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QUENCHED EXIT ESTIMATES AND BALLISTICITY CONDITIONS
FOR HIGHER-DIMENSIONAL RANDOM WALK IN RANDOM

ENVIRONMENT

BY ALEXANDER DREWITZ1,2 AND ALEJANDRO F. RAMÍREZ3

ETH Zürich and Pontificia Unversidad Católica de Chile

Consider a random walk in an i.i.d. uniformly elliptic environment in di-
mensions larger than one. In 2002, Sznitman introduced for each γ ∈ (0,1)

the ballisticity condition (T )γ and the condition (T ′) defined as the fulfill-
ment of (T )γ for each γ ∈ (0,1). Sznitman proved that (T ′) implies a bal-
listic law of large numbers. Furthermore, he showed that for all γ ∈ (0.5,1),
(T )γ is equivalent to (T ′). Recently, Berger has proved that in dimensions
larger than three, for each γ ∈ (0,1), condition (T )γ implies a ballistic law
of large numbers. On the other hand, Drewitz and Ramírez have shown that
in dimensions d ≥ 2 there is a constant γd ∈ (0.366,0.388) such that for each
γ ∈ (γd ,1), condition (T )γ is equivalent to (T ′). Here, for dimensions larger
than three, we extend the previous range of equivalence to all γ ∈ (0,1). For
the proof, the so-called effective criterion of Sznitman is established employ-
ing a sharp estimate for the probability of atypical quenched exit distributions
of the walk leaving certain boxes. In this context, we also obtain an affir-
mative answer to a conjecture raised by Sznitman in 2004 concerning these
probabilities. A key ingredient for our estimates is the multiscale method de-
veloped recently by Berger.

1. Introduction and statement of the main results. We continue our inves-
tigation of the interrelations between the ballisticity conditions (T )γ and (T ′) in-
troduced by Sznitman in [8] for random walk in random environment (RWRE).
In dimensions larger than or equal to four, the results we establish in this paper
amount to a considerable improvement of what has been obtained in our work [4].
To prove the corresponding results, we take advantage of techniques recently de-
veloped by Berger in [1]. We derive sharp estimates on the probability of certain
quenched exit distributions of the RWRE and thereby provide an affirmative an-
swer to a slightly stronger version of a conjecture announced by Sznitman in [9].

We start by giving an introduction to the model, thereby fixing the nota-
tion we employ. Denote by Md the space of probability measures on the set
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{e ∈ Z
d :‖e‖1 = 1} of canonical unit vectors and set � := (Md)Z

d
. For each en-

vironment ω = (ω(x, ·))x∈Zd ∈ �, we consider the Markov chain (Xn)n∈N with
transition probabilities from x to x + e given by ω(x, e) for ‖e‖1 = 1, and 0 oth-
erwise. We denote by Px,ω the law of this Markov chain conditioned on {X0 = x}.
Furthermore, let P be a probability measure on � such that the coordinates
(ω(x, ·))x∈Zd of the environment ω are i.i.d. under P. Then P is called elliptic if
P(min‖e‖1=1 ω(0, e) > 0)= 1 while it is called uniformly elliptic if there is a con-
stant κ > 0 such that P(min‖e‖1=1 ω(0, e) ≥ κ) = 1. We call Px,ω the quenched
law of the RWRE starting from x, and correspondingly we define the averaged (or
annealed) law of the RWRE by Px := ∫� Px,ωP(dω).

Given a direction l ∈ S
d , we say that the RWRE is transient in the direction l if

P0

(
lim

n→∞Xn · l =∞
)
= 1.

Furthermore, we say that the RWRE is ballistic in the direction l if P0-a.s.

lim inf
n→∞

Xn · l
n

> 0.

It is well known that in dimension one there exists uniformly elliptic RWRE in i.i.d.
environments which is transient but not ballistic to the right. It was also recently
established that in dimensions larger than one there exists elliptic RWRE in i.i.d.
environments which is transient but not ballistic in a given direction see Sabot and
Tournier in [6]. Nevertheless, the following fundamental conjecture remains open.

CONJECTURE 1.1. In dimensions larger than one, every uniformly elliptic
RWRE in an i.i.d. environment which is transient in a given direction is necessarily
ballistic in the same direction.

Some partial progress has been made toward the resolution of this conjecture
by studying transient RWRE satisfying some additional assumptions introduced
in [8], usually called ballisticity conditions. For each l ∈ S

d−1 and L > 0, let us
define

T l
L := inf{n≥ 0 :Xn · l > L}.

DEFINITION 1.2. Let γ ∈ (0,1) and l ∈ S
d−1. We say that condition (T )γ is

satisfied with respect to l [written (T )γ |l or (T )γ ] if for each l′ in a neighborhood
of l and each b > 0 one has that

lim sup
L→∞

L−γ logP0(T
l′
L > T −l′

bL ) < 0.

We say that condition (T ′) is satisfied with respect to l [written (T ′)|l or (T ′)], if
for each γ ∈ (0,1), condition (T )γ |l is fulfilled.
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It is known that in dimensions d ≥ 2, condition (T ′) implies the existence of a
deterministic v ∈ R

d \ {0} such that P0-a.s. limn→∞ Xn

n
= v, as well as a central

limit theorem for the RWRE so that under the annealed law P0,

Bn· :=
X�·n	 − �·n	v

n

converges in distribution to a Brownian motion in the Skorokhod space D([0,∞),
R

d) as n→∞; see, for instance, Theorem 4.1 in [9] for further details. Recently,
in [1] the author has shown that in dimensions larger than three, the above law of
large numbers and central limit theorem remain valid if condition (T )γ is satisfied
for some γ ∈ (0,1). In addition, in [9] the author has proven that if P is uniformly
elliptic, then in dimensions d ≥ 2, for each γ ∈ (0.5,1) and each l ∈ S

d−1, condi-
tion (T )γ |l is equivalent to (T ′)|l. In [4], the authors pushed down this equivalence
to each γ ∈ (γd,1), where γd ∈ (0.366,0.388) is decreasing with the dimension.
The first main result of the present paper is a considerable improvement of these
previous results for dimensions larger than three.

THEOREM 1.3. Let d ≥ 4 and P be uniformly elliptic. Then for all γ ∈ (0,1)

and l ∈ S
d−1, condition (T )γ |l is equivalent to (T ′)|l.

The proof of Theorem 1.3 takes advantage of the effective criterion and is there-
fore closely related to upper bounds for quenched probabilities of atypical exit
behavior of the RWRE. To state the corresponding result, denote for any subset
B ⊂ Z

d its boundary by

∂B := {x ∈ Z
d \B :∃y ∈ B such that ‖x − y‖1 = 1}

and define the slab

Uβ,l,L := {x ∈ Z
d :−Lβ ≤ x · l ≤ L}.

Furthermore, for the rest of this paper we let

TB := inf{n ∈N0 :Xn ∈ B}
denote the first hitting time. For x ∈ Z

d set Tx := T{x}. In terms of this notation, in
[9] the author conjectured the following (cf. Figure 1).

CONJECTURE 1.4. Let d ≥ 2, P be uniformly elliptic and assume (T ′)|l to
hold for some l ∈ S

d−1. Fix c > 0 and β ∈ (0,1). Then for all α ∈ (0, βd),

lim sup
L→∞

L−α log P
(
P0,ω(XT∂Uβ,l,L

· l > 0)≤ e−cLβ )
< 0.



462 A. DREWITZ AND A. F. RAMÍREZ

FIG. 1. Sketch of the known and conjectured bounds for α.

Theorem 4.4 of [9] states that the above conjecture holds true for all positive α

with

α < d

(
(2β − 1)∨ 2β

d + 1

)
.

The second main result of the present paper gives an affirmative answer to a
seemingly stronger statement than the one of Conjecture 1.4. For l ∈ S

d−1, denote
by

πl : Rd � x �→ (x · l)l ∈R
d

the orthogonal projection on the space {λl :λ ∈R} as well as by

πl⊥ : Rd � x �→ x − πl(x) ∈R
d

the orthogonal projection on the orthogonal complement {λl :λ ∈ R}⊥. Using this
notation, for K > 0 we define the box

BL,l,K := {x ∈ Z
d : 0≤ x · l ≤ L,‖πl⊥(x)‖∞ ≤KL}

as well as its right boundary part

∂+BL,l,K := {x ∈ ∂BL,l,K :x · l > L},(1.1)

see Figure 2.
We can now state the desired result.

THEOREM 1.5. Let d ≥ 4, P be uniformly elliptic and assume (T )γ |l to hold
for some γ ∈ (0,1), l ∈ S

d−1. Fix c > 0 and β ∈ (0,1). Then there exists a constant
K > 0 such that for all α ∈ (0, βd),

lim sup
L→∞

L−α log P
(
P0,ω(T∂BL,l,K

= T∂+BL,l,K
)≤ e−cLβ )

< 0.
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FIG. 2. The set BL,l,K and its boundary part ∂+BL,l,K .

REMARK 1.6.

(a) The result we prove is slightly stronger than the conjecture announced in [9]
since we can dispose of the extent of the slab in direction −l as well as restrict the
extent in directions orthogonal to l. Scrutinizing the proof it will be clear that one
can improve this result replacing the box BL,l,K by a parabola-shaped set which
grows in the directions transversal to v̂ at least like Lα for some α > 1/2.

(b) Note that this theorem is optimal in the sense that its conclusion will not
hold in general for α > βd . In fact, for plain nestling RWRE, this can be shown by
the use of so-called naïve traps (see [9], page 244).

(c) In both, Theorem 1.3 as well as Theorem 1.5, the restriction to dimensions
larger than three is caused by the following: for a very large set of environments
we need that the trajectories of two independent d-dimensional random walks in
this environment intersect only very rarely; see equations (A.35) and (A.36).

The proof of Theorem 1.5 exploits heavily a recent multiscale technique intro-
duced in [1] to study the slowdown upper bound for RWRE. To explain this in more
detail, note that from that source one also infers that every RWRE in a uniformly
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elliptic i.i.d. environment which satisfies condition (T )γ for some γ ∈ (0,1), has
an asymptotic speed v �= 0. The main result of [1] states that for every RWRE in
a uniformly elliptic i.i.d. environment satisfying condition (T )γ , some γ ∈ (0,1),
the following holds: for each a �= v in the convex hull of 0 and v as well as ε > 0
small enough, and any α < d the inequality

P0

(∥∥∥∥Xn

n
− a

∥∥∥∥∞ < ε

)
≤ exp{−(logn)α}

holds for all n large enough. To prove the above result, Berger develops a mul-
tiscale technique which describes the behavior of the walk at the scale of the so
called naïve traps, which at time n are of radius of order logn. Here, we rely on
such a multiscale technique to make explicit the role of the regions of the same
scale as the naïve traps to prove Theorem 1.5.

In Section 2, we show how certain exit estimates from boxes imply Theorem 1.5
and how in turn such a result implies Theorem 1.3. In Section 3, we start with
giving a heuristic explanation of a modified version of Berger’s multiscale tech-
nique and of how to deduce the aforementioned exit estimates. We then set up
our framework of notation and auxiliary results before making precise the previ-
ous heuristics by giving the corresponding proofs. In the Appendix we establish
several specific results concerning local limit theorem type results and estimates
involving intersections of random walks.

2. Proofs of the main results. The proofs of Theorems 1.3 and 1.5 are based
on a multiscale argument and a semi-local limit theorem developed in [1] for
RWRE in dimensions larger than or equal to four.

It is well known that if for some γ ∈ (0,1) and l ∈ S
d−1, condition (T )γ |l is

fulfilled, then P0-a.s. the limit

v̂ := lim
n→∞

Xn

‖Xn‖2
∈ S

d−1

exists and is constant (cf., e.g., Theorem 1 in Simenhaus [7]); it is called the as-
ymptotic direction.

Define for a vector ej of the canonical basis of Z
d and l ∈ S

d−1 such that l ·ej �=
0 the projection π̃

j
l via

π̃
j
l : Rd � x �→ x · ej

l · ej

l ∈R
d

on the space {λl :λ ∈R} and by π̃
j

l⊥ the projection

π̃
j

l⊥ : Rd � x �→ x − x · ej

l · ej

l ∈R
d
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FIG. 3. The set CL and its boundary part ∂+CL.

on the space {λej :λ ∈R}⊥. In the case j = 1, we will abbreviate this notation by
π̃l and π̃l⊥ . For j ∈ {1, . . . , d}, δ > 0 and L > 0, define the set

CL := {x ∈ Z
d : 0≤ x · ej ≤ L1+δ,‖π̃ j

v̂⊥(x)‖∞ ≤ L3δ + x · ejL
−2δ};

cf. Figure 3. In analogy to (1.1), we introduce the right boundary parts

∂+CL := {x ∈ ∂CL :x · ej > L1+δ}
and ∂+(x +CL) := x + ∂+CL for x ∈ Z

d .
The proof of the following proposition will be deferred to Section 3.

PROPOSITION 2.1. Let d ≥ 4, P be uniformly elliptic and assume (T )γ |l to
hold for some γ ∈ (0,1), l ∈ S

d−1. Without loss of generality, let ej be a vector of
the canonical basis such that v̂ · ej > 0 and fix β ∈ (0,1) as well as α ∈ (0, βd).

