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Comment on Article by Vernon et al.

David Poole∗

1 Introduction

The authors are to be congratulated on their presentation of a detailed and comprehen-
sive case study. It is clear that this effort represents a large amount of work by both
statisticians and cosmologists. The important topic of statistical inference from com-
plex non-linear deterministic simulation models has received a lot of attention over the
last 20 years, and this paper attempts to deal with the many sources of uncertainty in a
formal and novel manner, while providing an interesting description of galaxy formation.

I would like to focus this discussion on just one aspect of the paper, that of Bayesian
inference for parameters linked by a deterministic simulator (Galform in this case).

2 Pragmatic compromise in Bayesian analyses

The authors employ their Bayes linear approach in this application. Based solely on a
specification of means, variances and covariances, it is simpler to implement in compli-
cated problems where a fully Bayesian analysis may be intractable. They describe the
Bayes linear approach as a “pragmatic compromise” to a fully Bayesian solution, given
a) the difficulty in eliciting a full joint prior probability distribution, and b) the tech-
nical challenges in implementing a massive MCMC or similar analysis. These are very
valid points, and I am reminded of my own experience with an application in marine
mammal assessment that shares some similarities with the Galform problem.

2.1 A population dynamics model for bowhead whales

Population growth for marine mammals is often modeled using a deterministic simu-
lation model, usually a highly non-linear set of differential equations. Given a set of
inputs to this model (fecundity, survival rates, pre-exploitation stock size, maximum
sustainable yield, etc.) and a known commercial catch history, the population is pro-
jected through time from the start of the commercial fishery to the present time where
a series of abundance estimates from surveys is typically available. Similar to Galform,
the challenge is to find combinations of the inputs that are scientifically plausible, do not
lead to extinction, and which produce population trajectories (over time) that match
the current data on abundance and rates of increase.

In the 1990’s the International Whaling Commission used a model named BALEEN
II for assessment of the Bering-Chukchi-Beaufort Seas stock of bowhead whales, Balaena
mysticetus. Further background and history are given in Raftery et al. (1995), who also
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presented an initial Bayesian approach to inference for the inputs, outputs (and functions
thereof) of the BALEEN II model. The method was updated and slightly modified in
Poole and Raftery (2000), where it was given the name Bayesian melding.

The essence of Bayesian melding is as follows: a prior distribution over the model
inputs θ is transformed to the output space φ. The resulting induced prior for φ is
combined with an existing independent prior for φ using logarithmic pooling of the two
densities. This pooled prior on the outputs is then transformed backwards through the
model to produce a pooled prior over the inputs that hopefully reflects subtle correlations
and dependencies absent in our initial prior. This adjusted prior, which in some sense
can be considered an analog of the adjusted expectations used in the Bayes linear
method, is then combined with a likelihood in the normal way to achieve posterior
inference. The approach was initially developed specifically for the whale application,
but it has since been applied to models of tree growth (Radtke et al. 2002), disease
transmission (Spear et al. 2002), and soil loss (Falk et al. 2010). An extension to
stochastic simulation models is proposed in Sevcikova et al. (2007).

2.2 A simple example

To illustrate, reproduced here is Example 1 of Poole and Raftery (2000). This is a
trivial deterministic transform M : Z = Y/X, where X and Y are the two inputs to the
model while Z is the single output. Hence, θ = (X,Y ) and φ = Z. Assume that we are
able to specify independent marginal prior distributions for each quantity as follows:
X ∼ U [2, 4], Y ∼ U [6, 9], and Z ∼ U [0, 5]. It follows that a joint prior distribution for
the inputs, which we call q1, is given by

q1(x, y) =
1
6

, for 2 < x < 4, 6 < y < 9

and for the output, labelled q2, it is

q2(z) =
1
5

, for 0 < z < 5.

