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Bayesian Functional ANOVA Modeling Using
Gaussian Process Prior Distributions

Cari G. Kaufman∗ and Stephan R. Sain†

Abstract. Functional analysis of variance (ANOVA) models partition a func-
tional response according to the main effects and interactions of various factors.
This article develops a general framework for functional ANOVA modeling from a
Bayesian viewpoint, assigning Gaussian process prior distributions to each batch
of functional effects. We discuss the choices to be made in specifying such a
model, advocating the treatment of levels within a given factor as dependent but
exchangeable quantities, and we suggest weakly informative prior distributions for
higher level parameters that may be appropriate in many situations. We discuss
computationally efficient strategies for posterior sampling using Markov Chain
Monte Carlo algorithms, and we emphasize useful graphical summaries based on
the posterior distribution of model-based analogues of traditional ANOVA decom-
positions of variance. We illustrate this process of model specification, posterior
sampling, and graphical posterior summaries in two examples. The first consid-
ers the effect of geographic region on the temperature profiles at weather stations
in Canada. The second example examines sources of variability in the output of
regional climate models from a designed experiment.

Keywords: Analysis of variance, Climate models, Functional data, Variance com-
ponents

1 Introduction

Functional analysis of variance (ANOVA) models are appropriate when the data consist
of functions that are expected to differ according to some set of categorical factors
(Ramsay and Silverman 2005, Chapter 13). For example, our work is motivated by the
need to compare sources of variability in the projections made by computer models of
climate. In this case the categorical factors can be the choice of climate model or the
choice of various input values to the model, and the response is naturally a function of
space and time. However, functional ANOVA models have proven useful in analyzing
data from a variety of other fields (see e.g. Brumback and Rice 1998; Spitzner et al.
2003; Wang et al. 2003).

Functional ANOVA models partition the functional response according to the main
effects and interactions of the factors. For example, consider two crossed factors, with
levels denoted by i and j. Let Yijk(x) denote an observation from replication k under
levels i and j of the factors, evaluated at x. The model partitions the functional response
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according to

Yijk(x) = µ(x) + αi(x) + βj(x) + (αβ)ij(x) + εijk(x), (1)

for i = 1, . . . ,mA, j = 1, . . . , mB , k = 1, . . . , nij , and x ∈ X ⊆ <d. Each of the terms
on the right hand side is a function mapping into the same space as the observations,
and these may be modeled in a variety of ways. For example, smoothing spline ANOVA
models express the effects as linear combinations of some underlying basis functions,
and the coefficients on these basis functions are then chosen to minimize a criterion
balancing goodness of fit with a measure of smoothness of the fitted functions (see
Gu 2002, for an overview). The tradeoff between the two is governed by the choice
of a smoothing parameter, which can be made according to various risk estimates.
The connection between fitted smoothing splines and the limiting Bayes rule under a
particular sequence of prior distributions has long been recognized (Wahba 1978), and
this connection can be used to motivate model choices in a Bayesian analysis (Barry
1996). However, this limiting formulation is not always intuitive or appropriate for
analyzing a particular set of functional data. In this paper, we propose a fully Bayesian
framework for functional ANOVA modeling. We view the functional effects on the right
hand side of (1) and similar models as unknown quantities about which we have some,
perhaps vague, prior beliefs, for example that they belong to a particular function space.
We use Gaussian process distributions as priors over these function spaces, and we make
inference about the functional effects by conditioning on the observations.

Some advantages of this approach are

1. The model provides a natural framework for inference, including simultaneous
credible sets for functions. We also obtain posterior distributions for model-based
analogues of the usual ANOVA decompositions of variance. As these vary over
the domain of the functions, they can be used to create graphical displays that
give an immediate sense of how different sources of variability contribute to the
functional response.

2. The covariance parameters of the Gaussian processes, which play a role similar to
the smoothing parameters in spline models, are estimated along with the functions
themselves, rather than imposing a fixed roughness penalty. This extra source of
uncertainty is naturally incorporated into posterior inference.

3. The prior specification accommodates a wide class of functions, and prior knowl-
edge about the functions can be incorporated if desired. Unlike competing models,
this Gaussian process specification can easily be extended to an arbitrary number
of dimensions of the functional response.

Our work draws heavily on models for spatial data, in that the Gaussian process prior
distributions assigned to the various effects have covariance functions commonly used
in geostatistics. However, because the term “spatial ANOVA” often indicates treating
spatial regions as categorical factors, and because our method can be generalized to
any number of dimensions, we will refer to it as Gaussian process ANOVA. This model
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has many connections to existing methods, as ANOVA models are a special case of the
linear model with normal errors, a central tool in statistics. The approach we describe
here can be linked, for example, to the spatially varying coefficient processes discussed
by Gelfand et al. (2003). However, as with the standard ANOVA model, the special
structure of the factorial experiments we consider leads to specialized summaries of the
overall effect of each factor, and we discuss in detail the different ways in which one
ought to think about these effects in the functional case. In addition, the structure of
the model means that special care is required in specifying the prior distributions of
the levels of each factor. We begin by elaborating on some particular connections to
Bayesian linear model theory.

1.1 Bayesian ANOVA and Random Effects Models

It has been common practice in Bayesian ANOVA models to treat the levels of a given
factor as one would treat “random effects” in a classical linear model, that is, as condi-
tionally iid random variables with mean zero and a common variance component (Lind-
ley and Smith 1972; Gelman 2005). For example, in the one-way ANOVA model for a
scalar response, the usual model is Yij = µ+αi+εij , with µ|µ0, σ

2
µ ∼ N(µ0, σ

2
µ), αi|σ2

α
iid∼

N(0, σ2
α), and εij |σ2

ε
iid∼ N(0, σ2

ε ), for i = 1, . . . , m, j = 1, . . . , ni. One rationale for this
choice is that it clearly satisfies certain invariance properties that characterize our un-
derstanding of the ANOVA decomposition: the joint distribution of the responses Yij is
unaltered by permuting replications within a given level, or by permuting the various
levels within a factor (Dawid 1977). However, without any constraints on the individual
levels, the model is over-parameterized, leading to Bayesian nonidentifiability (Gelfand
and Sahu 1999). That is, the marginal distribution for δ = µ − ∑

i αi/m is not up-
dated by the likelihood. In theory this is not an issue provided the prior distribution
is proper, and we simply ignore δ in posterior inference. However, in practice this non-
identifiability means that Markov Chain Monte Carlo (MCMC) algorithms may drift
to extreme values in the overparameterized space, even as they remain stable in the
lower-dimensional subspace identified by the likelihood. This creates the potential for
numerical instability (Gelfand and Sahu 1999).