Then for all δ > 0 small enough there exists a sequence of events (L)L∈N such
that for all L large enough we have

inf
ω∈L

P0,ω(T∂CL
= T∂+CL

)≥ e−Lβ−δ

and

P(c
L)≤ e−Lα

.

For the sake of notational simplicity and without loss of generality, we assume
j = 1 from now on.

2.1. Proof of Theorem 1.5. We will show that Theorem 1.5 is a consequence of
Proposition 2.1. For this purpose, let the assumptions of Theorem 1.5 be fulfilled.
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In particular, let (T )γ |l be fulfilled (which implies l · v̂ > 0; cf. Theorem 1.1 of [8])
and fix c > 0, β ∈ (0,1) as well as α ∈ (0, βd). Let δ > 0 small enough such that
the implication of Proposition 2.1 holds and 3δ < β − δ. Choose β ′ ∈ (β − δ,β)

and define x ∈ Z
d to be one of the (possibly several) sites closest to Lβ ′ l. Then the

following property of the displaced set x +CL will be used:

(Exit) Let K be large enough and δ > 0 small enough. Then for L large enough,
if the walk starting in x leaves x +CL through ∂+(x +CL), it also leaves the box
BL,l,K through ∂+BL,l,K .

Now since the measure P is uniformly elliptic, we know that there exists a constant
C depending on the dimension d , such that for all L large enough and for P-a.a. ω

the inequality

P0,ω(T∂BL,l,K
> Tx)≥ e−CLβ′

(2.1)

holds true. By Proposition 2.1, for α ∈ (0, βd) fixed, there are subsets L ⊂ �

such that for L large enough, P(L)≥ 1− e−Lα
and such that for ω ∈L one has

P0,ω(T∂BL,l,K
= T∂+BL,l,K

)

≥ P0,ω

(
T∂BL,l,K

> Tx,T∂(x+CL)(θTx (X·))= T∂+(x+CL)(θTx (X·))
)

≥ P0,ω(T∂BL,l,K
> Tx)Px,ω

(
T∂(x+CL) = T∂+(x+CL)

)
≥ e−CLβ′

e−Lβ−δ = e−CLβ

for L large enough, where θn : (Zd)N0 → (Zd)N0 denotes the canonical n-fold left
shift and to obtain the first inequality we used property (Exit). In the second in-
equality, we have used the strong Markov property and in the third one we em-
ployed inequality (2.1) as well as Proposition 2.1 in combination with the transla-
tion invariance of the measure P. This finishes the proof of the theorem.

2.2. Proof of Theorem 1.3. In [8], the author introduces the so called effective
criterion, which is a ballisticity condition equivalent to condition (T ′) and which
facilitates the explicit verification of condition (T ′). The proof of Theorem 1.3
will rest on the fact that the effective criterion implies condition (T ′). Indeed,
we will prove that (T )γ implies the effective criterion, the main ingredient being
Theorem 1.5.

For the sake of convenience, we recall here the effective criterion and its fea-
tures. For positive numbers L, L′ and L̃ as well as a space rotation R around the
origin we define the box specification B(R,L,L′, L̃) as the box B := {x ∈ Z

d :x ∈
R((−L,L′)× (−L̃, L̃)d−1)}. Furthermore, let

ρB(ω) := P0,ω(XT∂B
/∈ ∂+B)

P0,ω(XT∂B
∈ ∂+B)

.
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Here, ∂+B := {x ∈ ∂B :R(e1) · x ≥ L′, |R(ej ) · x|< L̃ ∀j ∈ {2, . . . , d}}. We will
sometimes write ρ instead of ρB if the box we refer to is clear from the context and
use R̂ to label any rotation mapping e1 to v̂. Note that due to the uniform ellipticity
assumption, P-a.s. we have ρ ∈ (0,∞). Given l ∈ S

d−1, we say that the effective
criterion with respect to l is satisfied if

inf
B,a

{
c1(d)

(
log

1

κ

)3(d−1)

L̃d−1L3(d−1)+1
Eρa

B

}
< 1.(2.2)

Here, when taking the infimum, a runs over [0,1] while B runs over the box-
specifications B(R,L− 2,L+ 2, L̃) with R a rotation such that R(e1) = l, L ≥
c2(d), 3

√
d ≤ L̃ < L3. Furthermore, c1(d) and c2(d) are dimension dependent

constants.
The following result was proven in [8].

THEOREM 2.2. For each l ∈ S
d−1, the following conditions are equivalent:

(a) The effective criterion with respect to l is satisfied.
(b) (T ′)|l is satisfied.

Due to this result, we can check condition (T ′), which by nature of its definition
is asymptotic, by investigating the local behavior of the walk only; indeed, to have
the infimum on the left-hand side of (2.2) smaller than 1, it is sufficient to find one
box B and a ∈ [0,1] such that the corresponding inequality holds.

Recall that from Theorem 1.1 of [8] we infer that for l such that l · v̂ > 0, we
have that (T )γ |l implies (T )γ |v̂, and (T )′|v̂ implies (T )′|l. Thus, because of (2.2)
and Theorem 2.2, in order to prove Theorem 1.3 it is then sufficient to show that
(T )γ |v̂ implies that

(D) for every natural n ∈N, one has that Eρa = o(Ln) as L→∞;

here, ρ corresponds to a box specification B(R̂,L− 2,L+ 2,L2).
To show the desired decay, we split Eρa according to

Eρa = E0 +
n−1∑
j=1

Ej + En,(2.3)

where n= n(γ ) is a natural number the choice of which will depend on γ ,

E0 := E
(
ρa,P0,ω(XT∂B

∈ ∂+B) > e−k1L
β1 )

,

Ej := E
(
ρa, e−kj+1L

βj+1
< P0,ω(XT∂B

∈ ∂+B)≤ e−kjL
βj )

for j ∈ {1, . . . , n− 1} and

En := E
(
ρa,P0,ω(XT∂B

∈ ∂+B)≤ e−knLβn )
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with parameters

γ =: β1 < β2 < · · ·< βn := 1,

a = L−ε , ε ∈ (0,1), as well as kn large enough and arbitrary positive constants
k1, k2, . . . , kn−1. To bound E0, we employ the following lemma, which has been
proven in [4].

LEMMA 2.3. For all L > 0,

E0 ≤ ek1L
γ−ε−δ1L

γ−ε+o(Lγ−ε),

where

δ1 := − lim sup
L→∞

L−γ logP0(XT∂B
/∈ ∂+B) > 0.

To deal with the middle summand in the right-hand side of (2.3), we use the
following lemma.

LEMMA 2.4. For all L > 0, j ∈ {1, . . . , n} and ε > 0, we have that

Ej ≤ ekj+1L
βj+1−ε−L

βj d−ε+o(L
βj d−ε

).

PROOF. Using Markov’s inequality, for j ∈ {1, . . . , n− 1} we obtain the esti-
mate

Ej ≤ ekj+1L
βj+1−ε

P
(
P0,ω(XT∂B

∈ ∂+B)≤ e−kjL
βj )

.(2.4)

Due to Theorem 1.5, for ε > 0 fixed, the outer probability on the right-hand side

of (2.4) can be estimated from above by e−L
βj d−ε+o(L

βj d−ε
). �

For the term En in (2.3), we have the following estimate.

LEMMA 2.5. There exists a constant C > 0 such that for any ε > 0,

En ≤ eCL1−ε−Lβnd−ε+o(Lβnd−ε).

PROOF. Using the uniform ellipticity assumption, we see that there is a con-
stant C > 0 such that

En ≤ eCL1−ε

P
(
P0,ω(XT∂B

∈ ∂+B)≤ e−knLβn )
.(2.5)

An application of Theorem 1.5 to estimate the second factor of the right-hand side
of inequality (2.5) establishes the proof. �
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From Lemmas 2.3, 2.4 and 2.5, we deduce that for k1 < δ1, n = n(γ ) large
enough, arbitrarily chosen positive constants k2, . . . , kn as well as ε and β1, . . . , βn

satisfying

β1 = γ, ε < γ,

βj+1 < βjd

for j ∈ {1, . . . , n− 1}, and

1 < βnd,

all the terms E0, . . . , En on the right-hand side of (2.3) decay stretched exponen-
tially. It is easily observed that the above choice of parameters is feasible, which
establishes the desired decay in (D) and thus finishes the proof of Theorem 1.3.

3. Proof of Proposition 2.1 and auxiliary results. The proof of Proposi-
tion 2.1 is based on a modified version of the multiscale argument developed in [1].
In general, in our construction, we will name the corresponding results of the con-
struction in [1] in brackets in the corresponding places.

We start with giving a heuristic (and cursory) idea of the proof. Afterward, we
will set up all the necessary notation and auxiliary results before providing a rig-
orous proof of Proposition 2.1.

3.1. Heuristics leading to Proposition 2.1. The basic strategy of the proof is
to construct, for β ∈ (0,1) and α < βd given, a sequence of events (GL)L∈N, each
a subset of �, such that for L large enough one has

P(Gc
L)≤ e−Lα

(3.1)

and at the same time

inf
ω∈GL

P0,ω(T∂+CL
= T∂CL

)≥ e−cLβ

,(3.2)

where c is a constant that changes values various times throughout this subsec-
tion. In order to define GL, for each of finitely many scales, we cover the box CL

with boxes of that certain scale. Boxes of the first scale have extent roughly L2ψ

in direction v̂, and extent marginally larger than Lψ in directions orthogonal to v̂.
Here, ψ > 0 is much smaller than β . The boxes of larger scale more or less have
ψ replaced by larger numbers [see (3.4), (3.7) and (3.8)]. Given an environment,
we declare a box to be good if within this box and with respect to the given en-
vironment, the quenched random walk behaves very much like the annealed one.
Otherwise, it is called bad.

We then define GL as the event that there are not significantly more than Lα

bad boxes of each scale contained in CL. Using Proposition 3.4, which states that
the probability of a box being bad decays faster than polynomially as a function
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in L, by large deviations for binomially distributed variables one shows that the
probability of the complement of this event is smaller than e−Lα

, so that (3.1) is
satisfied (cf. Lemma 3.6).

It remains to show that on GL, inequality (3.2) is satisfied. For this purpose, we
associate to the walk a “current scale” that slowly increases as the e1-coordinate
of the walk increases. We will then require the walk to essentially leave in e1-
direction (i.e., through their right boundary parts) all the boxes of its current scale
it traverses; this ensures that it leaves CL through ∂+CL. Since the probability that
the random walk exits a good box through the right boundary part is relatively
large, one can essentially bound the probability of leaving CL through ∂+CL from
below by the cost the walk incurs when traversing bad boxes.

Now each time the walk finds itself in a bad box of its current scale, it will
instead move in boxes of smaller scale that contain its current position, and leave
these boxes through their right boundary parts. Each time this happens, it has to
“correct” the errors incurred by moving in such boxes through some deterministic
steps, the cost of which will not exceed e−cL2ψ

; in a certain way, these corrections
make the walk look as if it has been leaving a box of its current scale through its
right boundary part. Thus, we can roughly bound the probability of leaving CL

through ∂+CL by

e−cNL2ψ

,(3.3)

where N is the number of bad boxes that the walk visits.
Now in order to obtain a useful upper bound for N , we can force the random

walk to have CLT-type fluctuations in directions transversal to v̂ at constant cost
in each box (see random direction event, Section 3.6). By means of this random
direction event, one can then infer the existence of a direction (depending on the
environment) such that, if the CLT-type fluctuations of the walk essentially center
around this direction, then the walk encounters a little less than Lβ bad boxes of
each scale on its way through CL. From (3.3), we deduce that the probability for
the walker to leave CL through ∂+CL can then be bounded from below by e−cLβ

.
This suggests that (3.2) holds.

3.2. Preliminaries. We first recall an equivalent formulation of condition
(T )γ and introduce the basic notation that will be used throughout the rest of this
paper.

We will use C to denote a generic constant that may change from one side
to the other of the same inequality. This constant may usually depend on various
parameters, but in particular does not depend on the variable L nor N (recall that L

is the variable which makes the slabs and boxes grow, and N will play a similar role
in general results). In “general lemmas,” we will usually denote the corresponding
probability measure and expectation by P and E, respectively. Furthermore, when
considering stopping times without mentioning the process they apply to, then they
will usually refer to the RWRE X.
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Not all auxiliary results will appear in the order in which they are employed. In
fact, in order to improve readability, we defer the majority of them to the Appendix.

In addition, we assume the conditions of Proposition 2.1 to be fulfilled for the
rest of this paper without further mentioning.

We first introduce the regeneration times in direction e1. Setting τ0 := 0, we
define the first regeneration time τ1 as the first time Xn ·e1 obtains a new maximum
and never falls below that maximum again, that is,

τ1 := inf
{
n ∈N : sup

0≤k≤n−1
Xk · e1 < Xn · e1 and inf

k≥n
Xk · e1 ≥Xn · e1

}
.

Now define recursively in n the (n+ 1)st regeneration time τn+1 as the first time
after τn that Xn · l obtains a new maximum and never goes below that maximum
again, that is, τn+1 := τ1(Xτn+·). For n ∈N, we define the radius of the nth regen-
eration as

X∗(n) := sup
τn−1≤k≤τn

‖Xk −Xτn−1‖1.

This notation gives rise to the following equivalent formulation of (T )γ proven
in [8], Corollary 1.5.

