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Hierarchical Bayesian Analysis of the Seemingly
Unrelated Regression and Simultaneous

Equations Models Using a Combination of
Direct Monte Carlo and Importance Sampling

Techniques

Tomohiro Ando∗ and Arnold Zellner†

Abstract. Computationally efficient simulation methods for hierarchical Bayesian
analysis of the seemingly unrelated regression (SUR) and simultaneous equa-
tions models (SEM) are proposed and applied. These methods combine a direct
Monte Carlo (DMC) approach and an importance sampling procedure to calculate
Bayesian estimation and prediction results, namely, Bayesian posterior densities
for parameters, predictive densities for future values of variables and associated
moments, intervals and other quantities. The results obtained by our approach
are compared to those yielded by use of MCMC techniques. Finally, we show that
our algorithm can be applied to the Bayesian analysis of state space models.

Keywords: Bayesian estimation and Prediction, Direct Monte Carlo, Hierarchical
Priors Importance sampling, Markov Chain Monte Carlo

1 Introduction

The seemingly unrelated regression (SUR) model with fixed parameters was introduced
by Zellner (1962, 1963) who used a generalized least squares approach. A Bayesian esti-
mation approach for the SUR model was first introduced by Zellner (1971), followed later
by various other techniques, e.g., the likelihood approach (Fraser et al., 2005), Bayesian
analyses, the Bayesian method of moments, a Direct Monte Carlo approach (Zellner
and Ando, 2008a) and so on. Applications of Markov-Chain Monte Carlo (MCMC)
methodology to the SUR model, under various assumptions, have been conducted in
many studies, including Percy (1992, 1996), Chib and Greenberg (1995), and Smith and
Kohn (2000).

As well as the SUR model, the simultaneous equations model (SEM) has been widely
employed to analyze the behavior of economies and other multivariate systems; see e.g.,
Zellner and Chen (2002), Aliprantis et al. (2007), Kibambe and Zellner (2007), and the
references given therein.
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66 Hierarchical Bayesian Analysis of the SUR and SEM Models

In this paper we analyze SUR models and SEMs using a hierarchical Bayesian ap-
proach. One of the approaches for estimating these models is via MCMC simulations.
Using MCMC, one can approximate the posterior densities for each of the parameters
and construct a Bayesian predictive density for future observations that is useful for
prediction. Thanks to recent advancement of computer technology, Bayesian analyses
using MCMC techniques have become widely utilized. However the use of MCMC meth-
ods involves some problems. First, the length of burn-in period has to be determined.
Second, we have to use an appropriate proposal density so that the MCMC algorithms
have appropriate acceptance rates. Therefore, there are many papers that investigate
acceptance rates for MCMC procedures; see, e.g. Roberts and Rosenthal (2001). Third,
there is no universal rule for determining the number of MCMC samples to employ. Fur-
thermore, we still have to check the convergence of MCMC algorithms. Although many
methods have been proposed (Geweke (1992), Raftery and Lewis (1992, 1995), Hei-
delberger and Welch (1983), Schruben (1982), Gelman and Rubin (1992), Brooks and
Gelman (1997), and Zellner and Min (1995)), there is no guarantee that the MCMC
algorithms produce samples from the desired posterior distributions in a finite run.

Recently, Zellner and Ando (2008a, 2008b) developed a new efficient Bayesian es-
timation approach based on a direct Monte Carlo (DMC) approach (see e.g., Geweke
(2005) for a general definition of a DMC algorithm) for the Bayesian analysis of the
SUR model and SEM. The difference between our paper and Zellner and Ando (2008a,
2008b) is that in the former, instead of a Jeffreys’s prior, a hierarchical prior on the
coefficients is used for the SUR model and similarly for the SEM. This modification
makes the inference problem more complicated. Unfortunately, the algorithms in Zell-
ner and Ando (2008a, 2008b) are not applicable for the hierarchical Bayesian analysis
of the SUR model and the SEM.

Herein we develop new efficient Bayesian estimation and prediction procedures that
do not involve the computational problems of MCMC. The method combines a DMC and
an importance sampling procedure. We show that use of the developed method permits
easy computation of posterior densities of the parameters and predictive densities for
future values. In a similar manner, Zellner and Ando (2008c) combined a DMC approach
and an importance sampling procedure for Bayesian analysis of Student-t SUR models
using a diffuse prior. Zellner and Ando (2008c) also showed that inequality restrictions
can be incorporated in the approach. The main differences between Zellner and Ando
(2008c) and our paper are that (a) we use a hierarchical prior on the coefficients, instead
of a diffuse prior and (b) we treat both the SUR and SEM models, while Zellner and
Ando (2008c) considered only the SUR model.

As pointed out by a referee, with importance sampling within DMC one can make
use of i.i.d. sampling and Laws of Large numbers and Central Limit Theorems to
analyze the accuracy of the results. Because the draws from our procedure are i.i.d.,
we do not need various types of MCMC convergence criteria based on statistical testing
procedures, e.g., Geweke (1992)’s comparison of the equivalence of means calculated
by draws from first part and the last part of output samples. We can easily perform
other statistical tests on variances and other moments, where such tests are much more
complicated for MCMC due to the autocorrelation in MCMC output.
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The structure of the remainder of this paper is as follows. In section 2, we briefly
review the SUR model and several Bayesian model estimation procedures. Section 3
presents an efficient estimation procedure for the SUR model. Also, our algorithm
permits us to impose restrictions on the parameters’ ranges. In Section 4, we provide
an overview of the SEM and then show how our approach can be applied to the SEM.
Numerical studies are conducted in Section 5 and 6. For comparative purposes the
performance of our algorithm is compared to to that of an MCMC algorithm. We also
point out that our approach can be applied to the Bayesian analysis of state space
models. Section 7 concludes.

2 Preliminaries: SUR Model and Several Inference Pro-
cedures

2.1 Overview of SUR Model

The linear SUR model involves a set of regression equations with cross-equation param-
eter restrictions and correlated error terms having differing variances. Algebraically, the
SUR model is given by:

yj = Xjβj + uj , j = 1, ...,m, with E[uiu
′
j ] =

{
ωijI, (i 6= j)
ω2

i I, (i = j) , (1)

Here yj and uj are n × 1 vectors, Xj is a n × pj matrix of rank pj of observations,
and βj is a pj-dimensional coefficient vector. The domains of parameter values are
given as follows: −∞ < βjr < ∞, (r = 1, ..., pj , j = 1, ..., m), −∞ < ωij < ∞,
(i, j = 1, ...,m, i 6= j) and 0 < ωj < ∞, (j = 1, ...,m). As shown in (1), the equations
have different independent variables and variances. Also, the model permits error terms
in different equations to be correlated. In matrix form, the model can be expressed as
y = Xβ + u, u ∼ N(0,Ω ⊗ I), where N(µ,Σ) denotes the normal distribution with
mean µ and covariance matrix Σ, ⊗ is the tensor product, Ω is an m ×m symmetric
matrix with diagonal elements {ω2

1 , ..., ω2
m}, and the off-diagonal ijth elements are ωij ,

y′ = (y′1, ..., y
′
m), X = diag{X1, ..., Xm}, β′ = (β′1, ..., β

′
m) and u′ = (u′1, ..., u

′
m).

The normal likelihood function is

L(y|β, Ω) =
1

(2π)nm/2|Ω|n/2
exp

[
−1

2
tr

{
RΩ−1

}]
,

where ”tr” denotes the trace of a matrix, |Ω| = det(Ω) is the value of the determinant
of Ω, the ijth element of the m×m matrix R = (rij) is rij = (yi−Xiβi)′(yj −Xjβj).

The problem is how to estimate the model parameters. The maximum likelihood
estimates of β and Ω are obtained by maximizing the likelihood function. Zellner
(1962, 1963) considered the parameter estimation problem from the frequentist points
of view. If Ω is known, a parameter estimate can be obtained by using the generalized
least squares (GLS) approach, say β̂. In practice, however, β̂ depends on Ω that is
usually unknown and thus “feasible” generalized least squared estimates have been
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proposed. The ordinary least squares residuals for each equation can be used to estimate
Ω consistently. Furthermore, the maximum likelihood estimates of β and Ω can be
obtained by using an iterative SUR approach.