This issue has been addressed using various reparameterizations of the original prior
distribution, such as hierarchical centering (Gelfand et al. 1995) and centering by sweep-
ing (Vines et al. 1996). Hierarchical centering reparameterizes the model above to
Yij = ηi + εij , ηi|µ, σ2

α
iid∼ N(µ, σ2

α), while centering by sweeping uses the prior dis-
tribution obtained by marginalizing over δ. However, hierarchical centering cannot be
carried out for all factors if there are two or more crossed factors in the model, and
centering by sweeping suffers the drawback that the implied prior distribution for the
reparameterized model can make posterior sampling difficult in practice. For this work,
we prefer another approach, which is to condition on identifying constraints in the prior
distribution itself; see Smith (1973) and Nobile and Green (2000) for other examples.
This prior distribution still satisfies Dawid’s (1977) invariance properties: though de-
pendent, the levels remain exchangeable. The benefit of this approach in the functional
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ANOVA context is that the partitioning of variability is unambiguous, so that variances
and correlation parameters for the Gaussian processes we assign to each factor corre-
spond to the factor’s magnitude of effect and extent over the domain. Without these
constraints, the nonidentifiability in the functional effects carries over to the distribu-
tions for these higher-level parameters, and sampling via MCMC is in our experience
extremely inefficient.

1.2 Bayesian Analysis of Variance Components

Gelman (2005) makes a useful distinction for Bayesian ANOVA models, contrasting the
variance components for the distribution of levels, or “‘superpopulation variances,” and
the variance components calculated from the observed levels, or “finite population vari-
ances.” For example, in the one-way model above, σ2

α is the superpopulation variance,
while the finite population variance is

s2
α =

1
m− 1

α′
[
I− 1

m
J
]

α (2)

where α = (α1, . . . , αm)′, I is the m×m identity matrix, and J is the m×m matrix of
ones. This is the model-based analogue of the mean square for between-group variability
one would calculate in a traditional ANOVA model. Correspondingly, the mean square
can be thought of simply as a point estimate of this quantity, while the Bayesian model
provides a full posterior distribution. As in Gelman (2005), we do not focus on the
testing problem here, instead estimating and comparing the finite population variances
in the spirit of exploratory data analysis. The model can incorporate formal testing,
but we leave this for future work; see the discussion in Section 4.

The model we propose for the functional response contains a single superpopulation
variance for each factor, corresponding to the marginal prior variance for that factor’s
Gaussian process prior distribution. However, more interesting in this case are the finite
population variances. We now have s2

α(x), which is a functional parameter of interest (a
function of the {αi(x)}). While our prior distributions are specified such that the finite
population variance is constant over the domain, we can examine plots of the posterior
distribution of s2

α(x) and other finite population variance components to compare the
magnitudes of the contributions of the factors over the domain of the function. We
describe the calculation of these quantities in Section 2.4.

1.3 Outline

In the next section we propose a framework for Bayesian functional ANOVA models
using Gaussian process prior distributions, starting with the two-way model in (1) and
then moving on to a more general formulation. We make some suggestions regarding the
choices involved in defining the model for a given application. We describe an MCMC
algorithm that can be used to fit the model and some ways to make posterior sampling
more efficient. We then describe in more detail the calculation of the posterior distribu-
tions for the finite population variance components and some useful graphical displays
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for comparing sources of variation in the functional response. Section 3 describes this
process of model specification, posterior sampling, and creating graphical posterior sum-
maries for two examples of functional data. The first is a simple one-way model for a
one dimensional response, while the second is a two-way model with a temporal trend
and a spatial response. We conclude with an overview of the method and some potential
areas for future development.

2 Gaussian Process ANOVA Model

Suppose that we observe the functional response at x1, . . . , xp. (For notational simplic-
ity, we will assume throughout that the x values for the observations are the same for
all combinations of levels, although the models we propose apply equally well to the
more general case.) For purposes of illustration, we begin with the two-way model as
in (1). Let the vector Yijk = (Yijk(x1), . . . , Yijk(xp))′ represent the kth response with
factor A at level i and factor B at level j. We model Yijk as a finite set of observations
from an underlying smooth realization of a stochastic process Yijk defined on X ⊆ <d.
Let µij(x) = µ(x) + αi(x) + βj(x) + (αβ)ij(x). Then the first stage of the model is

Yijk|{µij}, σ2
ε , θε

indep∼ GP (µij , σ
2
ε Rθε)

for i = 1, . . . ,mA, j = 1, . . . , mB , k = 1, . . . , nij , where the notation GP (h,K) denotes
a Gaussian process distribution with mean function h and covariance function K. Here
we have separated the covariance function into the marginal variance σ2

ε , and Rθε , a
member of a particular class of correlation functions indexed by θε.

We now specify Gaussian process prior distributions for µ, {αi}, {βj}, and {(αβ)ij},
taking each batch of functions to be independent of the other batches and independent
of the residuals a priori, and assigning each batch its own set of higher-level parameters.
For a given set of q parametric regression functions {f`}, we model

µ|{φ`}, σ2
µ, θµ ∼ GP

(∑q
`=1 φ`f`, σ

2
µRθµ

)
. (3)

The prior distributions for the batches of functions {αi}, {βj}, and {(αβ)ij} satisfy
the constraints

∑
i αi(x) = 0,

∑
j βj(x) = 0,

∑
i(αβ)ij(x) = 0, and

∑
j(αβ)ij(x) = 0 for

all x. Specifically, we define a distribution for {αi} such that each αi is marginally a
mean zero Gaussian process, and

Cov(αi(x), αi′(x′)) =
{

(1− 1
mA

)σ2
αRθα(x, x′) i = i′

− 1
mA

σ2
αRθα(x, x′) i 6= i′ (4)

We define the prior for {βj} in an analogous fashion, with parameters σ2
β and θβ , and mB

levels rather than mA. We also specify mean zero Gaussian process prior distributions
for the interaction terms, with a slightly more complicated covariance structure imposed
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by the two sets of sum to zero constraints:

Cov((αβ)ij(x), (αβ)i′j′(x′)) =
σ2

αβRθαβ
(x, x′)

mAmB





(mA − 1)(mB − 1) i = i′, j = j′,
(1−mA) i = i′, j 6= j′

(1−mB) i 6= i′, j = j′

1 i 6= i′, j 6= j′

(5)

The covariance specifications above are special cases of our more general framework,
described in the next section, and we defer until then a discussion of why they provide a
valid joint distribution that satisfies the sum to zero constraints. For now, note that the
sum to zero constraints are equally weighted. This reflects that the levels within each
factor are treated as exchangeable. It should not be confused with weighting schemes
in frequentist linear models that correct for sampling imbalances. Imbalanced designs
are naturally handled in our framework in that posterior variances will automatically
reflect the number of observations within each level.

