever B 6⊂ A

with the following meaning of h:

• When a type A peer selects a piece to download from a type B peer and
the state of the entire network is x, piece i is selected with probability
hi(A,B,x), for i ∈ F .

• When the fixed seed selects a piece to upload to a type A peer and
the state of the entire network is x, piece i is selected with probability
hi(A,F ,x), for i ∈ F .

The piece selection policies noted above are included in H.
Reconsider the proof of transience in Section 3 under a piece selection

policy in H. From any state it is possible to reach the empty state, and from
the empty state it is possible to reach a state with one peer in the network
having all pieces except some piece i0. From that state, for any No ≥ 1,
it is possible to reach the state with No peers missing only piece i0, and
no other peers in the network. It may be impossible for i0 to equal one,
but by renumbering the pieces if necessary, it can be assumed without loss
of generality that i0 is one. Thus, whatever piece selection policy in H is
applied, beginning from any initial state, for any No ≥ 1, in a finite time
with a positive probability, the system can arrive into the state where there
are No peers and all of them are one-club peers. Thus, as in Section 3, to
prove transience it suffices to show that from such an initial state, there is
a positive probability that the number of peers converges to infinity. The
arrival rate of new peers and the upload rate of the seed does not depend on
the piece selection policy, so (3.6) and (3.7) are valid for any piece selection
policies in H. Moreover, Lemma 3.1 and Lemma 3.2 are valid for any piece
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selection policies in H because the two lemmas depend on the properties
that peer selection is uniformly random and the piece selection is useful if
a useful piece is available. Therefore (3.8) and (3.9) are also valid for any
piece selection policy in H. Thus, we conclude that the proof of Proposition
2.1(i) in Section 3 works for any piece selection policy in H.

Reconsider next the proof of positive recurrence in Section 4, but for
an arbitrary piece selection policy in H. The inequalities developed for the
proofs of Lemmas 4.1 and 4.2 hold with the same Lyapunov function; useful
piece selection suffices. Thus, if λ < Us, it can be shown that the Lya-
punov stability condition, namely QV (x) ≤ −ǫ|x|, for |x| sufficiently large,
still holds. The final conclusion has to be modified, however, because under
some policies in H, the Markov process might no longer be irreducible. For
example, with the sequential useful piece selection policy, the set of states
such that every peer holds a set of pieces of the form {1, 2, . . . , J} for some
J with 0 ≤ J ≤ K − 1, is a closed subset of states, in the terminology of
classification of states of discrete-state Markov processes. In general, the set
of all states that are reachable from the empty state is the unique minimal
closed set of states, and the process restricted to that set of states is irre-
ducible. By a minor variation of the Foster-Lyapunov stability proposition,
the Lyapunov stability condition implies that the Markov process restricted
to that closed set of states is positive recurrent, and the mean time to reach
the empty state beginning from an arbitrary initial state is finite.

We summarize the discussion of the previous two paragraphs as a propo-
sition.

Proposition 5.1 (Stability conditions for general useful piece selection
policies). Suppose a useful piece selection policy from H is used, for a net-
work with random peer contacts and parameters K, λ, Us, and µ as in Sec-
tion 2. There is a single class of closed states containing the empty state,
and all other states are transient. (i) If λ > Us then the Markov process is
transient, and the number of peers in the system converges to infinity with
probability one. (ii) If λ < Us the Markov process with generator Q restricted
to the closed set of states is positive recurrent, the mean time to reach the
empty state from any initial state has finite mean, and the equilibrium dis-
tribution π is such that

∑
x
π(x)|x| < ∞.

Thus, with the exception of the borderline case λ = µ, rarest first piece
selection does not increase the region of stability, nor does most abundant
first piece selection decrease the region of stability.
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5.2. Network coding. Network coding, introduced by Ahlswede, Cai, and
Yeung, [1], can be naturally incorporated into P2P distribution networks,
as noted in [4]. The related work [3] considers all to all exchange of pieces
among a fixed population of peers through random contacts and network
coding. The method can be described as follows. The file to be transmitted
is divided into K data pieces, m1,m2, . . . ,mK , for some K ≥ 2. The data
pieces are taken to be vectors of some fixed length r over a finite field Fq

with q elements, where q is some power of a prime number. If the piece size
is M bits, this can be done by viewing each piece as an r = ⌈M/ log2(q)⌉
dimensional vector over Fq. Any coded piece e is a linear combination of the

original K data pieces: e =
∑K

i=1 θimi; the vector of coefficients (θ1, . . . , θK)
is called the coding vector of the coded piece; the coding vector is included
whenever a coded piece is sent. The fixed seed uploads coded pieces to peers,
and peers exchange coded pieces. In this context, the type of a peer A is
the subspace VA of FK

q spanned by the coding vectors of the coded pieces it
has received. Once the dimension of VA reaches K, peer A can recover the
original data file.