In the following sections we briefly review some past Bayesian studies.

2.2 Markov chain Monte Carlo Approach

Currently, one of the most widely used methods for calculating an approximation to
the posterior of the SUR model is the MCMC approach that is described and applied
in many recent Bayesian econometrics and statistics texts. Also, Zellner (1971), Press
(1972), Box and Tiao (1973), Percy (1992), and Srivastava and Giles (1987) derived and
studied the posterior distributions of the parameters of the normal SUR model.

In the absence of prior knowledge, use of Bayesian analysis with noninformative
priors is very common in practice. One of the most widely used noninformative priors,
introduced by Jeffreys (1946, 1961), is Jeffreys’s invariant prior:

π1(β, Ω) = π1(β)π1(Ω) ∝ |Ω|−m+1
2 , (2)

which is proportional to the square root of the determinant of Fisher information matrix.
One of the advantages of the use of Jeffreys’s prior is that it is invariant under any one-
to-one reparameterization of the model.

The joint posterior density function is then given by Bayes’ theorem as

g(β,Ω|D) ∝ |Ω|−(n+m+1)/2 exp
[
−1

2
tr

{
RΩ−1

}]
.

The conditional posteriors g(β|Ω, D) and g(Ω|β, D) are

g(β|Ω, D) = N(β̂, Ω̂β) and g(Ω|β, D) = IW (R, n), (3)

where IW (·, ·) denotes the inverse Wishart distribution, and

β̂ = {X ′(Ω−1 ⊗ I)X}−1X ′(Ω−1 ⊗ I)y,

Ω̂β = (X ′(Ω−1 ⊗ I)X)−1,

Note that the conditional posteriors of β and Ω depend upon each other. Because the
conditional posterior densities β|Ω, y and Ω|β, y are available, the standard SUR model
is also amenable to a 2-block Gibbs sampling formulation; see e.g., Percy (1992).

Sometimes one has prior information regarding values of the coefficient vectors β.
In this case, one can use a normal prior for β,

π2(β, Ω) = π2(β)π2(Ω), with π2(β) = N(β0, A
−1
β ), π2(Ω) ∝ |Ω|−m+1

2 (4)

which leads to the following conditional posteriors

g(β|Ω, D) = N(β̄, Ω̄β) and g(Ω|β, D) = IW (R, n),
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with

β̄ = (X ′(Ω−1 ⊗ I)X + Aβ)−1(X ′(Ω−1 ⊗ I)Xβ̂ + Aββ0),
Ω̄β = (X ′(Ω−1 ⊗ I)X + Aβ)−1.

As well as in the above case, we have to use a numerical approach to compute marginal
posterior densities, moments, etc.

Recently, Zellner and Ando (2008a) developed a new model estimation procedure
based on a DMC method, building on earlier work by Zellner and Chen (2002). This
DMC procedure can be applied to simultaneous equations models and many others. In
the next section, we review their DMC approach.

2.3 A Direct Monte Carlo Approach

Zellner and Ando (2008a) derived a direct Monte Carlo procedure for Bayesian analysis
of the SUR model. In their paper, the standard SUR model (1) is reformulated as
follows:

{
y1 = X1β1 + e1 ≡ Z1b1 + e1,

yj = Xjβj +
∑j−1

l=1 ρjl(yl −Xlβl) + ej ≡ Zjbj + ej , j = 2, ...,m,
(5)

where the n× (pj + j − 1) matrices Zj are functions of βj−1, ..., β1, and

E[eie
′
j ] =

{
O, (i 6= j)

σ2
i I, (i = j) , and Σ = diag{σ2

1 , ..., σ2
m},

where O is a zero matrix.

Readers may wonder why we transform the standard SUR model (1) into (5). The
reason is that we can draw the posterior samples directly from the joint posterior dis-
tribution as described below. It is true that one can use MCMC to draw posterior
samples. However, as pointed out in Section 1, the use of MCMC usually involves many
complicated decisions to be made by MCMC users. We thus consider the transformed
SUR model (5) that permits use of a DMC approach.

Zellner, et al (1988), Zellner and Chen (2002) and Zellner and Ando (2008b) consid-
ered this transformation in the context of simultaneous equations modeling. A similar
transformation was considered in Fraser et al. (2005). Note that the diagonal elements
of Ω and Σ are different.

Zellner and Ando (2008a) pointed to the capability of transforming from the param-
eters of the transformed model in (5) back to the parameters of the original formulation
in equation (1). There is a one to one relation between the parameters of the SUR
model in (1) and those of the transformed model in (5). The likelihood function of the
parameters θ′ = (b′1, ..., b

′
m, σ2

1 , ..., σ2
m)′ is

L(y|b, Σ) =
m∏

j=1

1
(2πσ2

j )n/2
exp

[
− (yj − Zjbj)′(yj − Zjbj)

2σ2
j

]
.
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In contrast to the standard model (1), we can decompose the likelihood function thanks
to E[eie

′
j ] = O, (i 6= j). The prior density function specified in (2) expressed in terms

of {b,Σ} is

π(b, Σ) ∝ |Ω(b,Σ)|−m+1
2 |J | =

m∏

j=1

(σ2
j )−

m+1
2 ×

m−1∏

j′=1

(σ2
j′)

m−j′ =
m∏

j=1

(σ2
j )

m−2j−1
2 , (6)

where |J | is a Jacobian factor. The joint posterior density of parameters is then

π(θ|D) ∝
m∏

j=1

(σj)−(n−m+2j+1) exp

[
− (yj − Zjbj)′(yj − Zjbj)

2σ2
j

]
,

which is equivalent to the conditional normal inverse-gamma posterior

π(bj |bj−1, ..., b1, σ
2
j , D) = N

(
b̂j , σ

2
j (Z ′jZj)−1

)
,

π(σ2
j |bj−1, ..., b1, D) = IG (γ̂j/2, ν̂j/2) ,

where for j = 1, ...,m, IG(·, ·) denotes the inverse Gamma distribution, and

b̂j =
(
Z ′jZj

)−1
Z ′jyj ,

γ̂j =
(
yj − Zj b̂j

)′ (
yj − Zj b̂j

)
,

ν̂j = n−m− pj + j + 1.

Then a direct Monte Carlo sampling procedure for Bayesian analysis of the standard
SUR model (Zellner and Ando (2008a)) is given as follows.

A direct Monte Carlo sampling procedure:

Step 1 (initialization). Fix the order of a set of m equations. Set the number of samples
N to be generated. Set j = 1. Generate σ2

1
(k), k = 1, ..., N , and insert the drawn values

in π(b1|σ2
1 , D). Then make a draw b

(k)
1 from π(b1|σ2

1
(k)

, D), for k = 1, ..., N .

Step 2 Increase the iteration index j by one j → (j + 1). Draw σj
(k) from the

conditional inverse gamma density π(σ2
j |b(k)

j−1, ..., b
(k)
1 , D), and then generate b

(k)
j from

π(bj |b(k)
j−1, ..., b

(k)
1 , σj

(k), D), for k = 1, ..., N .

Step 3 Repeat Step 2 sequentially until j = m.
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3 Hierarchical Bayesian Analysis of SUR Models

3.1 Hierarchical Bayesian SUR Modeling

Here, we again employ the transformed model (5). The likelihood function of the
parameters θ′ = (b′1, ..., b

′
m, σ2

1 , ..., σ2
m)′ is

L(y|b, Σ) =
m∏

j=1

1
(2πσ2

j )n/2
exp

[
− (yj − Zjbj)′(yj − Zjbj)

2σ2
j

]
.

In this paper, we shall consider the informative prior specification (4) for β in the
original model and introduce a hierarchical prior structure:

π(β, Ω, λ) = π(β|λ)π(Ω)π(λ). (7)

Here we use a normal prior for β, and a diffuse prior for Ω as given in Section 2.3, and
a gamma prior G(a0, b0) for π(λj):

π(β|λ) ∝ exp
{
−1

2
(β − β0)

′Γ(λ, A)(β − β0)
}

,

π(Ω) ∝ |Ω|−(m+1)/2,

π(λ) =
m∏

j=1

π(λj) ∝
m∏

j=1

(λj)a0−1 exp{−λj/b0},

where β′ = (β′1, ..., β
′
m), β′0 = (β′01, ..., β

′
0m) and

Γ−1(λ, A) =




λ1A11

√
λ1λ2A12 · · · √

λ1λmA1m√
λ2λ1A21 λ2A22 · · · √

λ2λmA2m

...
...

