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GAMMA-BASED CLUSTERING VIA ORDERED MEANS WITH
APPLICATION TO GENE-EXPRESSION ANALYSIS1

BY MICHAEL A. NEWTON AND LISA M. CHUNG

University of Wisconsin, Madison

Discrete mixture models provide a well-known basis for effective clus-
tering algorithms, although technical challenges have limited their scope. In
the context of gene-expression data analysis, a model is presented that mixes
over a finite catalog of structures, each one representing equality and inequal-
ity constraints among latent expected values. Computations depend on the
probability that independent gamma-distributed variables attain each of their
possible orderings. Each ordering event is equivalent to an event in indepen-
dent negative-binomial random variables, and this finding guides a dynamic-
programming calculation. The structuring of mixture-model components ac-
cording to constraints among latent means leads to strict concavity of the
mixture log likelihood. In addition to its beneficial numerical properties, the
clustering method shows promising results in an empirical study.

1. Introduction. A common problem in statistical genomics is how to orga-
nize expression data from genes that have been determined to exhibit differential
expression relative to various cellular states. Cells in a time-course experiment
may exhibit such genes, as may cells in any sort of designed experiment or obser-
vational study where expression alterations are being examined [e.g., Parmigiani
et al. (2003), Speed (2004)]. In the event that the error-rate-controlled list of signif-
icantly altered genes is small, the post-processing problem amounts to inspecting
observed patterns of expression, investigating what is known about the relatively
few genes identified, and planning follow-up experiments as necessary. However,
it is all too common that hundreds or even thousands of genes are detected as
significantly altered in their expression pattern relative to the cellular states. Post-
processing these nonnull genes presents a substantial statistical problem. Difficul-
ties are compounded in the multi-group setting because a gene can be nonnull in
many different ways [Jensen et al. (2009)].

Ever since Eisen et al. (1998), clustering methods have been used to organize
expression data. Information about a gene’s biological function may be conveyed
by the other genes sharing its pattern of expression. Thalamuthu et al. (2006) pro-
vides a recent perspective. Clustering methods are often applied in order to parti-
tion nonnull genes which have been identified in differential expression analysis
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[e.g., Campbell et al. (2006), Grasso et al. (2008)]. Popular approaches are infor-
mative but not completely satisfactory. There are idiosyncratic problems, like how
to select the number of clusters, but there is also the subtle issue that the clusters
identified by most algorithms are anonymous: each cluster is defined only by sim-
ilarity of its contents rather than by some external pattern that its genes may be
approximating. Anonymity may contribute to technical problems, such as that the
objective function being minimized is not convex, and that realized clusters have a
more narrow size distribution than is warranted by the biological system.

Model-based clustering treats data as arising from a mixture of component dis-
tributions, and then forms clusters by assigning each data point to its most probable
component [e.g., Titterington, Smith and Makov (1985), McLachlan and Basford
(1988)]. For example, the mclust procedure is based on mixtures of Gaussian
components [Fraley and Raftery (2002)]; the popular K-means algorithm is im-
plicitly so based [Hastie, Tibshirani and Friedman (2001), page 463]. There is con-
siderable flexibility in model-based clustering, though technical challenges have
also affected its development: the likelihood function is often multi-modal; iden-
tifiability can be difficult to establish [e.g., Redner and Walker (1984), Holzmann,
Munk and Gneiting (2006)]; and even where constraints may create identifiabil-
ity, there can be a problem of label-switching during Bayesian inference [Stephens
(2000)]. Some sophisticated model-based clustering methods have been developed
for gene expression [e.g., Medvedovic, Yeung and Bumgarner (2004)]. Beyond
empirical studies, it is difficult to determine properties of such approaches, and
their reliance on Monte Carlo computation is somewhat limiting.

Here a model-based clustering method is developed that aims to support multi-
group gene-expression analysis and possibly other applications. The method,
called gamma ranking, places genes in a cluster if their expression patterns com-
monly approximate one element from a finite catalog of possible structures, in
contrast to anonymous methods (Section 2). Under certain conditions, the compo-
nent distributions are linearly independent functions—each one associated with a
structure in the finite catalog—and this confers favorable computational charac-
teristics to the gamma-ranking procedure (Sections 4, 5). The cataloged structures
record patterns of equality and inequality among latent expected values. Where
normal-theory specifications seem to be intractable, a gamma-based mixture model
produces closed formulas for all necessary component densities, thanks to an em-
bedding of the relevant gamma-distributed variables in a set of Poisson processes
(Section 3). The formulation also extends to Poisson-distributed responses that are
characteristic of gene expression measured by next-generation sequencing (Sec-
tion 6).

2. Mixture of structured components. The data considered has a relatively
simple layout. Each gene g from a possibly large number is associated with a
vector xg = (xg,1, xg,2, . . . , xg,n) holding measurements of gene expression from
n distinct biological samples. The n samples are distributed among 1 < p ≤ n
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different groups, which represent possibly different transcriptional states of the
cells under study. The groups may represent cells exposed to p different chemical
treatments, cells at p different developmental stages, or cells at p different points
along a time course, for example. The layout of samples {1,2, . . . , n} is recorded
in a vector, say l = (l1, l2, . . . , ln), with li = j indicating that sample i comes
from group j . This is fixed by design and known to the analyst; to simplify the
development we suppress l from the notation below except where clarification is
warranted.

Each expression measurement xg,i is treated as a positive, continuous variable
representing a fluorescence intensity from a microarray, after preprocessing has
adjusted for various systematic effects not related to the groupings of interest. Re-
cent technological advances allow expression to be measured instead as an explicit
abundance count. The mixture model developed below adapts readily to this case
(Section 6).

Gamma ranking entails clustering genes according to the fit of a specific model
of gene-level data. The joint probability density for a data vector xg , denoted
p(xg), is treated as a finite mixture over a catalog of discrete structures η, each of
which determines ordering constraints among latent expected values. More specif-
ically,

p(xg) = ∑
η

p(xg|η)πη,(1)

where πη is a mixing proportion and the component density p(xg|η) is determined
through modeling.

Each η is a partition of group labels {1,2, . . . , p}, containing Kη subsets, that
also carries an ordering of these subsets. For example, three structures cover the
two-group comparison, denoted {(1)(2), (12), (2)(1)}. The notation conveys both
the partition of group means and the ordering of subsets within the partition. For
instance, in η = (2)(1) the expected expression level in group 2 is less than that of
group 1; while η = (12) indicates that both groups share a common latent mean.
With p = 3 groups, there are 13 structures

(123), (12)(3), (3)(12), (13)(2), (2)(13), (1)(23), (23)(1),

(1)(2)(3), (2)(1)(3), (1)(3)(2), (2)(3)(1), (3)(1)(2), (3)(2)(1),

and the number grows rapidly with the number of groups (Table 1). A way to
think about Hord = {η}, the catalog of these ordered structures on p groups, is
to imagine p real values y = (y1, y2, . . . , yp) and the possible vectors you would
get by ranking y. Of course there are p! rankings if ties are not permitted, but
generally there are far more rankings, and Hord is in 1–1 correspondence with the
set of rankings of p numbers, allowing ties.