The model specification is completed by the choice of regression functions in the
mean for µ and the correlation functions, and prior distributions over the higher-level
parameters. These choices will be application specific, although we make some general
suggestions in section 2.2.

2.1 General Formulation

We now describe the Gaussian process ANOVA model for an arbitrary number of crossed
and/or nested factors. Let each “batch” of functions, for example the levels within a
particular factor or interaction, be denoted by subscript b, and let i index the observa-
tions in the dataset. Extending the notation of Gelman (2005) for ANOVA models to
a functional response, write

Yi(x) =
B∑

b=0

β
(b)

jb
i

(x),

where β
(b)
1 , . . . , β

(b)
mb are the functions in batch b and jb

i indicates the particular value of j
corresponding to the ith observation for this batch. Note that the sum includes both the
grand mean, defining µ ≡ β(0), and the error terms, defining εi ≡ β

(B)

jb
i

= Yi−
∑B−1

b=0 β
(b)

jb
i

.
We assign to each batch of functions a joint Gaussian process distribution. For the grand
mean and error terms, we have

β(0)|{φ`}, σ2
0 , θ0 ∼ GP (

∑
` φ`f`, σ

2
0Rθ0) (6)

β
(B)

jb
i

|σ2
B , θB

iid∼ GP (0, σ2
BRθB ), i = 1, . . . , n

As in the two-way case, we assign Gaussian process distributions to the batches
of functions representing the main effects and interactions, and we constrain them to
sum to zero across their margins (that is, over levels in the batch, not over the domain
of the functions). Separate batches of functions are treated as independent a priori.
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For a particular batch b of functions, let C(b) be a mb × cb matrix with linearly inde-
pendent columns representing the desired constraints, i.e. C(b)′β(b)(x) = 0 ∀x, where
β(b)(x) = (β(b)

1 (x), . . . , β(b)
mb(x))′. Then define P(b) =

[
Imb

−C(b)(C(b)′C(b))−1C(b)′
]
.

This is the projection matrix onto the null space of C(b)′ . We can then assign a mean
zero multivariate Gaussian process prior distribution to β

(b)
1 , . . . , β

(b)
mb by starting with

independent Gaussian processes with common covariance structure, and then project-
ing the result into the space

{
β(b) : C(b)′β(b)(x) = 0 ∀x

}
. P(b) is both symmetric and

idempotent, so this induces the covariance structure

Cov(β(b)
j (x), β(b)

j′ (x′)) = P(b)
jj′σ

2
bRθb

(x, x′). (7)

For example, a single sum to zero constraint on a main effect corresponds to taking C(b)

to be a column of ones, resulting in (4), whereas a collection of sum to zero constraints
for a two-way interaction with mA and mB levels corresponds to taking C(b) to be a
matrix with mA + mB − 1 linearly independent columns of zeroes and ones, resulting
in (5). Note that the covariance structure in (7) will produce a non-negative definite
covariance matrix for each batch, due to the sum to zero constraints. In Section 2.3 we
discuss two strategies for sampling from the posterior distribution that accommodate
this degeneracy in the prior.

2.2 Model Specification

The model specification is completed by defining the regression functions, class of cor-
relation functions, and prior distribution for the higher level mean and covariance pa-
rameters for each batch.

Mean and Covariance Functions

The mean structure in (6) is meant to capture obvious patterns in the common response;
for example in Section 3.1 we model temperature profiles over the year as having an
underlying sinusoidal pattern. Note that the specification of (6) will affect the interpre-
tation and often the magnitude of σ2

µ, which performs the role of a residual variance.
However, because we are interested in the posterior distribution of the finite population
variances and not the superpopulation variances, this is not problematic. Often a single
intercept value here will be adequate, taking f ≡ 1.

All modeling choices will of course be problem specific. However, as a default choice,
we suggest choosing the class of correlation functions R to be stationary and isotropic,
and equating each θ with a single range parameter ρ. The covariance function for the
error terms may also include a nugget term corresponding to measurement error vari-
ance. One can use a more flexible class of covariance functions, for example to model
nonstationarity. However, the benefits of added model complexity should be weighed
in terms of the effect on posterior inference for the quantities of interest: the factor
levels and their finite population variances. The covariance functions affect these only
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insofar as they allow sharing of information across the function. A less flexible class of
functions in this case may not be optimal, but it may not make a large difference in the
inference provided the data are not very sparse over the domain of the functions.

The parameters of this model can suffer from nonidentifiability problems when the
domain of the observations is small relative to the correlation range of the process (see
e.g. Zhang (2004)). However, these problems are mitigated when we have replications
within each cell of the experimental design table. For example, in our climate model
example, we have thirty spatial fields at each combination of levels. In fact, the covari-
ance parameters that often bedevil MCMC samplers for spatial models are consistently
estimable as the number of replications goes to infinity. Therefore, we are in a some-
what different framework than in typical geostatistics, and including multiple sets of
covariance parameters in the model does not pose the sampling problems that one might
expect.

Parameterization of the Levels

In some cases it may be easier to represent the dependence structure in (7) by reparam-
eterizing the levels of a given factor as a linear combination of independent processes
in a lower-dimensional subspace. For example, consider the main effect of factor A.

Write αi =
∑mA−1

k=1 Mikα∗k, where M is a m × (m − 1) matrix and α∗1, . . . , α
∗
mA−1

iid∼
GP (0, σ2

αRθα). We require that
∑p

i=1 αi(x) = 0∀x and the prior covariance in (4) holds,
which is true provided

1.
∑m

i=1 Mik = 0, k = 1, . . . ,m− 1

2.
∑m−1

k=1 M2
ik = (1− 1/m), i = 1, . . . ,m

3.
∑m−1

k=1 MikMi′k = −1/m, i 6= i′

These conditions can easily be satisfied by rescaling the columns of a matrix of Helmert
contrasts. For example, when mA = 3, start with the matrix whose rows are {(1, 0),
(−1/2, 1), (−1/2,−1)}. The columns of this matrix already sum to zero; the idea
is to multiply each column by some scalar such that the second two conditions hold.
The multiplier for the first column is clearly

√
2/3, and some quick algebra shows the

multiplier for the second column is
√

1/2. The updated matrix is M ={(
√

2/3, 0),
(−

√
2/3/2,

√
1/2), (−

√
2/3/2,−

√
1/2)}.