THEOREM 3.1. Let γ ∈ (0,1) and l ∈ S
d−1. Then the following are equiva-

lent:

(i) Condition (T )γ |l is satisfied.
(ii) P0(limn→∞Xn · l =∞)= 1 and E0 exp{c(X∗(1))γ }<∞ for some c > 0.

REMARK 3.2. Note in particular that, similarly to Proposition 1.3 of Sznitman
and Zerner [10], condition (ii) implies E0 exp{c(X∗(n))γ }<∞ for any n≥ 2.

We will repeatedly use the above equivalence. Now for each natural k and N

we define the scales

Rk(N) := �exp{(log logN)k+1}�.
Note that for every natural n,N and k one has that

Rn
k (N) ∈ o(Rk+1(N)) and Rk(N) ∈ o(N).

Define for each natural N the sublattice

LN :=N2
Z×
⌊
R6(N)N

4

⌋
Z

d−1

of Z
d . Furthermore, for each N and x ∈ Z

d we define the blocks

P(0,N) := {y ∈ Z
d :−N2 < y · e1 < N2,‖π̃v̂⊥(y)‖∞ < R6(N)N}(3.4)
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and

P(x,N) := x +P(0,N)

as well as their middle thirds

P̃(0,N) := {y ∈ Z
d :−N2/3 < y · e1 < N2/3,‖π̃v̂⊥(y)‖∞ < R6(N)N/3}

and

P̃(x,N) := x + P̃(0,N).

Note that this construction ensures that for each x ∈ N2
Z × Z

d−1 there exists a
z ∈ LN such that x ∈ P̃(z,N). Furthermore, define its right boundary part

∂+P(x,N) := {y ∈ ∂P(x,N) : (y − x) · e1 =N2}.
See Figure 4 for an illustration.

For N ≥ 1, define the event

AN(X) := {X∗(n) < R2(N) ∀n ∈ {1, . . . ,2N2}},
where at times we write AN instead of AN(X) if the corresponding process X

is clear from the context. Using Markov’s inequality, the following lemma is a
consequence of Theorem 3.1.

FIG. 4. The set P(x,N) and its right boundary part ∂+P(x,N) as well as its middle third
P̃(x,N).
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LEMMA 3.3. There exists a constant C > 0 such that for each N ≥ 1,

P0(A
c
N)≤ Ce−C−1R2(N)γ(3.5)

and, defining the event

AN :=
⋂

x∈P̃(0,N)

{
Px,ω(Ac

N)≤ e−R1(N)γ },
which is contained in the Borel-σ -algebra of �, one has

P(Ac
N)≤ Ce−C−1R2(N)γ .

We define the set of rapidly decreasing sequences as

S(N) :=
{
(an)n∈N ∈R

N : sup
n∈N

|nkan|<∞ ∀k ∈N

}
and note that due to Lemma 3.3 we have that N �→ P0(A

c
N) and N �→ P(Ac

N) are
contained in S(N).

3.3. Berger’s semi-local limit theorem and scaling. As a first step in the scal-
ing, we introduce a classification of blocks. We need to define some parameters
which will remain fixed throughout this paper. For β and α as in the assumptions
of Proposition 2.1, choose δ such that

0 < δ <
βd − α

12d
.

Furthermore, fix

ψ ∈
(

2δ,
20δ

9

)
(3.6)

and χ such that

0 < χ < (β − 6δ)/2∧ψ/4∧ 6/(d − 1).

From now on let L ∈N, define L1 := �Lψ	 and recursively in k the scales

Lk+1 := Lk�Lχ	.(3.7)

Define ι to be the smallest k such that L2
k > L1+δ . For k ∈ {1, . . . , ι} and x ∈

CL ∩LLk
, we call a block

P(x,Lk)(3.8)

good with respect to the environment ω if the following three properties are satis-
fied for ϑ := χ and all z ∈ P̃(x,Lk):

(i)

Pz,ω

(
T∂P(x,Lk) �= T∂+P(x,Lk)

)≤ e−R1(Lk)
γ

.(3.9)
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(ii) ∥∥Ez,ω

(
XT∂P (x,Lk)

|T∂P(x,Lk) = T∂+P(x,Lk)

)
(3.10)

−Ez

(
XT∂P (x,Lk)

|T∂P(x,Lk) = T∂+P(x,Lk)

)∥∥
1 ≤R4(Lk).

(iii)

max
Q

∣∣Pz,ω

(
XT∂P (x,Lk)

∈Q|T∂P(x,Lk) = T∂+P(x,Lk)

)
− Pz

(
XT∂P (x,Lk)

∈Q|T∂P(x,Lk) = T∂+P(x,Lk)

)∣∣(3.11)

< L
(ϑ−1)(d−1)−ϑ(d−1)/(d+1)
k ,

where the maximum in Q is taken over all (d − 1)-dimensional hypercubes Q⊂
∂+P(x,Lk) of side length �Lϑ

k �.
Otherwise, we say that the block P(x,Lk) is bad. For k ∈ {1, . . . , ι}we will usually
refer to boxes of the form P(x,Lk) as a box of scale k.

The following result is essentially Proposition 4.5 of [1], which can be under-
stood as a semi-local central limit theorem for RWRE. For the sake of complete-
ness, we will give its proof in the Appendix.

PROPOSITION 3.4 (Proposition 4.5 of [1]). Assume that (T )γ |l is satisfied
and fix ϑ ∈ (0, 6

d−1 ∧ 1). Then there exists a sequence of events (GL)L∈N ⊂ �

such that P(Gc· ) ∈ S(N) and for all ω ∈GL and k ∈ {1, . . . , ι}:
(i) display (3.9),

(ii) display (3.10) and
(iii) display (3.11)

are satisfied for all x ∈ CL ∩LLk
, z ∈ P̃(x,Lk) and the chosen ϑ .

In particular, due to the translation invariance of the environment, we have that
P(P(x, ·) is bad) ∈ S(N) for any x ∈ Z

d .

REMARK 3.5. For the sake of notational simplicity, we will prove the propo-
sition by showing that there exist sequences G

(i)
L , G

(ii)
L and G

(iii)
L , L ∈N, of subsets

of � such that

P
(
G

(i)
L

c)
, P

(
G

(ii)
L

c)
and P

(
G

(iii)
L

c)
are contained in S(N) as functions in L and such that for ω contained in these
sets, x = 0, and z ∈ P̃(0,L), displays (3.9), (3.10) and (3.11), respectively, are
fulfilled for L instead of Lk . The required result then follows by observing that
P is translation invariant and using |CL| ≤ CL2d in combination with a standard
union bound.
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We next give an upper bound on the probability that an environment has many
bad blocks. For this purpose, set

�L := {ω ∈� : |{x ∈ CL ∩LLk
: P(x,Lk)

(3.12)
is bad with respect to ω}| ≤ Lα+δ ∀k ∈ {1, . . . , ι}}.

Furthermore, observe that LL can be represented as the disjoint union of 2 · 8d−1

(translated) sublattices of Z
d such that for any sublattice L of these and z1, z2 ∈ L,

we have P(z1,L)∩P(z2,L)=∅.

LEMMA 3.6 (Lemma 5.1 of [1]). For L large enough,

P(�c
L)≤ e−Lα

.

PROOF. For k ∈ {1, . . . , ι}, set

JLk
(ω) := |{z ∈ CL ∩LLk

: P(z,Lk) is bad with respect to ω}|
and note that

P(�c
L)≤

ι∑
k=1

P(JLk
> Lα+δ).(3.13)

As in [1] we can write JLk
= J

(1)
Lk
+ · · · + J

(2·8d−1)
Lk

with J
(m)
Lk

distributed bi-

nomially with parameters D(Lk) and p(Lk) for m ∈ {1, . . . ,2 · 8d−1}. Here,
p(L) := P(P(0,L) is bad), that is, in particular, due to Proposition 3.4,

p ∈ S(N),(3.14)

and D(Lk) is the maximal number of intersection points any of the above-
mentioned translated sublattices has with CL, that is, in particular

D(Lk)≤CL2d(3.15)

for some constant C and all L. Now for m ∈ {1, . . . ,2 · 8d−1}, we have

P

(
J

(m)
Lk

>
Lα+δ

2 · 8d−1

)
≤ exp

{
− Lα+δ

2 · 8d−1

}
E exp
{
J

(m)
Lk

}
(3.16)

with

E exp
{
J

(m)
Lk

}≤ D(Lk)∑
j=0

(
D(Lk)

j

)
(ep(Lk))

j (1− ep(Lk)
)D(Lk)−j

(3.17)

×
(

1− p(Lk)

1− ep(Lk)

)D(Lk)−j

,
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and from (3.14) and (3.15) we conclude that

lim
L→∞

(
1− p(Lk)

1− ep(Lk)

)D(Lk)−j

= 1

uniformly in j ∈ {0, . . . ,D(Lk)}. Substituting this back into displays (3.17), (3.16)
and (3.13), we conclude the proof. �

We now need to recall the concept of closeness between two probability mea-
sures introduced in [1]. Here and in the following, if Z is a d-dimensional ran-
dom variable defined on a probability space with probability measure μ, we write
EμZ := ∫ Z dμ and if μ is a measure on R

d , then we write Eμ := ∫ x dμ,
whenever the integrals are well defined. Furthermore, we define its variance via
VarZ := E‖Z −EZ‖2

1 whenever this expression is well defined and correspond-
ingly for a probability measure μ on R

d with appropriate integrability conditions
we write Varμ.

DEFINITION 3.7. Let μ1 and μ2 be two probability measures on Z
d . Let λ ∈

[0,1) and K be a natural number. We say that μ2 is (λ,K)-close to μ1 if there
exists a coupling μ of three random variables Z1, Z2 and Z0 such that:

(a) μ ◦Z−1
j = μj for j ∈ {1,2},

(b) μ(Z1 �= Z0)≤ λ,
(c) μ(‖Z0 −Z2‖1 ≤K)= 1,
(d) EμZ1 =EμZ0,
(e)
∑

x ‖x −EμZ1‖2
1 · |μ(Z1 = x)−μ(Z0 = x)| ≤ λVarZ1.

REMARK 3.8. Assume given a random variable X that is distributed accord-
ing to some distribution which is (λ,K)-close to some other distribution. Then
the corresponding coupling which establishes this closeness can be defined on an
extension of the probability space X is defined on, with X playing the role of Z2.
We will therefore assume this property to be fulfilled from now on without further
mentioning when dealing with such couplings.

3.4. General auxiliary results. The following lemma is a sort of remedy for
the fact that (

π̃v̂⊥

(
n∑

j=1

(Xτj
−Xτj−1)

))
n∈{2,...,2L2}

with respect to P0(·|AL), due to the conditioning on AL, is not a martingale. To
state the result, set

v̂L := E0(Xτ2 −Xτ1)1AL

‖E0(Xτ2 −Xτ1)1AL
‖2

.(3.18)

We start with showing that for L large, v̂L hardly deviates from the asymptotic
direction v̂.
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LEMMA 3.9.

‖v̂ − v̂·‖2 ∈ S(N).

PROOF. Note that

‖v̂− v̂L‖2 =
∥∥∥∥ E0(Xτ2 −Xτ1)

‖E0(Xτ2 −Xτ2)‖2
− E0(Xτ2 −Xτ1,AL)

‖E0(Xτ2 −Xτ1,AL)‖2

∥∥∥∥
2

= ∥∥E0(Xτ2 −Xτ1)‖E0(Xτ2 −Xτ1,AL)‖2
(3.19)

−E0(Xτ2 −Xτ1,AL)‖E0(Xτ2 −Xτ1)‖2
∥∥

2

× (‖E0(Xτ2 −Xτ1)‖2‖E0(Xτ2 −Xτ1,AL)‖2
)−1

.

Inserting a productive 0, the numerator evaluates to∥∥E0(Xτ2 −Xτ1)‖E0(Xτ2 −Xτ1,AL)‖2 −E0(Xτ2 −Xτ1)‖E0(Xτ2 −Xτ1)‖2

+E0(Xτ2 −Xτ1)‖E0(Xτ2 −Xτ1)‖2 −E0(Xτ2 −Xτ1,AL)‖E0(Xτ2 −Xτ1)‖2
∥∥

2

≤ ‖E0(Xτ2 −Xτ1)‖2
∣∣‖E0(Xτ2 −Xτ1,AL)‖2 − ‖E0(Xτ2 −Xτ1)‖2

∣∣
+ ‖E0(Xτ2 −Xτ1,A

c
L)‖2‖E0(Xτ2 −Xτ1)‖2

≤ 2‖E0(Xτ2 −Xτ1)‖2‖E0(Xτ2 −Xτ1,A
c
L)‖2,

where the last inequality follows from the reverse triangle inequality. But Cauchy–
Schwarz’s inequality and Lemma 3.3 yield

‖E0(Xτ2 −Xτ1,A
c
L)‖2 ≤ E0(‖Xτ2 −Xτ1‖2,A

c
L)

≤ E0(‖Xτ2 −Xτ1‖2
2)

1/2P0(A
c
L)1/2

≤ Ce−C−1R2(L)γ /2,

whence (3.19) is contained in S(N) as a function in L. �

Therefore, (π̃v̂⊥(
∑n

j=1(Xτj
−Xτj−1)))n∈{2,...,2L2} is nearly a mean-zero martin-

gale with respect to P0(·|AL) and this is what we will exploit in the proof of the
next lemma.