An ordered structure η also dictates an association between sample labels
i ∈ {1,2, . . . , n} and levels of the latent expected values. The null structure η =
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TABLE 1
The number of ordered structures, Bell+, as a function of the

number of groups, p. This is
∑p

k=1(k!)S(p, k), where
S(p, k) are Stirling numbers of the second kind. The Bell

number of partitions of 1, . . . , p is included for comparison

p Bell+ Bell

2 3 2
3 13 5
4 75 15
5 541 52
6 4683 203

(12 · · ·p), for example, entails equal mean expression across all p groups; all ob-
servations are associated with a single mean value (and we write Kη = 1). More
generally, there are Kη > 1 distinct mean values, μ1 < μ2 < · · · < μKη , say. With-
out loss of generality, we index the means by rank order. The association maps
each i ∈ {1,2, . . . , n} to some μk ; it amounts to a partition of the samples together
with an ordering of the subsets within the partition matching the order of the latent
means. We express this association with disjoint subsets σ(η, k), k = 1,2, . . . ,Kη,
and have k follow the order of the expected values. For example, suppose that
samples {1,2, . . . ,6} constitute two replicate samples in each of p = 3 groups,
and η = (13)(2) is considered to relate the group-specific expected values (i.e., the
gene is upregulated in group 2, and not differentially expressed between groups 1
and 3). Then Kη = 2, σ(η,1) = {1,2,5,6} and σ(η,2) = {3,4}. Subset σ(η, k)

includes nk samples and induces gene-level statistics such as

sg,k = ∑
i∈σ(η,k)

xg,i and tg,k = ∏
i∈σ(η,k)

xg,i .

The structure/partition notation is convenient in multi-group mixture modeling.
For clarification, let us refer back to the layout notation and take the replicates
rj = {i : li = j}, which equal those samples in group j . Consider a gene that is
completely differentially expressed relative to the p groups; that is, it assumes one
of the p! structures η in which Kη = p. It follows that each set rj equals exactly
one of the subsets σ(η, k). [It would be σ(η,1) if rj had the lowest mean expres-
sion level, e.g.] In the absence of complete differential expression, multiple groups
share expected values. Generally, therefore, each subset σ(η, k) is a union of var-
ious replicate sets rj . The language also conveys the assumption that replicates i1
and i2 in the same set rj necessarily share expected value, regardless of the struc-
ture η. In calculating probabilities, the sets σ(η, k) of equi-mean samples are more
important than the replicate sets rj .

From the mixture model (1), posterior structure probabilities are p(η|xg) =
p(xg|η)πη/p(xg) and these determine gene clusters by Bayes’s rule assignment.
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Alternatively, the cluster contents can be regulated by a threshold parameter c, and

cluster(η) = {g :p(η|xg) ≥ c},(2)

though some genes may go unassigned in this formulation. In any case, each
cluster holds genes with empirical characteristics matching some discrete mean-
ordering structure.

The latent expected values are constrained by η to the order μ1 < μ2 < · · · <

μKη . Propeling our calculations is the ability to integrate these ordered means (i.e.,
marginalize them) in a model involving gamma distributions on some transforma-
tion of the μk’s. Recall that a gamma distribution with shape a > 0 and rate λ > 0,
denoted Gamma(a, λ), has probability density

p(z) = λaza−1 exp{−zλ}
�(a)

, z > 0.

We assume that inverse means ψk = 1/μk have joint density

pη(ψ1, . . . ,ψKη) = Kη!
[ Kη∏

k=1

(α0ν0)
α0ψ

α0−1
k exp{−α0ν0ψk}

�(α0)

]
(3)

× 1[ψ1 > ψ2 > · · · > ψKη ],
which reflects independent and identically distributed Gamma(α0, α0ν0) compo-
nents, conditioned to one ordering. This parameterization gives ν0 an interpreta-
tion as a centering parameter; on the null structure having a single latent mean μ1,
1/ν0 = E(1/μ1).

To complete the hierarchical specification, we assume a gamma observation
model

p(xg|ψ1, . . . ,ψKη, η) =
Kη∏
k=1

∏
i∈σ(η,k)

(αψk)
αxα−1

g,i exp{−xg,iψkα}
�(α)

(4)

=
Kη∏
k=1

(αψk)
αnk tα−1

g,k exp{−sg,kψkα}
(�(α))nk

.

Equivalently, with sample i ∈ σ(η, k), measurement xg,i is distributed as
Gamma(α,αψk), all conditionally on the latent values and η, and independently
across samples. The gamma observation component is often supported empiri-
cally; there is theoretical support from stochastic models of population abundance
[Dennis and Patil (1984), Rempala and Pawlikowska (2008)] and there are practi-
cal considerations that a gamma-based model may be the only one for continuous
data in which ordering calculations are feasible.

The structured component p(xg|η) in (1) arises by integrating (4) against the
continuous mixing distribution (3). Specifically,

p(xg|η) =
∫

p(xg|ψ1, . . . ,ψKη, η)pη(ψ1, . . . ,ψKη) dψ1 · · ·dψKη.



3222 M. A. NEWTON AND L. M. CHUNG

Moving allowable factors from the integral

p(xg|η) = Kη!(α0ν0)
Kηα0ααn

�(α0)
Kη�(α)n

( Kη∏
k=1

Jkt
α−1
g,k

)

×
∫
E

Kη∏
k=1

ψ
α0+αnk−1
k exp{−ψk(α0ν0 + αsg,k)}

Jk

dψ1 · · ·dψKη,

where the integral is over the set E of decreasing ψk’s, and where Jk represents
any cluster-specific quantity which does not depend on ψk . Choosing

Jk = �(α0 + αnk)

(α0ν0 + αsg,k)α0+αnk

provides just the right normalization, because then the integrand becomes the joint
density of independent gamma-distributed variables, with the kth variable hav-
ing shape ak = α0 + αnk and rate λk = α0ν0 + αsg,k . The integral itself, denoted
Pord(η), is the probability that independent gamma-distributed variables assume
a certain order. The preceding factor can be arranged as products of the product
statistics tg,k multiplied by factors involving the sum statistics sg,k . After a bit of
simplification, the following result is established.

THEOREM 1. In the model defined above, the component density p(xg|η)

equals

cη

(
n∏

i=1

xα−1
g,i

) Kη∏
k=1

(
sg,k + α0ν0

α

)−ak

︸ ︷︷ ︸
center(η)

P (Z1 > Z2 > · · · > ZKη)︸ ︷︷ ︸
Pord(η)

,(5)

where the Zk’s are mutually independent gamma-distributed random variables
with shapes ak = α0 + αnk and rates λk = α0ν0 + αsg,k , and where the normaliz-
ing constant is

cη = Kη!
[�(α)]n[�(α0)]Kη

(
α0ν0

α

)α0Kη
Kη∏
k=1

�(ak).

In (5), Pord(η) = 1 for the null case involving Kη = 1.

The null structure η = (12 · · ·p) entails equal mean expression for all samples;
there is a single partition element, and Kη = 1. In this case, the distribution in (5)
is exchangeable and equals a multivariate compound gamma [Hutchinson (1981)].
The positive parameters α and α0 regulate within-group and among-group varia-
tion, and ν0 is a scale parameter. Inspection also confirms that if the random X =
(X1, . . . ,Xn) has density p(x|η) in (5), and if b > 0, then Y = (bX1, . . . , bXn)
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FIG. 1. Three structured components in R
2. Here α = 10, α0 = 3 and ν0 = 25. Contours cover

50%, 80%, 95% and 99% probability. For convenience, each density is shown for log2-transformed
pairs.

has a density of the same type, with shape parameters α0 and α unchanged, but
with scale parameter bν0.

Special cases of the density (5) have been reported: Newton et al. (2004) pre-
sented the case p = 2; Jensen et al. (2009) presented the case p = 4. See also Yuan
and Kendziorski (2006a). Evidently an algorithm to compute Pord(η) is required in
order to evaluate the component mixing densities. Beyond the p = 2 case, previous
reports have evaluated these gamma-rank probabilities by Monte Carlo.