Prior Choices

Our guiding principle in choosing prior distributions for higher-level parameters is to
include weakly constraining prior information where it exists, as a way of regularizing
the inference. By “regularization” in this context, we mean that by assigning low prior
probability to certain regions of parameter space, we can improve the interpretability of
the model parameters, as well as preventing numerical instability due to sample paths
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drifting to extreme values in the MCMC algorithm. For example, prior information
is often available about the mean, based on physical or other constraints. Standard
noninformative priors for the covariance parameters as in Berger et al. (2001) can be
computationally expensive, involving derivatives of each element of the correlation ma-
trix. In our examples, we simply use uniform prior distributions, choosing the bounds
such that realizations of the Gaussian process encompass the range of anticipated be-
havior.

2.3 Posterior Sampling

One can generate posterior samples from the Gaussian proceses ANOVA model using
a Gibbs sampler, using the Metropolis-Hastings algorithm to sample distributions not
available in closed form. The Gaussian process distributions for the functions imply
multivariate normal distributions for those functions evaluated at a finite set of points.
One would typically sample the functions at the set of unique x values in the dataset,
to facilitate computation of the likelihood, although additional x values may also be
included. Boldface parameters in the following should be interpreted to mean the vector
of evaluations for the corresponding process over the x values of interest.

The full conditional distributions for φ, µ, and the main effects and interactions
are all multivariate normal. However, there is dependence in the prior distributions,
induced by the sum-to-zero constraints. If the levels have been reparameterized as in
Section 2.2, one can carry out sampling in the lower dimensional subspace and then
transform back when making posterior inference. Deriving full conditional distributions
for the reparameterized model is straightforward, as the prior distribution can be fac-
tored into independent components and the contributions from the likelihood simply
involve contrasts of the observations. An alternative method is to keep the original
parameterization and to sample a batch of parameters as a block. For example, in the
one-way model in which the {αi} have prior covariance structure as in (4), we may
factor the prior distribution according to

p(α1|σ2
α, ρα) = MV N

(
0,

m− 1
m

σ2
αΓ(ρα)

)

p(αi|α1, . . . , αi−1, σ
2
α, ρα) = MV N

(
−

∑i−1
k=1 αk

m− i + 1
,

m− i

m− i + 1
σ2

αΓ(ρα)

)
,

i = 2, . . . , m, where Γ(ρ) denotes the p × p correlation matrix {Rρ(xi, xj)} and p is
the number of x values at which the functions are being sampled. Note that the final
distribution for αm is degenerate, reflecting the sum to zero constraint. Letting “Rest”
denote the data and all parameters except for the collection {αi}, we generate a sample
from p({αi}|Rest) by first generating α1 from p(α1|Rest), then iteratively sampling
αi from p(αi|α1, . . . , αi−1, Rest) for i = 2, . . . ,m − 1. These distributions are also
multivariate normal and are straightforward to derive using this factorization of the
prior. The sample for αm is then set equal to −∑m−1

i=1 αi. The first example in Section
3 uses this blocking strategy, while the second example uses the reparameterization as
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in Section 2.2.

Within each iteration it is also advisable to sample each (σ2, ρ) pair as a block. Now
letting “Rest” denote the data and all parameters except σ2 and ρ, first we sample ρ
from p(ρ|Rest) using a Metropolis-Hastings step, then we sample σ2 from p(σ2|ρ, Rest),
plugging in the sampled value of ρ. These parameters tend to be highly correlated
in posterior samples, and our experience has been that sampling them in this way
dramatically improves the mixing of the MCMC samples. We have also found it helpful
to randomize the order in which each parameter or block of parameters is updated
within each iteration, as suggested by Roberts and Sahu (1997).

2.4 Graphical Posterior Summaries

The posterior samples can be used to create a variety of useful graphics to summarize
various aspects of the posterior distribution. We focus on two graphical displays in
particular, globally defined intervals of high posterior probability and plots of the finite
population variances.

Global Credible Intervals

Bayesian “confidence intervals” have been used in spline smoothing for some time
(Wahba 1983; Gu and Wahba 1993). The posterior samples can be used to esti-
mate similar intervals of high posterior probability for each of the levels for a given
factor, or for other quantities of interest. That is, for a function g(x), which may
depend on various parameters in the model, we desire functions a and b such that
P [g(x) ∈ (a(x), b(x)) ∀x ∈ X |Data] equals some nominal level. Here X is the domain
of the function. Such functions a and b are not uniquely defined. We suggest starting
with point-wise intervals at each x value where the effects have been sampled, for ex-
ample taking as the lower and upper bounds (`(x), u(x)) the 0.025 and 0.975 quantiles
of the sample. This produces a collection of point-wise 95% intervals. To calculate si-
multaneous intervals, one strategy is to simply inflate the point-wise intervals, finding ε
such that P̂ [g(x) ∈ (`(x)− ε, u(x) + ε) ∀x ∈ X|Data] ≈ 0.95, where P̂ is the proportion
of posterior samples satisfying the criterion and X is the finite set of x values at which
posterior samples of the functions have been generated. Plots of [`(x) − ε, `(x) + ε],
linearly interpolating between x ∈ X, then give a graphical summary of a high prob-
ability region for the entire function g. For sufficiently dense X, this will be a good
approximation to the true functional intervals.

Finite Population Variance Plots

Extending the notation of Gelman (2005) to functional effects, we define the finite
population variances for the Gaussian process ANOVA model as

s2
b(x) =

1
mb − cb

β(b)(x)′P(b)β(b)(x),
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where β(b)(x) and P(b) are as defined in Section 2.1. Note that this definition also
includes the error term, for which there are no constraints and P(b) is simply diagonal.
Each s2

b is the functional analogue of a mean square quantity in traditional ANOVA.
One could consider carrying out a traditional ANOVA analysis at each x of interest
in the domain and then simply plotting these mean squares. However, our model has
the advantage that s2

b is explicitly modeled as a function, for which we obtain posterior
samples via the sampled effects, and so we can construct both point-wise and global
intervals for these functions. We can also look at posterior probabilities for various rela-
tionships between the finite population variances over the functional domain, exploring
the regions of the domain in which various factors are most important. Note that
although Gelman (2005) also interpreted the superpopulation variances, which in our
model are the marginal variances of the Gaussian processes, in this functional context
we advocate simply treating them as higher-level hyper-parameters and not interpret-
ing their marginal posterior densities. This is because their interpretation may change
when regression terms are introduced into the model, whereas the interpretations of
the functional main effects and interactions, and the finite population variances, do not
change; they simply have a more structured prior distribution.

