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EFFECTS OF STATISTICAL DEPENDENCE ON MULTIPLE
TESTING UNDER A HIDDEN MARKOV MODEL

BY ZH1y1 CH1!
University of Connecticut

The performance of multiple hypothesis testing is known to be affected
by the statistical dependence among random variables involved. The mech-
anisms responsible for this, however, are not well understood. We study the
effects of the dependence structure of a finite state hidden Markov model
(HMM) on the likelihood ratios critical for optimal multiple testing on the
hidden states. Various convergence results are obtained for the likelihood ra-
tios as the observations of the HMM form an increasing long chain. Analytic
expansions of the first and second order derivatives are obtained for the case
of binary states, explicitly showing the effects of the parameters of the HMM
on the likelihood ratios.

1. Introduction. Statistical dependence in data poses a challenge to multiple
hypothesis testing. Under the framework of the false discovery rate (FDR), many
efforts have been made to establish the control of FDR under dependence [5, 14,
25, 27, 29]. Meanwhile, many empirical and analytical works have described the
effects of dependence on the outputs of multiple tests [12, 16, 22, 23]. However,
in what way the dependence impacts multiple testing is not well understood.

A useful model that incorporates tractable dependence in multiple testing is the
hidden Markov model (HMM) [27]. In the model, the nulls are organized as H;,
where the index ¢ takes integer values. Each H; is associated with a random vari-
able that determines whether the null is true or false. The random variables form a
Markov chain but are hidden and unobservable. Instead, the observations X; each
is a many-to-one transform of the hidden variable corresponding to H;. In the con-
text of multiple testing, it will be useful to treat the hidden variable as consisting
of two parts, ; and Z;. On the one hand, n; encodes the “true identity,” or state of
the signal associated with H; and in general can take two or more possible values.
On the other, Z; acts as the noise that blurs or distorts the signal. Then X; can be
thought of as the result of a deterministic interaction between 7; and Z;.

To understand the role of dependence in the multiple tests on the nulls, the
“oracle” approach assumes the parameters in the HMM are known and explores
what amounts to an optimal testing procedure. The advantage of this approach is
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that it can reveal effects purely due to dependence, without confounding with ef-
fects due to specific parameter estimation methods. Suppose the observations are
X_m, ..., Xy. With the parameters being known, for each null H,, the conditional
likelihood Pr{H; is true | X_,,, ..., X} can be computed. The importance of the
conditional likelihood for multiple testing has been shown in various contexts [6,
13, 21, 26, 27]. For the HMM, [27] shows that under a certain loss function, an
optimal procedure is to reject H; if and only if the corresponding conditional like-
lihood is small enough. The loss function is a linear combination of the numbers
of Types I and II errors and is related to the FDR. The importance of the condi-
tional likelihood can also be argued directly based on the FDR criterion, and in
fact without particular assumption on dependence; see the Appendix.

In view of the role of the conditional likelihood, our aim is to investigate how it
is affected by the parameters of the HMM. The parameters can be divided into two
types, respectively, characterizing the dependence among 7; and the “strength”
of useful signals. In addition, the conditional likelihood also depends on how #;
and Z; interact. The next example illustrates what role may be expected for these
factors.

EXAMPLE 1.1. Suppose the states 1, are equal to 1{H; is false} and form a
stationary Markov chain with transition probabilities g;; = Pr{n, = j | n;—1 =i} >
0; moreover, conditional on n = (1;), X; are independent ~ N (en;, 1) with & > 0.
Write X; = Z; + ¢n,. Then (Z;, n;) form a hidden Markov chain, with Z; i.i.d.
~ N (0, 1). The strength of the signals is measured by ¢, the interaction between
the noise Z; and #;, is additive, such that X; = ¢(Z;, en;) with ¢(z, %) =z + ¥.

In many cases, the observations form a long chain X_,,,, ..., X,,, withm,n > 1,
so the effect of the parameters can be studied through the properties of

Pr{nt:0|X}:mygwpr{nf:0|x—lnv7Xn}

for each ¢, where X = (X;,t € Z). Since Pr{n; =0| X_,,, ..., X,,} form a mar-
tingale for any increasing sequence of m and n, the (almost sure) existence of the
limit is guaranteed. However, this says nothing about how the limit depends on ¢
and g;;. To get some insight, consider instead the likelihood ratios

Prin;=1]X} _ 1
Prin,.=0|X} Pr{n,=0]X}

k)

which turn out to be a little more convenient to study. Regarding them as functions
of ¢, we next consider their Taylor expansions. In principle, the likelihood ratios
can be expanded around any value of ¢. Since large values of |¢| correspond to
strong signals whose detection is easy, we shall expand around ¢ = 0 to get insight
into the case where the strength of signal ranges from being weak to moderate.
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Without loss of generality, consider the likelihood ratio for ng. Since 7 is stationary,
Pr{n,—1 = j | n =i} = g;;. By the Bayes rule and Markov property,

Prino=a | X—m,..., Xn}

1 n n—1 m—1
xP(a) Y. exp[—i > (Zi+en —eat)z} [ 140001 [] o0
t=0 t=0

T—prseees Opn t=—m
op=a

for a =0, 1, where P(a) = Pr{ng = a}. Then, formally, one can get

d [mpr{"(’:l'X}] o [lnpr{n0=1|x_m,...,xn}]
de Pr{no =01 X} le=o P"{U0=0|X—m,---,Xn} e=0

T man—>o0 %

= > ZJPrin;=1|no=1} —Pr{n; =1|no=0}]

t=—00

where r # 1 is one of the two eigenvalues of the matrix (g;;), the other being 1.
We shall refer to the above conditional likelihood ratio as the full likelihood
ratio (FLR), as it is based on the entire X. On the other hand, if the information of
the dependence (i.e., g;;) is not available, but the values of all other parameters are
known, including P (a), then the likelihood ratio would have to be evaluated as

Primo=11Xo} _ P() f(Xo—#) _ P(D)
P =01Xo} PO f(Xo)  P(0)

where f(x) is the density of N (0, 1). We shall refer to this conditional likelihood
ratio as the local likelihood ratio (LLR). It then can be seen that
FLR

_ lt]
lnﬁ _sg(:)r Z; +o(¢e).

82
exp{szo+ = no - 1)},

Thus, at the first order, the dependence in n merely adds noise but no “net effect,”
regardless of the actual values of . If there is any state-dependent effect, it should
be reflected in a higher order term of ¢. To see if this is the case, take the second
order derivative in . Again, the calculation can be done formally. To evaluate the
state-dependent net effect, proceed with

d>7. Prino=1|X_p,.... X
lim E|: |:ln r{770 | mos s n}:| ‘7701|
e=0

E[(InFLR)”_ =
LR Tr0l =, 1o Pring=01X ... X,}




442 Z.CHI
giving

{orR) o]z

e=0 t#o

It follows that, comparing to InLLR, if ng = 1, on average In FLR is larger, making
Hp more likely to be (correctly) rejected, whereas if ng = 0, it is smaller, making
Hy less likely to be (falsely) rejected.

So far the expansions are expressed in terms of the unobservable Z;. One ques-
tion is whether similar expansions in terms of the observable X; can be obtained.
As will be seen in Section 3.2, this is possible after we get more information on
higher order derivatives.

From the expansions, the effect of the dependence in 1 on the likelihood ratio
is apparent. In both the first and second order derivatives, the effect is determined
by r. In particular, when r =0, 5, are i.i.d. and FLR is equal to LLR. Consistent
with this, the derivatives of the difference between the two ratios become 0.

As the example, the rest of the paper develops Taylor’s expansion in terms of
¢ for the FLRs Pr{H; is false | X}/Pr{H; is true | X} to study the effects of depen-
dence structure of HMM. The differentiation involved in the expansion should be
interpreted as follows. During the differentiation, both the signal n and noise Z
are fixed. As the strength ¢ of the signal varies, the observed values X; become
functions of . The likelihood ratio is affected by ¢ in two ways: not only the value
of X; is changed, but also the parametric form of the density function of X;. Both
have to be taken into account in the derivatives.

Several issues need to be addressed. First, we have only considered a stationary
process of the signals 7. In applications, it is useful to consider nonstationary 7
that has time-dependent transition probabilities. Moreover, it is useful to consider
various types of interactions between 7, and Z; besides the additive one.

Second, in Example 1.1, each 7, is binary, indicating whether a null is true
or false. For more generality, one can assume a finite state Markov chain, such
that a subset of the states are associated with true nulls and the rest with false
nulls. Even for a binary process, it can be useful to reformulate it as a multistate
Markov chain. For example, let n be a second order binary Markov chain, that is,
Pr{n; | ns,s <t} =Pr{n; | ns—1, nr—2}. Then one can define a first order Markov
chain 7 by 1, = (9;—1, n¢). If n, = 1{H, is false}, then in terms of 7, (0,0) and
(1, 0) are states associated with true nulls, and (0, 1) and (1, 1) are states associated
with false nulls.