Figure 1 displays contours of the three structured components when n = 2 and
p = 2. Clearly the components distribute mass quite differently from one another,
and in a way that reflects constraints encoded by η. The densities from different
structures η have the same support; the constraints restrict latent expected values
rather than observables. In this way, the approach shares something with general-
ized linear modeling wherein responses are modeled by generic exponential family
densities and covariate information constrains the expected values [McCullagh and
Nelder (1989)].

3. Gamma-rank probabilities. A statistical computing problem must be
solved in order to implement gamma ranking. Specifically, it is required to cal-
culate the probability P(E) of the event

E = {Z1 > Z2 > · · · > ZK},(6)

where {Zk :k = 1,2, . . . ,K} are mutually independent gamma distributed random
variables with possibly different shapes a1, a2, . . . , aK and rates λ1, λ2, . . . , λk .
[Each Pord(η) in Section 2 is an instance of P(E).] In the special case K = 2, the
event in two gamma-distributed variables is equivalent to the E′ = {B > λ1/(λ1 +
λ2)}, where B is a Beta(a1, a2) distributed variable. Thus, P(E) = P(E′) can be
computed by standard numerical approaches for the Beta distribution. Although
a similar representation is possible for Dirichlet-distributed vectors when K > 2,
a direct numerical approach is not clearly indicated. In modeling permutation data,
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Stern (1990) presented a formula for P(E) for any value K , but assuming common
shape parameters ak = a. Sobel and Frankowski (1994) calculated P(E) for K < 5
and assuming constant rates λk = λ, but to our knowledge a general formula has
not been developed. A Monte Carlo approximation is certainly feasible, but a fast
and accurate numerical approach would be preferable for computational efficiency:
target values may be small, and P(E) may need to be recomputed for many shape
and rate settings.

There is an efficient numerical approach to computing P(E) when shapes ak

are positive integers. The approach involves embedding {Zk} in a collection of
independent Poisson processes {Nk}, where k = 1,2, . . . ,K . Specifically, let Nk

denote a Poisson process on (0,∞) with rate λk . So Nk(0, t] ∼ Poisson(tλk), for
example. Of course, gaps between points in Nk are independent and exponentially
distributed, and the gamma-distributed Zk can be constructed by summing the first
ak gaps

Zk = min{t > 0 : Nk(0, t] ≥ ak}.
Next, form processes {Mk} by accumulating points in the originating processes:
Mk = ∑k

j=1 Nj . Marginally, Mk is a Poisson process with rate 
k = ∑k
j=1 λj , but

over k the processes are dependent owing to overlapping points. To complete the
construction, define count random variables M1,M2, . . . ,MK−1 by

Mk = Mk(0,Zk+1].(7)

It is immediate that each Mk has a marginal negative binomial distribution: the
gamma distributed Zk+1 is independent of Mk ; conditioning on Zk+1 in (7) gives
a Poisson variable which mixes out to the negative binomial [Greenwood and Yule
(1920)]. Specifically,

Mk ∼ NB(shape = ak+1, scale = 
k/λk+1),

which corresponds to the probability mass function

pk(m) = �(m + ak+1)

�(ak+1)�(m + 1)

(
λk+1


k+1

)ak+1( 
k


k+1

)m

(8)

for integers m ≥ 0. The next main finding is the following.

THEOREM 2. With E as in (6), Mk as in (7) and pk as in (8), P(E) equals

a1−1∑
m1=0

m1+a2−1∑
m2=0

· · ·
mK−2+aK−1−1∑

mK−1=0

p1(m1)p2(m2) · · ·pK−1(mK−1).(9)

It does not seem to be obvious that E in (6) is equivalent to an event in the {Mk}.
We also find it striking that the Mk variables are independent considering that they
are constructed from highly dependent Mk processes. Proof of (9) and the related
distribution theory are presented in Appendix A.
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A redistribution of products and sums allows a numerically efficient evalua-
tion of (9), as in the sum-product algorithm [e.g., Kschischang, Frey and Loeliger
(2001)]. For instance, with K = 4,

P(E) =
a1−1∑
m1=0

p1(m1)

{
m1+a2−1∑

m2=0

p2(m2)

[
m2+a3−1∑

m3=0

p3(m3)

]}
.(10)

Here, one would evaluate P(E) by first constructing for each m2 ∈ {0,1, . . . , a1 +
a2 − 2} an inner sum P(M3 ≤ m2 + a3 − 1). This vector in m2 values is used
to process the second inner sum, for each value m1 ∈ {0,1, . . . , a1 − 1}. Indeed
the computation is completely analogous to the Baum–Welch backward recursion
[e.g., Rabiner (1989)], although, interestingly, there seems to be no hidden Markov
chain in the system. A version of the Viterbi algorithm identifies the maximal
summand and thus provides an approach to computing logP(E) in case P(E) is
very small.

4. Linear independence. The component densities (5) seem to have the use-
ful property of being linearly independent functions on R

n. Linear independence
of the component density functions is equivalent to identifiability of the mixture
model [Yakowitz and Spragins (1968)]. It is necessary for strict concavity of the
log-likelihood, but it is not routinely established. Establishing identifiability also
is a key step in determining sampling properties of the maximum likelihood esti-
mator.

Let a = (aη) denote a vector of real numbers indexed by structures η. Recall
that the finite catalog of functions {p(x|η)} is linearly independent if

Ta(x) = ∑
η

aηp(x|η) = 0 for all x implies aη = 0 for all η.

It is plausible that this property holds generally, but we have been able to establish
a proof only in a special case.

THEOREM 3. In a balanced experiment where m replicate samples are mea-
sured in each of p = 2 or p = 3 groups, the component densities p(xg|η) in (5)
are linearly independent functions on R

mp .

A proof proceeds by finding a multivariate polynomial φ(x) > 0 such that
φ(x)Ta(x) is itself a multivariate polynomial. A close study of the degrees and co-
efficients of this polynomial leads us to the result (Appendix B). That such a φ(x)

exists follows from (5): the center is a rational function, and the factor Pord(η) is
also rational, being a linear combination of rational functions, as established in (9).

5. Data analysis considerations.

5.1. Estimation. To deploy model (1)–(5) requires the estimation of parame-
ters α, α0 and ν0, which are shared by the different components, as well as mixing
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proportions π = {πη}, which link the components together. Consider first the log
likelihood for π alone (treating the shared parameters as known) under indepen-
dent and identically distributed sampling from (1):

l(π) =
G∑

g=1

log
{∑

η

πηp(xg|η)

}
,(11)

where G is the number of genes providing data. Maximum likelihood estimation
of π is buttressed by the following finding.

THEOREM 4. Suppose that the component densities are linearly independent
functions in the mixture of structured components model. If G is sufficiently large,
then the log likelihood l(π) in (11) is strictly concave on a convex domain, and
thus admits a unique maximizer π̂ = {π̂η}. This property is almost sure in data
sets.

The expectation–maximization (EM) algorithm naturally applies to approxi-
mate π̂ . By strict concavity of l(π), it is not necessary to rerun EM from multiple
starting points. The final estimate and resultant clustering should be insensitive to
starting position, as has been found in numerical experiments. This is a convenient
but unusual property in the domain of mixture-based clustering [McLachlan and
Peel (2000), page 44].

In a small simulation experiment, we confirmed that our implementation of the
EM algorithm was able to recover mixture proportions given sufficiently many
draws from the marginal distribution (1) (data not shown).