When peer A contacts peer B, suppose peer B sends peer A a random
linear combination of its coded pieces, where the coefficients are independent
and uniformly distributed over Fq. Equivalently, the coding vector of the
coded piece sent from B is uniformly distributed over VB . The coded piece is
considered useful to A if adding it to A’s collection of coded pieces increases
the dimension of VA. Equivalently, the piece from B is useful to A if its
coding vector is not in the subspace VA ∩ VB . The probability the piece is
useful to A is therefore given by

P{piece is useful} = 1−
|VA ∩ VB |

|VB |
= 1− qdim(VA∩VB)−dim(VB).

If peer B can possibly help peer A, meaning VB 6⊂ VA (true, for example,
if dim(VB) > dim(VA)), the probability that a random coded piece from B
is helpful to A is greater than or equal to 1− 1

q . The probability a random
coded piece from the seed is useful to a peer A with dim(VA) = K − 1
is precisely 1 − 1

q . Therefore, when all peers have the same state and the
common state has dimension K − 1, the departure rate from the network is
Ũs = Us(1−

1
q ).

The network state x specifies the number of peers in the network of each
type. There are only finitely many types, so the overall state space is still
countably infinite. Moreover, the Markov process is easily seen to be irre-
ducible.

Reconsider the proof of transience in Section 3, but now under network
coding. Fix any subspace V − of FK

q with dimension K − 1. Call a peer a
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one-club peer if its state is V −. For any No ≥ 1, it is possible to reach the
state with No one-club peers and no other peers in the network. As before,
call a peer a young peer if it is not a one-club peer. In the case of network
coding, call a peer infected if its state is not a subspace of V −. The only way
a peer can become infected is by downloading a piece either from the seed
or from an infected peer. Lemmas 3.6 and 3.7 are valid for network coding,
if the condition λ > Us is replaced by λ > Ũs. Moreover, Lemma 3.1 and
Lemma 3.2 are valid for network coding because the two lemmas depend on
the properties that peer selection is uniformly random and the rate useful
pieces are delivered by the seed to one-club peers is arbitrarily close to Ũs.
Thus, we conclude that Proposition 2.1(i) in Section 3, with Us replaced by
Ũs, extends to the case of network coding.

Reconsider the proof of positive recurrence in Section 4, but with ran-
dom useful piece selection replaced by network coding as described, and Us

replaced by Ũs = Us(1 −
1
q ). Suppose the same Lyapunov function is used,

except the new meaning of ni(x), or ni for short, is the number of peers
A with dim(VA) = i. Lemmas 4.1 and 4.2 are valid for network coding, if
the condition λ < Us is replaced by λ < Ũs. Thus, if λ < Ũs, it can be
shown that the Lyapunov stability condition, namely QV (x) ≤ −ǫ|x|, for
|x| sufficiently large, still holds, and the Foster-Lyapunov stability criterion
applies.

We summarize the discussion of the previous two paragraphs as a propo-
sition.

Proposition 5.2 (Stability conditions for network coding based system).
Suppose random linear network coding with vectors over F

K
q is used, with

random peer contacts and parameters K, λ, Us, and µ as in Section 2. (i) If
λ > Us(1−

1
q ) then the Markov process is transient, and the number of peers

in the system converges to infinity with probability one. (ii) If λ < Us(1−
1
q )

the Markov process is positive recurrent, and the equilibrium distribution π
is such that

∑
x
π(x)|x| < ∞.

Thus, as q → ∞, the stability region for the system with network coding
converges to that for useful piece selection. Network coding has the advan-
tage that no exchange of state information among peers is needed because
there is no need to identify useful pieces.