LEMMA 3.10. For L and x ∈ P̃(0,L), define the event

Fx,L := {∃n ∈ {0, . . . , TL2} :‖π̃v̂⊥(Xn − x)‖∞ ≥R3(L)L

or (Xn − x) · e1 <−R2(L)
}
.

Then there exists a constant C > 0 such that for all L,

max
x∈P̃(0,L)

Px(Fx,L)≤ Ce−C−1R2(L)γ .



478 A. DREWITZ AND A. F. RAMÍREZ

In particular,

max
x∈P̃(0,L)

Px

(
XT∂P (0,L)

/∈ ∂+P(0,L)
)≤ Ce−C−1R2(L)γ .(3.20)

PROOF. Setting F ′x,L := {∃n ∈ {0, . . . , TL2} :‖π̃v̂⊥(Xn − x)‖∞ ≥ R3(L)L},
we have

Px(Fx,L)≤ Px(F
′
x,L,AL)+ Px(A

c
L).(3.21)

Note that (π̃v̂⊥L
(
∑n

j=1(Xτj
−Xτj−1)))n∈{2,...,2L2} is a (d − 1)-dimensional martin-

gale with respect to Px(·|AL). Furthermore, observe that due to Lemma 3.9, in
particular we have

sup
y∈P(0,L)

‖π̃v̂⊥L
(y)− π̃v̂⊥(y)‖∞ ≤R2(L)

for L large enough. Therefore, Azuma’s inequality applied to the coordinates
yields

Px(Fx,L,AL)

≤ Px

(∃n ∈ {τ1, . . . , τ2L2} :‖π̃v̂⊥(Xn −Xτ1)‖∞ ≥R3(L)L− 2R2(L)|AL

)
≤ Px

(∃n ∈ {τ1, . . . , τ2L2} :‖π̃v̂⊥L
(Xn −Xτ1)‖∞ ≥R3(L)L− 3R2(L)|AL

)
≤ Px

(∃n ∈ {1, . . . ,2L2} :‖π̃v̂⊥L
(Xτn −Xτ1)‖∞ ≥R3(L)L− 4R2(L)|AL

)

≤ 2(d − 1)

2L2∑
j=1

exp
{
−(R3(L)L/2)2

2jR2(L)2

}

≤ 4(d − 1)L2 exp
{
−(R3(L)L/2)2

4L2R2(L)2

}
≤ exp{−R3(L)}

for L large enough. In particular, in combination with (3.21) and (3.5) this reason-
ing finishes the proof of the first part. Equality (3.20) is an immediate consequence.

�

The following lemma, which we will prove in Section A.6 (see page 533), pro-
vides lower bounds on certain exit probabilities.

LEMMA 3.11. Let C′ be a positive constant. Then there exists a positive con-
stant c such that for all L large enough, and all x ∈ P̃(0,L), y ∈ ∂+P(0,L) with
‖π̃v̂⊥(y − x)‖1 < C′L, we have

Px(XT∂P (0,L)
= y)≥ cL1−d .
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Let now x ∈ LL and z ∈ P̃(x,L). Then, following [1], for ω ∈ � we de-
fine μL

z,x,ω to be the distribution of XT∂P (x,L)
with respect to Pz,ω(·|T∂P(x,L) =

T∂+P(x,L)). Similarly, we define μL
z,x to be the distribution of XT∂P (x,L)

with re-
spect to Pz(·|T∂P(x,L) = T∂+P(x,L)).

We now get the following bounds for VarμL
x,0

, which will turn out to be useful

in the proof of Corollary 3.13 below.

LEMMA 3.12. There exists a constant C such that for all x ∈ P̃(0,L) and
all L,

C−1L2 ≤VarμL
x,0
≤ CL2.

PROOF. The lower bound is a consequence of Lemma 3.11.
To prove the upper bound, note that Sn :=∑n

k=1 Xτk
−Xτk−1−E0(Xτk

−Xτk−1)

is a martingale in n with respect to P0. We define the stopping time

T := inf

{
n ∈N :

(
Sn +

n∑
k=1

E0(Xτk
−Xτk−1)

)
· e1 ≥ L2

}

and note that in particular (Sn∧T · ej )n∈N is a martingale for any j ∈ {2, . . . , d}.
The independence of the increments yields that so is(

(Sn∧T · ej )
2 − (E(Sm · ej )

2)
m=n∧T

)
n∈N

.

Since for n= 0 the martingale equals 0, we have, noting that

E(Sm · ej )
2 =

m∑
k=1

E
((

Xτk
−Xτk−1 −E0(Xτk

−Xτk−1)
) · ej

)2
as well as T ≤ L2, that

E(ST · ej )
2 ≤ CL2.

Taking into consideration Lemma 3.3 and Lemma 3.10, this implies the upper
bound. �

For x ∈ Z
d and k ∈ Z, we will use the

Hk := {x ∈ Z
d :x · e1 = k}(3.22)

from the following proof onward.
In [1], the author derived a result similar to the following corollary of Proposi-

tion 3.4.

COROLLARY 3.13. Fix ϑ ∈ (0,5/8] and let L be large enough. Furthermore,
let k ∈ {1, . . . , ι}, x ∈ CL ∩LLk

and ω ∈� such that (3.10) and (3.11) are fulfilled
for this choice of ϑ and all z ∈ P̃(x,Lk).

Then μ
Lk
z,x,ω is (L

−ϑ(d−1)/(2(d+1))
k ,2dLϑ

k )-close to μ
Lk
z,x .
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PROOF. For fixed k, x,ω and z as in the assumptions, we will show the de-
sired closeness for L large enough. Observing that this lower bound on L holds
uniformly in the admissible choices of k, x,ω and z then finishes the proof.

We will construct the coupling of Definition 3.7 in the case x = 0, the remaining
cases being handled in exactly the same manner. Cover ∂+P(0,L) by at most n=
�2R6(Lk)L

1−ϑ
k �d−1 disjoint cubes Q1,Q2, . . . ,Qn of side length �Lϑ

k �. Consider
an i.i.d. sequence (Yj )j∈N of random variables defined on a probability space with
probability measure P ∗ (the space should also be large enough to accommodate
the random variables we will define in the remaining part of this proof) such that

P ∗(Yj = x)= μ
Lk

z,0({x})
μ

Lk

z,0(Qj )
, x ∈Qj,

and P ∗(Yj = x)= 0 if x /∈Qj ; set

Y :=
n∑

j=1

Yj1{XT∂P (0,Lk)
∈Qj }

and

Pz,ω := Pz,ω

(·|T∂+P(0,Lk) = T∂P(0,Lk)

)⊗ P ∗.

Clearly, Pz,ω-a.s., ‖XT∂P(0,Lk)
− Y‖1 ≤ (d − 1)�Lϑ

k � and consequently we have

‖Ez,ωY −Ez,ωXT∂P (0,Lk)
‖1 < (d − 1)�Lϑ

k �.
Display (3.10) yields∥∥Ez,ωXT∂P (0,Lk)

−Ez

(
XT∂P(0,Lk)

|T∂+P(0,Lk) = T∂P(0,Lk)

)∥∥
1 ≤R4(Lk)

and thus ∥∥Ez,ωY −Ez

(
XT∂P(0,Lk)

|T∂+P(0,Lk) = T∂P(0,Lk)

)∥∥
1 < dLϑ

k

for L large enough. Let now U be an H0-valued random variable defined on the
same probability space as the sequence (Yj )j∈N (and choose U to be independent
of everything else) such that Pz,ω-a.s. we have ‖U‖1 ≤ dLϑ

k as well as

Ez,ωU =Ez

(
XT∂P(0,Lk)

|T∂+P(0,Lk) = T∂P(0,Lk)

)−Ez,ωY.

Define

Z0 := Y +U

and

Z2 :=XT∂P(0,Lk)
.
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Then taking Pz,ω as the μ of Definition 3.7, part (c) of that definition is fulfilled
for K = 2dLϑ

k and L large enough. To show the remaining parts, we first note that
for y ∈ Z

d we have

Pz,ω(Z0 = y)= ∑
u : ‖u‖1≤dLϑ

k

Pz,ω(U = u)Pz,ω(Y = y − u).

Since furthermore Pz,ω ◦ Y−1 is supported on ∂+P(0,Lk), we get∑
y∈Zd

|Pz,ω(Z0 = y)−μ
Lk

z,0(y)|

≤ 2
∑

u : ‖u‖1≤dLϑ
k

Pz,ω(U = u)(3.23)

× ∑
y : y−u∈∂+P(0,Lk)

|Pz,ω(Y = y − u)−μ
Lk

z,0(y)|.

By heat-kernel estimates to be proven later [cf. part (b) of Lemma A.2], for each
y ∈HL2

k
and every u such that ‖u‖1 ≤ dLϑ

k ,

|μLk

z,0(y − u)−μ
Lk

z,0(y)| ≤ CLϑ
k ·L−d

k = CLϑ−d
k .

In combination with (3.23) and the validity of (3.11), this yields∑
y∈Zd

|Pz,ω(Z0 = y)−μ
Lk

z,0(y)|

≤ 2
∑

y∈∂+P(0,Lk)

(|Pz,ω(Y = y)−μ
Lk

z,0(y)| +CLϑ−d
k

)

≤ 2

[(
n∑

j=1

|μLk

z,0,ω(Qj )−μ
Lk

z,0(Qj )|
)
+ (2R6(Lk))

d−1Ld−1
k ·CLϑ−d

k

]
(3.24)

≤ CR6(Lk)
d−1Lϑ−1

k + �2R6(Lk)L
1−ϑ
k �d−1 ·L(ϑ−1)(d−1)−ϑ(d−1)/(d+1)

k

≤ CR6(Lk)
d−1(Lϑ−1

k +L
−ϑ(d−1)/(d+1)
k

)≤R7(Lk)L
−ϑ(d−1)/(d+1)
k

< L
−ϑ(d−1)/(2(d+1))
k ,

L large enough; here, the second inequality is obtained by noting that the sign
of |Pz,ω(Y = y)− μ

Lk

0,z(y)| is constant as y varies over Qj for fixed j , while the
penultimate inequality takes advantage of ϑ ≤ 5/8 and d ≥ 4. Thus, due to (3.24),
there exists a random variable Z1 defined on the probability space with probability
measure Pz,ω such that Pz,ω ◦Z−1

1 = μz,0 and Pz,ω(Z1 �= Z0)≤ L
−ϑ(d−1)/(2(d+1))
k .

This establishes (a), (b) and (d) of Definition 3.7 for λ= L
−ϑ(d−1)/(2(d+1))
k .
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To see (e), observe that

Varx,ωZ1 =Varx
(
XT∂P (0,L)

|T∂P(0,L) = T∂+P(0,L)

)
.

Now note that the support of μ
Lk

0,z(·)− Pz,ω(Z0 = ·) is contained in

{y ∈HL2
k

:∃z ∈ ∂+P(0,Lk) such that ‖y − z‖1 ≤ dLϑ
k }.

Thus, for any y in the support of μ
Lk

z,0(·)− Pz,ω(Z0 = ·) we get as a consequence
of (b) in combination with the penultimate line of (3.24) that∑

x

∥∥x −Ez

(
XT∂P(0,Lk)

|T∂+P(0,Lk) = T∂P(0,Lk)

)∥∥2
1

× |Pz,ω(Z1 = x)− Pz,ω(Z0 = x)|
≤ 4d2(LkR

2
6(Lk))

2
∑
x

|μLk

z,0(x)− Pz,ω(Z0 = x)|

≤ 4d2R2
6(Lk)L

2
k ·R7(Lk)L

−ϑ(d−1)/(d+1)
k ,

where the last inequality holds for L large enough. In combination with Lem-
ma 3.12, we deduce that the right-hand side is bounded from above by λVarZ1 for
L large enough, which finishes the proof. �

3.5. Auxiliary walk. As a preparation to prove Proposition 2.1, for each envi-
ronment, we introduce a refinement (Yn) of the finite-time auxiliary random walk
defined in [1]. In blocks P(x,Lk) where the environment is such that the quenched
RWRE (Xn) behaves similarly to the annealed one, the quenched walk (Yn) will
behave quite like (Xn). In blocks where the quenched and annealed behavior of
(Xn) differ significantly, the quenched walk (Yn) will make up for this deviation
by corrections, in order to more or less mimick the annealed behavior of (Xn). As
a consequence, the quenched walk (Yn) starting in 0 will leave CL through ∂+CL

with a probability not too small, with respect to sufficiently many environments.
Note that its construction will depend on a couple of parameters and in particular
will be done for each L > 0 separately. For the sake of notational simplicity, we do
not explicitly name these dependencies in the notation (Yn). In order to facilitate
understanding for the reader familiar with [1], we stick to the notation of that paper
wherever appropriate.

On a heuristic level, the construction of the auxiliary walk (Yn) can be described
as follows. Let L and ω be given. In order to leave CL through ∂+CL, the walker
starts with performing a few deterministic steps in positive e1-direction.