Full maximum likelihood for both the mixing proportions and shared parame-
ters is feasible via the EM algorithm, but this increases computational costs. In the
prototype implementation used here, we fixed the shared parameters at estimates
obtained from a simpler mixture model, and then ran the EM algorithm to esti-
mate the mixing proportions. Specifically, we used the gamma–gamma method in
EBarrays (www.bioconductor.org), which corresponds to mixing as in (1) but
over the smaller set of unordered structures. Experiments indicated that this ap-
proximation had a small effect on the identified clusters (see Appendix D).

Inference derived through the proposed parametric model is reliant to some
degree on the validity of the governing assumptions. Quantile–quantile plots
and plots relating sample coefficient-of-variation to sample mean provide use-
ful diagnostics for the gamma observation-component of the model. The within-
component model is restrictive in the sense that three parameters are shared among
all the components (i.e., structures). This can be checked by making comparisons
of inferred clusters, but only large clusters would deliver any power. Clusters re-
veal patterns in mean expression, while the shared parameters have more to do
with variability; if other domains of statistics provide a guide, one expects that mis-
specifying the variance may reduce some measure of efficiency without disabling

http://www.bioconductor.org
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the entire procedure. The ultimate issue is whether or not the clustering method
usefully represents any underlying biology. This is difficult to assess, though we
examine the issue in a limited way in the examples considered next.

5.2. Example. Edwards et al. (2003) studied the transcriptional response of
mouse heart tissue to oxidative stress. Three biological replicate samples were
measured using Affymetrix oligonucleotide arrays at each of five time points
(baseline and one, three, five and seven hours after a stress treatment) for several
ages of mice. Considering the older mice for illustration, we have p = 5 distinct
groups, n = 15 samples and 10,043 genes (i.e., probe sets, after pre-processing).
Gene-specific moderated F-testing [Smyth (2004)] produced a list of G = 786
genes that exhibited a significant temporal response to stress at the 10% false dis-
covery rate [by q-value; Storey and Tibshirani (2003)]. Gamma ranking involved
fitting the mixture of structured components, which with p = 5 mixes over 540
distinct components. (Since we worked with significantly altered genes, we did
not include the null component in which all means are equal; other aspects of
model fitting and diagnosis are provided in Appendix D.) From the catalog of
540 possibilities, genes populated 23 clusters by gamma ranking, though only four
clusters contained 10 or more of the G = 786 stress-responding genes (Figure 2).
Most expression changes occurred between baseline and the first time point, but
30 genes (red cluster) showed significant up-regulation at all but one time point,
for example.

Gamma ranking gave different results than K-means or mclust, which, re-
spectively, found 20 and 2 clusters in Edwards’ data. Here K was chosen according
to guidelines in Hastie, Tibshirani and Friedman (2001), mclust used the Bayes
information criteria over the range from 1 to 50 clusters. Otherwise, both meth-
ods used default settings in the respective R functions (www.r-project.org). The
adjusted Rand index [Hubert and Arabie (1985)], which measures dissimilarity of
partitions, was 0.09 comparing gamma ranking and K-means, 0.16 for gamma
ranking and mclust, while for K-means and mclust it was smaller, at 0.02.

The biological significance of clusters identified by any algorithm may be worth
investigating. For example, the cluster of 30 increasing expressors includes 2 genes
(Mgst1 & Gsta4) from among only 17 in the whole genome that are involved in
glutathione transferase activity. Understanding the increased activity of this mole-
cular function will give a more complete picture of the biology [e.g., Girardot,
Monnier and Tricoire (2004)]. In isolation, it is difficult to see how such inves-
tigation is supportive of a given clustering approach. The benefits become more
apparent when we look at many data sets and many functional categories.

5.3. Empirical study. Gamma ranking was applied to a series of 11 data sets
obtained from the Gene Expression Omnibus (GEO) repository [Edgar, Dom-
rachev and Lash (2002)]. These were all the data sets satisfying a specific and rel-
evant query (Table 2). They represent experiments on different organisms and they

http://www.r-project.org
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FIG. 2. Dominant patterns of differential expression in time course data from Edwards et al. (2003).
Each panel summarizes data from one cluster identified by gamma ranking (the nine largest clusters
are shown). A digital code signifies the inferred ordering of the latent expected values (i.e., η, in
an alternative notation). Each gene is a single line trace; triplicate measurements were reduced by
averaging and then standardized for display; raw data went into the model fitting. Results are based
on 100 cycles of EM to estimate mixing proportions followed by Bayes’ rule assignment.

exhibit a range of variation characteristics. In each case, we applied the moderated
F-test and selected genes with q-value no larger than 5%. Gamma ranking and,
for comparison, mclust and K-means, were applied in order to cluster genes
separately for each data set. Basic facts about the identified clusters are reported in
Table 2. Figure 3 shows that gamma ranking tends to produce smaller clusters than
mclust and K-means, although it also has a wider size distribution; and there
was a relatively low level of overlap among the three approaches.
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TABLE 2
Summary of 11 data sets from the Gene Expression Omnibus (GEO). GDS is the GEO data set

accession number. These sets satisfied the search query from August 2008 having subset variable
type time or development stage or age and having a single factor with three to eight levels.

p indicates the number of groups and n is the number of samples. G indicates the number of genes
deemed significantly altered by one-way moderated F-test and 0.05 FDR (limma). The remaining

columns show how many clusters are found by gamma ranking with 100 EM iterations (GR), mclust
(MC) and K-means (KM)

GDS Citation Organism p n G GR MC KM

2323 Coser et al. Homo Sapiens 3 9 1409 11 5 13
1802 Tabuchi et al. Mus musculus 4 8 3433 49 7 10
2043 Tabuchi et al. Mus musculus 4 8 3001 51 8 18
2360 Ron et al. Mus musculus 4 9 8714 50 8 30
599 Vemula et al. Rattus norvegicus 5 10 673 42 2 40
812 Zeng et al. Mus musculus 5 17 10,982 135 7 15

1937 Pilot et al. Drosophila 5 15 7733 88 8 10
568 Welch et al. Mus musculus 6 18 3737 134 4 25

2431 Keller et al. Homo Sapiens 6 18 8505 137 9 12
587 Tomczak et al. Mus musculus 7 21 860 50 2 20
586 Tomczak et al. Mus musculus 8 24 5211 118 5 20

The empirical study shows not only that gamma ranking produces substantially
different clusters than popular approaches, but also that the identified clusters are
significant in terms of their biological properties. Investigators often measure the
biological properties of a gene cluster by identifying functional properties that
seem to be over-represented in the cluster. Gene set enrichment analysis is most
frequently performed by applying Fisher’s exact test to each of a long list of func-
tional categories, testing the null hypothesis that the functional category is inde-

FIG. 3. Characteristics of clusters from an empirical study of 11 data sets.
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FIG. 4. Empirical study of the association between clusters and biological function. For every
cluster identified by gamma ranking (red) or mclust (green) in the data sets in Table 2, plotted
is the proportion of small enrichment p-values (vertical) versus the cluster size (horizontal). The
enrichment p-values are Fisher-exact-test p-values and the proportion is computed over a database
of GO and KEGG pathways (Table 7). Bands indicate similar proportions computed for random sets.

pendent of the gene cluster [e.g., Newton et al. (2007)]. Functional categories from
the Gene Ontology (GO) Consortium and the Kyoto encyclopedia (KEGG) were
used to assess the biological properties of all the clusters identified in the above
calculation. Specifically, we computed for each cluster a vector of p-values across
GO and KEGG. Figure 4 shows the proportion of these p-values smaller than
0.05, stratified by cluster size and in comparison to results on random sets of the
same size. Evidently, the clusters identified by gamma ranking contain substantial
biological information.