Third, in Example 1.1, limit operation, differentiation, and expectation are
freely interchanged for Pr{n; | X_,,, ..., X} for fixed ¢. This has to be justified.
Note that the likelihood bears similarity to Pr{n, | Xo, ..., X}, a quantity exten-
sively studied in the literature on nonlinear filtering and related issues [1-3, 7-11,
15, 17-20, 28]. As in most of the cited works, in this paper, convergence results
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are established using geometric contraction. On the other hand, in those works, the
goal is to establish weak convergence of the conditional probability for 1, under
the assumption of stationary transition probabilities. As seen in Example 1.1, the
convergence of the conditional probability for n; follows from the martingale con-
vergence. So instead, the goal here is to establish convergence for the derivatives
of the conditional likelihood with arbitrary transition probabilities.

The rest of the paper proceeds as follows. In Section 2, a HMM is set up in the
context of multiple testing and then various convergence results on the likelihood
ratio are stated. In Section 3, the likelihood ratio for a first order HMM with binary
states is considered in more detail, which allows more explicit expressions for the
first and second derivatives of the likelihood ratio. Several examples are given, with
Example 1.1 being a special case. Theoretical details are provided in Section 4.

2. Main results.

2.1. A HMM setup. Letn = {n;,t € Z} be a finite state process, such that the
state space H is partitioned into Ho and Hj, with states in Ho being associated
with true nulls, while those in H; associated with false nulls. The noise process
is Z ={Z,,t € Z}, with each Z; taking values in a Euclidean space Z. To model
the interaction between 1, and Z;, let {¢(z, ?), ¢ € ®} be a family of mappings
Z — X indexed by ¥, where ® is an open set in R and X a Euclidean space.
Then, let

6,: R - 0, acH,

be a family of functions, such that each ¢ € R” specifies a scenario where the
observations are

2.1 X = X(e) = ¢(Z;,0,,(2)).

Intuitively, ¢(Z;, ¥) determines how Z; interacts with a possible manifestation
of n, to generate an observation X,; the manifestation of 7, is 6,, (¢), with ¢ being
the tuning parameter that determines how strongly 7, manifests itself. The dimen-
sion p of ¢ may be greater than 1 to take into account different aspects of the
tuning. We will assume that (5, Z) is defined on the canonical space HZ x ZZ
equipped with the product Borel o -algebra.

For function #:R® — R and s-tuple of nonnegative integers v = (vy, ..., vy),
denote the vth derivative of 4 and its order, respectively, by

vl (x)

()= ——2
(0 dxy - Axg®

vl=vi+-- 4.

Denote i) :=h if v=0:= (0, ..., 0). For g € N, denote h € CD if h(V) exists
and is continuous for every |v| <gq.Ifi = (i1,...,i5) and v = (vy, ..., vs), denote
i <vifiy <vgforeveryk=1,...,sanddenotei <vifi <vandi#v.
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Assumptions. The following assumptions will be needed for different occa-
sions:

1. Z is independent of n and Z; are i.i.d. such that for each ¢+ € ® and ¢ € Z,
©(Z;,9) has adensity f(x, ).

2. n is a Markov chain and there are x > 1, ¢, > 0, such that for all a, b € H and
s,t€eZwith |s —t| >«,Pr{n; =b | ns =a} > ¢..

3. Foreachze Zanda,be™,0 < f(p(z,0,(¢)),0,(e)) < 0o and is continuous
in &.

4, There is g € N, such that foreach z € Z and a, b € H, f(¢(z,60,(€)), 0p(e)) as
a function in & belongs to C?) and all its partial derivatives of order < ¢ are
continuous in (z, &). Furthermore, for r > 0, there is ¢ = ¢(r) > 2, such that

P{My(Zo,r) > u} = O((logu)™), U — 00,
where, letting £, 45 (¢) =1n f (¢ (z,64(€)), 0p(¢)), Mo(z,r) =1 and for k > 0,

Mi(z,r) = sup{[€"), (&)|:1 < |v| <k, |e| <r,a,b e H].

,a
5. Forany r > 0, E[My(Z, r)¥] < oo, where k = ¢%(q + 1)/2.
Henceforth, for s, t € Z and a, b € 'H, denote

Pi(a) = Pr{n; = a}, Psi(a,b) =Pr{n, =b | ny =a}.

Remarks. 1. Some examples of ¢ are given Section 3.3.

2. n need not be stationary or have time-homogeneous transitions.

3. Assumption 3 implies that no value of X; can decisively identify or rule out
any elements in H as possible values for ;.

4. In Example 1.1, since £; 45(g) = —%[z +e(a —b))* — Ina/27 and Z, ~
N (0, 1), Assumption 5 is satisfied. The assumption is stronger than Assumption 4.
To get results on almost sure convergence, Assumption 4 suffices. However, to get
results on expectations, Assumption 5 will be used.

5. Assumption 2 can be relaxed as follows: there are ¢, > Oand --- < s <ty <
Sk+1 < tky1 < ---, with sx — £00 as k — £o0o, such that Py, 4 (a,b) > ¢, and
forn> 1, #{k:—n <s; <0}/n and #{k:0 < sy < n}/n are bounded away from
0. The analysis under the relaxed assumption follows the same line as the rest of
the paper but is more technical. We will not pursue it here.

2.2. Derivatives of full likelihood ratios. Given & and m, n € N, if the obser-
vations consist of X () = ¢5(Zs, 0, (¢)) withs = —m., ..., n, the likelihood ratio
for false null vs. true null at ¢ is
Pr{in: e Hi | X—m(e), ..., Xn(e)}

Pr{in.e Ho | X (), .... Xu(e)}

Pt,mn (&) =
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Let o0 = (o) be an independent copy of 7 that is independent of Z as well.
Denote by E, the expectation with respect to 0. By Bayes formula,
ZHGHI PI (a)EO' [I—[n:—m WS (87 O_S) | Oy = a]

22 mn (&) = ’
( ) Pr, (8) ZaeH() P (a)Ecr [l—[n:—m WS (8’ O_S) | or = a]

where for ¢ € H,

(2.3) Vi(e, ) = f(Xi(e),0:(8)) = f(@(Zs,0p,(€)), 0c(€)).
As discussed in the Introduction,

Prin: e H1 | Xs(¢),s € Z}
Pr{n; € Ho | Xs(¢),s € Z}

exists almost surely due to martingale convergence and plays an important role in
optimal multiple testing procedures.

pi(€) = m,ggloo Pt,mn (e) =

THEOREM 2.1. Suppose Assumptions 1-4 hold.

1. Almost surely, p; mn € CD fort=—m+«,....,n—«.

2. Almost surely, p;(€) is strictly positive for all t and ¢.

3. There is a deterministic function r; ,(g9) € (0, 1) in g9 > 0 for each t € Z and
v with |v| < q, such that almost surely, as m, n — oo, p,(‘j,zm (&) converges, with

(v) _ H (v) _ mAn
S Prmn(8) — M ppy (8)| = 0y (€0)),

forallt € Z, v with |v| <q and g¢ > 0.

Due to the uniform convergence of pt(";%n on every compact set,

Q4 peC? pMe)= lm pll.e), 1eLv=q

(cf. [24], Theorem 7.17). Then, as p;(¢) are strictly positive, the interchange be-
tween limit operation and differentiation for the logarithms of p; ,,,(¢) in Exam-
ple 1.1 is justified.

Since Z is countable, in order to establish Theorem 2.1, it suffices to show it
holds for each fixed ¢ € Z. Without loss of generality, we shall focus on t = 0. For
ease of notation, henceforth denote p,,, = 00,1mn-

By the conditional independence of (o, < 0) and (o;, t > 0) given oy,

E,,|: [1 ¥s(e. 00 00}

S=—m
00]

0’0} = Y0 (¢, 00)Eo [1‘[ s (e, 03)
s=1

x Eg |:1_[ V_s(e,0-5)
s=1
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Fix an arbitrary 1 € H. Define
Es [H?:l Vs (e, 045) | 00 =a]
EollT5—; ¥s(e, 045) | 00 =1]
Then (2.2) for t = 0 can be written as
g,a)Py(a)A_,, o A

(26) Omn (8) _ ZaeHl WO( ) 0( ) m,ailn,a .
ZaeHO Yol(e, a)PO(a)Afm,a An,a
Although A+, 4 depends on i, ppy, (¢) is independent of 1. For brevity, 1 is omitted
in the notation.

From (2.6), it is seen that Theorem 2.1 follows from the next two assertions on

uniform geometric contraction of functions and their derivatives on any compact
interval of .

(2.5) A:I:n,a = A:I:n,a (e) =

THEOREM 2.2. Let Assumptions 1-3 hold. Almost surely, as n — 00, for all
a € H, Axn.q(€) converge uniformly on every compact set of €. The limits

2.7) La(e) = Tim Apa(e),  La®) = lim Ay a(e)
n—0o0 n—oo
are strictly positive and continuous, and there is a deterministic increasing func-
tion r(gg) € (0, 1) in g9 > 0, such that almost surely, as n — oo,
sup |An.q(e) —La(e)| =o0(r(e0)")  Veo >0,

lel<eo
and likewise for A_, , and L, (e).

THEOREM 2.3. Let Assumptions 1-4 hold. Almost surely, as n — oo, for each

nonzero v with |v| < q and a € 'H, Aﬁ,a converge uniformly on every compact

set of €. Let
Loa(e) = lim AW (),  Lya(e)= lim AY) (o).
n—oo ’ n—oo ’
There is an increasing deterministic function r,(go) € (0, 1) in &9 > 0, such that
almost surely, as n — o0,

max sup AL (&) = Lya(e)| =0(rl(e0)) Ve >0,

le|<eo

and likewise for A_, , and I:v,a(s).