. . .
...√

λmλ1Am1

√
λmλ2Am2 · · · λmAmm




≡




Γ11 Γ12 · · · Γ1m

Γ21 Γ22 · · · Γ2m

...
...

. . .
...

Γm1 Γm2 · · · Γmm




is the covariance matrix of β. Here λj are scale parameters for the βj and Aij is a
pre-specified matrix. The specification of the hierarchical prior, including Aij and β0j

might come from various sources of information, e,g., economic theory, knowledge of
biology, past studies, intuition, and so on.

For convenience, we shall decompose this prior structure by using the following
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transformation:




β1 = β01 + w1,
β2 = β02 + Γ21Γ−1

11 (β′1 − β′01)
′ + w2,

β3 = β03 + Γ3,1∼2Γ−1
1∼2,1∼2(β

′
1 − β′01, β

′
2 − β′02)

′ + w3,
...

βm = β0m + Γm,1∼m−1Γ−1
1∼m−1,1∼m−1(β

′
1 − β′01, ..., β

′
m−1 − β′0m−1)

′ + wm,

(8)

with




Var(w1) = Γ11 ≡ λ1W1,
Var(w2) = Γ22 − Γ12Γ−1

11 Γ21 ≡ λ2W2,
Var(w3) = Γ33 − Γ3,1∼2Γ−1

1∼2,1∼2Γ1∼2,3 ≡ λ3W3,
...
Var(wm) = Γm,m − Γm,1∼m−1Γ−1

1∼m−1,1∼m−1Γ1∼m−1,m ≡ λmWm

(9)

and

Cov (wi,wj |Γ,β1, ..., βm) = O,

which follows from direct verification. Here the pj × pj matrices Γjj are the j-th block
diagonal elements of Γ(λ, A), and Γj,1∼k−1 is given as = (Γj,1, ..., Γj,k−1). Also, W1 =
A11, W2 = A22 −A12A

−1
11 A21, and so on. Then we have

π(βj |β1, ..., βj−1, λj) ∝ exp
{
−λj

2
(βj − β∗0j)

′Wj(βj − β∗0j)
}

,

with

β∗0j = β0j + Γj,1∼j−1Γ−1
1∼j−1,1∼j−1(β

′
1 − β′01, β

′
2 − β′02, ..., β

′
j−1 − β′0j−1)

′.

This orthogonal transformation is seen to depend on the ordering of the equations.
However, our algorithm is order invariant as shown in the next section.

Under this prior specification, we transform the prior (7) to that for {b,Σ,γ} as
follows. First, there is a one to one mapping between the first pj elements of bj and βj .
Defining λj = γj/σ2

j , the corresponding prior for bj becomes

π(bj |b1, ..., bj−1, σ
2
j , γj) = (2π)−(pj−j+1)/2(γj/σ2

j )(pj−j+1)/2|Dj |1/2
+

× exp

{
− γj

2σ2
j

(bj − b0j)′Dj(bj − b0j)

}
,

in which |D|+ is the product of (p− j + 1) nonzero eigenvalues of Dj and

Dj =
(

Wj Opj ,j−1

O′pj ,j−1 Oj−1,j−1

)
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with Opj ,j−1 being a pj × (j − 1) dimensional zero matrix, and b0j = (β∗0j
′
, 0, ..., 0)′.

The transformation of the prior π(Ω)π(λ) is then

π(Σ, γ) ∝ |Σ|−(m+1)/2

(
γj

σ2
j

)a0−1

exp

{
− γj

σ2
j b0

}
× |Jm|,

and |Jm| is a Jacobian term for the transformation given by,

|Jm| = (σ2
1)m−1 × (σ2

2)m−2 · · · × (σ2
m−1)

1 × (σ2
1 × · · · × σ2

m)−1 =
m∏

j=1

(σ2
j )m−j−1.

For example, the Jacobian of the transformation from {β1, β2, ω
2
11, ω

2
12, ω12, λ1, λ2} to

{b1, b2, σ
2
1 , σ2

2 , γ1, γ2} is

|J2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂β′1
∂b1

∂β′2
∂b1

∂ω12

∂b1

∂ω2
1

∂b1

∂ω2
2

∂b1

∂λ1

∂b1

∂λ2

∂b1
∂β′1
∂b2

∂β′2
∂b2

∂ω12

∂b2

∂ω2
1

∂b2

∂ω2
2

∂b2

∂λ1

∂b2

∂λ2

∂b2
∂β′1
∂σ2

1

∂β′2
∂σ2

1

∂ω12
∂σ2

1

∂ω2
1

∂σ2
1

∂ω2
2

∂σ2
1

∂λ1
∂σ2

1

∂λ2
∂σ2

1
∂β′1
∂σ2

2

∂β′2
∂σ2

2

∂ω12
∂σ2

2

∂ω2
1

∂σ2
2

∂ω2
2

∂σ2
2

∂λ1
∂σ2

2

∂λ2
∂σ2

2
∂β′1
∂γ1

∂β′2
∂γ1

∂ω12
∂γ1

∂ω2
1

∂γ1

∂ω2
2

∂γ1

∂λ1
∂γ1

∂λ2
∂γ1

∂β′1
∂γ2

∂β′2
∂γ2

∂ω12
∂γ2

∂ω2
1

∂γ2

∂ω2
2

∂γ2

∂λ1
∂γ2

∂λ2
∂γ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I O 0 0 0 0 0

O

(
I
0

) (
0
σ2

1

)
0 0 0 0

0′ 0′ ρ21 1 ρ2
21 −γ1/(σ2

1)2 0
0′ 0′ 0 0 1 0 −γ2/(σ2

2)2

0′ 0′ 0 0 0 1/(σ2
1) 0

0′ 0′ 0 0 0 0 1/(σ2
2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= σ2

1 × (σ2
1 × σ2

2)−1.

In the same way, we can derive the Jacobian term for any dimension m.

Then, the transformed prior for Σ and γ is

π(Σ,γ) ∝
m∏

j=1

[
(σ2

j )
m−1

2 +a0−j−1(γj)a0−1 exp

{
− γj

σ2
j b0

}]
.

The conditional posterior density of parameters of {b,Σ}, given the values of λ =
(λ1, ..., λm)′, j = 1, ..., m, is

π(bj |bj−1, ..., b1, σ
2
j ,λ, D) = N

(
b̂j , σ

2
j (Z ′jZj + γjDj)−1

)
, (10)

π(σ2
j |bj−1, ..., b1, λ, D) = IG

(
âj/2, ĥj/2

)
, (11)
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for j = 1, ..., m, and

b̂j =
(
Z ′jZj + γjDj

)−1
[(

Z ′jZj

)−1
b̃ + λjDjb0

]
,

b̃j =
(
Z ′jZj

)−1
Z ′jyj ,

âj = n−m− 2a0 + 2j + 1,

ĥj = γj/b0 + (n− pj + j − 1)ŝ2
j +

(
b̂j − b0j

)′ (
Z ′jZj + γjDj

)−1
(
b̂j − b0j

)

ŝ2
j =

(
yj − Zj b̃j

)′ (
yj − Zj b̃j

)
/(n− pj + j − 1).

Given a value of λ, we can generate the conditional posterior samples of {b(k),Σ(k)}
for k = 1, ..., N from π(b, Σ|y,λ). The problem is, whatever the form of prior for λ, to
our knowledge, an analytical expression for the marginal posterior density of λ can not
be obtained. In this paper, we shall employ an importance sampling procedure, which
is a general technique for establishing the properties of a particular distribution, while
only having samples generated from a different distribution rather than the distribution
of interest.

From Bayes’ theorem, we have

π(b, Σ, λ|y) ∝ L(y|b, Σ)π(b,Σ,λ).