Figure 4 also shows that mclust clusters carry substantial biological informa-
tion, and a similar result is true for K-means (not shown). Whatever cluster signal
is present in the expression data, it is evident that gamma-ranking finds different
aspects of this signal than do the standard approaches, while still delivering clusters
that relate in some way to the biology. Gamma-ranking clusters are not anonymous
sets of genes with similar expression profiles; they are sets of genes linked to an
ordering pattern in the underlying means. The commonly used clustering meth-
ods are unsupervised, while gamma-ranking utilizes the known grouping labels
in the sample. It seems beneficial to use this grouping information; undoubtedly
various schemes could be developed. By their construction, the gamma-ranking
clusters have a simple interpretation in terms of sets of genes supporting particular
hypotheses about changes in mean expression.
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6. Count data. Microarray technology naturally leads to continuous mea-
surements of gene expression, as modeled in Section 2, but technological advances
allow investigators essentially to count the number of copies of each molecule of
interest in each sample [e.g., Mortazavi et al. (2008)]. Poisson distributions are
central in the analysis of such data [e.g., Marioni et al. (2008)], and gamma rank-
ing extends readily to this case.

Briefly, data at each gene (or tag) is a vector xg = (xg,1, . . . , xg,n) as before,
but xg,i is now a count from the ith library (rather than an expression level
on the ith microarray). There may be replicate libraries within a given cellular
state, and comparisons of interest may be between different cellular states. Library
sizes {Ni}, say, are additional but known design parameters. Important parameters
are expected counts relative to some common library size. Adopting the notation
from Section 2, a cluster of libraries σ(η, k) may share their size-adjusted expected
values, and so for any i ∈ σ(η, k) the observed count xg,i arises from the Poisson
distribution with mean Niμk . Further, the structure η on test puts an ordering con-
straint μ1 < μ2 < · · · < μKη on these latent expectations. The key is to integrate
away these latent expected values using a conjugate gamma prior, but condition-
ally on the ordering. Prior to conditioning, the μk’s are independent and identical
gamma variables with (integer) shape α0 and rate α0ν0. Then, analogously to The-
orem 2, the predictive distribution for the vector of conditionally Poisson responses
is

p(xg|η) = cη

(
n∏

i=1

1

xg,i !
)( Kη∏

k=1

ug,k�(sg,k + α0)

)
︸ ︷︷ ︸

center(η)

Pord(η),(12)

where

Pord(η) = P(Z1 < Z2 < · · · < ZKη)

with the Zk’s mutually independent gamma-distributed random variables with
(gene-specific) shapes ak = α0 + sg,k and rates λk = α0ν0 + nk . In (12), the nor-
malizing constant is

cη = Kη!(α0ν0)
α0Kη

[�(α0)]Kη

Kη∏
k=1

(α0ν0 + nk)
−α0

and, further, sg,k = ∑
i∈σ(η,k) xg,i , nk = ∑

i∈σ(η,k) Ni and

ug,k = ∏
i∈σ(η,k)

(
Ni

α0ν0 + nk

)xg,i

.

Notice that in Pord(η) the event refers to an increasing sequence of gamma’s, rather
than a decreasing sequence, as in Theorem 1. This arises because for Poisson re-
sponses the conjugate prior involves a gamma distribution for the means, whereas
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for gamma responses the conjugate is inverse gamma on the means. For computa-
tions to work out, the key thing is that some monotone transformation of each latent
mean has a gamma distribution. In the null structure (all means equal), Pord(η) = 1
and (12) reduces to the negative-multinomial distribution. It will be important to
study the practical utility of (12) and overdispersed extensions [cf. Robinson and
Smyth (2007)], but such investigation is not within the scope of the present paper.
The main reason to present the finding here is to show that gamma-rank probabil-
ities (Section 3) arise in multiple probability models.

7. Concluding remarks. Calculations presented here consider a discrete
mixture model and the resulting clustering for gene-expression or similar data
types. The discrete mixing is over patterns of equality and inequality among la-
tent expected values (ordered structures). Clustering by these patterns addresses
an important biological problem to organize gene expression relative to various
cellular states, which is part of the larger task to determine biological function.
In examples the method was applied after a round of feature selection, although
it could have been applied to each full data set (i.e., by including the null struc-
ture in the mix) and it could have been the basis of more comprehensive analysis,
going beyond clustering and towards hypothesis testing and error-rate-controlled
gene lists. Our more conservative line is attributable in part to an incomplete un-
derstanding of the method’s robustness. Relaxing the fixed-coefficient-of-variation
assumption, as in Lo and Gottardo (2007) or Rossell (2009), could be considered
to address the problem. The focus on clustering, however, is motivated largely by
its practical utility in the context of genomic data analysis.

By cataloging ordered structures, rather than the smaller set of unordered struc-
tures, the mixture model produces readily interpretable clusters in the multi-group
setting. Jensen et al. (2009) argues similarly. For example, the largest cluster of
temporally responsive genes in Edwards’ data are upregulated immediately af-
ter treatment and show no significant fluctuations thereafter. The development of
calculations for ordered structures has been more challenging than for unordered
structures, which were presented in Kendziorski et al. (2003) and implemented
in the Bioconductor package EBarrays. Mixture calculations are simplified in
the unordered case because component densities reduce by factorization to ele-
mentary products [i.e., the last factor in (5) is not present]. The requirement to
compute gamma-rank probabilities had limited a fuller development.

Gamma ranking produces clusters indexed by patterns of expected expression
rather than anonymous clusters defined by high similarity of their contents. A ref-
eree noted that large gamma-ranking clusters may tend to swallow up genes more
easily than small clusters because the estimated posterior assignment probability
is proportional to the estimate of the mixing weight πη: that is, structures with
large πη have a head start in the allocation of genes. On one hand, this provides an
efficiency which may be advantageous for genes that have a relatively weak signal
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(and which otherwise might be assigned to a more null-like structure). It also im-
plies that small clusters are more reliable, in a way, since the assigned genes have
made it in spite of the small πη. Another feature of gamma ranking is that clusters
can be tuned by a threshold parameter c, as in (2), rather than being determined by
Bayes’s rule assignment. Taking c close to 1 tends to purify the clusters; the more
equivocal genes drop into an unassigned category. Empirically, such swallowing
up may not be substantial; at least in comparison to the simpler clustering methods
analyzed, gamma ranking produces more and smaller clusters.

There is nothing explicit in gamma ranking that attends to the temporal depen-
dence which might seem to be involved in time-course data. Independent cell lines
were grown in the Edwards’ experiment, one for each microarray, and so there
is independent sampling in spite of a time component. Additionally, the model
imposes dependencies in (5) driven by whichever structure η governs data at a
given gene. If there were complicated temporal dependence, the identified clusters
would still reflect genes that act in concert in this experiment; they might act in
concert by a different η in another run of the experiment, and we would not be
confident in the fitted proportions, even though the clusters may continue to be
informative. Neither does the model have explicit dependence among genes; but it
produces clusters of genes that seem to be highly associated (genes that realize the
same structure η seem to present correlated data). This shows that a sufficiently
rich hierarchical model, based on lots of conditional independence, can represent
characteristics of dependent data. Of course, care is needed since the sampling
distribution of parameter estimates is affected by the intrinsic dependencies within
the data generating mechanism.