Then, starting a recursive step, there is associated a natural scale k′ ∈ {1, . . . , ι}
to the current position of the walker (this scale is roughly given by the largest k ∈
{1, . . . , ι} for which L2

k divides the current e1-coordinate of the walker); the walker
then looks for good boxes of the form P(x,Lk), such that k ∈ {1, . . . , k′}, x ∈ LLk

and such that his current position is contained in P̃(x,Lk). We now distinguish
cases:
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• If such a box exists, then the walker picks the largest of these boxes and moves
according to a random walk in the corresponding environment, conditioned
on leaving this box through its right boundary part. If this box is of the form
P(x,Lk) for some k < k′, then before starting the recursion step from a posi-
tion with natural scale k′ again, the walker will perform a correction, making
up for having moved in boxes smaller than the ones corresponding to its natural
scale.

• If no such good box exists, the walker performs some deterministic steps in
positive e1-direction again and then returns to the start of the recursive step.

To formally construct our process, we need some auxiliary results. The follow-
ing lemma will be proved in Section A.6 (see page 523).

LEMMA 3.14. There exists a finite constant C such that for all L and x ∈
P̃(0,L), ∥∥∥∥EμL

x,0
− x − L2 − x · e1

v̂ · e1
v̂

∥∥∥∥
1
≤ CR2(L)

and ∥∥∥∥ExXT∂P (0,L)
− x − L2 − x · e1

v̂ · e1
v̂

∥∥∥∥
1
≤ CR2(L).(3.25)

In order to state further auxiliary results, for x ∈ Z
d such that x · e1 ∈ L2

kN,
define z(x, k) to be an element z ∈ LLk

such that x · e1 = z · e1 and x ∈ P̃(z,Lk).
Furthermore, for x such that x · e1 /∈ L2

kN set z(x, k) := 0. In addition, abbreviate
for j, k ∈N the hitting times

Tk(j) := inf{n ∈N :Yn · e1 = jL2
k}.

LEMMA 3.15. Let k ∈ {1, . . . , ι−1}, �0 ∈H0∩ P̃(0,Lk+1) deterministic and
(�i)i∈{1,...,�Lχ 	2} be random variables. Set Sj :=∑j

i=0 �i and assume furthermore
that for every i, conditioned on �1, . . . ,�i−1, the variable �i takes values in
∂+P(z(Si−1, k),Lk)− z(Si−1, k) only, with

‖E(�i |�1, . . . ,�i−1)− (E
μ

Lk
Si−1,z(Si−1,k)

− Si−1)‖1 ≤R4(Lk)(3.26)

a.s. Then for L large enough and t ≥R5(Lk)Lk+1,

P
(∃j ∈ {1, . . . , �Lχ	2} :‖π̃v̂⊥(Sj −�0)‖∞ ≥ t

)
(3.27)

≤ 2(d − 1)�Lχ	2 exp
{
− t2

72L2
k+1R6(Lk)2

}
.
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PROOF. Noting that π̃v̂⊥(λv̂)= 0 for all λ ∈R, the triangle inequality yields

‖π̃v̂⊥(Sj −�0)‖∞ ≤
∥∥Z(1)

j

∥∥∞+∥∥Z(2)
j

∥∥∞ + ∥∥Z(3)
j

∥∥∞,(3.28)

where

Z
(1)
j :=

j∑
i=1

π̃v̂⊥
(
�i −E(�i |�1, . . . ,�i−1)

)
, j ∈ {1, . . . , �Lχ	2},

Z
(1)
0 := 0,

Z
(2)
j :=

j∑
i=1

π̃v̂⊥
(
E(�i |�1, . . . ,�i−1)− (E

μ
Lk
Si−1,z(Si−1,k)

− Si−1)
)

and

Z
(3)
j :=

j∑
i=1

π̃v̂⊥
(
(E

μ
Lk
Si−1,z(Si−1,k)

− Si−1)− L2
k

v̂ · e1
v̂

)
.

Due to (3.26), a.s. ∥∥Z(2)
j

∥∥∞ ≤ jR4(Lk),(3.29)

while Lemma 3.14 results in ∥∥Z(3)
j

∥∥∞ ≤ CjR2(Lk).(3.30)

Using (3.28) to (3.30) and because of t ≥ R5(Lk)Lk+1, for L large enough the
probability in (3.27) can be bounded from above by

P
(∃j ∈ {1, . . . , �Lχ	2} :

∥∥π̃v̂⊥
(
Z

(1)
j

)∥∥∞ ≥ t/3
)
.

Now with respect to P , the sequence (π̃v̂⊥(Z
(1)
j ))j∈{0,...,�Lχ 	2} is a (d − 1)-

dimensional mean zero martingale such that ‖π̃v̂⊥(Z
(1)
j+1) − π̃v̂⊥(Z

(1)
j )‖∞ ≤

2LkR6(Lk) for all j ∈ {0, . . . , �Lχ	2}. Thus, Azuma’s inequality yields

P
(∃j ∈ {1, . . . , �Lχ	2} :

∥∥π̃v̂⊥
(
Z

(1)
j

)∥∥∞ ≥ t/3
)

≤ 2(d − 1)�Lχ	2 exp
{
− t2

72�Lχ	2(LkR6(Lk))2

}

= 2(d − 1)�Lχ	2 exp
{
− t2

72L2
k+1R6(Lk)2

}
.

�

We now introduce some quantities that will play an important role in the re-
maining part of this paper. For k ≥ 2, let

λk :=R9+k(L)L
−ϑ(d−1)/(2(d+1))
1
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FIG. 5. The set P1(x,L) contained in P(x,L).

and

Kk := 4�Lχ	2
d�Lϑ

k−1�,
where ϑ := χ as in the definition of good blocks. Furthermore, define the boxes

P1(0,L) := {y ∈ P(0,L) :‖π̃v̂⊥(y)‖∞ ≤R6(L)L/2}
and

P1(x,L) := x +P1(0,L)

as well as its right boundary part

∂+P1(x,L) := {y ∈ ∂P1(x,L) : (y − x) · e1 = L2};
cf. Figure 5.

From now on, we will occasionally emphasize the process to which a certain
random time refers by writing it as a superscript to the corresponding random time
(as, e.g., T S

∂+P1(0,Lk+1)
in the following lemma).

LEMMA 3.16. Consider S�Lχ 	2 of Lemma 3.15 and assume that the distrib-

ution P ◦ S−1
�Lχ 	2 of S�Lχ 	2 with respect to P is (2kλk+1,2kKk+1)-close to μ

Lk+1
x,0

for some x ∈ P̃(0,Lk+1). Then for L large enough, the distribution of S�Lχ 	2 with

respect to P(·|T S
∂+P1(0,Lk+1)

= T S
∂P1(0,Lk+1)

) is ((2k+1)λk+1, (2k+1)Kk+1)-close

to μ
Lk+1
x,0 for all admissible choices of �0, k and x.
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PROOF. Let μ be the coupling of Z0,Z1 and Z2 as in the definition of
(2kλk+1,2kKk+1)-closeness, that is, such that:

(a) μ ◦Z−1
1 = μ

Lk+1
x,0 and μ ◦Z−1

2 = P ◦ S−1
�Lχ 	2 ,

(b) μ(Z1 �= Z0)≤ 2kλk+1,
(c) μ(‖Z0 −Z2‖1 ≤ 2kKk+1)= 1,
(d) EμZ1 =EμZ0,
(e)
∑

x ‖x −EμZ1‖2
1 · |μ(Z1 = x)−μ(Z0 = x)| ≤ 2kλk+1 VarZ1.

Then we look for Z′0,Z′1 and Z′2 such that:

(a′) μ ◦ Z′1
−1 = μ

Lk+1
x,0 and μ ◦ Z′2

−1 = P(·|T S
∂+P1(0,Lk+1)

= T S
∂P1(0,Lk+1)

) ◦
S−1
�Lχ 	2 ,

(b′) μ(Z′1 �= Z′0)≤ (2k + 1)λk+1,
(c′) μ(‖Z′0 −Z′2‖1 ≤ (2k + 1)Kk+1)= 1,
(d′) EμZ′1 =EμZ′0,
(e′) ∑x ‖x −EμZ′1‖2

1 · |μ(Z′1 = x)−μ(Z′0 = x)| ≤ (2k + 1)λk+1 VarZ′1.

For this purpose and due to Remark 3.8, we can assume

Z2 = S�Lχ 	2

without loss of generality. Set

Z′1 := Z1

and

Z′2 := Z21T S
∂+P1(0,Lk+1)

=T S
∂P1(0,Lk+1)

+Z∗21T S
∂+P1(0,Lk+1)

�=T S
∂P1(0,Lk+1)

,

where Z∗2 is independent of the remaining random variables and distributed as
S�Lχ 	2 with respect to

P
(·|T S

∂+P1(0,Lk+1)
= T S

∂P1(0,Lk+1)

)
.

Furthermore, set

Z∗0 := Z01T S
∂+P1(0,Lk+1)

=T S
∂P1(0,Lk+1)

+Z′21T S
∂+P1(0,Lk+1)

�=T S
∂P1(0,Lk+1)

.

Now as EZ′1 =EZ0 and since due to Lemma 3.15 we have that

max
�0

P
(
T S

∂+P1(0,Lk+1)
�= T S

∂P1(0,Lk+1)

)
is contained in S(N) as a function in L (where the maximum is taken over all
admissible choices of �0; see the assumptions of Lemma 3.15), it follows that
‖EZ∗0−EZ′1‖1 is contained in S(N) as a function in L. Thus, there exists a random
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variable U taking values in H0 such that P(‖U‖1 ≤ Kk+1) = 1, P (U �= 0) is
contained in S(N) as a function of L, and such that EZ∗0 +EU =EZ′1. Set

Z′0 := Z∗0 +U.

Then (a′), (c′) and (d′) are fulfilled. Furthermore,

P(Z′0 �= Z′1)≤ 2kλk+1 + P
(
T S

∂+P1(0,Lk+1)
�= T S

∂P1(0,Lk+1)

)+ P(U �= 0)

≤ (2k+ 1)λk+1

for L large enough, which establishes (b′). With respect to the variance bound we
obtain∑

y

‖y −E
μ

Lk+1
x,0

‖2
1 · |μLk+1

x,0 (y)− P(Z′0 = y)|

=∑
y

‖y −E
μ

Lk+1
x,0

‖2
1

× |μLk+1
x,0 (y)− P(Z01T S

∂+P1(0,Lk+1)
=T S

∂P1(0,Lk+1)

+Z′21T S
∂+P1(0,Lk+1)

�=T S
∂P1(0,Lk+1)

+U = y)|

≤ (3dLk+1R6(Lk+1))
2(P (T S

∂+P1(0,Lk+1)
�= T S

∂P1(0,Lk+1)

)+ P(U �= 0)
)

+∑
y

‖y −E
μ

Lk+1
x,0

‖2
1 · |μLk+1

x,0 (y)− P(Z0 = y)|

≤ (2k + 1)λk+1 Var
μ

Lk+1
x,0

for L large enough. Since the above computations are uniform in the admissible
choices of �0, k and x, the result follows. �

LEMMA 3.17. Let k ∈ {1, . . . , ι} and x ∈ P̃(0,Lk) ∩H0. Furthermore, let a
distribution ν be given which is supported on ∂+P(0,Lk) and ((2k − 1)λk, (2k −
1)Kk)-close to μ

Lk

x,0. Then for L large enough, ν(· + x) is (2kλk,2kKk)-close to

μ
Lk

0,0 for all admissible choices of k and x.

PROOF. If ν is ((2k−1)λk, (2k−1)Kk)-close to μ
Lk

x,0, then there exist Z0, Z1
and Z2 fulfilling the requirements of Definition 3.7, where we denote the coupling
measure by P .

We set Z′2 := Z2 − x and will construct Z′0 and Z′1 such that the correspond-
ing points of Definition 3.7 are satisfied. First of all, note that (as a consequence
of Lemma 3.10 and a decomposition into regenerations) there exist random vari-
ables Z∗1 and V taking values in ∂+P(0,Lk) and {0,1}, respectively, and such that
P(V = 0) ∈ S(N) as a function in L and

Z′1 := (Z1 − x)1Z0∈∂+P1(x,Lk),V=1 +Z∗11{Z0 /∈∂+P1(x,Lk)}∪{V=0}
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is distributed according to μ
Lk

0,0. Let furthermore

Z∗0 := (Z0 − x)1Z0∈∂+P1(x,Lk) +Z′21Z0 /∈∂+P1(x,Lk).

As a consequence, there exists an H0-valued random variable independent from
everything else such that P(‖U‖1 ≤Kk)= 1, P(U �= 0) is contained in S(N) as a
function in L, and E(Z∗0 +U)=EZ′1. Set

Z′0 := Z∗0 +U.