If we generate the values λ(k) for k = 1, ..., N from a density πS(λ), and then generate
the conditional posterior samples of {b,Σ} from π(b, Σ|λ, y), the samples {b(k),Σ(k), λ(k)}
obtained are generated from the following density: π(b, Σ|λ,y)πS(λ). As an importance
sampling density function πS(λ), we can use the inverse gamma density. Also, we can
use an inverse gamma prior density for the elements of λ. In each of the densities, a
gamma prior density with parameter 1 and 0.0001 was used. To sample {b,Σ,λ} from
the joint posterior density π(b,Σ,λ|y), we shall use an importance sampling technique.
Taking π(b, Σ|λ,y)πS(λ) as a proposal distribution, π(b, Σ, λ|D) as the actual joint
posterior distribution, the importance weight is given as

wk =
π(b(k), Σ(k), λ(k)|y)

π(b(k),Σ(k)|λ(k), y)πS(λ(k))
.

Therefore, we can generate joint posterior samples {b(k), Σ(k),λ(k)} directly. Note that
the numerator for the weights is an unnormalized posterior, which is why we need to
normalize the weights.

One issue with importance sampling is the behavior of the weights. It is most
desirable that they be bounded, but they should at least have finite variances so the
Central Limit Theorem and the delta-method can be used. It is difficult to show this
theoretically. However, if it is true, one can see numerically that the average squared
weights appear to settle down to a constant value. This is easier to check than looking
for convergence in MCMC. We have checked this property for our algorithm using the
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simulation setting in Section 5.1. As a result of 100 repetitions, we have found that the
average squared weight appears to settle down to a constant value.

The marginal posterior density function π(λ|y) is approximated as

π(λ|y) ≈
N∑

k=1

δ(λ = λ(k))× vk,

where vk = wk/(
∑N

l=1 wl) are the normalized importance weights, and δ(λ = λi) is
the conditional indicator density function for λ = λi. Therefore, we can easily sample
λ from the marginal posterior density. Given the posterior samples of the degrees of
freedom parameter λ(k) (k = 1, ..., N), we can also generate the conditional posterior
samples of {b(k),Σ(k)} from π(b, Σ|y,λ(k)) for k = 1, ..., N .

A Monte Carlo sampling procedure:

Step 1 (initialization). Fix the order of a set of m equations. Set the number of samples
N to be generated. Generate λ(k) from π(S)(λ), k = 1, ..., N . Set j = 1.

Step 2 Generate σ2
1
(k) from (11), k = 1, ..., N , and insert the drawn values in

π(b1|σ2
1 , λ, y). Then make a draw b

(k)
1 from π(b1|σ2

1
(k)

,λ, y) in (10), for k = 1, ..., N .

Step 3 Increase the iteration index j by one j → j + 1. Draw σj
(k) from the con-

ditional inverse gamma density π(σ2
j |b(k)

j−1, ..., b
(k)
1 , λ, y), and then generate b

(k)
j from

π(bj |b(k)
j−1, ..., b

(k)
1 , σj

(k), λ, y), for k = 1, ..., N .

Step 4 Repeat Step 3 sequentially until j = m.

Step 5 Sample from the generated samples {b(k), Σ(k),λ(k)} by using the importance
sampling technique.

3.2 Some Remarks

We investigate whether the developed algorithm is invariant to the ordering of the set of
equations. Consider the m = 2 equation SUR model and fix the ordering of equations
as 1 and then 2. In this case, the transformed prior for β2 is

π(β2|β1, λ2) ∝ exp
{
−λ2

2
(β2 − β∗02)

′W2(β2 − β∗02)
}

,

with W2 = A22−A12A
−1
11 A21. We can see that the matrix W2 does not contain λ, other

than λ2. Thus, under m = 2, the transformation of the original prior π(β|λ) in (7) to
the transformed prior π(βj |β1, ..., βj−1, λj) is order invariant.

Next we consider the case when m = 3 and fix the ordering of equations as 1, 2 and
then 3. We already know that the equations 1 and 2 are order invariant. First, note
that, for general matrices A, B, C, and D with a × a, a × b, b × a, b × b, we have the
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following formula
(

A B
C D

)−1

=
(

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

Using this formulae, the transformed prior for β3 is

π(β3|β2, β1, λ3) ∝ exp
{
−λ3

2
(β3 − β∗03)

′W3(β3 − β∗03)
}

,

where each element of W3 is a function of the pre-determined matrices Aij , i, j = 1, 2, 3.
This can be easily verified. Thus, we again see that the transformation of the original
prior π(β|λ) in (7) to the transformed prior π(βj |β1, ..., βj−1, λj) is order invariant. In
the same way, we can proof the order invariance for any m.

Also, Zellner and Ando (2008a) investigated the relationship between Ω in the origi-
nal SUR model and Σ in the transformed model (9). When we make an inference about
Ω based on the generated samples {Σ(k), b(k); k = 1, ..., N} from a direct Monte Carlo
sampling procedure, we can use the following recursive relations between Ω and Σ:

ω2
1 = σ2

1 ,

ω2
j =

j−1∑

k=1

ρ2
jkω2

k +
j−1∑

k,l=1, k<l

ρjkρjlωlk + σ2
j , (j 6= 1), (12)

ωji =
j−1∑

k=1,k 6=i

ρjkωki + ρjiω
2
i , (j 6= 1).

There is a one to one mapping between the first pj elements of bj and βj . Also, we use
λj = γj/σ2

j . Using these equations, the posterior samples for the original hierarchical
Bayesian SUR models can easily be obtained. Note that we transformed the original
prior π(β, Ω, λ) to π(b, Σ, γ) so that the transformation is invariant to the ordering of
equations. After generating the posterior samples from the transformed model, which
is order invariant, we just transform them back to the original parameter space.

Economic applications of SUR models frequently involve inequality restrictions on
the coefficients. To express such restrictions, let us define a feasible region for the
coefficients bj by the inequality constraints, denoted by Sbj , and define the indicator
function

ISbj
(bj) =

{
1, (bj ∈ Sbj )
0, (bj /∈ Sbj )

.

Using the results of Zellner and Ando (2008c), the inequality restrictions can be incor-
porated in the above analysis.

When one wants to select the best model from among a set of candidate models,
model selection criteria are available. Because we used an improper prior for the SUR
model, the calculation of the marginal likelihood and posterior odds has some difficulties.
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However, some model selection criteria recently have been developed, including deviance
information criteria (DIC), Spiegelhalter et al., (2002), Bayesian predictive information
criterion (BPIC, Ando (2007), and so on. The BPIC criterion is useful not only for
selecting an optimal combination of the predictors, but this criterion is also applicable
to select an optimal ordering of the equations when we employ order variant priors.

4 Hierarchical Bayesian Analysis of the Simultaneous Equa-
tions Model

The Simultaneous Equations Model (SEM), that incorporates instantaneous feedback
relationships, was put forward many years ago and has been widely employed in econo-
metric studies. In this section we provide a hierarchical Bayesian analysis of the SEM.

4.1 Overview of Simultaneous Equations Model

Consider the following m equation SEM:

Y Γ = XB + U, (13)

where Y = (y1, ..., ym) is an n×m matrix of observations on m endogenous variables,
the m × m nonsingular matrix Γ is a matrix coefficient for the endogenous variables,
X = (x1, ..., xp) is an n×p matrix of observations on the p predetermined variables, the
p×m matrix B = (b1, ..., bm) is the coefficient matrix for the predetermined variables,
and U = (u1, ..., um) is the n × m error matrix. It is known that some restrictions
on the parameters are needed for model identification. In this paper, we assume that
appropriate restrictions are imposed on the SEM structure to provide identification.

Multiplying both sides of (13) by Γ−1, the unrestricted reduced form equations are

Y = XΠ + V, (14)

where Π = BΓ−1 = (π1, ..., πm) is a p ×m reduced form coefficient matrix, and V =
UΓ−1 = (v1, ..., vm) is the reduced form error matrix. In this paper, the n rows of V ,
vi (i = 1, ..., n), are assumed to be independently drawn from a multivariate normal
distribution with zero mean vector and m × m positive definite covariance matrix Ω,
vi ∼ N(0, Ω), where

Ω =
(

σ2
1 ω′1

ω1 Ω1

)
.