The mixture framework from Kendziorski et al. (2003) has supported a number
of extensions to related problems in statistical genomics: Yuan and Kendziorski
(2006b) (time-course data), Kendziorski et al. (2006) (mapping expression traits)
and Keles (2007) (localizing transcription factors). The ability to monitor or-
dered structures may have some application in these problems. Further, the ability
to compute gamma-rank probabilities may have application in distinct inference
problems [e.g., Doksum and Ozeki (2009)]. Future work includes developing a
better software implementation of gamma ranking, enabling the implementation
to have additional flexibility (e.g., gene-specific shapes α), studying the method’s
sampling properties and exploring extensions to emerging data sources.

APPENDIX A: PROOF OF THEOREM 2

Let gk(z) denote the density of a gamma distribution with shape ak and rate λk .
By definition

P(E) =
∫ ∞

0

∫ ∞
zK

· · ·
∫ ∞
z2

[
K∏

k=1

gk(zk)

]
dz1 · · ·dzK−1 dzK

=
∫ ∞

0
gK(zK)

∫ ∞
zK

gK−1(zK−1) · · ·
∫ ∞
z2

g1(z1) dz1 · · ·dzK−1 dzK,
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where in the second line we move factors in the integrand as far as possible to the
left. With this in mind we construct functions fk(z), z ≥ 0, recursively as f0(z) = 1
and, for k = 1,2, . . . ,K ,

fk(z) =
∫ ∞
z

fk−1(u)gk(u) du,(13)

and we observe that P(E) = fK(0). Evaluating these functions further, we see

f1(z) =
∫ ∞
z

g1(z1) dz1

= P(Z1 ≥ z)

= P(M1 < a1|Z2 = z)

=
a1−1∑
m1=0

po(m1;λ1z).

Here M1 = M1(0,Z2) is Poisson(λ1z) distributed conditionally upon Z2 = z, and
po(·) indicates the Poisson probability mass function with the indicated parameter.
The equivalence in the second and third lines above stems from basic relationships
between objects in the underlying Poisson processes. As long as M1 is small, it
means that the N1 process has not accumulated many points up to time Z2 = z,
and hence the Z1 value must be relatively large. More basically,

P(U > u) = P(X < a),(14)

when U ∼ Gamma(a, λ) and X ∼ Poisson(λu), for integer shapes a.
Proceeding to f2(z),

f2(z) =
∫ ∞
z

f1(z2)g2(z2) dz2

=
a1−1∑
m1=0

∫ ∞
z

po(m1;λ1z2)g2(z2) dz2

=
a1−1∑
m1=0

p1(m1)

∫ ∞
z

po(m1;λ1z2); , g2(z2)

p1(m1)
dz2.

Here p1(m1) is the probability mass function of a negative-binomial distribution,
as in (8). Indeed, we have reorganized the summand above to highlight that inte-
grand on the far right is precisely the density function of a gamma distributed vari-
able with shape a2 +m1 and rate λ1 +λ2. This represents the Poisson–Gamma con-
jugacy in ordinary Bayesian analysis [e.g., Gelman et al. (2004), pages 52 and 53].
The integral evaluates to 1 if z = 0, and hence we have proved the case K = 2. But
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furthermore, the integral represents the chance that a gamma distributed variable
is large, and so by (14)

f2(z) =
a1−1∑
m1=0

m1+a2−1∑
m2=0

p1(m1)po
(
m2; (λ1 + λ2)z

)

=
a1−1∑
m1=0

m1+a2−1∑
m2=0

p1(m1)po(m2;
2z).

The baseline result of an induction proof has been established. Assume that for
some k ≥ 3,

fk−1(z) =
a1−1∑
m1=0

· · ·
mk−2+ak−1−1∑

mk−1=0

(
k−2∏
j=1

pj (mj )

)
po(mk−1;
k−1z)(15)

and then evaluate (13) to obtain

fk(z) =
∫ ∞
z

fk−1(zk)gk(zk) dzk

=
∫ ∞
z

a1−1∑
m1=0

· · ·
mk−2+ak−1−1∑

mk−1=0

(
k−2∏
j=1

pj (mj )

)
po(mk−1;
k−1zk)gk(zk) dzk

=
a1−1∑
m1=0

· · ·
mk−2+ak−1−1∑

mk−1=0

(
k−2∏
j=1

pj (mj )

)∫ ∞
z

po(mk−1;
k−1zk)gk(zk) dzk

=
a1−1∑
m1=0

· · ·
mk−2+ak−1−1∑

mk−1=0

(
k−1∏
j=1

pj (mj )

)∫ ∞
z

po(mk−1;
k−1zk)gk(zk)

pk−1(mk−1)
dzk

=
a1−1∑
m1=0

· · ·
mk−2+ak−1−1∑

mk−1=0

(
k−1∏
j=1

pj (mj )

) mk−1+ak−1∑
mk=0

po(mk;
kz)

=
a1−1∑
m1=0

· · ·
mk−1+ak−1∑

mk=0

(
k−1∏
j=1

pj (mj )

)
po(mk;
kz),

which establishes that (15) is true for all k. Evaluating at k = K and z = 0 estab-
lishes the theorem.

Coda: Further insight is gained by realizing from the definition of the counts
that

Mk(Zk) = Mk−1(Zk) + ak

= Mk−1 + ak.
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But also Mk has a jump at Zk , and so we see the equivalence

Zk > Zk+1 ⇐⇒ Mk < Mk−1 + ak.(16)

The event E is an intersection of these pairwise events, and this is manifested in
the ranges of summation in (9). In contrast to (9), these event considerations give
P(E) equal to

a1−1∑
m1=0

m1+a2−1∑
m2=0

· · ·
mK−2+aK−1−1∑

mK−1=0

pjoint(m1,m2, . . . ,mK−1).(17)

The implication seems to be that M1,M2, . . . ,MK−1 are mutually independent,
though Theorem 1 does not confirm this because the factorization into negative
binomials is required for all arguments, beyond what is shown. It is a conjecture
that the {Mk} are mutually independent. A proof by brute force evaluation in the
special cases K = 3 and K = 4 is available (not shown), but we have not found
a general proof. The fact is somewhat surprising because the {Mk} processes are
highly positively dependent. The independence seems to emerge as a balance be-
tween this positive dependence and the negative association created by Zk being
inversely related to Mk(0, t].

APPENDIX B: LINEAR INDEPENDENCE AND PROOF OF THEOREM 3

Consider the three-dimensional case, and initially consider a single replicate in
each of the three groups. Data on each gene form the vector (x, y, z), say, of three
positive reals. Thirteen component densities p(x, y, z|η) constitute the mixture
model (Table 3). For a vector a = (aη) of reals, the test function is Ta(x, y, z) =∑

η aηp(x, y, z|η). It needs to be shown that if Ta(x, y, z) = 0 for all x, y, z > 0,
then aη = 0 for all structures η. Specializing (5) to this case, and eliminating the
positive factor (xyz)α−1, we see that Ta(x, y, z) = 0 is equivalent to∑

η

aηcη center(η)Pord(η) = 0.(18)

A strictly positive multivariate polynomial φ(x, y, z) is required that can con-
vert the left-hand side of (18) into a polynomial by the canceling of denominator
factors. Specifically, φ = φ1φ2 where φ1(x, y, z) controls factors in center(η) and
φ2(x, y, z) controls factors in Pord(η). Inspection suggests taking φ1(x, y, z) equal
to

(x +y +z+ξ)β+2α[(x +y +ξ)(x +z+ξ)(y +z+ξ)]β+α[(x +ξ)(y +ξ)(z+ξ)]β
and φ2(x, y, z) equal to