Basically, the two theorems say that L,(e) and L,(e) are q times differ-
entiable, and for v with [v] < ¢, LY (e) = Lya(e), LY (e) = Lya(e), that is,
(lim Ain,a)(") = lim Ai’,z o~ As aresult, p(¢) is g times differentiable, with

Y aer, Yole, a)Po(a)La(e)La(e) ](”)
ZaeHo Vo(e, a) Po(a)La(e)La(e) ‘

Note that although we are mainly interested on the property of p; around ¢ = 0,
the above results allow Taylor’s expansion around nonzero values of ¢ as well.

(2.8) PV (e) = [
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In Example 1.1, limit operation, differentiation, and expectation were freely
interchanged. The next assertion justifies this.

THEOREM 2.4. Let Assumptions 1-3 and 5 hold and k = 1 in Assumption 2.
1. There are 0 < ¢ < C < 00, such that almost surely, c < A, 4(¢) < C for all
n>1,a € H and ¢, thus

EllnLa(e)ln] = lim E[ln Ap,q(e)ln].
2. Forvwithl <|v|<ganda € H,
EllnLa(e)[n]"” = E[(InLo) " (e)In] = lim E[(In Ana)™(e)In].

Similar results hold for A_,, , and L,.

3. Binary state HMM with univariate parameters. In this section, we con-
sider in more detail the case where 7 is a first order binary state Markov chain,
with n; = 1{H; is false}. Also, we suppose ¢ € R and

3.1 60(0) =6,(0) =0,

that is, at & = 0, false and true nulls are no longer distinguishable based on the
data.

3.1. Derivatives of likelihood ratio. We shall focus t = 0. Analysis for other ¢
can be done likewise. By (2.8), the full likelihood ratio (FLR) p(¢) satisfies

p(€) _ . Li(e) - Li(e)
3.2) In —= =r(e) +r(e) withr(e) =In——, r(¢) =In ——,
p(€) Lo(e) Lo(e)
where p(¢) is the local likelihood ratio (LLR) for 1o only based on Xj:
_ Prino=11Xo} _ Po(Dyole, )
Pr{ino=01]Xo}  Po(0)¥o(e,0)’
with v (e, a) being defined in (2.3).
Consider r(¢). The treatment of r(¢) is similar. By Theorem 2.2,
Ea[H?:l Ys(e,05) | opg=1]
Es [H?:l Vs(e, o5) | o9 = 0] ‘

p(€)

33) r()= nll)nol<> An(€) with A, (¢) =1n

By (3.1), for t € Z,

(3.4 V0, 01) = f(@(Zs,6,(0)), 05,(0)) = f(9(Z:,0),0)
is independent of o, so A, (0) =0, giving r(0) = 0. Next, define

di(e) =Inyy (e, 1) —Inyy (¢, 0),
Dg; = Py (1,1) — Py, (0, 1), s,t €.

(3.5)
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In general, unless 7 is stationary, Dg; # Dy for s # t. By simple algebra, we
have the following identity, which the next result relies upon

(3.6) D,s Dyt = Dy, DisDgy = Dy, r<s=<ft.

THEOREM 3.1. Let Assumptions 1-4 hold. Then

(3.7) r'(0) =) Dod/(0),

t=1

r'(0) = Z Do, {d; (0) + [Py (1, 0) — Py, (0, 1)][61;/(0)]2}
(3.8) = -~

+2) " Dod;(0) > [Pog(1,0) — Pos(0, 1)]d;(0),

=1 s=1

where’,”, ..., denote differentiations with respect to ¢.

Simplifications can be made when 7 is stationary and ergodic. In this case, p, =
Py(a) € (0, 1) and the transition matrix can be written as

0=(})wop+r( 21 )a.-n,

where r € (—1, 1) is the eigenvalue of Q different from 1. Then for ¢ > 1,
' 1) z( pi ) (po+rfp1 p1 —r’p1>
= , +r 1,—-1)= ,
0' = (1) o p+r (21 )a—n=(Potrm prn
so that in (3.7) and (3.8), Do, = r' and Pys(1,0) — Py, (0, 1) = (po — p1)(1 —r%).

3.2. A univariate case. In this section, suppose both X; and 6,, (¢) are univari-
ate. Suppose the following regularity conditions are satisfied:

1. Mx,9)=In f(x,0) € C® and ¢(z,v) as a function in v belongs to C®@, such
that for any ¢, v, and v with |v| <2,
E[2(¢(Z1, v), 9)] = (E[M@(Z, v), HD™,

where the differentiation is with respect to v and 9.
2. 0,(¢) € CP for any a € 'H.

PROPOSITION 3.2. Let Assumptions 1-4 hold. Then for each t,
ar(x,0)
R
8%1(x,0) dp(Z;,0)
dx 01U av
3% (x, 0)
012

3.9)  d/(0) = [61(0) - 6,(0)]

d'(0) = 2[6{(0) — 6,(0)16;, (0)
(3.10)
dA(x,0)

(N2 ! (2
+[61(0)" = 6,(0)7] ™

+[67(0) — 65 (0)]

’
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where the partial derivatives of A are evaluated at x = ¢(Z;, 0).

PROPOSITION 3.3. Let Assumptions 1-3 and 5 hold and k = 1 in Assump-
tion 2. Then

(3.11)  E[F(0)In]1=0,

e}
(3.12)  E[r"(0) | n] = Varld(0)] Y Do;[2n; — Pos(1, 1) — Po; (0, 1],

t=1
Moreover, for all t, E[d/(0)] = 0 and Var[d;(0)] = [6{(0) — 0(’)(0)]2J(O), where
J () is the Fisher information for the parametric family f(x, ).

Note that (3.12) implies E[r"(0) | nol = (29 — 1) Var[d}(0)] 322, Dj,, which
is what we got toward the end of Example 1.1.

We next use the results to get a better view on the structure of p(e). Since
r(0) =0, by Taylor’s expansion and Theorem 3.1,

d// 0 2 2 0
t <2>8 } N % S Dol Por (1,0) = Py (0, D[} (0)12
t=1

r(e) =Y Do [d; 0)e +
t=1
00 t—1
+&2 )" Dord](0) Y [Pos(1,0) — Pos (0, 1)]d;(0) + o(e?).

=1 s=1

Since d; (0) =0, then d/(0)e + d/'(0)e?/2 = d,(¢) + 0(£?). Under the condition
of Proposition 3.3, by Propositions 3.2 and 3.3, all 4/(0) are independent of 7, have
mean 0 and the same variance. Similar assertions can be made about the expansion
of r(e). It follows that

r(e) +F(e) = Y _ Doidy(e) + e Var[dy(0)]1K + &°€ + o(&?),
t#0

where K = (1/2) Zt;ﬁo Dot [ Pos(1,0) — Py (0, 1)] and & is a random variable in-
dependent of 1 and has mean 0. Then by (3.2) and the definition of d;(¢) in (3.5),

) Vi, 1)
3.13 =
G.13) p(e) p(e)t#]"[o[%(& 5

According to (2.3), ¥ (g, 1) /v (g, 0) is the marginal likelihood ratio of X; for
the isolated test on n; = 1 vs. n; = 0, which completely ignores the dependence
among the sites. The above expansion shows that all these likelihood ratios are
factored into the FLR, with effects being adjusted by Dy;. For example, if Dy,
is positive (resp., negative), then a large likelihood ratio at site ¢ increases (resp.,
decreases) the FLR for the test on 19. Also, by (3.6), if s has the same sign as ¢ but
farther away from 0, then the effect of the marginal likelihood ratio at site s on the

Do
} " exple?(Var[d)(0)1K + &) + o(?)).
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test on 7 is determined by Dg; and Dy. In contrast, the LLR p(¢) only takes into
account the marginal likelihood ratio at site 0.

The above expansion is obtained for 7. Taking into account explicitly the de-
pendence on site location, the FLRs for the multiple tests on 7y, s € Z, are

~ Wt(&l)
3.14 B = 0y
(.14)  py(e) “8),171[%@,0)

where the LLR p;(&) and constants K are now expressed as

_AOUED )
~ POy (e, 0) Ks—<1/2)§;Dn[Pw(1,0> Py (0, 1)]

and &; are centered random variables independent of 1. The conditional likelihoods
of 1y can then be computed via Pr{n; =0 | X} =[1 4+ p; (e)]_l.

Dy
} x exp{e? (Var[d)(0)]1K + &) + o(e?)},

Ps (&)

3.3. Examples.

EXAMPLE 3.1 (Translation). Suppose ¢ is defined on R x R such that
¢(z,v) =z+ v and for a =0, 1, 6,(¢) = ea. Let each Z; have density h(z) =
e~ V@ Apparently, Example 1.1 belongs to this case.