3 Examples

We present two examples of Gaussian process ANOVA models. The first example is a
simple one-way model for a one dimensional response, while the second is a two-way
model with a temporal trend and a spatial response. The models for each example were
fit using the R language for statistical computing (R Development Core Team 2008); data
and R code for the examples are available online at http://www.stat.berkeley.edu/˜cgk.

3.1 Example I: Temperature Profiles at Canadian Weather Stations

We consider the Canadian weather data introduced by Ramsay and Silverman (2005),
which is available as part of the fda package in R. The data consist of monthly average
temperatures for 35 Canadian weather stations. The stations are divided into four cli-
mate zones: Atlantic, Continental, Pacific, and Arctic. The data are shown in Figure
1. Ramsay and Silverman (2005) estimated the temperature profiles in each zone us-
ing a functional ANOVA model, representing the effects using Fourier basis functions
and minimizing a penalized least squares criterion. They also calculated point-wise
confidence intervals for the deviations of each profile from the average profile. Using a
Gaussian process ANOVA model, we construct both pointwise and global credible inter-
vals for the deviations from the average profile, and we study the posterior distribution
of the finite population variances to determine the months in which the categorization
by zone has the largest effect.
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Figure 1: Average monthly temperature profiles from 35 Canadian weather stations.

Model Specification

We model the average temperature for a station j falling into zone i at time t as
Yij(t) = µ(t) + αi(t) + εij(t), where t ∈ [0, 1] represents fraction of the year. The
function µ+αi represents the expected temperature profile for zone i, with αi modeling
deviations from the average profile µ. As in the general formulation, we take the batches
µ, {αi}, and {εij} to be independent of one another a priori. We specify distributions
that reflect our belief that these functions are smooth and periodic by using Gaussian
process distributions with periodic means and covariance functions. Specifically, let
d(t, t′) = 2 sin(ψt,t′/2), where ψt,t′ is the angle in radians between 2πt and 2πt′. Define

Rρ,ν(t, t′) =
(d(t, t′)/ρ)ν

2ν−1Γ(ν)
Kν(d(t, t′)/ρ), (8)

which is the Matérn correlation function (Matérn 1986) with parameters ρ and ν, evalu-
ated at d(t, t′). Here Kν represents the modified Bessel function of order ν (Abramowitz
and Stegun 1967). Because the Matérn correlation function is positive definite in <2,
Rρ,ν is a valid periodic correlation function on [0, 1] (Yaglom 1987, page 389). For this
analysis, we fix ν = 2 throughout, and we write Rρ(t, t′) to denote Rρ,2(t, t′) as in (8).

To capture the obvious seasonality in the data, we specify E[µ(t)] = φ0+φ1 cos(2πt)+
φ2 sin(2πt), and Cov(µ(t), µ(t′)) = σ2

µRρµ(t, t′). We incorporate the constraint
∑

i αi(t) =
0 into the prior distribution by taking α1, . . . , α4 to have a multivariate Gaussian process
distribution with mean zero and covariance structure as in (4). Finally, we model εij as
independent mean zero Gaussian processes, each with covariance function σ2

ε Rρε(t, t
′).

To specify the prior distributions for higher-level parameters, we follow the principle
of including weak prior information based on physical constraints. For each parameter,
we reason about plausible upper and lower bounds, and we take the parameter to be
uniform over this range a priori. Recorded minimum and maximum temperatures on
Earth are roughly [−90◦C, 60◦C] (Blier 1996). We therefore feel comfortable assigning
zero probability to φ0, the overall mean, outside of this range. Likewise, we require the
amplitude of the cosine curve,

√
φ2

1 + φ2
2, to be within [0◦C, 75◦C], which is guaranteed

by the simpler restriction that φ1, φ2 ∈ [−50◦C, 50◦C]. Reasoning about the variance
components, note that if Z1, Z2

iid∼ N(0, σ2), then P (|Z1 − Z2| ≤ 3
√

2σ) ≈ 99.7%. This
is exactly the case when we have two independent realizations from a Gaussian pro-
cess distribution, but evaluated at the same location. Given that we believe there is
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very small probability of the difference in these realizations being greater than 150◦C,
we take each variance component to lie within [0, (150/(3

√
2))2 = 1250]. Finally, con-

straining the month-to-month correlation between the functions to be less than 90%
is achieved by taking each range parameter to be uniformly distributed on [0, 9]. This
allows for a variety of correlation lengths. Figure 2 shows simulated realizations of mean
zero Gaussian processes for a variety of plausible values range parameters under this
distribution.

Figure 2: Simulated realizations from Gaussian process distributions with variance one
and correlation functions Rρ(t, t′), with ρ set to the 0.9 (—), 0.75 (- - -), 0.5 (· · · ), 0.25
(− · −), and 0.1 (– –) quantiles of a Uniform(0, 9) distribution.

Posterior Sampling

We observe Yij ≡ (Yij(t1), . . . , Yij(t12))′, for i = 1, . . . , 4, j = 1, . . . , ni, and tk =
(k − 0.5)/12 for k = 1, . . . , 12. Based on the joint specification above, the likelihood is

Yij |µ, αi, σ
2
ε , ρε

indep∼ MV N(µ + αi, σ
2
εΓ(ρε)), i = 1, . . . , 4, j = 1, . . . , ni,

where the bold symbols µ and αi indicate vectors of the corresponding Gaussian pro-
cesses evaluated at t1, . . . , tk and the notation Γ(ρ) indicates the 12 × 12 correlation
matrix {Rρ(ti, tj)}. The Gaussian process prior distributions above also imply prior
multivariate normal distributions for µ and {αi}.