(x + y + z + 2ξ)2β+α−1[(x + y + 2ξ)(x + z + 2ξ)(y + z + 2ξ)]2β−1

× (x + y + z + 3ξ)3β−2.
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TABLE 3
Thirteen structured components p(x, y, z|η) = cη(xyz)α−1 center(η)Pord(η) in the three

dimensional, no-replicate case. The forms have been simplified, w.l.o.g., by taking the scale ν0 = 1,
by writing β = α0 + α and ξ = α0/α. Normalizing constants cη are as in (5). Note that the em and

em,n stand for constants (not involving x, y, z), but possibly differing among rows

Structure η [center(η)]−1 Pord(η)

(123) (x + y + z + ξ)β+2α 1

(12)(3) (x + y + ξ)β+α(z + ξ)β
∑β+α−1

m=0
em(z+ξ)β (x+y+ξ)m

(x+y+z+2ξ)β+m

(3)(12) “
∑β−1

m=0
em(z+ξ)m(x+y+ξ)β+α

(x+y+z+2ξ)β+α+m

(13)(2) (x + z + ξ)β+α(y + ξ)β
∑β+α−1

m=0
em(y+ξ)β (x+z+ξ)m

(x+y+z+2ξ)β+m

(2)(13) “
∑β−1

m=0
em(y+ξ)m(x+z+ξ)β+α

(x+y+z+2ξ)β+α+m

(1)(23) (y + z + ξ)β+α(x + ξ)β
∑β−1

m=0
em(x+ξ)m(y+z+ξ)β+α

(x+y+z+2ξ)β+α+m

(23)(1) “
∑β+α−1

m=0
em(x+ξ)β (y+z+ξ)m

(x+y+z+2ξ)β+m

(1)(2)(3) [(x + ξ)(y + ξ)(z + ξ)]β ∑β−1
m=0

∑m+β−1
n=0

em,n(x+ξ)m[(y+ξ)(z+ξ)]β (x+y+2ξ)n

(x+y+2ξ)β+m(x+y+z+3ξ)β+n

(2)(1)(3) “
∑β−1

m=0
∑m+β−1

n=0
em,n(y+ξ)m[(x+ξ)(z+ξ)]β (x+y+2ξ)n

(x+y+2ξ)β+m(x+y+z+3ξ)β+n

(1)(3)(2) “
∑β−1

m=0
∑m+β−1

n=0
em,n(x+ξ)m[(y+ξ)(z+ξ)]β (x+z+2ξ)n

(x+z+2ξ)β+m(x+y+z+3ξ)β+n

(2)(3)(1) “
∑β−1

m=0
∑m+β−1

n=0
em,n(y+ξ)m[(z+ξ)(x+ξ)]β (y+z+2ξ)n

(y+z+2ξ)β+m(x+y+z+3ξ)β+n

(3)(1)(2) “
∑β−1

m=0
∑m+β−1

n=0
em,n(z+ξ)m[(x+ξ)(y+ξ)]β (x+z+2ξ)n

(x+z+2ξ)β+m(x+y+z+3ξ)β+n

(3)(2)(1) “
∑β−1

m=0
∑m+β−1

n=0
em,n(z+ξ)m[(x+ξ)(y+ξ)]β (y+z+2ξ)n

(y+z+2ξ)β+m(x+y+z+3ξ)β+n

Observe that the degree of x in the polynomial φ = φ1φ2 is 13β + 5α − 5. In-
deed this is also the degree of y and the degree of z by symmetry. These degrees
are reduced in the polynomial fη = φ(x, y, z) center(η)Pord(η) by factors in the
denominators of center(η) and Pord(η). For example, if η = (12)(3), then

fη = (x + y + z + ξ)β+2α[(x + z + ξ)(y + z + ξ)]β+α[(x + ξ)(y + ξ)]β
× [(x + y + 2ξ)(x + z + 2ξ)(y + z + 2ξ)]2β−1(x + y + z + 3ξ)3β−2

×
β+α−1∑
m=0

em(z + ξ)β(x + y + ξ)m(x + y + z + 2ξ)β+α−1−m,

which is a polynomial of degree 11β + 4α − 5, in both x and y, and of degree
12β + 5α − 5 in z. A similar construction is possible for all structures; Table 4
records the degrees of x, y and z in all component polynomials fη.
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TABLE 4
Degree of x, y and z in the multivariate polynomials fη = φ(x, y, z) center(η)Pord(η).

Recall β = α0 + α and both α and α0 are positive integers

Structure η Degree(x) Degree(y) Degree(z)

(123) 11β + 4α − 4 11β + 4α − 4 11β + 4α − 4
(12)(3) 11β + 4α − 5 11β + 4α − 5 12β + 5α − 5
(3)(12) 12β + 4α − 5 12β + 4α − 5 11β + 4α − 5
(13)(2) 11β + 4α − 5 12β + 5α − 5 11β + 4α − 5
(2)(13) 12β + 4α − 5 11β + 4α − 5 12β + 4α − 5
(1)(23) 11β + 4α − 5 12β + 4α − 5 12β + 4α − 5
(23)(1) 12β + 5α − 5 11β + 4α − 5 11β + 4α − 5
(1)(2)(3) 10β + 5α − 5 11β + 5α − 5 12β + 5α − 5
(2)(1)(3) 11β + 5α − 5 10β + 5α − 5 12β + 5α − 5
(1)(3)(2) 10β + 5α − 5 12β + 5α − 5 11β + 5α − 5
(2)(3)(1) 12β + 5α − 5 10β + 5α − 5 11β + 5α − 5
(3)(1)(2) 11β + 5α − 5 12β + 5α − 5 10β + 5α − 5
(3)(2)(1) 12β + 5α − 5 11β + 5α − 5 10β + 5α − 5

Having introduced the multiplier φ, the linear independence (18) is equivalent
to the assertion that polynomial equation∑

η

aηcηfη(x, y, z) = 0 for all x, y, z > 0(19)

implies aη = 0 for all η. Fixing any y and z, the left-hand side of equation (19)
is a polynomial in x, with degree 12β + 5α − 5, according to Table 4. Indeed
terms associated with structures η = (23)(1), (2)(3)(1) and (3)(2)(1) all contribute
monomials with that highest power in x. The coefficient of x12β+5α−5, denoted
d = d(a, y, z), equals

a(23)(1)c(23)(1)f
′
(23)(1) + a(2)(3)(1)c(2)(3)(1)f

′
(2)(3)(1) + a(3)(2)(1)c(3)(2)(1)f

′
(2)(3)(1),

where f ′ indicates contributions from respective terms within fη. This coefficient
d must equal zero, for all y and z; after all, a degree 12β + 5α − 5 polynomial can
equal zero in x for at most that many x values, unless the coefficient d is exactly
zero; and we are asking that it equal zero at all values of x. From this study of the
high-power coefficient in x, we have reduced consideration to three structures and
are able to focus on d = d(a, y, z) as a bivariate polynomial in y and z (Table 5).