5.3. Peer seeds. In many unstructured peer-to-peer systems, such as Bit-
Torrent, peers often dwell in the network awhile after they have collected
all the pieces. In effect, these peers temporarily become seeds, called peer
seeds. The uploading provided by peer seeds is able to mitigate the missing
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piece syndrome and enlarge the stability region. Intuitively, if every peer can
upload, on average, just one more piece after collecting all pieces, then every
peer can help one one-club peer to depart, so the missing piece syndrome
would not persist. This is explored for the case of K = 1 and K = 2 (for the
sequential piece selection policy) in [8] and for random useful piece selection
with arbitrary K ≥ 1 in [17].

5.4. Peer selection and tit-for-tat. Another way to overcome the missing
piece syndrome relies on peer selection policies. For instance, if young peers
contact infected peers preferentially, or if the seed uploads to young peers
preferentially, the network can be stabilized by the resulting increase in the
number of infected peers. So some sort of coordination policy, providing the
identification of rare pieces and young peers, and the transmission of the
rare pieces to the young peers, can counter the missing piece syndrome. A
mechanism built into BitTorrent, called tit-for-tat operation, may alter the
peer selection policy enough to yield stability for any choice of λ, µ, and
Us. Under tit-for-tat operation, peers upload almost exclusively to peers
from which they can simultaneously download. An obvious benefit of tit-
for-tat is to give peers incentive to upload, thereby helping other peers, but
it also may be effective against the missing piece syndrome. Specifically, tit-
for-tat encourages one-club peers to reduce their rate of download to the
young peers, because the young peers have nothing to upload to the one-
club members. This increases the amount of time that peers remain young,
giving them a greater chance to obtain a rare piece from the fixed seed.
Also, infected peers would preferentially send to young peers, because often
a normal young peer and an infected young peer would be able to help
each other. While it is thus clear that tit-for-tat operation helps combat the
missing piece syndrome, we leave open the problem of quantifying the effect
for a specific model.

5.5. The borderline of stability. We have shown that, for any µ > 0, the
system is stable if λ < Us and unstable if λ > Us, and this result is insensitive
to the value of µ and to the piece selection policy, as long as a useful piece is
selected whenever possible. While it may not be interesting from a practical
point of view, we comment on the case λ = Us. First, we give a precise result
for a limiting case of the original system, and then we offer a conjecture. If
K = 1 the model reduces to an M/M/1 queueing system with arrival rate
λ and service rate Us, so the system is null-recurrent if λ = Us. Assume for
the remainder of the section that K ≥ 2.

A simpler network model results by taking a limit as µ → ∞. Call a state
slow if all peers in the system have the same type, which includes the state
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Fig 4. Transition rates for µ = ∞ system for K = 3.

such that there are no peers in the system. Otherwise, call a state fast. The
total rate of transition out of any slow state does not depend on µ, and
the total rate out of any fast state is bounded below by a positive constant
times µ. For very large values of µ, the process spends most of its time in
slow states. The original Markov process can be transformed into a new one
by watching the original process while it is in the set of slow states. This
means removing the portions of each sample path during which the process
is in fast states, and time-shifting the remaining parts of the sample path to
leave no gaps in time. The limiting Markov process, which we call the µ = ∞
process, is the weak limit (defined as usual for probability measures on the
space of càdlàg sample paths equipped with the Skorohod topology) of the
original process watched in the set of slow states, as µ → ∞. By symmetry
of the model, the state space of the µ = ∞ process can be reduced further,
to Ŝ = {(0, 0)} ∪ {(n, k) : n ≥ 1, 1 ≤ k ≤ K − 1}, where a state (n, k)
corresponds to n peers in the system which all possess the same set of k
pieces. The positive transition rates of the µ = ∞ process are given by:

transition rate condition

(n, k) → (n+ 1, k) λ (n, k) ∈ Ŝ
(n, k) → (n, k + 1) Us n ≥ 1, 0 ≤ k ≤ K − 2

(n,K − 1) → (n− 1,K − 1) Us n ≥ 2, k = K − 1
(1,K − 1) → (0, 0) Us

and the transition rate diagram is pictured in Figure 4 for K = 3. The top
layer of states consists of those for which all peers have K − 1 pieces. These
states correspond to all peers being in the one club, or all missing some
other piece. From any state the process reaches the top layer in mean time
less than or equal to 1