Foreach ¢ € R, ¢(Z;, ©") = Z; + ¥ has density f(x, v) = h(x — ). Therefore,
Alx,9)=Inf(x,9)=—V(x —9). Itis easy to check

9¢(z,0) oA(x, )
9, O — _ = 1 e V/ — 19
(l( ) a’ av ) 819 ('x )a
2 (x, ¥ Z(x, 0
(x ):_ (x ):V,,(x_ﬂ)'
dx 00 992

Provided necessary conditions are satisfied, by Proposition 3.2,
d;(0) =V'(Zy), d/(0) = (2n, — HV"(Zy),
Var[d](0)] = / V/(x)?e”V® dx.
Then we can get r'(0), r(0) and E[r"(0) | n] by Theorem 3.1 and (3.12).
EXAMPLE 3.2 (Scaling). Suppose ¢ is defined on R x R such that ¢(z, v) =
e Vzand fora =0, 1, 6,(¢) = ea. Let each Z, have density h(z) = e V@, For

v €R, p(Z;, v) has density f(x,v) =e"h(e’x). Therefore, A(x, v) = v — V(e’x).
By Proposition 3.2,

dj(0)=1-2,V'(Zy), d/'(0) = 20 — DZJV'(Z) + Z: V" (Z))],
Var{d}(0)] :/[1 2V ()P VD dx.

Then we can get r'(0), r’(0), and E[r”(0) | n] by Theorem 3.1 and (3.12).
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EXAMPLE 3.3 (#-statistics). Suppose the data observed at each time point ¢
is a random vector & = (&1, ..., & v+1), such that conditional on 7, & are in-
dependent of each other, and for each #, & ; are i.i.d. ~ N(esn;, stz) for some
s; = s;(n) > 0. Suppose s; are completely intractable, that is, there is no informa-
tion on the values of s; or their interrelations. In this case, it is reasonable to use
the z-statistics

_ AT
JS? /v

to test on 7;, where £ is the mean of &:,j and St2 the sum of squares of &; ; — &.

By scaling, we assume without loss of generality that s, = 1. Let { =
Vv +1(& — en;). Then, given 5, ¢ ~ N(0,1) and St2 ~ XS are independent of
each other. Define Z; = (¢, S;) and, for z = (r, s) and a =0, 1, define

©(z,v) =/ +v)/s, 0,() =+/v + las.

Then X, = J/v(& + v+ 1n€)/S; = ¢(Z;,0,,(¢)). Conditional on n, X, ~
ty,9(x) with ¢ = 6,,(¢), that is, the noncentral z-distribution with v degrees of
freedom (df) and noncentrality parameter . In the notation of Assumption 1,

fx,0) =19 (x).

Xi

Recall
fy9 (x) = n(x)e—’ﬂ/z[l +]§ %i_ﬂ
with ¢ = F((‘l)"_'(_(kv—:-ll))//ZZ))Zk/z
Therefore,

A, ) =In f(x,9) =Int, (x) — %192 +ln|:1 +>

ckxk z?ki|
k=1

(v + x2)k/2 Kl

By In(1+x)=x — 3x2 4+ 4x% — -,

A, ) = — E{M—l}ﬁ2+lntv(x)+0(z‘}3).
NCEA) I
It follows that
dA(x,0) c1x 321 (x,0) clv
30 Jora2 x99 (v4x2)32

?r(x,0)  (c2 —cP)x?

= — 1.
902 v 4 x2
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Ate =0, X, = /v/S;. Since 0,(0) = /v + 1a, (3.9) yields
Vv + 11 X, _ V2w +DC(w/2+ 1)

Sorx2 T+ DS

Next, since d¢(Z;,0)/0v = \/v/S;, by (3.10),

2c1(v + DS} (2=’ 1]
(S7 +¢7)3? S+ &7 '
Then r'(0) and r”(0) can be calculated by Theorem 3.1.

To apply Proposition 3.3, we need to check if Assumption 5 holds. It is not
hard to see that for g(¢) := A(p(Z;, 0,(€)), Op(g)), g(k)(s) is a linear combi-

20,9) P IAD) eyaluated at x = @(Z;, 0q(2)) and ¥ = Oy (e).

axJ k=i o
It is also not hard to see that 3“5;"].”9) and 2 ayk(_xjﬂ)

42
as E[S; /1 (QH)/Z] < oo for j < ¢, Assumption 5 holds. Since here ¢ = 2 and
82 ~ x2, it suffices to have v > 12. Under this condition,

./2(u+1)r(v/2+1)]2E[ c? }
T((v+1)/2) g+ sel

Because S,2 is the sum of squares of v i.i.d. N(0, 1) random variables that are
independent of ¢; ~ N (0, 1), by symmetry,

¢? }_ 1 , _1[ vI'(v/2) T
E[S;2+§;2 TSR E 1 Frowayyo)
Then E[r”(0) | n] can be calculated by (3.12).

d/(0) =

d/(0)= + 4+ 1)[

. —j 8
nation of S,/ 0

are bounded, so as long

Var|d)(0)] = [

4. Technical details.

4.1. Some inequalities. For any set A, denote by #A the number of its ele-
ments.

LEMMA 4.1. Let 'H be a finite set and W, >0, V, > 0 for a € H such that
W= ,W,>0and V :=3,V,>0. Then for any x,,a € H,

ming (Vy/ Wq) i|

WIS " Wox, — VY Vx,| < max |x, — [1—
; ata ; a¥a| = Mmax [Xa = x| maxy(Va/ W)

PROOF. Enumerate the elements in H in an arbitrary order. Then the left-hand
side equals |T'|/ D, where

T =Y (WaVipxa— WpVaxa) = > (WaViy — Wy Vo) (xa — Xp).

a,b a<b

D=2 (WaVp+WpVa) =D (WaVip+ Wy Vo).

a,b a<b
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Denote A =max,  |x, — xp|. Then
T _ AYa<p|WaV = Wi Vel <A WaVp — WV,

— = <Amax ————
D Za<b(Wa Vb + WpVa) ab W,V + WV,
:A[l—min 2Va/Wa ]<A[1— mina(Va/Wa)]’
ab Va/ Wa + Vip/Wp max, (V,/ W)

completing the proof. [

LEMMA 4.2. Let A and B be finite sets and W,, V,, x4 > 0 fora e AU B.
Then
Wy, Vp

Wa Va '

Wpxp Vyxp maxpepi Xp
2 beB _ DbeB < #B x ( AXpe ) ax
YoaeaWaxa D gen Vaxa Mingec 4 Xg /) acAbeB

PROOF. The left-hand side equals |T'|/ D, where

T= > xaxs(WpVa—WoVp)= > xaxpWaVa (
acA,beB acA,beB

Wy Vb>
Wo Vo)

Z XaXg WoVy > (mlﬁxa) Z WoVax,.

a,a’eA acA
Then by
|T|§#B<maxxb> max %—— ZW Vaxa,
beB acAbeB| W,

acA
the lemma follows. [

LEMMA 4.3. Let H be afinite set and g € N. Fora € H, let W, :R? — [0, c0)
and g,:RP — R be g times differentiable. Suppose W := 3, W, > 0. Define
function g =W~ Za w8a. Enumerate 'H in an arbitrary order. Then for v with
=1,

@n gV=w Z Wagl + W2 S (WO Wy — W W) (80 — gb).

a<b

and more generally, for v with |v| <gq,

v+1
(4.2) gV =w 1ZWa W+ 3 S whoe,,,
k=2 0<j<v
where Uy, j can be written as
Ukv,j = > ckv(ar, ..., ax, i, ... lk)l_[W(") (e — &),
ai,....ap€H,a1<ay s=1

i1+ =v—j
with ci v(a1, ..., ak, i1, ..., i) being constants.
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PROOF. If |[v| =1, then

gV =W Z Wagl +w! Z Wiga = W23 Waga ) W,
a b
=W Y Wagl” + WY (W Wy — WaWy)ga
a a;éb
=W Wagl + WS (WOIW, — W W) (80 — 25).
a a<b

showing (4.1), and hence (4.2) for |v| = 1. Let v = ¢ + u, where |e] = 1 and
0 < 11 < v. Suppose g has the form (4.2). Then

vl

g(v)_( (M) (e) f(€)+z Z (W™ kUk )(E),

k=20<j<v
where f = WIS W, £, with f, = g/ By (4.1),
fO= 1ZW FO+W2I(WOW, — WaW, ) (fa — 1)

a<b
=w! Z Wagl + W23 (WOW, — W W) (g — gi).
a<b
On the other hand, foreachk =2,...,|v]and 0 < j < v,

—k —k—1 —kyq(e)
(W Uk,u,j)(E) = —kW 27:-[ Wa(e)Uk,M,J' + W UkeM j
ac

It is then not hard to see that g(*) has the form (4.2). The proof is complete by

induction. [J

4.2. Basic facts. Define matrix-valued functions L, (¢) = (Lp.ap(€),a,b €
‘H), such that for n > 0,

(4.3) Linap(e) =E4 [uoﬂ =b} [ [ ¥ (e, o) |00 = a]
s=1

Then from (2.5),

@.4) Anale) = e lnar®)

Zbe’H Ln,lb(‘g) .

For ease of notation, when there is no confusion, & will be omitted.