The Gibbs sampler iterates between sampling φ and µ, sampling {αi} as a block
as described in Section 2.3, and sampling each of (σ2

µ, ρµ), (σ2
α, ρα), and (σ2

ε , ρε) as
a block, also described in Section 2.3. We carried out 20,000 iterations, which took
approximately 5 minutes on a laptop computer. The sample paths appeared to converge
extremely quickly, but to be conservative we discarded the first 5000 iterations for burn-
in. Autocorrelation in the sample paths for each hyper-parameter decayed to near zero
within 20 to 30 lags, and the estimated effective sample sizes, based on fitting an AR
process to the sample paths and estimating the spectral density at zero, had a minimum
of 1,175. Further MCMC diagnostics are given in the Supplementary Material.
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Graphical Posterior Summaries

Figure 3 plots the point-wise and global intervals of high posterior probability, as de-
scribed in Section 2.4, for the grand mean µ and the regional effects {αi}. As in Ramsay
and Silverman (2005), we conclude that the temperature profile for the Atlantic region
tends to be slightly warmer overall than the mean profile, the profile for the Pacific re-
gion is warmer than the mean profile during the winter months, the Continental profile
is slightly colder during the winter, and the Arctic profile is always colder, but particu-
larly so in the winter. These inferences are somewhat heuristic, as we are interpreting
the overall shape of the intervals. However, it would be straightforward to examine, for
example, the posterior distribution for the month in which the Arctic profile differed the
most from the mean profile, by simply calculating this quantity for each posterior sam-
ple and examining its empirical distribution. One could also compare specific contrasts
of interest between the regions. It is interesting that the global credible intervals in this
case are only slightly wider than the point-wise intervals. Examination of individual
sampled curves reveals this is because the curves tend to be very similar to each other
in overall shape, with most of the posterior variability being due to overall mean shifts
in the curves.

Figure 3: Posterior means (—), pointwise credible intervals (light gray shading) and
global credible (union of light and dark gray shading) for the mean profile µ and the
regional effects {αi}.

Figure 4 shows point-wise and global credible intervals for the finite population
standard deviations sα(x) and sε(x) and their ratio. First examine sα(x), the finite
population standard deviation for the effect of region. The posterior intervals indicate
that the grouping by region has the largest effect from late fall to early spring, with
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regions being more similar during the summer. Next looking at sε(x), the finite popu-
lation standard deviation for the error, we see that the variability within regions is also
highest during the winter and spring months. However, the posterior distribution of
sα(x)/sε(x) indicates that, relative to the magnitude of the error, the effect of region is
largest in spring and fall, with a smaller effect during the summer and winter. In sum-
mer, there is little difference between the regional temperatures, so that the numerator
of sα(x)/sε(x) is small. In winter, however, the regions differ, but the denominator of
sα(x)/sε(x) is large. Looking again at the data in Figure 1, there does appear to be
some variability in the winter months that is not accounted for by the current set of
geographic regions. In particular, the Pacific and Continental regions appear to contain
subgroups of stations whose behavior is not captured by the mean profiles for those
regions. Although this problem may be seen even in the data for this example, a larger
dimensional functional response or a greater number of factors will make this model in-
adequacy much harder to diagnose, making the plots of the finite population variances
valuable diagnostic tools.

Figure 4: The first two panels show point-wise (light grey shading) and global (union
of light and dark grey shading) 95% credible intervals for the finite population stan-
dard deviations sα(x) (region) and sε(x) (error). The last panel gives the intervals for
sα(x)/sε(x).

3.2 Example II: Regional Climate Model Experiment

Regional climate models (RCMs) are used by climate scientists to model the evolution of
the climate system over a limited area, using discretized versions of physical processes.
These models address smaller spatial regions than do global climate models (GCMs),
also referred to as general circulation models. However, the higher resolution in RCMs
better captures the impact of local features such as lakes and mountains, as well as
subgrid-scale atmospheric processes that are only approximated in GCMs. Due to their
limited area, RCMs require boundary conditions, and these are often provided by the
output of GCMs. This is sometimes referred to as “downscaling” the GCM output using
the RCM. Climate scientists are interested in how much variability in the RCM output
is attributable to the RCM itself, and how much is due simply to large-scale boundary
conditions provided by the GCM (see e.g. Déqué et al. 2007).

The PRUDENCE project (Christensen et al. 2002) crossed the factors of RCM model
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choice and GCM boundary conditions in a designed experiment involving regional mod-
els over Europe from various climate research centers. We examine a subset of the
data consisting of control runs (1961-1990) for two RCMs crossed with two GCMs,
looking at output over the United Kingdom and Ireland. The two regional models we
consider are HIRHAM, developed in collaboration between the Danish Meteorological
Institute, the Royal Netherlands Meteorological Institute, and the Max Planck Institute
for Meteorology, and RCAO, developed at the Rossby Centre at the Swedish Meteoro-
logical and Hydrological Institute. The two GCMs are ECHAM4, from the Max Planck
Institute, and HadAm3H, from the Hadley Centre in the United Kingdom. Details
regarding all the models and references concerning their development can be found at
http://prudence.dmi.dk/.

Figure 5 shows average summer surface temperatures from 30 years of output in
the four combinations of RCM and GCM. Note that there are similar large-scale pat-
terns in the means for a particular set of GCM boundary conditions (compare between
columns), and there are similar smaller-scale patterns for a particular choice of RCM
(compare between rows). These observations suggest a decomposition of the mean tem-
perature response into the effect of RCM, effect of GCM, and their possible interaction.
The magnitude of these effects and their values over various regions can be used as a
diagnostic tool. For example, if there is disagreement between models in a given region,
then the model builders can focus their attention on that region. However, it is natural
to compare the magnitude of the disagreement to the models’ “internal” variability,
that is, the variability in model output from year to year. We use the Gaussian process
ANOVA model to quantify these sources of variability in the model output.

The interpretation of the ANOVA decomposition—in fact, of using a probabilistic
model at all—deserves special explanation here, in light of the fact that the output
from the climate models is deterministic. That is, a repeated run of the same climate
model with the same starting values will produce identical results. We have found the
Bayesian paradigm of probabilistic modeling to be particularly apt here, in a way that
the frequentist paradigm is not. In particular, it is easy to see that there are certain
aspects of the climate model that can never be known with certainty, since we cannot
run the model for an infinite length of time or with an infinite number of possible start-
ing values. These aspects are quantities governing the distribution of additional runs
we do not observe, and in this case we parameterize this distribution using an ANOVA
decomposition. Although we know that our particular output was generated determinis-
tically, it is perfectly acceptable to think of the (subjective) distribution for the output,
conditionally on these unobserved model quantities. This subjective interpretation of
the likelihood is of course not a new idea, but we find examples involving deterministic
climate models to be particularly convincing in illustrating the need for it.

Model Specification

Let Yijt(s) denote the output of RCM i with boundary conditions provided by GCM j,
at time t and location s. We code the years 1961 to 1990 as tk = k−15.5, k = 1, . . . , 30,
so that the model intercept corresponds to the midpoint of the time interval. Initial
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Figure 5: Average summer temperatures (◦C) in control runs (corresponding to 1961–
1990) of the Prudence Project experiment, taken over the 30 years of model output.

analyses showed a mild increasing trend in the data for all models, the magnitude of
which varied little between models or locations (see the Supplementary Material for
details). Therefore, we use an expanded version of (1) with a single time effect γ:

Yijt(s) = µ(s) + αi(s) + βj(s) + (αβ)ij(s) + γt + εijt(s).