The problem is how to estimate the unknown parameters in the restricted model
(13). In the next section, after reviewing the work of Zellner, Bauwens and van Dijk
(1988) that developed a DMC algorithm for one equation of a SEM and Zellner and
Ando (2008b) for m equations of a SEM, we develop hierarchical Bayesian analysis of
simultaneous equations model.
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4.2 Hierarchical Bayesian Simultaneous Equations Model

A single identified equation of a SEM is given in (15), and the reduced form equation
for Y1 is given in (16),

y1 = Y1γ1 + X1b1 + u1, (15)
Y1 = XΠ1 + V1, (16)

where V1 ∼ N(0,Ω1). Noting that the m-multivariate normal density of (u1i, v
′
1i)
′

can be expressed as a conditional normal density of u1i given a value of v1i and a
marginal multivariate normal density of v1i, Zellner, Bauwens and van Dijk (1988)
derived u1i|v1i ∼ N(v′1iη1, σ

2
1 − ω′1Ω

−1
1 ω1) with η1 = Ω−1

1 ω1 and v1i ∼ N(0, Ω1).
Then performing the transformation of random variables, u1 = V1η1 + ε1 from u1|V1

to y1|Y1, one obtains

y1 = Y1γ1 + X1b1 + V1η1 + ε1,

Y1 = XΠ1 + V1,

where X = (X1, X0) and (ε1i, v
′
i)
′ i = 1, ..., n are independent random drawings from a

multivariate normal distribution with mean zero and covariance matrix

Σ =
(

σ2
ε1

0′

0 Ω1

)
=

(
σ2

1 − ω′1Ω
−1
1 ω1 0′

0 Ω1

)
.

To develop m equations of the SEM, we next present the structural equation for y2

and the reduced form equation for Y2,

y2 = Y2γ2 + X2b2 + u2, (17)
Y2 = XΠ2 + V2,

where V2 ∼ N(0,Ω2). Again, noting that the (m − 1)-multivariate normal density of
(u2i, v

′
2i)
′ can be expressed as a conditional normal density of u2i given a value of v2i and

a marginal (m−2)-multivariate normal density of v2i, we have u2i|v2i ∼ N(v′2iη2, σ
2
2−

ω′2Ω
−1
2 ω2) with η2 = Ω−1

2 ω2 and v2i ∼ N(0,Ω2). Performing the transformation of
random variables from u2|V2 to y2|Y2 and from V2 to Y2, we obtain;

y2 = Y2γ2 + X2b2 + V2η2 + ε2,

Y2 = XΠ2 + V2,

where (ε2i,v
′
2i)
′ i = 1, ..., n are independent random drawings from a multivariate nor-

mal distribution with mean zero and covariance matrix
(

σ2
ε2

0′

0 Ω2

)
=

(
σ2

2 − ω′2Ω
−1
2 ω2 0′

0 Ω2

)
.

Then we have

Σ =
(

σ2
1 − ω′1Ω

−1
1 ω1 0′

0 Ω1

)
=




σ2
1 − ω′1Ω

−1
1 ω1 0′

0 σ2
2 − ω′2Ω

−1
2 ω2 0′

0 Ω2


 .
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We can recursively express yj (j = 3, 4, ...m) in the same way. Then it can be easily
shown that a general SEM can be transformed through linear operations to assume a
recursive form, that is,

y1|Y1 = Y1γ1 + X1b1 + V1η1 + ε1 ≡ Z1β1 + ε1,

y2|Y2 = Y2γ2 + X2b2 + V2η2 + ε2 ≡ Z2β2 + ε2,

... (18)
ym−1|Ym−1 = Ym−1γm−1 + Xm−1bm−1 + Vm−1ηm−1 + εm−1

≡ Zm−1βm−1 + εm−1,

ym = Xmbm + εm ≡ Z1βm + εm,

with the εj ’s uncorrelated and having differing variances:

E[εiε
′
j ] =

{
O, (i 6= j)

σ2
εj

I, (i = j) , and Σ = diag{σ2
ε1

, ..., σ2
εm
},

with σ2
εj

= σ2
j−ω′jΩ

−1
j ωj . Each Yj in the model is Y1 = (y2, ..., ym), Y2 = (y3, ..., ym),...,

Ym−1 = ym, Ym = (0), γ1 = (γ12, ..., γ1m)′ γ2 = (γ23, ..., γ2m)′ ,..., γm−1 = γm−1,m,
γm = (0). The matrices Zj are Z1 = (Y1, X1, V1), (n× {p1 + 2(m− 1)}),..., Zm = Xm,
(n × pm). The Vj ’s in the model are given by V1 = Y1 − XΠ1, V2 = Y2 − XΠ2, ,...,
Vm−1 = Ym−1 −XΠm−1.

Since the transformed model (18) has the same form as that of the transformed SUR
model (5), considered in Section 3, we can directly apply our previous algorithm to this
model. For other work on transforming linear structural models to fully recursive forms,
see Basmann (1965) and Spanos (1986, p.610 ff).

As pointed out by a referee, it is well known that the unrestricted SEM model is not
identified and thus the posterior with a flat prior is also flat in regions of the parameter
space. As a result the posterior is improper and a Gibbs sampler will get stuck in an
absorbing state. The existence of an absorbing state would be a pathological occurrence
in any situation and could occur whether there is a proper limiting distribution or not.
Kleibergen and van Dijk (1998) have shown that for a three equation SEM there exists
an issue of existence of moments. Kleibergen and van Dijk (1998) pointed out that a
solution is to use informative priors. To avoid a setup that causes an absorbing state
to occur, our informative prior approach thus might be useful from this perspective.

A referee also pointed out that even if the model is identified through zero restrictions
on the parameters then there is an issue of existence of the posterior with a flat prior. In
SEM context, one faces the issue of reduced rank (See Kleibergen and van Dijk (1998))
where singular values may exist and the transformation is not anymore one-to-one. We
point out that if the considered SEM does not have a one-to-one mapping from the
original model to the transformed model, our approach is not applicable.
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5 Simulation results

In order to assess the performance of the proposed procedure, we present numerical
results based on simulated data and a real data application. All calculations were
performed on Microsoft Windows XP, Pentium-R 2.0 GHz, running R version 2.50. Each
of the random draws from the probability density functions (normal, inverse-gamma,
and inverse-Wishart) were generated by using the elementary functions incorporated in
R. R is freely available and is a specialized programming language for statistical data
analysis. Readers may obtain R software at http://cran.r-project.org/.

5.1 Simulation settings

We compare the properties of our Bayesian model estimation procedures and those of
a MCMC procedure. We simulate data sets from an m = 2 dimensional SUR model.
Without loss of generality in the model structure, we set pj = 2, j = 1, 2 in model (1),
which gives a simple two equation SUR model. This model can be written as follows:

(
y1

y2

)
=

(
X1 O
O X2

)(
β1

β2

)
+

(
u1

u2

)
,

for i = 1, ..., n, where yj and uj are n × 1 vectors, Xj is an n × 2 matrix and βj is a
2-dimensional vector. Each element of Ω is set to be

Ω =
(

ω2
1 ω12

ω21 ω2
2

)
=

(
0.1 −0.05
−0.05 0.2

)
.

The covariate matrices Xj j = 1, 2 were generated from a uniform density over the
interval (−5, 5). The coefficient vector was set to be β1 = (3,−2)′ and β2 = (2, 1)′.
This enabled the generation of simulated response observations. In this simulation we
set the number of observations to be n = 100.

For the simulated data set, we calculated the posterior density using two methods,
our proposed algorithm and an MCMC approach. We shall consider the informative
prior specification for β in the original model and assume the independence of β1,...,βm

in (7):

π(β,Ω,λ) = π(β|Ω,λ)π(Ω)π(λ) =




m∏

j=1

π(βj |λj)


 π(Ω)




m∏

j=1

π(λj)


 ,

and use a normal prior for βj , N(β0j , λjAβj ), j = 1, ..., m.