LEMMA 4.4. Let Assumptions 1-4 hold. Then for each n and a, b € 'H,
Lyap € CD, and for |n| > k, L, qp is positive and finite.
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PROOF. By Assumption 4, Y, (e, a) € C@ for each n € Z and a € H, im-
plying Ly q4p € C9D. Forn >« and a, b € H, as Py,(a,b) > 0, there is at least
one v = (vy,...,V,) with v, = b and Pr{oy = vy, ...,0, = v, | 09 = a} > 0. For
each such v and t = 1, ..., n, by Assumption 3, (¢, v;) € (0, 00). Therefore,
Ly ab(e) € (0, 00). The proof for L_, 4p is similar. [

According to the lemma, A, , € (0, 00) once |n| > k. Also, by assumptions 2
and 3, Py(a) > 0, Yo(e, a) > 0. Therefore, p,,,,,(¢) € (0, 00).
The following relation will be repeatedly used:

45)  Loab =V Lu—kael)y.  abeH,1<k<n,
e

where
. ‘ n—1
(4.6) 1,5,3b=1,£,3b(e>=Ea[1{an=b} [T vie.on) on_k=e].
n—k+1

Similar relation holds when n < 0.
4.3. Proof of Theorem 2.2.

LEMMA 4.5. Let Assumptions 1-3 hold.
1. Given a, b € ‘H and ¢, for |n| > k, min, é:zii; is strictly positive and in-

Ln,be(é‘) . . . .
L@ is finite and decreasing in |n|.

2. There is an increasing deterministic function r(gg) € (0, 1), such that given
g0 > 0, for almost all realizations of Z and n,

L L
@7 Ap(e) = max | Embe(®) _ Lnbd@| ol s e e < o,
a,b,c,d Ln,ac(g) Ln,aa’(g)

creasing in n, and max,

where C = C (g9, Z) is a random variable that only depends on ey and Z and is
finite almost surely. Additionally, for fixed ¢, AL, (¢) are decreasing in n.

PROOF. We only consider n > 0. The case n < 0 is similar. Given a # b € 'H,
for n > k and c € H, by Lemma 4.4, é"'b" € (0, 00). Then by (4.5),

n,ac

k
Ln,bc . Ze Lnfk,bellg,e)c
= e
Ln,ac Ze Lnfk,aelig,e)c
Letting k = 1, it is easy to see that

4.8)

. Ln—l,be Ln,bc Ln—l,be
min < max
€ Ln—l,ae Ln,ac ¢ Ln—l,ae

allc e H,

which implies part 1.
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Given 1 <k <nande, foreacha, b, c,d € H, apply Lemma 4.1 to x, = QZ:—’;'ZE,
k k ’
We = Lu—k.aelioc and Ve = Lu_g ae 1\, Then by (4.8),
. (k) (k)
Lype  Lnpa Ly—kbe Ln—kpba mine I, ,;/In.ec
- = max - x|1— W
Ln,ac Ln,ad c.d Ln—k,ac Ln—k,ad max, I d/I” ec

Take maximum over ¢ and d and then over a and b. It follows that

. minc,d e ,Eke)d/lrgke)c
(49) An (8) S yl’l A71—]((‘9) Wlth Vn - )’n (89 k) == 1 - (k) (k)
maxc,q, /1
c, el n,ed! fn.ec
Forz=1(z1,...,2¢—1) € Z¥=1 where « is as in Assumption 2, define
xk—1
a(z,e) = mln ]_[ S @z, 00,(8)), 0y, (), a4(z, 80) = | 1|n£ a(z,¢€),
0
1§t§K 1 =1
xk—1
p(z.e)= max [] /0. 6u,().60,), Bz e0) = sup Bz, e).
lftfl( lt ! £1=#0

Forn >k, let

é-l’l = §n(80) = a*(zn—K+15 L) Zn—l» 80)5
&n =&n(e0) = ﬂ*(zn—l(—f—l’ coes Ln—1, 80)-
Since Y (e, 01) = £ (@(Zs, by, (6)), 6, (¢)), then for [e] < eo,

n—1

(4.10) < ] vite.on) <&

n—«k+1

4.11) = Ly Prwnle, ) <I%) (8) <& Pyynle, ).

— "n,ec

Given z € 21, by #H < 0o and Assumption 3, «(z, ¢) and B(z, €) are contin-
uous in ¢ and 0 < a(z, &) < B(z, &) < 00, yielding 0 < w4 (z, &9) < B*(z, g9) < 0.
Asaresult, Pr{0 < ¢, <&, <oo} =1.Fix 0 < x < y < 00, such that pg :=Pr{x <
& <& <y} > 0. Note that x and y can be chosen in such as way that they only
depend on &g, the distribution of Z, and «. Because Z; are i.i.d., from the defini-
tions of ¢, and &,, almost surely, there is an infinite sequence ny = ny(Z, gg) > «,
s > 0, such that

4.12) X <ln, <&, <Yy

and furthermore, n; can be chosen in such a way that

(4.13) Ng >Ng_1 + kK, {s:ns <n}| > ZL forn>1.
K
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On the other hand, since #H > 1, Assumption 2 implies that
(4.14) Gsx < Pr_yenle,c) <1 — ¢y allc,e e H.
Combine (4.11), (4.12) and (4.14) to get
0<gux <I® (e)<(1—¢)y<oo Ve,eeH

ng,ec
and hence
minc,d e ,gx)ed/lr?:)ec
yl’l; = 1 - (K) (K) rO = rO(SO)
maXe d.e I d/Ins ec
4.15)

2
=1— [ P }<1
(1_¢*)y

Now by (4.9), A, (e) < Ap,_(€)rg. Since ng_1 < ns — k while (4.9) implies
that A, (¢) is decreasing, A, (&) < Ay, ,(&)ro and hence A, (¢) < Ay, (s)ré_1 by
induction. For any n, if ny <n < ng11, then A, (g) < Anl(s)rg_1 < A,((e)ré_1
Combining (4.13), forn > 1,

An(e) < [Ac(e)/rolr(en)”  with r(eo) = r§” .

Note A,(g) < maxyp.¢ LK ‘“8 Using (4.3) and (4.10) followed by assump-

tion 2, it is seen that

Ly, ac(&) ‘i‘_x Po (b, c) (1 — ¢x)éi
max — max <0
a,b,c LKb(,(g) i a.b,c POK(a C) (b*é‘/c

Therefore, (4.7) is proved.

To make r(go) increasing, replace r(gg) with, say, [inf.>¢,r(c) + 1]/2. From
the construction, r(gp) only depends on the distributional properties of Z and 7,
but not specific realizations of the processes. Therefore, r(gp) is deterministic. [

LEMMA 4.6. Fixa € H and &.
1. Fora e H,

0< inf A, 4(e) < sup A, 4(e) <o00.
|n|>x [n|>x

2. Fors>n>kands <n < —«,

|An,a(8) - As,a(8)| <2A,(8) + As(e).

PROOF. From (4.4),fors >n>kands <n < —«,

L qe(e) |: . Lpge(e) Ly qe (8)i|
€ | min , max )
Ls,le(g) € Ln,te(g) ¢ Ln,le(g)

An,a (8)7
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Together with part 1 of Lemma 4.5, this yields the first part of the lemma and also

Ln,ab(g) Ln,ab(e) Ls,ab(g)
An,a(g)_i = ns - = n»
Ln,lb((‘/‘) Ln,tb(s) Ls,lb(g)
where b € 'H is arbitrary. Then by
Ln ab(g) ‘ Ls ab(g)
Apa(e) — As (0| < |Apale) — — A q(e) — =
| An.a(e) 5.a(8)] _‘ n.a(€) Ln (@) + |As.a(€) Ly (@)

k]

‘ Ln,ab (8) . Ls,ab (8)
Ln,lb(s) LS,lb(g)
the second part of the lemma follows. [

PROOF OF THEOREM 2.2. From Lemmas 4.5-4.6, it is seen that given g9 > 0,
almost surely, as n — 00, A, 4(e) = Ly(e) and A_, 4(¢) — L. (8) uniformly for
le] < o, at rate o(r(gp)"). Since Aty 4(¢) are continuous, the uniform conver-
gence implies that L, (g) and L,(¢) are continuous. Also, the lemmas imply that
L. () and Ly () are strictly positive. By monotonicity argument, almost surely, the
convergence holds simultaneously for all &g > 0. U

4.4. Proof of Theorem 2.3. Fort #0,n > 1 and g9 > 0, define

Vin(eo) =n [max D4, (go)
(4.16) T .
1//[ (85 a)
wt (89 (1)

where 1//t(”) is a derivative with respect to €. Note D;(gg) > 1 since the maximiza-
tion in its definition takes into account v = 0.

with D;(e9) = max max sup
V=g a€H |g|<g

’

LEMMA 4.7. The following statements are true.
1. Foreg >0andn > 1,

(4.17) Via(g0) < nmgxm + My (Z;,80)17.
<n
2. If Assumptions 1-4 hold, then Pr{lim,, 87" V,(g9) =0,V > 1,69 > 0} = 1.

PROOF. To show part 1, it suffices to show that for all v with |[v| =] < ¢, and
all g > 0 and t # 0,

Wz(])) (69 a)
Yi(e, a)

It is easily seen that (4.18) holds for / = 0. Suppose (4.18) holds if |v| <I. Let
|[v| =1+ 1. Without loss of generality, let v = e + u, where e = (1,0, ..., 0) and

(4.18) dy ;(&p) :=max sup

a€H |g|<eg

|s L+ My(Zs, o).
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= (1,..., mup) = 0.Let £, 4p(¢) =1n f(@(z,04(€)), Op(¢)) as in Assumption 4.
Then by ¥, (¢, @) = Y (e, )L, (&),

Oea =), @) = 3 (1) i eal e

i<p
().

where () = (/1) --

i
(v—i)

Fori <u, €, " (&)l < Mi(Z;, &0). Then, as || =1, by induction the hypoth-
esis,
(v)

wz (e,a) ' n . li|
max sup < Mi(Z;, 0) ( - >[|l| + M(Z;, 0)]"
a€H |o\<eo| Vi(e, a) ’ ; i ’

< M(Zi, €0) ) (7) [l + My(Z;, £0)]"]
i<p

= M[(Zt, 8())[|V| + Ml(Zlv 8)]1’

which implies (4.18). By induction, (4.18) holds for all |v| <gq.