Then, since P(Z0 �= Z1)≤ (2k − 1)λk by assumption, we get

P(Z′0 �= Z′1)≤ P(Z0 �= Z1)+ P
(
Z0 /∈ ∂+P1(x,Lk)

)+ P(U �= 0)+ P(V = 0)

≤ 2kλk

for L large enough. Furthermore, P(‖Z′0 − Z′2‖1 ≤ 2kKk) = 1. To check the re-
maining variance condition, note that∑

y

‖y −E
μ

Lk
0,0
‖2

1 · |P(Z′1 = y)− P(Z′0 = y)|

=∑
y

‖y −E
μ

Lk
0,0
‖2

1

× (∣∣P ((Z1 − x)1Z0∈∂+P1(x,Lk),V=1 +Z∗11{Z0 /∈∂+P1(x,Lk)}∪{V=0} = y
)

− P
(
(Z0 − x)1Z0∈∂+P1(x,Lk) +Z′21Z0 /∈∂+P1(x,Lk) +U = y

)∣∣)
≤ (dLkR6(Lk))

2(P (Z0 /∈ ∂+P1(x,Lk)
)+ P(U �= 0)+ P(V = 0)

)
+∑

y

‖y −E
μ

Lk
x,0
‖2

1 · |μLk

x,0(y)− P(Z0 = y)|

≤ 2kλk Var
μ

Lk
0,0

for L large enough, where to obtain the last inequality we employed the ((2k −
1)λk, (2k− 1)Kk)-closeness of ν to μ

Lk

x,0 as well as Lemma 3.12. Again, since the
above computations are uniform in the admissible choices of k and x, this yields
the result. �

In order to construct the auxiliary walk, we need the following result which
guarantees that if boxes on a certain scale are left in some way close to the an-
nealed distribution conditioned on leaving through the right boundary part of the
boundary, then the same applies to the containing box on the larger scale as well.
Essentially, this is Lemma 4.16 of [1].

LEMMA 3.18. Let λ ∈ (0,1), L be large enough and n ∈N such that n≤ λL.
Furthermore, let (�i)

n
i=1 be random variables such that for every i, the variable
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�i takes values in ∂+P(0,L) only, and, conditioned on �1, . . . ,�i−1, the distrib-
ution of �i is (λ,K)-close to μL

0,0. In addition, assume R3(L)≤K ≤ L.
Then for Sn := ∑n

i=1 �i , the distribution of Sn is (R9(L)λ,4nK)-close to

μ
√

nL

0,0 .

The proof of this crucial lemma can be found from page 527 onward.
Now we rigorously construct the auxiliary walk (Yn) in environment ω start-

ing in 0, and denote the corresponding probability measure by P0,ω also. For
k ∈ {1, . . . , ι− 1} we recursively define

Mk as the smallest integer larger than or equal to
(3.31)

Lβ−6δ +L2χ such that L2
k+1 divides

k∑
j=1

MjL
2
j .

Note that Lk+1 = Lk�Lχ	 implies that Mk ≤ �Lβ−6δ�+2�L2χ�, and that for every
k ∈ {2, . . . , ι}, from x · e1 −∑k−1

j=1 MjL
2
j ∈ L2

kN0 we can infer that x · e1 ∈ L2
kN.

Define P (k)(x) := P(z(x, k),Lk),

k(x) :=max

{
k ∈ {1, . . . , ι} :x · e1 −

k−1∑
j=1

MjL
2
j ∈L2

kN0

(3.32)

and P (k)(x) is good

}

and

k′(x) :=max

{
k ∈ {1, . . . , ι} :x · e1 −

k−1∑
j=1

MjL
2
j ∈ L2

kN

}
(3.33)

with the maximum of the empty set defined to be 0. We now define the auxiliary
random walk (Yn) and a corresponding sequence of stopping times (ζn) recur-
sively. For z ∈ ∂+P(0,L1) chosen according to μL

0,0, fix Y0, . . . , Yl1 to be an arbi-
trary nearest-neighbor path (independent of ω) of shortest length connecting 0 with
z such that {Y0, . . . , Yl1−1} ⊂ P(0,L1). Furthermore, set ζ1 := ζ ′1 := T Y

∂+P(0,L1)
=

l1. Next, we define the recursive step of the construction.

(R) Assume that the walk is defined up to time ζ ′n and set x := Yζ ′n .
• If k(x) > 0, then choose Yζ ′n+· according to the law of X· with respect to

Px,ω

(·|T∂P (k(x))(x) = T∂+P (k(x))(x)

)
,

up to time ζ ′n + ln, where

ln := T
Yζ ′n+·
∂P (k(x))(x)

.
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• Otherwise, if k(x) = 0, then similarly to the start of the construction, we
choose

{Yζ ′n, . . . , Yζ ′n+ln}
to be a nearest-neighbor path of shortest length connecting x with z, where
z is chosen according to μ

L1
x,z(x,1) and such that this path leaves P (1)(x) in

its last step only.
In both cases, set ζn+1 := ζ ′n + ln. If Yζn+1 · e1 > L1+δ , then we stop the con-
struction of Y .

If 1 ∨ k(x) = k′(Yζn+1), then set Yζn+1+1 := Yζn+1 + e1, Yζn+1+2 := Yζn as
well as ζ ′n+1 := ζn+1 + 2 and repeat step (R).

Otherwise, if 1∨ k(x) < k′(Yζn+1), given ζ1, . . . , ζn+1 and (Yi)i∈{0,...,ζn+1},
define for each k ∈ {(1∨ k(x))+ 1, . . . , k′(Yζn+1)} the number j (k) := Yζn+1 ·
e1/L

2
k . Furthermore, define for j, k ∈ N the stopping time T ′k(j) equal to ζ ′m

if there exists m≤ n+ 1 such that ζm = Tk(j), and equal to Tk(j) otherwise.
Now for k ∈ {(1∨ k(x))+ 1, . . . , k′(Yζn+1)} with increasing order we itera-

tively perform the following step, where ζ
(1∨k(x))
n+1 := ζn+1:

(B) Conditioned on YT ′k(j (k)−1), by construction (and as a consequence of
Corollary 3.13 and Lemma 3.18), the distribution of the variable

Y
ζ

(k−1)
n+1

− z
(
YT ′k(j (k)−1), k

)
is (2(k − 1)λk,2(k − 1)Kk)-close to

μ
Lk

YT ′
k
(j (k)−1)−z(YT ′

k
(j (k)−1),k),0.

We now condition the variable

Y
ζ

(k−1)
n+1

− z
(
YT ′k(j (k)−1), k

)
on the event

Dk := {T YT ′
k
(j (k)−1)+·

∂+P1(z(YT ′
k
(j (k)−1),k),Lk)

= T
YT ′

k
(j (k)−1)+·

∂P1(z(YT ′
k
(j (k)−1),k),Lk)

}
.(3.34)

In combination with Lemma 3.16 we may infer that for L large enough,
the distribution of this conditioned random variable still is ((2k −
1)λk, (2k− 1)Kk)-close to

μ
Lk

YT ′
k
(j (k)−1)−z(YT ′

k
(j (k)−1),k),0.

Thus, Lemma 3.17 implies that

the distribution of the variable Y
ζ

(k−1)
n+1

− YT ′k(j (k)−1)

(3.35)
is (2kλk,2kKk)-close to μ

Lk

0,0.
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Set ζ
(k)
n+1 := ζ

(k−1)
n+1 + ‖βk,j (k)‖1, where the βk,j (k) defined below take

values in H0 and play a correcting role. Furthermore, let Y
ζ

(k−1)
n+1

, . . . , Y
ζ

(k)
n+1

be a nearest-neighbor path of shortest length from Y
ζ

(k−1)
n+1

to Y
ζ

(k−1)
n+1

+
βk,j (k). Note that from the conditioning in (3.34) in combination with
Remark 3.19 below, we may infer that Y

ζ
(k)
n+1
− YT ′k(j (k)−1) takes values

in ∂+P (k)(0) only. If k < k′(Yζn+1), then repeat step (B) for k + 1; if
k = k′(Yζn+1), continue below.

Set Y
ζ

(k)
n+1+1

:= Y
ζ

(k)
n+1
+ e1 as well as Y

ζ
(k)
n+1+2

:= Y
ζ

(k)
n+1

and ζ ′n+1 := ζ
(k)
n+1 + 2.

Now we continue the construction at the recursion step (R).

It remains to define the variables βk,j . Set β1,j = 0 for all j . For any n ∈ N,
we will define those βk,j , k ∈ {2, . . . , ι}, for which Yζn ∈ HjL2

k
, using only the

environment ω, the auxiliary walk Y up to time ζn as well as the values of
{β

k̂,ĵ
: k̂ ∈ {2, . . . , k − 1} and ĵL2

k̂
= jL2

k}. We define βk,j to be 0 in the follow-
ing cases:

• If there is no n ∈N such that ζn = Tk(j − 1), then βk,j = 0.
• Otherwise, let n be such that ζn = Tk(j −1). If P (k)(Yζ ′n) is good, then βk,j = 0.

Thus, assume now that ζn = Tk(j − 1) such that P (k)(Yζ ′n) is bad. Let x := Yζ ′n
and let μ

k,j,Y
x,ω be the distribution of the variable Y

ζ
(k−1)
n+1

− x, which due to (3.35)

is (2kλk,2kKk)-close to μ
Lk

0,0. Thus, we find (Z0,Z1,Z2) defined on the same
probability space as (Yn) (which without loss of generality is assumed to be large
enough) such that Z2 equals Y

ζ
(k−1)
n+1

− x (cf. Remark 3.8), such that Z1 ∼ μ
Lk

0,0,

and such that furthermore the requirements of (2kλk,2kKk)-closeness (cf. Defini-
tion 3.7) are satisfied. Now define

βk,j := Z0 −Z2,(3.36)

and note that βk,j ∈H0 a.s. This completes the definition of βk,j .
The deterministic corrections caused by the variables βk,j are not too big, that

is, not too expensive in terms of probability. This is made precise in the following
remark.

REMARK 3.19. By construction of (Yn), for every k ∈ {2, . . . , ι} and j ∈ N

such that βk,j has been defined above, with probability 1,

βk,j < 2ιKι ≤ L4χ

for L large.

REMARK 3.20. Observe that by construction we infer that T Y
∂CL

= T Y
∂+CL

a.s.,
with CL denoting the set of Proposition 2.1.
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3.6. Random direction event. As in [1], we will introduce a so-called random
direction event in order to ensure that, in most environments, the walker does not
hit too many bad boxes. For this purpose, for k ∈ {1, . . . , ι} set

Bk :=
∑k−1

j=1 MjL
2
j

L2
k

.(3.37)

For w ∈ [−1,1]d−1, k ∈ {2, . . . , ι} and j ∈ {Bk + 1, . . . ,Mk}, define

W
(w)
k (j) := {∥∥YT ′k(j) − YT ′k(Bk)

− (j −Bk)
(
E

μ
Lk
0,0
−Lk(0,w)

)∥∥∞ < Lk

}
,

where in a slight abuse of notation we write Lk(0,w) to denote the vector
(0,Lkw1, . . . ,Lkwd−1) ∈R

d . Furthermore, define

W
(w)
k :=

Bk+Mk⋂
j=Bk+1

W
(w)
k (j)

as well as the random direction event

W(w) :=
ι⋂

k=1

W
(w)
k .

To obtain a lower bound for the probability of this event, we have to establish some
auxiliary results first.

CLAIM 3.21. For all L large enough and all k ∈ {1, . . . , ι}, j ∈ {Bk +
1, . . . ,Bk +Mk} and ω ∈ �, one has that P0,ω(·|Y1, . . . , YT ′k(j−1))-a.s. the dis-

tribution of YT ′k(j) − YT ′k(j−1) is (2kλk,2kKk)-close to μ
Lk

0,0.

PROOF. Similarly to Lemma 6.6 of [1], this result is a consequence of the con-
struction of the auxiliary walk. In fact, if P (k)(YT ′k(j−1)) is good, then the statement
follows from the first part of step (R) in the construction of the auxiliary walk in
combination with Corollary 3.13.

Otherwise, if P (k)(YT ′k(j−1)) is bad, it follows from step (B) of that construction.
�

We now get the following corollary.

COROLLARY 3.22 (Corollary 6.7 of [1]). There exists a constant ρ > 0 such
that for all L large enough, ω ∈�, all k, j as in Claim 3.21, Y := YT ′k(j−1)+E

μ
Lk
0,0

,

and for all x ∈HjL2
k

such that ‖Y − x‖1 < 4Lk , one has

P0,ω

(∥∥YT ′k(j) − x
∥∥

1 < Lk|Y1, . . . , YT ′k(j−1)

)
> ρ.(3.38)
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PROOF. This follows from Claim 3.21 in combination with Lemmas 3.14
and 3.11. �

LEMMA 3.23 (Lemma 7.1 of [1]). There exists ρ > 0 such that for all L large
enough, ω ∈�, all w ∈ [−1,1]d−1, as well as k, j as in Claim 3.21, one has

P0,ω

(
W

(w)
k (j)|W(w)

1 , . . . ,W
(w)
k−1,W

(w)
k (Bk + 1), . . . ,W

(w)
k (j − 1)

)
> ρ

[with W
(w)
k (Bk) :=�].

PROOF. On the event

W
(w)
1 ∩ · · · ∩W

(w)
k−1 ∩W

(w)
k (Bk + 1)∩ · · · ∩W

(w)
k (j − 1)

one has ∥∥YT ′k(j−1) − YT ′k(Bk)
− (j − 1−Bk)

(
E

μ
Lk
0,0
−Lk(0,w)

)∥∥∞ < Lk

and thus ∥∥YT ′k(Bk)
+ (j −Bk)

(
E

μ
Lk
0,0
+Lk(0,w)

)
︸ ︷︷ ︸

=:x

−(YT ′k(j−1) +E
μ

Lk
0,0

)∥∥∞
< 2Lk.