We take µ to have a single intercept parameter, with µ ∼ GP (µ0, σ
2
µRρµ). Here we

take Rρ for all processes to be the Matérn correlation function on <2 with parameters
ρ and ν = 2. Because there are only two levels per factor, it is easy to reparameterize
the effects to satisfy the sum to zero constraints. This simplifies the Gibbs sampling
algorithm, as discussed in Section 2.3. Let i = −1 represent the RCM HIRHAM, and
let i = 1 represent the RCM RCAO. Likewise, let j = −1 represent GCM ECHAM4,
and let j = 1 represent GCM HadAm3H. Then let

αi = iα, α ∼ GP (0, σ2
αRρα)

βj = jβ, β ∼ GP (0, σ2
βRρβ

)
(αβ)ij = ij(αβ), (αβ) ∼ GP (0, σ2

αβRραβ
)

As a result of the reparameterization, the σ2 values are rescaled compared to their
definitions in Section 2.1, but this does not change the joint distribution. We interpret
µijt = µ+iα+jβ+ij(αβ)ij+γt as the expected or climatological temperature field under
RCM i and GCM j at time t. We can never know µijt with certainty, due to fluctuations



140 Functional ANOVA Modeling

around µijt from year to year within the model and the finite number of years of output
we observe. The goal of this analysis is to carry out statistical inference for µijt(s)
and the elements of its ANOVA decomposition, given the observed model output. We
assume that the observations are centered around µijt (that is, that the models are

in equilibrium), so we take εijt to have mean zero, with Yijt|µ, α, β, (αβ), σ2
ε , ρε

iid∼
GP (µ + iα + jβ + ij(αβ), σ2

ε Rρε
).

In specifying higher-level prior distributions, we follow the same kind of reasoning
about temperatures as in Section 3.1. Taking [−90◦C, 60◦C] to be the range of allowable
temperatures, we take µ0 to be uniform on this range, and we take the slope parameter
γ ∼ Unif(−5, 5), reasoning that a 5◦C change per year would cover the full range of
temperatures in only 30 years, a very extreme scenario. We again take each variance
parameter σ2 ∼ Unif(0, 1250), following the same rationale as in 3.1. Finally, we take
each range parameter ρ ∼ Unif(0, 1000), which implies that the maximum correlation
between neighboring cells is 0.9997. This allows for a variety of smoothness in the
realizations, from functions which vary at the grid-scale to those that are virtually flat
over the domain we are considering.

Posterior Sampling

Gibbs sampling for this example is straightforward, with normal full conditional distri-
butions available for µ0, µ, α, β, (αβ), and γ, with bold symbols indicating vectors of
the corresponding functions evaluated at centers of the RCM grid boxes. The (σ2, ρ)
parameters can again be blocked, first sampling ρ from its distribution conditional on
everything but σ2, then sampling σ2 from its truncated inverse gamma full conditional
distribution. We generated 20,000 iterations, which took approximately 24 hours on 2.8
GHz dual processor machine with 4 GB of memory. Visual inspection of the sample
paths showed evidence of very fast convergence of the chain to a stationary distribu-
tion, but we discarded the first 5,000 iterations as a conservatively long burn-in period.
The sample auto-correlation was relatively low for all hyper-parameters except σ2

αβ and
ραβ , the covariance parameters for the interaction field. The estimated effective sample
sizes for these parameters, based on fitting an AR process to the sample paths and
estimating the spectral density at zero, were each approximately 500. The remaining
parameters all had estimated effective sample sizes of approximately 2,000 or greater.
Further MCMC diagnostics are given in the Supplementary Material.

Graphical Posterior Summaries

Figure 6 shows the estimated posterior means for µ, α,β, and (αβ). There appears to
be very little interaction between the choice of RCM and the choice of GCM providing
its boundary conditions. Most of the difference in the mean response is due to the
choice of GCM, which imposes a large effect in terms of both magnitude and spatial
extent. With boundary conditions provided by the HadAm3H GCM, the output tends
to be warmer, particularly over the North Sea. The effect of RCM choice is smaller in
magnitude for the majority of locations, and the effects are more localized. The RCM
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RCAO is cooler in the west and warmer in the east, although the direction of the effect
varies greatly around the coastline.

Figure 6: Posterior means of the grand mean µ, the main effect of regional model α, the
main effect of global model β, and the interaction (αβ). The effects in the last three
plots are interpreted as deviations from the grand mean. Due to the ±1 coding, the
difference between levels are twice these values. The units for shading are ◦C.

Figure 7 makes the comparison of the magnitude of the effects more explicit, plotting
the posterior means for the finite population standard deviations corresponding to each
effect. Because there are only two levels, the first three panels are directly related to the
parameters whose means are plotted in Figure 6. Specifically, one can calculate under
this parameterization that s2

α(x) = 2α2(x), s2
β(x) = 2β2(x), and s2

αβ(x) = 4(αβ)2(x).
The finite population standard deviation for the error or internal variability term, anal-
ogous to the error sum of squares, is large overall, with a mean that is larger over land
than over oceans. It appears that the choice of GCM is the largest source of variability
for many locations, particularly in the North Sea.

Figure 7: Posterior means of the finite population standard deviations for regional model
(sα), global model (sβ), interaction (sαβ), and internal variability (sε). The units for
shading are ◦C.
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However, these plots show only the posterior means of the finite population standard
deviations; to make inference about their relative magnitudes, we need to take into
account their joint posterior distribution. One way of doing this is to plot the posterior
probability of specific relationships between the finite population variances, as in Figure
8. The probability that the effect of regional model exceeds internal variability is large
only for a few locations along the eastern coastline. The probability that the effect of
global model exceeds internal variability is large mainly for locations in the North Sea,
as well as a few locations to the northwest where the GCM HadAM3H tends to produce
cooler temperatures. However, there are a number of locations for which the variability
due to regional model exceeds that of global model with high probability. This indicates
that although both RCM and GCM have relatively small effects relative to the internal
variability of the models, the choice of RCM does make a difference in the downscaling
of the GCM for many locations.

Figure 8: Shading indicates the posterior probabilities for relationships between the
finite population variances. The first, P (s2

α > s2
ε), is the posterior probability that the

effect of regional model is larger than the internal variability of the models. Likewise,
P (s2

β > s2
ε) is the posterior probability that the effect of global model is larger than in-

ternal variability. These are greater than 95% for only a fraction of the model locations.
The final panel, P (s2

α > s2
β), is the posterior probability that the effect of regional model

is larger than the effect of global model. Probabilities less than 50% are not shaded.