Because V,(gp) is increasing in &g, to show part 2, it suffices to show that for
each fixed ¢g > 0 and 8 > 1, lim,, 87"V, (g9) = 0 almost surely. Fix an arbitrary
c € (1, B), such that ¢? < S. By part 1 and Assumption 4, for some p = p(gp) > 2,

Pr(Va(e0) = ne") < Pr{max My (Z, e0) = " ~ q|
tH<n

< 2nPr{My(Zo.20) = ¢" —q} =o(n~ ).
Then part 2 follows from the Borel-Cantelli lemma and nc?" = o(8"). U

LEMMA 4.8. Let Assumptions 1-4 hold. Fix a, b, c € H and k > 1. Let
Wa(e) = Lu—k.ap(@)1 9o(e),  n=>k,

n,bc

7®

where . be

is defined in (4.6). Given v > 0 with |v| < q and gy > 0, for n > 0,

LW
—' nat Oy e,

lel<so Ln,ab(€) —
with V,(e0) :=0if n =0, while for n > k,
Wi (e)]

v
|&sllgo W) < [Vio1(ep)]™.

PROOF. Forv = (vy,...,vp) with I < |v] <g, itis not hard to get

,(ftvzlb(e) Eos [I{Gn =b} Z l_[ W,(l’)(e, o0y) | og = a:|.

Ity =v =1




460 Z.CHI

For any sequence [y, ...,[, in the sum, at most |v| of them are nonzero. For
each [; > 0, |1ﬂ,(l[)(8, o1)| < Di(e9) s (g, 0y) for |e| < gg. As aresult,

z vl
H!Iﬁfa’)(s, o) < [magn Dt(80)] [[viCe 00
t=1 t=1

1<t

On the other hand, there are n"! - - - n"» = n!"l such sequences. Then

aoza:|

This completes the proof of the first inequality. To show the second inequality,
first,

1<t

L) < [0 max Dieo)] € [1{% =5} [ ¥ie.00)
t=1

= [n 1Illa.X DI(SO):II‘)an,ab(e)'

=t=n

W =3 (V) L @l51 .

i<v

Using the definition of / ,Ekg . and following the treatment for L fl"fl »(&),

n,bc

(v—i) vl W=l
[Pl <=M max Do) LG

Combining the bound with the one for Lflii k.ab (),
vl
(v)
(W,"(e)] < L;?saf_] Dt(SO)]

<X () 0= 0= DL (@150
i<v
< [Va—1 (1MW, o).
This finishes the proof. [l

LEMMA 4.9. Let Assumptions 1-4 hold. Define, for v with |[v|=1,...,q,

L ) L )
(4.19) Ano(€) := max ( ””’C> (€) — ( ””’d) (a)‘.
’ a,b,c,d Ln,ac Ln,ad
Then for each v, there is an increasing deterministic function 0 <r,(gy) <1 in
g0 > 0, such that almost surely, as n — 00,

sup A, v(8) =o(ry (eo)l”l) all g > 0.

le|<eo
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PROOF. We only consider n > 0. The case n < 0 can be handled simi-
larly. Given k, define I,g{(e)c(s) as in (4.6). Given a # b € H, write W, .(¢) =
Lu—k.ae(&) 0 (&), Wy c(€) = ¥, W cc(€). Then by (4.8), for n > k,

Ln bc n —k,be
= 1%
Ln ac Z b ec n kae
Fix/=1,...,q. By Lemma 4.3, for v # 0 with |v| =1,
Lob v) B Lok )
(4-20) ( = C) = Wn,cl ZWn,ec< . e> +Rn,v,c,
Ln,ac e Ln—k,ae
where
mowls T/ p @D L ()
Ry.v.c = alinear combination of H o€ [( u k’bel> - <ﬂ> ]
s=1 Wn,c Lnfk,ael Lnfk,aez
acrossm=2,....,v|+1,i1,...,in >0,0<j<vwithiy+---+i,+j=v,
and ey, ..., e, € H with e; < e3. Then, by the same argument that leads to (4.9),
(4.21) An,v(ﬁ‘) = VnAn—k,v(E) + 2m§1X|Rn,v,c(5)|,

where y,, is given in (4.9).
The rest of the proof is by induction on /. First, let |[v| = 1. By Lemma 4.3,

Ly—kb Lu—k.b
n v,c = Z rEVe)lCWn esc Wn’elcwrgjje)zc)< n ey  n €2>‘

e1<er Ln—k,ael Ln—k,aez

Fix €9 > 0. By Lemma 4.8, for |¢| < &9, |W,"2(€)] < V_1 (€0) Wy ec(&). Then
|Rn,v,c(8)| =< Wyzcz Z 2Vn—1(SO)Wn,echn,echn—k(g)

e1<er
4.22)
- mCaX|Rn,v,c(8)| < Vau—1(e0) Ap—i(€).

By Lemma 4.5, there is increasing deterministic r = r(gg) € (0, 1), such that
SUP|e|<go An () <r"forn> 1.Fix B € (1,1/r). Then by (4.21), (4.22) and part 2
of Lemma 4.7, almost surely, for n > 1 and || < g,

(423) An,v(g) =< VnAn—k,v(g) + ﬁnrnik = An—k,v(‘g) + ﬂnrnilﬂ

Letk=1toget A, ,(e) < Ap_1.,(e) + ﬂ”r"‘l. So by induction, for s < n,

(4.24) Ap(e)=Agu(e)+ B Z(ﬁr)t < Asy(e) + Lﬂ(ﬂ r)’.
t=s

Next let k = «. By the same argument that leads to (4.15), r can be chosen in
such a way that there is a sequence ny, = ny(Z, g¢) that satisfy (4.13) and y,,, <r.
By the first inequality in (4.23), for s > 1,

Ans,v(é‘) =< rAnS—K,v(g) + ,anrnx_’( =< rAns—lc,v(g) + lgk(lgr)nsfl .
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Letn =ny — «x and s = ny_1 in (4.24) and combine it with the last equality to get
Ans,v(e) =< rAns_l,v(e) + C(ﬂr)nsila
where ¢ = 8 + B/(1 — rB). Then by induction and the fact that ng > «s,

s—1
Apgv(8) < 1A, (&) +c ) r By
t=1

s—1
<r T AL+ Y B!

t=1
< A (e) +es(Bry

Now for any ny <n < ng41, by (4.24) and the above inequality,

An,v(s) = rs_lAnl,v + (L + CS)(,B”)S_I-
1—rB

Since for s > 1, s + 1 > £ongy 1 > 5o, it can be seen that A, ,(¢) = O(c"),
with ¢ = (Br)P0/(?) < 1. Since B € (1, 1/r) is arbitrary, it follows that for a given
go and any r| > ry = pPo/ ) say ry =ri(eg) = (1 +ry)/2, SUP|e|<¢, Ay (e) =
o(r{') almost surely. By monotonicity, it can be seen that almost surely, the expo-
nentially fast convergence holds simultaneously for all gq.

Now let |v| > 1. To bound R, , (¢), for s =2,...,|v| + 1, and p-tuples of
nonnegative integers, iy, ...,Is, j, i1 +---+ig=v—j<v,andeq,...,es € H,
by Lemma 4.8, for |g| < g9,

N
(WD W) | < [T Va1 Wi e < W [Va—1(£0)]"

n,eic n,esc
k=1

so in place of (4.22), we have

(4.25) max| Ry,v.c(e)] < ColVa—1(e0)]™! x D Aui j (),
J<v

where A,k o(¢) := A,—k(¢) and C,, > 0 is some constant only depending on v.