Corollary 3.22 now yields the desired result. �

Departing from this result we obtain the desired lower bound on the probability
of the random direction event.

LEMMA 3.24. There exists a constant C > 0 such that for all L large enough
as well as all ω ∈� and w ∈ [−1,1]d−1,

P0,ω

(
W(w))≥ e−CLβ−6δ

.

PROOF. We compute

P0,ω

(
W(w))
=

ι∏
k=1

Bk+Mk∏
j=Bk+1

P0,ω

(
W

(w)
k (j)|W(w)

1 , . . . ,W
(w)
k−1,

W
(w)
k (Bk + 1), . . . ,W

(w)
k (j − 1)

)
≥ ρ
∑ι

k=1 Mk ≥ e−CLβ−6δ

for C > 0 large enough, where the first inequality is a consequence of Lemma 3.23
while the second follows from the bound Mk ≤ 2�Lβ−6δ� for L large enough; see
directly after (3.31). �
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We now want to bound from above the probability that the auxiliary walk hits
too many bad boxes. For this purpose, we start with the following auxiliary result.

LEMMA 3.25 (Lemma 7.4 of [1]). For all L large enough, ω ∈ �, k ∈
{1, . . . , ι− 1}, j ∈ {Bk+1�Lχ	2, . . . , �L1+δ/L2

k	} and z ∈ LLk
∩HjL2

k
one has∫

[−1,1]d−1
P0,ω

({
Yn :n ∈ {1, . . . , T Y

L1+δ }}∩P(z,Lk) �=∅|W(w))dw

(3.39)
≤ L(−β+6δ+2χ)(d−1).

PROOF. Choose k′ to be the number out of {k, . . . , ι− 1} such that Bk′L2
k′ ≤

jL2
k < Bk′+1L

2
k′+1. We start with noting that for fixed w ∈ [−1,1]d−1, with proba-

bility 1 with respect to P0(·|W(w)), the walk Y is located in a (d − 1)-dimensional
hypercube of side length

∑k′−1
j=1 Lj ≤ ιLk′−1 at time T ′k′(Bk′). Letting w vary over

[−1,1]d−1, the union of all appearing hypercubes covers a hypercube of side
length at least Mk′−1Lk′−1 ≥ �Lβ−6δ�Lk′−1.

Now let {y1, . . . , yr} ⊂ LLk′ be the set of all elements yj ∈ LLk′ such that
P(z,Lk) ∩ P(yj ,Lk′) �= ∅ for all j ∈ {1, . . . , r}, and note that, due to a reason-
ing similar to the observation just before Lemma 3.6, r is bounded from above by
3 · 15d−1.

From steps (R) and (B) in the construction of the auxiliary walk Y , it follows
that if there exists ζ ′n such that z(Yζ ′n, k

′) = yj , then Y leaves P(yj ,Lk′) through
∂+P(yj ,Lk′). Therefore, we conclude that

{{Yn :n ∈N} ∩P(z,Lk) �=∅
}⊂ r⋃

j=1

{{Yn :n ∈N} ∩ P(yj ,Lk′) �=∅
}
.

But due to the above reasoning, there exists a constant C such that the right-hand
side can have positive probability with respect to P0,ω(·|W(w)) only if w lies in a
certain (d − 1)-dimensional hypercube of side length

CR6(Lk′)Lk′

Lβ−6δLk′−1
≤ CL−β+6δ+3χ/2.

This establishes (3.39). �

Now adopt the notation

Dk,ω := {x ∈CL ∩LLk
:x · e1 ≥ BkL

2
k and P(x,Lk) is bad with respect to ω}

and

Bk,ω :=
∣∣{x ∈ Dk,ω :

{
Yn :n ∈ {1, . . . , T Y

L1+δ }}∩P(x,Lk) �=∅
}∣∣.(3.40)

We are interested in the distribution of the variable Bk,ω. Recall that �L has been
defined in (3.12).
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LEMMA 3.26 (Lemma 7.5 of [1]). For all L large enough and all k ∈
{1, . . . , ι− 1} as well as ω ∈�L,∫

[−1,1]d−1
E0,ω

(
Bk,ω|W(w))dw ≤ 15dLβ−6δ.

PROOF. With the same reasoning as in the proof of Lemma 3.25, steps (R)
and (B) of the construction of the auxiliary walk Y imply that P0(·|W(w))-a.s. we
have ∣∣{x ∈CL ∩LLk

:BkL
2
k ≤ x · e1 < Bk+1L

2
k+1,

P(x,Lk)∩ {Yn :n ∈ {1, . . . , T Y
L1+δ }} �=∅

}∣∣(3.41)

≤ 3 · 15d−1Mk ≤ (15d − 1)Lβ−6δ.

Now consider x ∈ Dk,ω with x · e1 ≥ Bk+1L
2
k+1. Then by Lemma 3.25,∫

[−1,1]d−1
P0,ω

({
Yn :n ∈ {1, . . . , T Y

L1+δ }}∩P(x,Lk) �=∅|W(w))dw

(3.42)
≤ L(−β+6δ+2χ)(d−1)

for L large enough. Therefore, (3.41) and (3.42) in combination with (3.12) yield∫
[−1,1]d−1

E0,ω

(
Bk,ω|W(w))dw ≤ (15d − 1)Lβ−6δ +L(−β+6δ+2χ)(d−1)Lα+δ

≤ 15dLβ−6δ,

due to our choice of δ. �

Because of the modifications in our construction of the auxiliary walk in com-
parison to the one in [1], we give here a modified result concerning the density of
the path measures of X with respect to Y .

LEMMA 3.27 (Lemma 6.5 of [1]). Let (vn) = (v1, . . . , vT v

L1+δ
) be a finite

nearest-neighbor path in Z
d starting in 0 such that T v

L1+δ = inf{n ∈ N :vn · e1 >

L1+δ}. Furthermore, for k ∈ {1, . . . , ι} and ω ∈�, let

Qk,ω(v) := ∣∣{z ∈ Dk,ω :
{
vn :n ∈ {1, . . . , T v

L1+δ }}∩P(z,Lk) �=∅
}∣∣

and set Qω(v) :=∑ι
k=1 Qk,ω(v).

Then for all L large enough and all ω ∈� we have

P0,ω(Xj = vj ∀j ∈ {1, . . . , T v
L1+δ })

P0,ω(Yj = vj ∀j ∈ {1, . . . , T v
L1+δ }) ≥

1

2
κ3Qω(v)ιL9ψ/4+4ιLβ−6δ

(3.43)

for all admissible choices of (vn).
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PROOF. Due to ellipticity, the numerator in (3.43) is positive; therefore, it is
sufficient to consider those trajectories (vn) only for which the probability in the
denominator is positive as well.

To any such (vn) and environment ω, there belong sequences (ζn) and (ζ ′n) as
in the definition of Y . In fact, set ζ0 := ζ ′0 := 0 and ζ1 := ζ ′1 := T v

∂P(0,L1)
. Given

ζ0, . . . , ζn and ζ ′0, . . . , ζ ′n−1, define xn := vζn , ζ ′n :=min{l > ζn :vl−1 · e1 > xn · e1}
(only if n > 1) as well as x′n := vζ ′n . For k(x′n) as in (3.32), if k(x′n) > 0, set ζn+1 :=
T v

∂+P (k)(x′n)
, otherwise set ζn+1 := T v

∂+P (1)(x′n)
.

Now to estimate the probability in the denominator from above, we only con-
sider the contributions coming from Y moving in good boxes in which it behaves
like the quenched walk X conditioned on leaving the box through its right bound-
ary part:

P0,ω(Yj = vj ∀j ∈ {1, . . . , T v
L1+δ })

≤ ∏
n : k(x′n)>0

Px′n,ω

(
Xl = vζ ′n+l

∀l ∈ {1, . . . , ζn+1 − ζ ′n}|T∂P (k(x′n))(x′n)
= T

∂+P (k(x′n))(x′n)

)
.

To obtain a lower bound for the numerator, as a consequence of the strong Markov
property we may decompose it into movements within the corresponding boxes as
follows:

P0,ω(Xj = vj ∀j ∈ {1, . . . , T v
L1+δ })

≥ ∏
n : k(vζ ′n)>0

Pvζ ′n ,ω

(
Xl = vζ ′n+l

∀l ∈ {1, . . . , ζn+1 − ζ ′n}|T
∂P

(k(v
ζ ′n ))

(vζ ′n)
= T

∂+P
(k(v

ζ ′n ))
(vζ ′n)

)
× ∏

n : k(vζ ′n)>0

Pvζ ′n ,ω

(
T

∂P
(k(v

ζ ′n ))
(vζ ′n )

= T
∂+P

(k(v
ζ ′n ))

(vζ ′n)

)

× (κιL3χ

)Qω(v)(2−ι)Qω(v)

× ∏
n : ζ ′n<T v

L1+δ

κ2κCL2ψ ∏
n : k(vζ ′n)=0

κCL2ψ

for L large enough as well as k(vζ ′n) and k′(vζ ′n) as defined in (3.32) and (3.33).
Here, the first and second product on the right-hand side come from X moving in
good boxes. The third and fourth factor on the right-hand side originate from the
corrections in the case of moving in bad boxes. In this case, Remark 3.19 tells us
that each of the correcting variables βk,j is bounded from above by L3χ . Since
each time such a correction occurs, the number of influencing correcting variables
βk,j is bounded from above by ι, we obtain the third factor. The fourth factor
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originates from the conditioning on Dk in (3.34), the probability of which can be
estimated using Lemma 3.15. The fifth factor follows from the fact that directly
before each time ζ ′n we force the walk to do one step in the direction of e1 and one
step back, while the last factor originates from the deterministic moves performed
within bad boxes of scale one. Consequently, we obtain

P0,ω(Xj = vj ∀j ∈ {1, . . . , T v
L1+δ })

P0,ω(Yj = vj ∀j ∈ {1, . . . , T v
L1+δ })

≥ ∏
n : k(x′n)>0

Px′n,ω

(
T

∂P (k(x′n))(x′n)
= T

∂+P (k(x′n))(x′n)

)(
κ3Qω(v)ιL3χ )

(3.44)

× ∏
n : ζ ′n<T v

L1+δ

κ2κCL2ψ ∏
n : k(vζ ′n)=0

κCL2ψ

for L large enough. Since k(vζ ′n) > 0 implies that P (k(vζ ′n))
(vζ ′n) is good, from (3.9)

we infer that the value of the first product on the right-hand side is bigger than 1/2
uniformly in all (vn) we consider, for all L large enough. Due to the construction
of the auxiliary walk Y , there are at most

∑ι
k=1 Mk ≤ 2ιLβ−6δ stopping times ζ ′n

such that ζ ′n < T v
L1+δ . Therefore, and due to the choice of δ and ψ , for L large

enough, the total expression on the right-hand side is bounded from below by
κ3Qω(v)ιL9ψ/4+4ιLβ−6δ

/2, which finishes the proof. �

3.7. Proof of Proposition 2.1. With Bk,ω as defined in (3.40) and for L large
enough, Lemma 3.26 yields

∫
[−1,1]d−1

E0,ω

(
ι∑

k=1

Bk,ω

∣∣W(w)

)
dw ≤ 15d ιLβ−6δ

for ω ∈�L. Hence, for such ω and L fixed, we can find w ∈ [−1,1]d−1 such that

E0,ω

(
ι∑

k=1

Bk,ω

∣∣W(w)

)
≤ 15d ιLβ−6δ.(3.45)

Fix such w and define

W :=
{

ι∑
k=1

Bk,ω ≤ 2 · 15d ιLβ−6δ

}
∩W(w).

Using (3.45), Markov’s inequality yields

P0,ω

({
ι∑

k=1

Bk,ω ≥ 2 · 15d ιLβ−6δ

}∣∣∣∣W(w)

)
≤ 1

2
,
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whence we obtain

P0,ω(W)= P0,ω

({
ι∑

k=1

Bk,ω ≤ 2 · 15d ιLβ−6δ

}∣∣∣∣W(w)

)
P0,ω

(
W(w))

(3.46)

≥ 1

2
P0,ω

(
W(w))≥ e−CLβ−6δ

for L large enough and where the last inequality follows from Lemma 3.24.
We now observe that there is a set VL,ω of paths such that W = {(Yn) ∈ VL,ω}

and in particular, for (vn) ∈ VL,ω we have Qω(v) ≤ 2 · 15d ιLβ−6δ. Thus, as a
consequence of (3.6) and Lemma 3.27,

P0,ω

(
(Xn) ∈ VL,ω

) ≥ e−Lβ−δ/2P0,ω

(
(Yn) ∈ VL,ω

)
(3.47)

= e−Lβ−δ/2P0,ω(W)≥ e−Lβ−δ

for L large enough, where the first inequality follows from the fact that ω ∈�L in
combination with Lemma 3.27 and our choices of δ and ψ , while the last estimate
follows from (3.46). Due to Remark 3.20, we may and do choose VL,ω in such a
way that it only contain paths that start in 0 and leave CL through ∂+CL. We take
the required family of events in Proposition 2.1 as L := �L, and observe that
from (3.47) and Lemma 3.6 we can infer that L has the desired properties.

APPENDIX: AUXILIARY RESULTS AND PROOF OF PROPOSITION 3.4

This section contains slight modifications of auxiliary results proven in [1] as
well as some further lemmas. With respect to results to which the first point ap-
plies, this section is very much based on [1].