4 Discussion

We have presented a general framework for Bayesian functional ANOVA modeling in
arbitrary dimension with any number of crossed and/or nested factors. The model as-
signs Gaussian process prior distributions to each batch of functional parameters, cor-
responding to the levels of the various main effects and interactions. We impose prior
dependence on each batch so that the functions satisfy identifiability constraints. These
facilitate interpretation and numerical sampling of the unknown parameters. The pos-
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terior distributions of the finite population variances, which are model-based analogues
of the traditional ANOVA decompositions of variance, can be compared graphically to
analyze the contribution of each factor over various regions of the functional domain. In
addition, we can obtain both point-wise and global credible intervals for any functional
quantity of interest in the model. These intervals automatically incorporate uncertainty
about the smoothness of the functions, by integrating over prior uncertainty in the co-
variance parameters for each batch of Gaussian processes. While it would be possible
to fit the model in a non-Bayesian framework, for example using maximum likelihood
estimation, we expect it would be quite difficult to incorporate parameter uncertainty
into inference for the functional effects, for example to obtain a plot like Figure 8.

Our statement of the model in Section 2.1 was general, making very few assump-
tions about the form of the mean or covariance functions for the underlying Gaussian
processes. In our examples we have used simple isotropic covariance functions of the
sort often used in geostatistical models, although this is not a requirement of the model.
The computational burden of using a strictly positive covariance function of this type
will increase with the number of x values at which the response function is evaluated,
as can be seen in the drastic difference in the time required to fit the model in Section
3.1, with 12 distinct x values, and Section 3.2, with 520 distinct x values. This is due to
the computational difficulty of evaluating the determinant and inverse of the covariance
matrices in the model, which grows as O(p3), where p is the number of distinct x values.
To facilitate computation, it may be desirable to use a correlation with compact support
(Gneiting 2002), or to impose Markovian structure as in the generalized additive models
of Fahrmeir and Lang (2001).

In a related vein, Zhang et al. (2009) recently demonstrated that multivariate ob-
servations with areal spatial structure may be efficiently modeled by treating space as
a factor in smoothed ANOVA models. These are ANOVA models in which some or all
of the factors are constrained or given prior distributions (Hodges et al. 2007). In ad-
dition to our emphasis on a functional interpretation and the subsequent visualization
of the finite population variances, we see the main distinction between this paper and
ours being that Zhang et al. (2009) impose spatial structure through the ANOVA itself
(showing how it relates to multivariate conditional autoregressive models), whereas we
carry out the ANOVA decomposition on the functions (including spatial fields), and
only then assign Gaussian process priors that induce a particular correlation structure.
However, it seems that including space as a factor provides an interesting way forward
in specifying computationally tractable models for areal spatial data when there are
additional categorical factors, and perhaps some of the posterior summary measures we
have suggested in this paper may aid in interpreting such models.

Choices of the mean and covariance structure in the models we propose can and
should be tailored to each particular data analysis, although we prefer simple prior
choices over more complicated ones for the reasons discussed in Section 2.2. Note
that although the prior distributions for the effects may be stationary, the process of
conditioning on the observations introduces a variety of interesting nonstationarities, as
illustrated in the plots of the posterior distributions for the finite population variances,
which differ markedly across the domain of the functions.
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Our focus has been on estimation and graphical summaries. However, it is possible
to extend this framework to allow for more explicit testing of the possibility of null
effects. To allow comparison of sub-models in which entire factors or sets of interactions
are present or absent, one may consider introducing latent indicator variables for the
event that a particular variance component is identically zero, an idea following from
the seminal paper of George and McCulloch (1993). These latent variables would need
to be specified hierarchically, if one wanted to constrain, for example, lower order terms
to be nonzero when associated higher order interactions were nonzero. A more detailed
specification could also allow for the examination of various constraints within a given
factor, for example that two levels are equal to each other but a third level is different.
One way to achieve this would be to model the levels as a mixture distribution and
determine their similarity by the posterior probability that they fall into the same com-
ponent of the mixture. This would be a functional version of the framework suggested
by Nobile and Green (2000).

Supplementary Material

Preliminary Analyses for Example II

We began by using least squares estimation to fit linear models point-wise, as had been
done in previous analyses of this data (Déqué et al. 2007). In particular, we fit two
models at each of the 520 spatial locations, with and without interactions between time
and climate model choices. That is, one model was an ANCOVA model with main
effects of RCM and GCM, an interaction between the two, and a single slope for all
RCM-GCM combinations, while the second was equivalent to fitting four different linear
regressions, one for each RCM-GCM combination. At none of the locations was there
evidence for preferring the more complicated model, as measured by a p-value for that
location of less than 0.05. (The lowest p-value was 0.18.) This suggested to us that the
differences between these runs of the climate models are primarily between their means,
and not their slopes.

We then considered the question of whether the slope should be treated as constant
in space. We made maps of the estimated coefficients from the simpler model across
space. The first four of these looked almost identical to Figure 6. The map for the
slopes was noticeably smoother and flatter in space than any of the other effects. To
confirm this visual impression, we estimated the effective range of each field (the dis-
tance beyond which correlations between observations are less than 0.05) by fitting a
Matérn covariance function with ν = 2 to each field via maximum likelihood and then
numerically determining the effective range for this function. The effective range for
the slope field was 511 km, larger than any of the other effects. (The next largest was
the effect of GCM, at 294 km.) Therefore, we decided to use a simpler model in which
the slope is taken to be constant across space.
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MCMC Diagnostic Plots
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Figure 9: MCMC diagnostic plots for hyper-parameters from Example I. The first
column shows their sample paths for all 20,000 iterations of the sampler. Although con-
vergence appears to happen very quickly visually, we discarded the first 5,000 iterations
for burn-in. The second two columns show the estimated autocorrelation and partial
autocorrelation functions for these remaining iterations only. Mixing is generally good,
and the lowest effective sample size is for ρα at 1,175.
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Figure 10: MCMC diagnostic plots for hyper-parameters from Example II. The first
column shows their sample paths for all 20,000 iterations of the sampler. Although
convergence appears to happen very quickly visually, we discarded the first 5,000 iter-
ations for burn-in. The second two columns show the estimated autocorrelation and
partial autocorrelation functions for these remaining iterations only. The poorest mix-
ing occurs for σαβ and ραβ , the covariance parameters governing the interaction term.
The effective sample sizes for these parameters are 492 and 427, respectively. All other
hyper-parameters have effective sample sizes of approximately 2,000 or larger.
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