λ + K−1
Us

, and within the top layer the process behaves
like a birth-death process with birth rate λ and death rate Us. Since such
birth-death processes are null-recurrent if λ = Us, it follows that the µ = ∞
model is null-recurrent if λ = Us.
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Consider the original process with λ = Us and finite µ. Suppose the
process is in a state with a very large one club which includes all or nearly
all the peers; let n be the number of peers in the one club. New young
peers arrive at rate λ, and they are in the system for approximately 1

µ time
units while they are holding exactly k pieces for 0 ≤ k ≤ K − 2. Thus, over
the short term, the mean number of young peers in the system holding k
pieces is near λ

µ for 0 ≤ k ≤ K − 2. The average fraction of peers that are

young peers holding k pieces is thus approximately λ
nµ for 0 ≤ k ≤ K − 2.

The average total rate that young peers holding k pieces become infected is
dominated by the rate the fixed seed downloads piece one to them and is thus
approximately Usλ

(K−k)nµ , where the factor
1

K−k comes from the assumption of
uniform random useful piece selection for downloads from the seed. A young
peer that becomes infected when it has k pieces will eventually release, on
average, about K − k − 1 other peers from the one club. Thus, to a first
order approximation, for large n, the number of peers in the system behaves
like a birth-death process with arrival rate λ and state dependent departure
rate Us(1 +

µo

nµ), where

µo = λ

K−2∑

k=0

K − k − 1

K − k
.

The elementary theory of birth-death processes shows that a birth-death
process with constant birth rate λ and state-dependent death rate λ(1 + c

n)
is positive recurrent if c > 1 and null-recurrent if 0 < c ≤ 1. This strongly
suggests the following to be true:

Conjecture 5.1. If λ = Us, the process is positive recurrent if 0 < µ <
µo and is null recurrent if µ > µo.

We also expect similar results to be true for other piece selection policies,
but the value of µo would depend on the piece selection policy.

6. Appendix.

6.1. Stochastic comparison. A continuous-time random process is said
to be càdlàg if, with the possible exception of a set of probability zero, the
sample paths of the process are right continuous and have finite left limits.

Definition 6.1. Suppose A = (At : t ≥ 0) and B = (Bt : t ≥ 0)
are two random processes, either both discrete-time random processes, or
both continuous time, càdlàg random processes. Then A is stochastically
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dominated by B if there is a single probability space (Ω,F , P ), and two
random processes Ã and B̃ on (Ω,F , P ), such that

(a) A and Ã have the same finite dimensional distributions,
(b) B and B̃ have the same finite dimensional distributions, and
(c) P{Ãt ≤ B̃t for all t} = 1.

Clearly ifA is stochastically dominated by B, then for any a and t, P{At ≥
a} ≤ P{Bt ≥ a}.

6.2. Appendix: Kingman’s moment bound for SII processes. Let (Xt :
t ≥ 0) be a random process with stationary, independent increments with
X0 = 0. Suppose the sample paths are càdlàg (i.e. right-continuous with
finite left limits). Suppose E[X2

1 ] is finite, so there are finite constants µ
and σ2 such that E[Xt] = µt and Var(Xt) = σ2t for all t ≥ 0. Let X∗ =
supt≥0 Xt.

Lemma 6.1 (Kingman’s moment bound [6] extended to continuous time).

Suppose that µ < 0. Then E[X∗] ≤ σ2

−2µ . Also, for any B > 0, P{X∗ ≥

B} ≤ σ2

−2µB .

Proof. For each integer n ≥ 0, let Sn denote the random walk process
Sn
k = Xk2−n . Let Sn∗ = supk≥0 Sk. By Kingman’s moment bound for discrete

time processes,

E[Sn∗] ≤
Var(Sn

1 )

−2E[Sn
1 ]

=
σ2

−2µ

Since Sn∗ is nondecreasing in n and converges a.s. to X∗, the first conclu-
sion of the lemma follows. The second conclusion follows from the first by
Markov’s inequality.