π(βj |λj) ∝ exp
{
−λj

2
(βj − β0j)

′Aj(βj − β0j)
}

.

In the MCMC approach, a combination of the Metropolis-Hastings and Gibbs sam-
pling algorithms is used. The details of the MCMC algorithm are as follows:
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Step 1 Initialize β, Ω and λ.

Step 2 Sample the coefficient parameter from β|Ω, λ, D.

Step 3 Sample the covariance matrix parameter from Ω|β, D.

Step 4 Sample the variance parameter from λ|β,Ω, D.

Step 5 Repeat Step 2, 3 and Step 4 for a sufficiently long time.

In Steps 2 and 3, Gibbs sampling algorithms are employed. To sample λ, at the k-th
iteration, we generate a candidate λ(k) from the proposal density g(λ). We sampled all
the λ vector at once using a multivariate proposal distribution. The proposed candidate
is accepted with the probability α given by

α = min

{
1,

h(β(k),Ω(k), λ(k))/g(λ(k))

h(β(k), Ω(k),λ(k−1))/g(λ(k−1))

}
,

with

h(β,Ω,λ) = L(y|β, Ω)×
m∏

j=1

π(βj |λj)π(λj).

The proposal density of λ is specified as g(λ) =
∏m

j=1 g(λj), where g(λj) is an inverse
gamma with parameters 5 and 0.005 so that an acceptance rate is around 30%. This
value was determined taking account of the autocorrelation in the output of the MCMC
procedure.

To save computational time, the initial values of the parameters β and Ω are chosen
to be generalized least squares estimates. The initial values of λj were generated from
the above mentioned proposal distribution.

In our application, we generated 10,000 posterior samples using our approach. The
total number of MCMC iterations is chosen to be 11,000, of which the first 1,000 it-
erations are discarded. It is necessary to check whether generated posterior samples
are taken from a stationary distribution. We assessed the convergence of MCMC sim-
ulation by calculating the convergence diagnostic (CD) test statistics (Geweke (1992)).
Geweke’s (1992) CD test statistic is useful to test the equality of the means of the first
and latter part of a Markov chain. The CD test statistic has an asymptotically standard
normal distribution. To check the convergence, one might use the result of Heyde and
Johnstone (1979). However, we here used Geweke’s (1992) CD test. All the results
we report in this paper are based on samples that have passed the Geweke’s (1992)
convergence test at the “conventional” significance level of 5% for all parameters. We
along with others did not check the power of this test. Also, there was no evidence of
lack of convergence based on an examination of trace plots.

5.2 Results

Table 1 reports posterior means, modes and standard deviations as well as credible
intervals for the model’s parameters. The effective sample size and the convergence di-



82 Hierarchical Bayesian Analysis of the SUR and SEM Models

agnostic (CD) test statistics (Geweke (1992)) of the MCMC algorithm are also reported.
Using the posterior draws for each of the parameters, we calculated these statistics. The
95% credible intervals are computed using the 2.5th and 97.5th percentiles of the pos-
terior samples.

DMC-IS approach
TV Mean Mode SDs 95%CIs

β11 3.00 2.9869 2.9833 0.0507 2.8827 3.0839
β12 -2.00 -2.0318 -2.0333 0.0516 -2.1369 -1.9332
β21 2.00 2.0063 2.0233 0.0749 1.8767 2.1684
β22 1.00 1.0121 1.0276 0.0668 0.8951 1.1622
ω2

1 0.10 0.1073 0.1101 0.0164 0.0824 0.1467
ω12 -0.05 -0.0566 -0.0618 0.0181 -0.1009 -0.0297
ω2

2 0.20 0.2206 0.2282 0.0352 0.1684 0.3048
λ1 × 105 – 43.7947 109.024 98.6957∗ 11.6144 371.9998
λ2 × 105 – 67.7915 146.6019 120.4277∗ 12.8755 457.2539

MCMC algorithm
TV Mean Mode SDs 95%CIs CD INEFs

β11 3.00 2.9873 2.9819 0.0494 2.8849 3.0792 0.2584 2.3444
β12 -2.00 -2.0353 -2.0307 0.0502 -2.1281 -1.9309 1.3290 2.8372
β21 2.00 2.0266 2.0235 0.0707 1.8815 2.1613 -0.7933 2.0874
β22 1.00 1.0108 1.0284 0.0633 0.9037 1.1531 -0.1509 2.9153
ω2

1 0.10 0.1049 0.1055 0.0155 0.0793 0.1397 -0.7965 2.8420
ω12 -0.05 -0.0554 -0.0592 0.0167 -0.0957 -0.0295 -0.4144 3.1602
ω2

2 0.20 0.2059 0.2068 0.0301 0.1565 0.2740 1.7044 3.9600
λ1 × 105 – 11.3709 13.6154 4.7979 7.4735 25.9415 -0.0714 12.4020
λ2 × 105 – 10.1274 13.5254 4.8362 6.7511 25.1868 -0.5841 18.5921

Table 1: Simulated data: Summary of the parameter estimates for the proposed al-
gorithm and for the MCMC algorithm, including the posterior means, the posterior
modes, the posterior standard deviations (SDs), and 95% credible intervals (95%CIs).
For MCMC results, the inefficiency factors (INEFs; the integrated autocorrelation time),
and Geweke’s (1992) convergence diagnostic test statistic (CD) are also calculated. Our
algorithm combines a direct Monte Carlo approach and an importance sampling pro-
cedure (DMC-IS approach), as explained in the text. The true values (TV) of the
parameters are also provided. ∗ Note the differences in these moments. Magnitudes of
SDs/Mean from MCMC is smaller than those from DMC-IS approach. Based on the
common use of MCMC output, these statistics are calculated based on an i.i.d assump-
tion. Since the MCMC samples are autocorrelated (as shown in 1 (d)), these statistics
should be calculated taking account of the autocorrelation. To take account of this
matter, some use just each seventh draw of the MCMC output in their calculations.
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DMC-IS MCMC-ACF MCMC

(a) β11.

(b) ω2
1 .

(c) ω21.

(d) log10(λ1).

Figure 1: Estimated posterior densities for data simulated from the models in Section
5.1. (a) β11, (b) ω2

1 , (c) ω21, (d) log10(λ1). The results are for the proposed algorithm
that combines a direct Monte Carlo approach and an importance sampling procedure
(DMC-IS) (Left), the MCMC algorithm (Center), and the autocorrelation (ACF) plot
for each of the parameters estimated by MCMC algorithm (Right).
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Figure 2: Simulated data: Estimated predictive density based on the proposed method
and MCMC method. The proposed algorithm that combines a direct Monte Carlo
approach and an importance sampling procedure (DMC-IS). The density is evaluated
at the points x1 = (0.1,−0.2)′ and x2 = (0.2,−0.3)′.

A concept related to MCMC convergence is the inefficiency factor that is useful to
measure the efficiency of the MCMC sampling algorithm. A large value of inefficiency
factor indicates that we need a large number of MCMC simulations. The effective
sample size, the number of MCMC output L divided by the inefficiency factor, is useful
to measure the efficiency of the MCMC sampling algorithm.

As shown in Table 1, the calculated inefficiency factors for λ1 and λ2 exceeds 10 in
value. This implies that the generated MCMC output available for analyses of posterior
distributions is less than 10% of the total MCMC generated output.
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It can be seen that the estimation results of our proposed method for the parameters
appear quite reasonable. For instance, the true model is estimated with reasonably
accurate results based on our proposed method. The 95% credible intervals include
the true parameter values. Figure 1 shows the estimated posterior densities for each
of the model parameters. Figure 1 also provides plots of the autocorrelation functions
for the parameter draws obtained from the MCMC algorithms. The autocorrelation
functions were calculated using 10,000 samples. We can clearly see that the samples
from the Gibbs sampling algorithm are autocorrelated, while those from our proposed
approach are theoretically and practically zero. This is one of the clear advantages of
our approach.

Figure 2 shows the estimated predictive density based on our method. By using
the posterior samples {β(k), Ω(k), λ(k); k = 1, ..., N}, given a value of x, the predictive
density can be approximated as

∫
f(y|x,β, Ω)g(β,Ω,λ|D)dβdΩdλ ≈ 1

N

N∑

k=1

f(y|x, β(k), Ω(k)).