Suppose it has been shown that for each j < v, there is r; = r;(eo) € (0, 1),
such that SUP|¢|<gp Ay j(e) = o(r;’). Then using (4.21) and (4.25) and following
the argument for A, j(e) with |j| =1, SUP|g|<go Dn,v(€) = o(r})) for some r, =
rv(go) € (0, 1). By induction, the exponential rate of convergence holds for all v
with |v| < ¢. Again, from the construction, r,, only depends on the distributional
properties of Z and 1 and hence is deterministic. [

Setk=11in(4.20). Forn >« and a, b, c € H,

L. ) L. \M L. )
mln( ‘ 1,b€> - |Rn,v,c| =< <ﬂ> =< maX( z l,be) + |Rn,v,c|,
€ Ln—l,ae Ln,ac ¢ Ln—l,ae
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giving

Ln bc ) Lnflbc )
<M®‘Q’) @—( ’)(%SM%MHﬂ&M®L

n,ac Ln—l,ac

COROLLARY 4.10. Let assumptions 1-4 hold. Then almost surely, as s >
n— 00,

max sup |R, . c(e)| = o(r] (o))
a€H |g|<eg

L. . \M Lo \N®
< n,bc) (8) . ( 3,bc> (8)
Ln,ac Ls,ac
for all ey > 0 and v with 1 < |v| <, q, and likewise for I:n,ab, where 1,,(gg) are
given in Lemma 4.9.

max sup
a,b,ce’H le|<eg

= o(ry (€0)),

PROOF. The first inequality is already shown in the proof of Lemma 4.9. The
second one follows from summing the inequality in (4.26) over n + 1, ...,s and
applying the first inequality and Lemma 4.9. [

PROOF OF THEOREM 2.3. Let r,(gg) be as in Lemma 4.9. For e € H, denote

Wpe = Ln,te» Wy = § Wpe-
e

Then for a € M, Ap.a =, ' 3 wne(522) and similar to (4.20),
) -1 Ln ae )
4.27) AV = an,e( ’ ) + Ty,
’ e Ln,ze

where T}, , is a linear combination of

) ...ww[(M Y _ (Ln-kae )V
n n,eq n,em Lnfk reg Lnfk 1e)

acrossm=2,...,|[v|+1,0<j<v,it,...,i, =0withi;+---4+i,+j=v,
and ey, ..., e, € H with e; < e3. Fix any b € 'H. From the above formulas,
Ly ab )
(4.28) ‘A,S”z,—( o > <Apy+ 1Tyl
’ Ln,lb

Following the treatment of R, , . in (4.25), except that we have to use the first
inequality in Lemma 4.8, it can be seen that

(4.29) Tnv (@] < Co[ Vi)™ x Y Apyj(e), el < e,

j<v
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yielding maxe|<g, | Tn,v(€)| = o(r]}). Now for s # n, by (4.28), it is not hard to get
L) = ALY < Ay + 1T ul + Ay + Tl
o) G
Ly.p Lyp

Then by Lemma 4.9 and Corollary 4.10,

(4.30)

sup [A (&) — AV ()| = 0" (e0)),  aeH.

le]<eo

Since #H < 00, almost surely, the rate holds simultaneously for alla € H. [

4.5. Proof of Theorem 2.4. Since the parameter « in Assumption 2 equals 1,
Py_1n(a,b) €l¢s, 1 —¢4]fora,be’H andn € Z, with 0 < ¢, < 1 as in Assump-
tion 2. Consequently,

431) y=1—inf ming g, ((Py—1,n(e,d))/(Pn—1n(e, c))) c |:O, 1— Px ]
n maxc,d,e((Pn—l,n(e» d))/(Pn—l,n(e» 0))) 1 — ¢y
For a, e € H, by (4.3), L1.4.(¢) = Po1(a, e)y1 (e, e), giving
Lipe(e) _ Poi(b,e) _1—¢s
Lige(e)  Por(a,e) = ¢y

(4.32) Ve.

Then by Lemma 4.5,
¢* 1—¢*

o = Ana(e) = pr
This together with dominated convergence shows part 1 of Theorem 2.4. To prove
part 2, we need several lemmas.

(4.33)

LEMMA 4.11. Fix &9 > 0. Let y and ¢, be as in (4.31) and o = (,b*_l — 1.
There is a constant C > 0, such that if 1 <|v|=1<gq, |e| <&y andn > 1, then

pagy | AR@©-A @)
(434) )
< Cay(n—l—l)VInl(l+2) Z[q 4 Mq(Zt, 80)]6]1(1-"-1)/2‘
=1

PROOF. First, by (4.32) and the definitions of A, and A, , in (4.7) and (4.19),
Porb,¢)  Poi(b,d)| _y(d—¢s)
Poi(a,c)  Poi(a,d)|—  ¢x
A1,,(e)=0, v>0.

A1(e) = max
a,b,c,d

’

(4.35)
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By (4.6), Ij\0c = Pu—1.n(e. ¢), 50 (4.9) gives A (e) <y Ay—1(e). Thus,
(4.36) Ap(e) <ay” vn>1,6>0.
Let R, (¢) be as in (4. 20) and

Api(e) = ma>§ Ap ().

Recall the definition of V},(gp) in (4.16). For brevity, write v, = V,(&). By (4.25),
there are constants ¢; > 1, such that

1 -1
(4.37) max [Ry,v.c()] < zczvn 1Y Api(e),
= i=0
forl=1,...,q,n>1,e0>0and |¢| <gp. Then by (4.21), for n > 0,
(4.38) Aps10(8) Sy Ani(e) +cvh Y Ani(e).
i=0
We show by induction that for / > 1 and n > 0,
-1
(4.39) Angra(e) <ay "DV nep!, TTA + neiv)),
i=1

where A,41,0(8) = App1(8).
By (4.35), (4.39) holds forn =0 and / > 1. Let n > 1 next. If [/ = 1, then by
(4.36) and (4.38),
Ans1,1(8) Sy Ap1(8) + clvaAn(e) < ¥y Au1(e) +ay”cruy,

and by induction on # and (4.35),

n n
Apr11(8) <y"AL1(e) +ayer Y vy =ay"c1 Y vy <ay"cinu,.
s=1 s=1

So (4.39) holds for [ = 1. Suppose (4.39) holds for 1 </ <k.By y € (0, 1),
k=1 k=1

D Ani(0) = Ap(e0) + D Ani(€0)

=0

i=1

k—1 i—1

< a[yn + Z y("—l)\/lci(n — Dv,_, 1—[[1 +cp(n — l)v,il_l]}
=1 h=1

(4.40) ’

k—1 i—1
o”,(n+1—k)v1{1 + Zc,-nv; H(l —i—chnvfl’)}

i=1 h=1

k—1
oy OV A + cinv)),
i=l
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so by (4.38),

k—1
Ans1x(8) <y Bpi(e) +ay "=Vl [T + cinw).
i=1

By induction on n, it is seen that An,k(s) satisfies (4.39). As a by-product, by
(4.37) and (4.40),

] _ l_l .
(4.41) |1r)l|]—alxc|R"’v’C(8)| < an(” I)VIclv,ﬁ_l l_[(l + cinv,_ ).
- i=1

Combining (4.26), (4.39) and (4.41), for any |v| =1,

[P Lo 1 A®
‘( n,bc) (8)—( n 1,bc> (8)‘
Ln,ac Lnfl,ac
=< An—l,l(é‘) +2|Rn,v,c(8)|
-1

< ay(”_l_l)wnclvfl_l 1_[(1 + c,-nv,i?_l).
i=1

Let 7,,, be as in (4.27). With (4.39) being established now, by (4.29), we get
the following bounds similar to (4.41):

-1
(4.42) maxlTn,,(e)l < ay(” DVEct n(l—i-nc, vl ).
i=1

Combine (4.26), (4.30) and the above inequalities. It is seen that for some con-
stants C; > 1,

’A(v) (v) ‘<C1ay(n l‘”“nlvff”“/z.

Then applying Lemma 4.7 to v, = V,,(&9), the lemma is proved. [

Now for n = 1, [Af4(e)] < 1A )] + X4y [ALA(E) = A, (6], Letting
=11n(4.28) and (4.29) and combmmg them with (4.32) and (4. 35) itis seen that
IA(U) (e)| < C|Vi(e)|"!, where C is a constant. Together with (4.34), this implies

there is a constant C; =Ci(y, ¢«), such that for v with 1 < |v| =1 <gq,
o0

@43) (A = C Y Brilg + My(Zy, e) 1TV e < g,
=1

where B, = Y02, 1 v’ K'FD = o((cy)") forany 0 < c < 1/y.
Part 2 of Theorem 2.4 is an immediate consequence of the next result.
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LEMMA 4.12. Let gy > 0. Almost surely, the following statements hold for all
le] <eg,n>1landvwithl <|v| <gq.

1. E[(In A,W)(”) (&) | n] and E[(In Ay o) (&) | 11" both exist and are equal.

2. As n— 00, E[(In Ap.o)™ (&) | n] = E[(InLy)™(e) | n].

3.Asn — 00, (E[In Ayq(e) | nD™ — (E[lnLy(e) [ nD.

PROOF. 1. It is not hard to see that (In An,a)(") (¢) is a linear combination of
products of the form

AV (@) A ()

hn,l)] ----- UJ(S) = A (S)s ) Vi >07 V1 +”'+VS = V.
n,a
By (4.33) and (4.43),
S o0
v,y @1 < &= C [ Biilg + My (Zy, £0) 1211072, le] < ¢o,

k=1t=1

with C = C(y, ¢«) a constant. As Y ¢ [vk|(|vk| + 1) < |v|(Jv| 4+ 1), by Assump-
tion 5 and the independence of Z;, E¢ < oco. Note that ¢ is independent of 5. It
follows that (In An,a)(”)(s) for all n and |e| < gp are bounded by a single ran-
dom variable that has a finite expectation and is independent of 5. This implies
E[(In An’a)(”)(s) | n] exists, and together with In A, , € Cc, implies the rest of
part 1 through dominated convergence.

2. By Theorems 2.1 and 2.2, A,(szz (¢) converges as n — oo for all ¢. By Lem-
ma 4.11 and (4.33), (In A”,a)(”)(e) converges. Then the claim follows from domi-
nated convergence.