Using the Bayesian melding machinery the general form of the pooled prior over the
inputs θ is given by

q̃[θ](θ) ∝ q1(θ)
(
q2(M(θ))
q∗1(M(θ))

)1−α

(1)

where q∗1(·) is the distribution of the output φ induced by the deterministic model, and
0 ≤ α ≤ 1 is the pooling weight. Note that the pooled prior q̃[θ](·) is simply the original
prior, q1(·), weighted by the ratio of two possibly lower-dimensional densities in φ-space,
q2(·) and q∗1(·), evaluated at M(θ), where M is the model function. The magnitude of
the weight is dictated by the value of α, and the ratio is never evaluated at arbitrary
values of φ, only at M(θ) for a given value of θ. The interested reader is referred to Poole
and Raftery (2000) for more details on the derivation of equation (1). In particular, it
is shown that, conditional on the output φ, the distribution in equation (1) is a choice
that minimizes Kullback-Leibler distance to the original prior q1(·).
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In the simple example above we can use standard change-of-variable methods to
obtain an analytic form of q∗1(·). This can be plugged into equation (1), with α chosen
to be 0.5 here, to yield

q̃[θ](x, y) =



ky

2
√

15(4y2−9x2)
: y < 2.25x

k
√

3y
45x : 2.25x < y < 3x

ky√
15(81x2−4y2)

: y > 3x

where k ≈ 1.4 is the appropriate normalizing constant. This pooled prior on θ = (X,Y )
is shown graphically in Figure 1, where we can see the that the original flat prior on the
inputs (a product of 2 independent marginals) has been modified to reflect information
derived from the model output. The three superimposed solid lines represent sets of
points in the (X,Y)-plane that map to three single points in Z-space. In this case
the prior for Z specifies that each z-value is equally likely, and the pooled input prior
accounts for this by increasing the density where such lines are shorter.

XY

D
ensity

Figure 1: The pooled joint prior distribution of X and Y in the simple example. The
shape reflects prior information about the output Z projected through the deterministic
relationship.

Naturally, in any real application, a functional form of the induced prior q∗1(·) will be
impossible to obtain, so we approximate using Monte Carlo density estimation and then
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employ sampling-importance-resampling methods to sample from the posterior distri-
bution. The key point is this: we use information implicit in the deterministic model,
in which we presumably have some belief, in conjunction with marginally-specified prior
distributions for inputs and outputs, to induce a coherent adjusted joint prior distribu-
tion over all the inputs to the model. This joint prior, when combined with a likelihood
for observed data, results in a joint posterior over inputs, and then via the model trans-
form, in a similarly coherent joint posterior distribution for the outputs.

It is not at all clear that an approach like this would be suited to a problem as com-
plex as the Galform application. For instance, density estimation in higher dimensions
can be difficult, the selection of α is an issue, and the basic method assumes that the
deterministic model is known exactly. These would all be problematic in this situa-
tion, and are discussed generally in Poole and Raftery (2000). That said, the melding
approach does provide a fully Bayesian solution with full posterior inference available
from the Monte Carlo samples. It also helps to cut down the input space in a manner
similar to that which the authors describe in their application. Indeed, in the whale
case the melded prior was key in eliminating a large region of the input space before
combination with the likelihood function for abundance data.

I view Bayesian melding as a pragmatic compromise brought on, in our case, by
an inability to specify anything other than marginal prior probabilities independent of
the simulation model. If we could reasonably elicit complex joint priors, we would do
so. Thus in effect we have a partial specification of our prior beliefs. In this sense, it
mirrors the partial specifications of the Bayes linear approach, and can be considered a
compromise to a more complicated analysis.

2.3 What does one lose?

Approaches such as these beg the further question: what does one lose by adopting
the compromises inherent in melding or the Bayes linear method? The preface to
Goldstein and Wooff (2007) suggests that the Bayes linear method achieves “90% of
the answer for 10% of the effort”, but I wonder how verifiable that really is in an
application such as Galform. Is the result really 90% as good as it would be under full
Bayes? How do we know it is not only 50%? Expressed differently, if a full Bayesian
solution were hypothetically possible, would we learn a lot more about galaxy formation
from the observed data? Could one get much sharper confidence statements about key
parameters? It seems that cautionary statements of this type should perhaps accompany
the declaration of results when, as here, one is forced to stray from the fully Bayesian
path. In the case of Bayesian melding, while it provides fully Bayesian inference and
forces a joint prior elicitation, it requires additional subjective judgements about pooling
and the fixed form of the simulation model. It is hard to quantify the effects of this
extra subjectivity.
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3 Conclusion

A discussion of this type could carry on at length and would likely devolve into another
foundational debate about what it means to be a subjective Bayesian, or whether the
various Bayesian approaches are preferable to other methods. That is not the aim here.

All that remains for me is to congratulate the authors again on an impressive and
detailed piece of work, one that contains a great deal of novelty tailored to the complex-
ities of the application. My hope is that it will stimulate interest and further discussion
among the readers of Bayesian Analysis.
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