The density is evaluated at the point x1 = (0.1,−0.4)′ and x2 = (0.2,−0.3)′. Because
the actual predictive density is not known and thus we have no bench-mark against
which to compare it, we compared the estimated predictive density with the true sam-
pling density of y = (y1, y2)′ given x1 and x2. We found that the estimated predictive
density is very close to the true density.

6 Real data analysis

In this section, we apply our method to real data. Here we use the same prior settings
as used in the previous section.

6.1 Fulton fish market data

As our application, we report the results of an analysis of the demand for fish. We
apply our method to obtain an estimate of the price elasticity of demand. Observations
on price and quantity of fresh whiting sold in the Fulton fish market (Graddy (1995),
Chernozhukov and Hansen (2008)) over the five month period from December 2, 1991
to May 8, 1992 are used. The aggregated data on price and quantity are collected each
day. The price is measured as the average daily price and the quantity is measured by
the total amount of fish sold each day. The number of observations, namely, the number
of days the market was open over the sample period, is n = 111. Figure 3 provides a
plot of the data.

Following Chernozhukov and Hansen (2008), we consider the following demand and
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supply model:

log Qt = bq0 + bq1 log Pt + u1t,
(19)

log Pt = bp0 + bp1W1t + bp2W2t + v2t,

where W1t and W2t are two different instrumental variables that capture weather con-
ditions at sea. W1t is a dummy variable, Stormy, which indicates wave height greater
than 4.5 ft and wind speed greater than 18 knots, and W2t is also a dummy variable,
Mixed, indicating wave height greater than 3.8 ft and wind speed greater than 13 knots.
See the original paper for further discussion of the equations in (19).
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Figure 3: Demand for fish data. The data contain observations on (a) price and (b)
quantity of fresh whiting sold in the Fulton fish market in New York over the five month
period from December 2, 1991 to May 8, 1992. The price is measured as the average
daily price and the quantity as the total amount of fish sold that day. In total, the
sample consists of 111 observations for the days in which the market was open over the
sample period. Figure (c) shows the relationship between the price and quantity.

Mean Mode SDs 95%CIs
bp0 8.5527 8.612 0.2824 7.9790 9.0720
bp1 -0.5302 -0.5251 0.4186 -1.5486 0.2455
bp2 -0.3974 -0.3311 0.3082 -1.2885 0.1181
bq1 -0.7969 -0.8881 1.1236 -3.2708 1.7682
bq0 6.7523 7.3118 9.3794 -14.4819 26.2981
ω2

11 1.5112 1.5368 0.2147 1.1438 1.9131
ω12 1.3926 1.2765 1.6754 -2.6440 5.0220
ω2

22 1.1532 3.0544 5.7868 0.1990 16.2084
λ1 × 105 37.2639 85.3016 133.143 21.2622 298.7509
λ2 × 105 39.4343 89.4008 114.4483 22.2346 327.3828

Table 2: Real data application 1: Analysis of fish market data. Summary of the
parameter estimates from our algorithm. The posterior means, modes, standard devia-
tions, and 95% credible intervals (95%CIs) are calculated. Following Chernozhukov and
Hansen (2008), we consider the demand and supply model: log Qt = bq0+bq1 log Pt+u1t,
log Pt = bp0 + bp1W1t + bp2W2t + v2t, where W1t and W2t are two different instrumental
variables that capture weather conditions at sea. W1t is a dummy variable, Stormy,
which indicates wave height greater than 4.5 ft and wind speed greater than 18 knots,
and W2t is also a dummy variable, Mixed, indicating wave height greater than 3.8 ft
and wind speed greater than 13 knots.

DMC-ISa DMCb OLS 2SLS MELO BMOM
bq1 -0.7969 -0.6930 -0.0484 -0.8750 -0.4272 -0.4143
bq0 6.7523 5.5832 0.2273 7.1062 3.3786 3.2712

Table 2 reports the posterior means, posterior standard deviations, and 95% poste-
rior intervals using our algorithm. Based on 10,000 draws for each of the parameters,
we calculated the posterior means, the standard deviations, and 95% posterior inter-
vals. The 95% posterior intervals are estimated using the 2.5th and 97.5th percentiles of
the drawn posterior samples. As we expected, price and quantity are inversely related.
Although the 95% posterior intervals contain positive values of bq1, the posterior mean
of bq1 is negative.
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Table 3: Real data application 1: Analysis of fish market data. Summary of the
parameter estimates for various algorithms. Point estimates from each method are
reported. DMC-IS; our algorithm combines a direct Monte Carlo approach and an
importance sampling procedure, as explained in the text. DMC; direct Monte Carlo in
Zellner and Ando (2008b), OLS; ordinary least squares, 2SLS; two-stage least squares,
BMOM; Bayesian method of moments, and MELO; minimum expected loss estimate.
The number of draws from our DMC is 10,000. The results, except for our method, are
from Zellner and Ando (2008b). See Zellner (1994) for the definitions of BMOM and
MELO. a, b: Posterior means are used.

We also compared the estimation results with those produced by several other meth-
ods, namely, DMC, OLS, 2SLS, BMOM and MELO (See Zellner (1994)). Estimation
results are reported in Table 3. OLS estimates have very different values compared to
those provided by alternative methods. Finally, we would like to point out that our
algorithm can be used for the residual analysis. Using the posterior density for the
realized error terms, we can check the distributional assumptions made in the analysis
of the equation in (19).

6.2 Point of Sales data analysis of brand in a soy source category.

In this section, we apply our method to an analysis of POS data for 3 soy source brands.
Daily sales data were collected at stores of a Japanese supermarket chain, that contain
information about the daily price P , the daily number of visitors to the store V , the
execution/non-execution of display promotion D, D = 1 execution D = 0 otherwise,
the execution/non-execution of advertisement A, A = 1 execution A = 0 otherwise and
holiday indicator H, H = 1 holiday H = 0 otherwise. We use n = 986 data for the
period of 1999 to 2002.

To this data, we fit the m = 3 equation SEM:

yj,t = βj0 + βj1Vt + βj2Ht +
3∑

j<k

γkyk,t +
3∑

k=1

βP
jkPj,t +

3∑

k=1

βD
jkDj,t +

∑

k=1,3

βA
jkAj,t + ujt,

j = 1, ..., 3, where the predictors are yj,t: log-daily sales volume, Vt: the daily number
of visitors to the store at time t, Ht: the holiday indicator, Pj,t: the daily log-price for
brand j at time t, Dj,t: the daily display promotion activity for brand j at time t, and
At: the daily advertisement activity for brand j at time t, respectively. Note that since
there is no advertising activity for brand j = 2, we can not estimate βA

j2 for j = 1, 2, 3.

Table 4 reports the coefficient estimation results that contain much useful informa-
tion. First, as we expected, the posterior means of price elasticity for each brand βP

jj

are negative. However, the 95% posterior interval for brand 2 contains 0. It indicates
that the price cut might not be effective for brand 2. In fact, brand 2 is an everyday low
price brand. Therefore, consumers may not respond to the price cuts because the price
is already very low. Second, the estimated cross-price elasticities βP

jk (j 6= k) exhibit
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usual results, namely, these brands are competitive. Third, the display promotion elas-
ticity for brand j = 3, βD

33, indicates that the display promotion activity increases sales.
Also, the display promotion activity for brand j = 3 affects the sales of brand j = 1
rather than that of brand j = 2. Therefore, brands 1 and 3 are competitive. It also
indicates that the brand 2 is relatively free from competition. Fourth, advertisement
activity for brand 2 and 3 boosts sales, while it does not for sales of brand 1, and that
may encourage the store manager to consider other ways of promoting brand 1 sales.