3. Consider Ay, ... v, (¢) again. By Lemma 4.11 and (4.33), it can be seen that
forvy, ..., vg>0withvy +-- -+ vy =v, |hyp1,v,.0,(8) = hp vy, (8] < C)/]n{
holds for |e| < &g, where C > 0 y; € (y, 1) are constants and ¢ > 0 is a ran-
dom variable independent of n with E¢ < co. As a result, E[(In An,a)(")(e) | n]
converges uniformly on each compact set of ¢. Together with part 1, this implies
part3. [

4.6. Proof for the binary case. The following simple identity will be repeat-
edly used. For any function F on {0, 1}, denote d F = F (1) — F(0). Then for s,
teZ,

(4.44) Es[F (o) |0y =1] —Es[F(oy) |05 =0] = Dy, dF,
(4.45) F(0) —E;[F(o;) |og=0]=—P(0,1)dF.
Define fort € Z and n > 1,

bi(e,a) =Iny (e, a), Su(e) =) (e, 01).

t=1
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Then A, (¢) = InEy[e5®) | g = 1] — InEy[e5®) | 09 = 0] in (3.3).
PROOF OF THEOREM 3.1. Forn > 1, by (4.44),
1, (0) =E5[S;,(0) | 0g = 11 — E5 [S;,(0) | 09 = 0]

=Y {Es[£;(0,07) | 00 = 1] — E5[£;(0, 07) | 59 = 0]}

=1
n
=Y Dod;(0).
t=1
By Theorems 2.2 and 2.3, letting n — o0, (3.7) follows. To get r”(0), forn > 1,
1, (0) =E4[S;,(0) | o9 = 1] — E5[S), (0) | 09 = 0] 4 Var,[S,,(0) | op = 1]
— Var,[S,,(0) | 0o = 0].
Similar to the calculation of r'(0),
o0
nli)nolo{Ea[S,/[(O) lop =1]—Ex[S,/(0) | o0 = 0]} = Z; Doy’ (0).
=
On the other hand, denoting by §, the random variable ¢;(0, o;),

n
Vary [, (0) | ool =) Vars(8; |60) +2 Y Covg(ds,8; | 00).

=1 1<s<t<n

Given 1 <s <t <n,let F(o5) = 8;Es[& | 05]. By Ex[846; | 00] = Eo[F (0y) | 00]
and (4.44),

Es[856: | 00 = 1] — E5[856; | 00 = 0] = Do d F.

Similarly, by (4.44), E;[§; | o5y = 1] = E5[8; | 05 = 0] + Dyd/(0). Then, as
2.(0,1) = ¢£,(0,0) + d.(0),

dF = F(1) — F(0) = £,(0, )E; (§; | o5 = 1) — £,(0, 0)E (8, | o5 = 0)
=Ey(8; | o5 = 0)d;(0) + Dy £ (0, 0)d;(0) + Dy;d;(0)d;(0)
and likewise,
Es (85 | 00 = DEs (8; [ 00 = 1) = E5 (85 | 00 = 0)Es (8; [ 00 = 0)
= DosEs (8 | 00 = 0)d;(0) + Do:E (85 | 00 = 0)d;(0) + Dos Do d, (0)d;(0).
Combining the above identities,

CoV, (85,8: |00 =1) = Covo (85,8 |00 =0) =11 + 2 + I3,
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with

I1 = Dos[Eq (3; | 05 = 0) — E (& | 00 = 0)1d(0),
I, =[Do; Dy £(0, 0) — DosEq (35 | 00 = 0)1d,(0),
I3 = Dos(Ds — Dor)dg(0)d;(0).

By conditioning on oy,
EO'(SI | o :0) - Ea(st | o0 :O)
=E; (s | Oy = 0) — Es[Es (¢ | Os) | o0 = 0]

D Pos(0. D[Es (8 | 05 = 1) — Eq (5 | 75 = 0)]

© Dy, Pog (0, 1)d)(0),

where (a) is due to (4.45), and (b) due to (4.44). By (3.6), Dos Ds; = Dy;. There-
fore, I} = — Do, Pos (0, 1)d;(0)d;(0). Likewise,

I = Do [£5(0,0) — E5 (85 | 00 = 0)]d;(0) = — Do Pos (0, 1)d; (0)d;(0)
and I3 = Do; (1 — Dos)d;(0)d;(0). Then (3.8) follows from
Covy (85, 8; | 00 = 1) — Covy (85, 8¢ | 09 = 0)
= Do: [ Pos(1, 0) — Pos (0, 1)1d; (0)d; (0)
and Theorems 2.2 and 2.3. [

To prove the rest of the results, recall A(x, ¥) =1n f(x, 9).

PROOF OF PROPOSITION 3.2. Given ¢, Z and 7, £,(¢,a) is a composite of
functions A(x, 1), ¢(Z;, v), 0,4(¢) and 0,, (¢), such that

bi(e,a) = M@(Z;, 0p,(8)), Ou(e)),
so by the chain rule for differentiation,

or(x, ) dp(Z,, v) or(x, )
U (g, a) = 20 (e),
(Ea)= o @&+ 5 0l®
where the right-hand side is evaluated at x = ¢(Z;, v), v =0,,(¢), and ¥ = 6,(¢).
Since 01 (0) = 6p(0) = 0, the first summand on the right-hand side takes the same

value for a = 0, 1. Therefore, (3.9) holds.

Likewise,
3210 %n g
0" |:_:| _9/ 0 2
fea)y=2517 <)+88f}a <>(>+w2a(e)
8A8<p oA de ”
—— ——9 —0 ,
+88 ()+ ()+80“()
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where again the right-hand side is evaluated at x = ¢(Z;, v), v =0,,(¢), and ¥ =
6,(¢). Then (3.10) follows. [J

PROOF OF PROPOSITION 3.3.  We shall first show for any ¢,
(4.46) Eld/(0) | n]1=0,
(4.47)  Varld[(0) | n] = [6](0) — 65(0)1*J (0),
(4.48) ELd/(0) | n] = [6(0) — 65(0)1126,, (0) — 65(0) — 81(0)1J (0).

Denote & = ¢(Z;, 0). Then &; has density f(x, 0) and log-density A(x, 0). Take
expectation conditional on 7 on both sides of (3.9) to get
a1 (&, 0)]
v )
Then (4.46) follows from the property of score function.

For the same reason, (4.47) follows as well and, taking expectation conditional
on 1 on both sides of (3.10),

Eld;(0) | n] =[61(0) — 96(0)]E[

%1 (&, 0) dp(Z,, 0>]

ELd/ (0) | n] = 2[6(0) — 6,(0)16;, (O)E[ ax 00 dv

— [61(0)* — 6(0)*1J (0).

Therefore, to prove (4.48), it suffices to show

ZA(,0) 0¢(Z,,0
(4.49) E[ (1, 0) 99 (Zi )}=J(O).
dx 0V v
Define
a)"(w(zlv U), 19) 1 8f(§0(zza U)’ O)
g, Z) = ————— = :
819 9=0 f(‘P(Zt’ U), 0) 819
Observe that
0gw, Z)| _ 9*A(,0) d¢p(Z:,0)
A ly—o  0x 030 v

Therefore, the left-hand side of (4.49) is equal to

E[Bg(v, Z) ] _ 0E[g(v, Zy)]
av veod dv

By assumption 1, ¢(Z;, v) has density f(x, v). Therefore, the right-hand side
of the above identity is equal to

2
;_v[/ f(xl,O) afgg())f(x’”)dx}v:o:ff(xl,O)[afg;O)} dx = J(0),

which gives (4.49).

v=0
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From Theorem 2.4, (3.7) and (4.46),

E[Y'(0) | n] =) Do:Eld;(0) | ] =0

=1

showing (3.11). On the other hand, given 7, since Z; are independent, d;(0) are
independent of d;(0) for s < 7. Then by E[d/(0) | n] =0 and (3.8),

E[r"(0) | n] = Do/(ELd; (0) | n]+ [Po: (1, 0) — Po, (0, 1)] Var[d;(0) | n]}

t=1

= [61(0) = 65(0)1J (0) ) Doy fi

t=1

where
fi =26 (0) = 65(0) — 61 (0) + [Po (1,0) — Po; (0, D][6;(0) — 65(0)]
= [6(0) — 65(0)1[2n, — Por (1, 1) — Po, (0, D)].
Therefore, (3.12) holds. [

APPENDIX

In this Appendix, we make a general statement on the conditional likelihood
under the FDR criterion. Let Hy, ..., H, be a set of hypotheses being tested and
let X be the available data. Let py = Pr{H is false | X}. For any testing procedure
based on X, let R be the total number of rejected Hy and V that of rejected true Hy.
Then the number of rejected false nullsis R — V.

PROPOSITION A.1. Given a € (0, 1), among all testing procedures whose re-
Jjection decisions are uniquely determined by X and which satisfy the FDR control
criterion

1%
FDR = E[—(X] <a.
RVv1
the following Benjamini—Hochberg procedure [4] has the largest E[R — V | X]:

L. sort gi =1— pjinto qu) <q@2) <+ < qm);
2. letr =max{j:qq)+---+q) < aj} and reject Hy if qx < q(r)-

PROOF. Given a procedure with R > 0, let H;,, k =1, ..., R be the rejected
nulls. Then, as in [6], FDR = Y%, g, /R = Y%, q(j)/R, while E[R — V | X] =
R— Zle qi; < R— Zf: 14(j)- Itis then not hard to see that under the FDR control

criterion, the procedure in the proposition attains the largest value of E[R —V | X].
O
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