The initial argument focusing on the degree of x can be adapted to study other
variables in Table 5. With degree of y equal to 11β + 5α − 5, for instance, it
must be that the coefficient d ′(z), say, of y11β+5α−5 equals zero for all z. Af-
ter all, the polynomial can equal zero at at most 11β + 5α − 5 y values, and
we require it to be zero at all y. But all contributions to that coefficient are
strictly positive, except possibly a(3)(2)(1), hence we conclude a(3)(2)(1) = 0. By
the same token, working with the degree 11β + 5α − 5 term in z, it follows that
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TABLE 5
Degrees of y and z in three terms of the bivariate polynomial

d(a, y, z). This is a subset of Table 4

Structure η Degree(y) Degree(z)

(23)(1) 11β + 4α − 5 11β + 4α − 5
(2)(3)(1) 10β + 5α − 5 11β + 5α − 5
(3)(2)(1) 11β + 5α − 5 10β + 5α − 5

a(2)(3)(1) = 0, which then forces a(23)(1) = 0, because we require d = 0 overall.
Three rows from Table 4 have been eliminated (i.e., forced aη = 0), all those in
which the mean of the first variable is greater than the other two means. Next,
return to the reduced table, and focus, say, on structures (13)(2), (1)(3)(2) and
(3)(1)(2), in which the second variable has mean greater than the others. In do-
ing so, three more coefficients a(13)(2) = a(1)(3)(2) = a(3)(2)(1) = 0 are forced, and
Table 2 is further reduced to seven rows. Then the argument is repeated to get
a(12)(3) = a(1)(2)(3) = a(2)(1)(3) = 0, and it remains to assess coefficients aη of the
four structures in Table 6.

The argument is repeated in this domain, knowing that all but four terms in (19)
have been eliminated. The degree of x is 12β +4α −5, and there are contributions
from both η = (3)(12) and η = (2)(13). But then restricted to these rows we get
a(3)(12) = 0 because the coefficient of x12β+4α−5 as a polynomial in y has degree
12β +4α −5. The remaining constants aη are similarly zero, completing the proof
in the no-replicate (m = 1), three group (p = 3) case.

The balanced three group case follows suit, noting that now x, y and z are
sums taken, respectively, across replicates in each of the three groups. The product
statistic is not xyz, but anyway it is common to all components and thus cancels
in the linear combination test function. The observation-related shape parameter α

is replaced by mα. The two-dimensional (p = 2) case is simpler and is left as an
exercise.

TABLE 6
Final subtable

Structure η Degree(x) Degree(y) Degree(z)

(123) 11β + 4α − 4 11β + 4α − 4 11β + 4α − 4
(3)(12) 12β + 4α − 5 12β + 4α − 5 11β + 4α − 5
(2)(13) 12β + 4α − 5 11β + 4α − 5 12β + 4α − 5
(1)(23) 11β + 4α − 5 12β + 4α − 5 12β + 4α − 5
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TABLE 7
Parameter estimates (not including mixing proportions) from the examples

analyzed. The last column indicates the number of functional categories in GO and
KEGG having at least five annotated genes, which were used in the development of

Figure 4. KEGG was not available for GDS1937, and so this data set was
not used in Figure 4

Data set α α0 ν0 # GO/KEGG

Edwards 113 1 586.5
GDS2323 14 1 119.1 3849/184
GDS1802 17 1 46.8 3619/182
GDS2043 22 1 47.7 3619/182
GDS2360 8 1 15.8 3258/175
GDS599 12 1 0.01 3180/159
GDS812 5 1 15.4 3258/175
GDS1937 6 1 20.5 NA
GDS568 10 1 37.1 3258/175
GDS2431 4 1 67.6 4085/188
GDS587 8 1 9999.2 1876/127
GDS586 13 1 4566.2 3258/175

APPENDIX C: STRICT CONCAVITY OF LOG-LIKELIHOOD
AND PROOF OF THEOREM 4

Let q denote the number of nonnull structures, and consider the log-likelihood
l(π) in (11) to be on R

q , with the null probability defined secondarily as π0 =
1 − ∑

η 
=η0
πη. This way we need not invoke Lagrange multipliers to compute

derivatives of l(π). By calculus, the q × q Hessian H of negative 2nd derivatives
of l(π) has (ij)th entry

Hij = ∑
g

[p(xg|ηi) − p(xg|η0)][p(xg|ηj ) − p(xg|η0)]
[p(xg)]2

= ∑
g

fi(xg)fj (xg),

where p(xg) is the marginal density obtained by mixing over structures, as in (1),
and fi(x) = [p(x|ηi) − p(x|η0)]/p(x). Now let a = (aη) be a q-vector of con-
stants. To determine curvature of the log-likelihood we consider the quadratic form

aT Ha =
q∑

i=1

q∑
j=1

aiaj

∑
g

fi(xg)fj (xg) = ∑
g

( q∑
i=1

aifi(xg)

)2

= ∑
g

[Ta(xg)]2,
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where Ta(x) = ∑q
i=1 aifi(x). Clearly, aT Ha ≥ 0 regardless of a and so H is non-

negative definite and l(π) is concave. To establish strict concavity requires that
we show Ta(xg) = 0 for all g if and only if a = 0. The following lemma shows
that knowing Ta(xg) = 0 for all G values xg is enough to force Ta(x) = 0 for
all x, as long as G is sufficiently large. But then a = 0 by the linear independence
assumption, completing the proof.

LEMMA 1. Let ψ(x) be a multivariate polynomial in x ∈ R
n, and let

X1,X2, . . . ,Xm denote a random sample from a continuous distribution on R
n. If

m is at least as large as the number of monomials in ψ , then, with probability one,
ψ(Xi) = 0 for i = 1,2, . . . ,m implies ψ(x) = 0 for all x.

PROOF. Every point Xi puts a linear condition on the space of coefficients
of ψ . It needs to be verified that these conditions are linearly independent. Suppose
that the first k conditions are linearly independent, so the space of ψ’s that are
zero at X1, . . . ,Xk has dimension (number of monomials in ψ) minus k. Pick
one such nonzero polynomial and call it φ. Since φ = 0 is a set with positive
codimension, we may assume (with probability one) that φ(Xk+1) is not zero.
Then, if we impose the additional condition ψ(Xk+1) = 0, the dimension of the
solution space drops by at least one, hence it drops by one. Letting k increase from
1 to m completes the proof. �

APPENDIX D: FURTHER DETAILS OF NUMERICAL EXAMPLES

The parameters α,α0 and ν0 were fixed at values obtained by first fitting the
unordered gamma–gamma mixture model in EBarrays, without a null structure
but otherwise allowing all possible unordered structures. Shape parameters were
then rounded to the nearest positive integer (Table 7) and all three parameters were
plugged into the EM procedure to fit the proposed mixture-model proportions.
[Recall that Pord(η) in (5) can be computed only for integer shapes, hence the
rounding.] To simplify EM calculations in the four examples having more than
five groups, the full set of ordered structures was filtered to a reduced set based on
the fitting of the unordered gamma–gamma model in EBarrays. Each ordered
structure corresponds to exactly one unordered structure (a many to one mapping).
If no gene had a high (greater than 0.5) probability of mapping to a given unordered
structure, then we deemed all corresponding ordered structures to have πη = 0.
This approximation is not ideal, since the Bayes rule assignment for some genes
may be one of the structures eliminated by forcing πη = 0. This affects only 29
genes out of the 17,539 clustered in these four cases. It would not affect clustering
by a high threshold.

For all data sets, we examined quantile–quantile plots and plots relating sample
coefficient of variation to sample mean. Some model violations were noted, but
largely the gamma observation model was supported.
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For the Edwards data, we reran the EM algorithm for 10 cycles and updated
shape parameter estimates via 2D grid search in each cycle. Estimated shapes
changed slightly; 784/786 genes received the same Bayes rule cluster assignment.

Computations were done in R on industry-standard linux machines. For the data
sets analyzed, run times ranged from 6 to 860 CPU seconds per EM iteration, with
a mean of 270 seconds. Run time is affected by the number of genes analyzed, the
number of groups and also the shape parameters and sample sizes.

Note added in proof. The authors acknowledge that the finding in Theorem 2
was reported previously by R. J. Henery (1983) Journal of Applied Probability 20
822–834.

Acknowledgments. We thank Lev Borisov for the proof of Lemma 1,
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