Mean Mode SDs 95%CIs
Brand 1: β10 -1.334 -0.759 0.985 -1.335 1.774

β11 0.257 0.274 0.038 0.235 0.360
βP

11 -2.706 -2.809 0.183 -3.206 -2.706
βP

12 3.816 3.853 0.179 3.489 4.514
βP

13 -0.181 -0.208 0.155 -0.642 0.052
βD

11 1.094 1.067 0.057 0.878 1.099
βD

12 0.015 0.000 0.031 -0.100 0.015
βD

13 -0.260 -0.237 0.055 -0.298 -0.070
βA

11 1.255 1.188 0.13 0.789 1.255
βA

13 -0.060 -0.075 0.059 -0.211 0.058
Brand 2: β20 -0.397 -0.256 0.298 -0.512 0.744

β21 0.361 0.363 0.023 0.320 0.456
βP

21 0.317 0.294 0.121 -0.044 0.431
βP

22 -0.039 -0.022 0.152 -0.246 0.423
βP

23 0.220 0.211 0.029 0.158 0.257
βD

21 -0.015 -0.001 0.049 -0.032 0.130
βD

22 0.268 0.265 0.017 0.217 0.281
βD

23 0.025 0.02 0.02 -0.048 0.031
βA

21 0.044 0.027 0.076 -0.168 0.167
βA

23 0.214 0.184 0.058 0.052 0.217
Brand 3: β30 0.585 0.603 0.313 -0.234 1.258

β31 0.248 0.170 0.318 -0.461 0.881
βP

31 1.752 1.680 0.498 0.283 2.564
βP

32 1.453 1.605 0.605 0.577 3.240
βP

33 -2.823 -2.961 0.312 -3.760 -2.709
βD

31 -0.852 -0.828 0.143 -1.044 -0.529
βD

32 -0.013 -0.033 0.185 -0.406 0.455
βD

33 0.924 0.892 0.067 0.734 0.924
βA

31 -0.967 -0.887 0.215 -1.281 -0.347
βA

33 0.902 0.879 0.136 0.615 1.243
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Table 4: Real data analysis 2: Summary of the parameter estimates for the proposed
algorithm. The posterior means, posterior modes, standard deviations (SDs), and 95%
credible intervals (95%CIs) are presented below. This is a summary table for the coef-
ficients β and estimation results for other parameters are reported in Table 5. We fit
the m = 3 equation SEM: yj,t = βj0 + βj1Vt + βj2Ht +

∑3
j<k γkyk,t +

∑3
k=1 βP

jkPj,t +∑3
k=1 βD

jkDj,t +
∑

k=1,3 βA
jkAj,t + ujt, j = 1, ..., 3, where yj,t: log-daily sales volume, Vt:

the daily number of visitors to the store at time t, Ht: the holiday indicator, Pj,t: the
daily log-price for brand j at time t, Dj,t: the daily display promotion activity for brand
j at time t, and At: the daily advertisement activity for brand j at time t, respectively.
Note that since there is no advertisement activity for brand j = 2, we can not estimate
βA

j2 for j = 1, 2, 3.

Mean Mode SDs 95%CIs
ω2

1 0.720 0.717 0.012 0.686 0.733
ω2

2 0.189 0.194 0.012 0.189 0.231
ω2

3 0.838 1.006 0.460 0.838 1.781
ω12 (ω21) 0.062 0.078 0.035 0.062 0.185
ω13 (ω31) -0.332 -0.338 0.190 -0.788 0.285
ω32 (ω23) 0.033 -0.002 0.179 -0.392 0.427
γ12 -0.015 -0.032 0.045 -0.171 -0.015
γ13 0.652 0.650 0.131 0.308 0.907
γ23 -0.248 -0.065 0.821 -2.041 1.668
λ1 1.092 1.121 0.071 1.049 1.338
λ2 7.988 7.330 1.101 4.605 7.989
λ3 1.294 1.280 0.107 1.015 1.507

Table 5: Real data analysis 2: Summary of the parameter estimates for the pro-
posed algorithm. The posterior means, posterior modes, standard deviations (SDs),
and 95% credible intervals (95%CIs) are presented below. The estimation results for
the coefficient parameters are reported in Table 4 We fit the m = 3 equation SEM: yj,t =
βj0+βj1Vt +βj2Ht +

∑3
j<k γkyk,t +

∑3
k=1 βP

jkPj,t +
∑3

k=1 βD
jkDj,t +

∑
k=1,3 βA

jkAj,t +ujt,
j = 1, ..., 3, where yj,t: log-daily sales volume, Vt: the daily number of visitors to the
store at time t, Ht: the holiday indicator, Pj,t: the daily log-price for brand j at time
t, Dj,t: the daily display promotion activity for brand j at time t, and At: the daily
advertisement activity for brand j at time t, respectively. Note that since there is no
advertisement activity for brand j = 2, we can not estimate βA

j2 for j = 1, 2, 3.

Table 5 reports the remaining parameter estimation results. From the variance
estimation results, we can see that the sales of brand 2 are more stable than those of
others. About the parameter estimates for the endogenous variables, we see interesting
results. The 95% posterior interval for γ13 is positive, while that for γ12 is negative. It
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indicates that when sales of brand j = 2 are large, the sales of other brands are small.
However, the posterior mean value of γ2 is very small. From this, we can conclude that
the positioning of brand 2 is different from those of brands 1 and 3.

7 Discussion and Conclusions

We developed a computationally efficient method for applying Bayesian inference tech-
niques in analyses of SUR models and SEM with hierarchical priors. In particular, we
developed a new algorithm by combining direct Monte Carlo (DMC) and importance
sampling approaches to compute various quantities of interest.

There are many directions for further research. First, we assumed a standard linear
relationship in each equation of the SUR model and the SEM. It is clear that our
approach can be applied to more complex variants of the models, for example those
involving use of regression splines, B-splines, kernel bases, wavelet bases, and so on. It
is straightforward to apply our method in Bayesian analyses of these variants of our
models.

The developed algorithm can be applied to various statistical models. For example,
we can apply our algorithm in Bayesian analyses of state space models. The state space
model consists of two stochastic components: an observation equation and a system
equation:

{
Observation equation : yt = Ztβt + ut ut ∼ N(0, Ω),

System equation : βt+1 = Ttβt + ηt ηt ∼ N(0, Q),

with β1 ∼ N(β01, Q0). Here yt = (y1t, ..., ymt)′ is the p-dimensional vector, βt =
(h1t, ..., hqt)′ is the q-dimensional vector, The main focus concerns how to construct
these two equations so that the model captures the true structure governing the time
series of yt. See Kitagawa (1987), Putnam and Quintana (1994), Kitagawa and Gersch
(1996), Quintana and Putnam (1996), West and Harrison (1997), Durbin and Koopman
(2001) for further discussion and applications of state space models.

The model can be represented in a general matrix form:

yj = Xjβj + uj , uj ∼ N(0, ω2
j ), E[uiu

′
j ] =

{
ωijI, (i 6= j)
ω2

i I, (i = j)
β = T (β0 + Rη) = Tβ0 + Tη, η ∼ N(0, Q),

with yj = (y′j1, ..., y
′
jn)′, β = (β′1, ..., β

′
n)′, η = (η′1, ..., η

′
n)′, ε = (ε′1, ..., ε

′
n)′. β0 =

(β′01,0
′, ...,0′)′, and

T =




Im O O O · · · O
T1 Im O O · · · O

T2T1 T2 Im O · · · O
...

...
...

. . .
...

Tn · · ·T1 Tn · · ·T2 Tn · · ·T3 · · · Im




.
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As we can see, the transformed model has the same form as that of the SUR model
with an informative prior. Therefore it can be transformed into the transformed SUR
model, considered in Section 3, and thus we can directly apply our algorithm to analyze
it. Jungbacker and Koopman (2005) proposed an importance sampling procedure for
state space models. A natural extension of our method is to the case where a Kalman
filter is used.

Also, there is an interesting connection to the issue of weak instruments, which is
very important in econometrics. Hoogerheide et al. (2007) showed how one may be close
to singularity (reduced rank possibility of the parameter matrix) when the instruments
are very weak. Then one faces the difficulty in finding a good candidate or importance
distribution. How to deal with this topic is a very interesting problem that we may
consider in future research.

Also, Conley et al (2008) used a more general error structure for Bayesian instru-
mental variable analysis. Although further investigation is needed, one may incorporate
the DMC approach into their framework. We plan to study this model further and to
analyze it in a future paper.
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