Corollary 6.1. Let C be a compound Poisson process with C0 = 0,
with jump times given by a Poisson process of rate α, and jump sizes having
mean m1 and mean square value m2. Then for all B > 0 and ǫ > αm1

(6.1) P{Ct < B + ǫt for all t} ≥ 1−
αm2

2B(ǫ− αm1)

Proof. Let Xt = Ct− ǫt. Then X satisfies the hypotheses of Lemma 6.1
with µ = αm1 − ǫ and σ2 = αm2. So P{X∗ ≥ B} ≤ αm2

−2(αm1−ǫ)B , which

implies (6.1).
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6.3. A maximal bound for an M/GI/∞ queue.

Lemma 6.2. Let M denote the number of customers in an M/GI/∞
queueing system, with arrival rate λ and mean service time m. Suppose that
M0 = 0. Then for B, ǫ > 0,

(6.2) P{Mt ≥ B + ǫt for some t ≥ 0} ≤
eλ(m+1)2−B

1− 2−ǫ

Proof. Our idea is to find another M/GI/∞ system whose number of
customers sampled at integer times can be used to boundM. Suppose we let
every customer for the original process stay in the system for one extra unit
time after they have been served. Let M ♯

t be the number of customers in
this new M/GI/∞ system at time t. Note that M ♯ is also the number in an
M/GI/∞ system, with arrival rate λ and mean service timem+1. By a well-

known property ofM/GI/∞ systems, for any time t,M ♯
t is a Poisson random

variable. Since the initial state is zero, the mean number in the system at
any time t is less than λ(m+1), which is the mean number in the system in
equilibrium. If Poi(µ) represents a Poisson random variable with mean µ,
then the Chernoff inequality yields P{Poi(µ) ≥ a} ≤ exp(µ(eθ − 1) − θa),
and taking θ = ln 2 yields P{Poi(µ) ≥ a} ≤ eµ2−a. For any integer i ≥ 1, if
t ∈ (i− 1, i], then Mt ≤ M ♯(i). Therefore,

P{Mt ≥ B + ǫt for some t ≥ 0}

≤

∞∑

i=1

P{Mt ≥ B + ǫt for some t ∈ (i− 1, i]}

≤

∞∑

i=1

P{M ♯
i ≥ B + ǫ(i− 1)}

≤
∞∑

i=1

eλ(m+1)2−(B+ǫ(i−1))

=
eλ(m+1)2−B

1− 2−ǫ

6.4. On busy periods for M/GI/1 queues. Consider an M/GI/1 queue
with arrival rate λ. Let N denote the number of customers served in a busy
period, let L denote the length of a busy period, and let X denote the service
time of a typical customer.
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Lemma 6.3. Let ρ = λE[X]. It ρ < 1 then

E[N ] =
1

1− ρ
E[N2] =

1 + λ2Var(X)

(1− ρ)3
(6.3)

E[L] =
E[X]

1− ρ
E[L2] =

E[X2]

(1− ρ)3
(6.4)

Cov(N,L) =
λE[X2]

(1− ρ)3
(6.5)

The lemma can be proved by the well-known branching process method.
Let X denote the service time of a customer starting a new busy period.
Let Y denote the number of arrivals while the first customer is being served.
Then, given X = x, the conditional distribution of Y is Poisson with mean
λx. View any customer in the busy period that arrives after the first cus-
tomer, to be the offspring of the customer in the server at the time of arrival.
This gives the well known representation for N and L:

N = 1 +

Y∑

i=1

Ni

L = X +

Y∑

i=1

Li

where (Ni, Li), i ≥ 1 is a sequence of independent random 2-vectors such
that for each i, (Ni, Li) has the same distribution as (N,L). Using Wald’s
identity, these equations can be used to prove the lemma.

6.5. Foster-Lyapunov stability criterion.

Proposition 6.1. Combined Foster-Lyapunov stability criterion and
moment bound–continuous time (See [5, 12].) Suppose X is a continuous-
time, irreducible Markov process on a countable state space S with generator
matrix Q. Suppose V , f , and g are nonnegative functions on S such that
QV (x) ≤ −f(x)+g(x) for all x ∈ S, and, for some δ > 0, the set C defined
by C = {x : f(x) < g(x) + δ} is finite. Suppose also that {x : V (x) ≤ K} is
finite for all K. Then X is positive recurrent and, if π denotes the equilibrium
distribution,

∑
x
f(x)π(x) ≤

∑
x
g(x)π(x).
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