In order to prove Proposition 3.4, we will proceed as outlined in Remark 3.5.

A.1. Proof of Proposition 3.4(i). Set

G
(i)
L :=
{
ω ∈� : max

z∈P̃(0,L)

Pz,ω

(
T∂P(0,L) �= T∂+P(0,L)

)≤ e−R1(L)γ
}
.

Then Markov’s inequality in combination with Lemma 3.10 yields

P
(
G

(i)
L

c)≤ eR1(L)γ
E max

z∈P̃(0,L)

Pz,ω

(
T∂P(0,L) �= T∂+P(0,L)

)
≤ eR1(L)γ

∑
z∈P̃(0,L)

Pz

(
T∂P(0,L) �= T∂+P(0,L)

)

≤ eR1(L)γ Ce−C−1R2(L)γ ≤ Ce−C−1R2(L)γ .

In combination with Remark 3.5, this finishes the proof.
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A.2. Auxiliary results for the proof of Proposition 3.4(ii) and (iii). We need
the following local CLT-type results.

CLAIM A.1. Let (Yi)i∈N be Z
d -valued, independent random variables with

finite (m+ 1)st moments for some m ≥ 3. Furthermore, assume that (Yi)i≥2 are
identically distributed and that there exists v ∈ Z

d such that P(Y2 = v) > 0 and
P(Y2 = v + ej ) > 0 for all j ∈ {1, . . . , d}. Let � denote the covariance matrix of
Y2 and Sn =∑n

i=1(Yi −EYi). Then there exists a constant C which is determined
by the distributions of Y1 and Y2 such that for all n ∈ N and all x, y and z ∈ Z

d

with ‖x − y‖1 = 1 and z− y = y − x:

(a)

P(Sn = x)≤ Cn−d/2,(A.1)

(b)

|P(Sn = x)− P(Sn = y)| ≤ Cn−(d+1)/2,(A.2)

(c)

|P(Sn = x)− 2P(Sn = y)+ P(Sn = z)| ≤ Cn−(d+2)/2.(A.3)

(d) In addition, for all w, x, y and z such that there exist i �= j with x − y =
w− z= ei and x −w = y − z= ej ,

|P(Sn = x)+ P(Sn = z)− P(Sn = y)− P(Sn =w)|< Cn−(d+2)/2.(A.4)

PROOF. Display (A.1) is essentially a consequence of the local limit theorem,
see, for example, Theorem 2.3.8 in Lawler and Limic [5]. Indeed, if EY2 ∈ Z

d ,
that source yields that for S′n :=

∑n+1
k=2(Yk − EYk) and � the covariance matrix

of Y2, there exists a constant C such that

|P(S′n = x)− pn(x)|
(A.5)

≤Cn−(d+1)/2((‖x‖m1 n−m/2 + 1)e−(xT �−1x)/(2n) + n−(m−2)/2)
for all n ∈N and x ∈ Z

d , where

pn(x) := 1

(2πn)d/2
√

det�
e−(xT �−1x)/(2n)

denotes the heat-kernel. Equality (A.5) in particular implies P(S′n = x)≤ Cn−d/2,
which entails (A.1). If EY2 /∈ Z

d , then as one may check by redoing the proof,
(A.5) holds true for all n ∈ N and x ∈ Z

d − nEY2, with P(S′n = x) replaced by
P(S′n = x + nEY2), which again implies (A.1).
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Now in order to prove (A.2), note that the triangle inequality yields

|P(Sn+1 = x)− P(Sn+1 = y)|
≤ max

z1,z2 : ‖z1−z2‖1=1
|P(S′n = z1)− P(S′n = z2)|

≤ max
z1,z2 : ‖z1−z2‖1=1

|P(S′n = z1)− pn(z1)| + |pn(z1)− pn(z2)|

+ |pn(z2)− P(S′n = z2)|.
Then (A.5) in combination with standard heat kernel estimates yields the desired
result.

In a similar manner, (A.3) and (A.4) can be deduced from Theorem 2.3.8 of [5],
which we will omit for the sake of conciseness. �

Using a decomposition according to regeneration times, the previous claim can
be employed to prove the following lemma.

LEMMA A.2. For L and x ∈ P̃(0,L), let νx,L denote either Px(XT
L2 ∈ ·),

Px(XT∂P (0,L)
∈ ·), μL

x,0 or Px(XT
L2 ∈ ·|(Xn − x) · e1 ≥ 0 ∀n ∈N).

(a) There exists a constant C such that for all L, x ∈ P̃(0,L) and y ∈HL2 ,

νx,L(y)≤ CL−d+1.(A.6)

(b) There exists a constant C such that for all L, x ∈ P̃(0,L), y ∈ HL2 and
j ∈ {2, . . . , d},

|νx,L(y)− νx,L(y ± ej )|< CL−d .

(c) There exists a constant C such that for all L and x, y ∈ P̃(0,L) with ‖x −
y‖1 as well as z ∈HL2 ,

|νx,L(z)− νy,L(z)|< CL−d .

(d) There exists a constant C such that for all L, x ∈ P̃(0,L) and w,y, z ∈HL2

such that ‖w− y‖1 = 1 and w− y = y − z,

|νx,L(w)− 2νx,L(y)+ νx,L(z)| ≤ CL−d−1.

(e) There exists a constant C such that for all L, x ∈ P̃(0,L) and v,w,y, z ∈
HL2 such that ‖v−w‖1 = 1, z− y =w− v and z−w = y − v,∣∣νx,L(z)− νx,L(y)− (νx,L(w)− νx,L(v)

)∣∣≤ CL−d−1.

PROOF. The fact that the particular choice among the first three possibilities
for νx,L is irrelevant, is a direct consequence of Lemma 3.10. With respect to the
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case that νx,L = Px(XT
L2 ∈ ·|(Xn − x) · e1 ≥ 0 ∀n ∈N), the desired result follows

analogously from what comes below in combination with Corollary 1.5 of [10].
We will give the proof for νx,L = Px(XT

L2 ∈ ·).
For k, l ∈ N we define the event B(l, k) := {Xτk

· e1 = l} as well as B(l) :=⋃l
k=1 B(l, k) and

B̂(l) := B(l)∩
L2−1⋂
j=l+1

Bc(j);

that is, for l < L2 and on B̂(l), one has that l is the e1-coordinate at which the last
renewal before reaching the e1-coordinate L2 occurs.

(a) We have

Px(XT
L2 = y)≤ Px(A

c
L)+

L2∑
l=L2−R2(L)

Fl(A.7)

with Fl := Px(XT
L2 = y, B̂(l)), and furthermore

Fl =
L2∑
k=0

∑
z∈Hl

Px

(
Xτk

= z,XT
L2 = y, B̂(l)

)

=
L2∑
k=0

∑
z∈Hl

Px(Xτk
= z)Px

(
XT

L2 = y, B̂(l)|Xτk
= z
)

(A.8)

= ∑
z∈Hl

Px

(
XT

L2 = y, B̂(l)|Xτ1 = z
) L2∑
k=0

Px(Xτk
= z).

In order to estimate the inner sum of (A.8), set m := E0(Xτ2 − Xτ1) and for l ∈
{L2 −R2(L), . . . ,L2} fixed, define l∗ := � l

m·e1
	. We now distinguish cases.

First, assume k ≥ l∗. Then {Xτk
·e1 = l} ⊂H 1∪H 2, where H 1 := {Xτ�k/2	 ·e1 ≤

l/2} and H 2 := {(Xτk
−Xτ�k/2	) · e1 ≤ l/2}. We get

Px(Xτk
= z,H 1)= ∑

y : y·e1≤l/2

Px(Xτk
= z|Xτ�k/2	 = y)Px(Xτ�k/2	 = y),

and uniformly in y and z we have Px(Xτk
= z|Xτ�k/2	 = y) ≤ Ck−d/2 due to the

independence of the renewals (cf. Corollary 1.5 in [10]) and (A.1). Now observe
that using standard estimates for centred random variables with finite 2dth mo-
ment [note that (Xτ2 −Xτ1) · e1 has finite 2dth moment as a consequence of the
assumption (T )γ ], there exists a constant C such that uniformly in k and L we
have

Px(Xτ�k/2	 · e1 ≤ l/2)≤ 1∧Ckd(k − l∗)−2d .(A.9)
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We therefore get

L2∑
k=l∗

Px(Xτk
= z,H 1)≤ Cl−d/2

(√
l∗ +

∞∑
j=1

(
l∗ + (j + 1)

√
l∗
)d(

j
√

l∗
)−2d

)

≤ Cl(−d+1)/2

and analogously for H 2, whence

L2∑
k=l∗

Px(Xτk
= z)≤ Cl(−d+1)/2.(A.10)

Now assume k < l∗. Then in the same manner as above we obtain
l∗∑

k=l∗/2

Px(Xτk
= z)≤ Cl(−d+1)/2(A.11)

and furthermore (A.9) supplies us with

l∗/2∑
k=0

Px(Xτk
= z)≤ C

l∗/2∑
k=0

kd(l∗ − k)−2d ≤ Cl−d+1.(A.12)

In order to deal with the outer sum of (A.8), note that for fixed l as well as y∗ ∈HL2

and z∗ ∈Hl we have∑
z∈Hl

Px

(
XT

L2 = y∗, B̂(l)|Xτ1 = z
)= ∑

y∈H
L2

Px

(
XT

L2 = y, B̂(l)|Xτ1 = z∗
)

(A.13)
= Px

(
B̂(l)|Xτ1 = z∗

)
.

Using (A.10) to (A.12) in combination with (A.8), we therefore deduce that for all
l ∈ {L2 −R2(L), . . . ,L2},

Fl ≤CPx(B̂(l))L−d+1.

Thus, in combination with (A.7) and Lemma 3.3 we get

Px(XT
L2 = y)≤ CL−d+1,

which finishes the proof.
(b) We have

|Px(XT
L2 = y)− Px(XT

L2 = y ± ej )| ≤ 2Px(A
c
L)+

L2∑
l=L2−R2(L)

Fl(A.14)

with B̂(l) as defined before and

Fl := Px

(
XT

L2 = y, B̂(l)
)− Px

(
XT

L2 = y ± ej , B̂(l)
)
.
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We compute

Fl =
L2∑
k=0

∑
z∈Hl

(
Px

(
Xτk

= z,XT
L2 = y, B̂(l)

)

− Px

(
Xτk

= z± ej ,XT
L2 = y ± ej , B̂(l)

))

=
L2∑
k=0

∑
z∈Hl

(
Px(Xτk

= z)Px

(
XT

L2 = y, B̂(l)|Xτk
= z
)

(A.15)
− Px(Xτk

= z± ej )Px

(
XT

L2 = y ± ej , B̂(l)|Xτk
= z± ej

))
= ∑

z∈Hl

Px

(
XT

L2 = y, B̂(l)|Xτ1 = z
)

×
L2∑
k=0

|Px(Xτk
= z)− Px(Xτk

= z± ej )|,

where to obtain the last line we used the translation invariance of P. Fix l ∈ {L2 −
R2(L), . . . ,L2} and let m and l∗ as before. Again we distinguish cases.

First, assume k ≥ l∗. Then {Xτk
· e1 = l} ⊂ H 1 ∪ H 2, where H 1 and H 2 as

before. Then

|Px(Xτk
= z,H 1)− Px(Xτk

= z± ej ,H
1)|

= ∑
y : y·e1≤l/2

∣∣Px(Xτk
= z|Xτ�k/2	 = y)− Px(Xτk

= z± ej |Xτ�k/2	 = y)
∣∣

× Px(Xτ�k/2	 = y),

and uniformly in y, we have∣∣Px(Xτk
= z|Xτ�k/2	 = y)− Px(Xτk

= z± ej |Xτ�k/2	 = y)
∣∣≤ Ck(−d−1)/2

due to the independence of the renewals and (A.2). Using (A.9), we get

L2∑
k=l∗

|Px(Xτk
= z,H 1)− Px(Xτk

= z± ej ,H
1)|

≤ Cl(−d−1)/2

(√
l∗ +

∞∑
j=1

(
l∗ + (j + 1)

√
l∗
)d(

j
√

l∗
)−2d

)
≤ Cl−d/2

and analogously for H 2, whence

L2∑
k=l∗

|Px(Xτk
= z)− Px(Xτk

= z± ej )| ≤ Cl−d/2.(A.16)
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Now assume k < l∗. Then in the same manner we obtain

l∗∑
k=L2/2

|Px(Xτk
= z)− Px(Xτk

= z± ej )| ≤ Cl−d/2(A.17)

and furthermore (A.9) supplies us with

l∗/2∑
k=0

|Px(Xτk
= z)− Px(Xτk

= z± ej )| ≤ C

l∗/2∑
k=0

kd(l∗ − k)−2d

(A.18)
≤ Cl−d+1.

Using (A.13) and (A.15) to (A.18), we deduce that there exists C such that for all
l ∈ {L2 −R2(L), . . . ,L2},

Fl ≤ CPx(B̂(l))L−d .

In combination with (A.14) and Lemma 3.3, we get

|Px(XT
L2 = y)− Px(XT

L2 = y ± ej )| ≤ CL−d,

which finishes the proof.
Parts (c), (d) and (e) follow from analogous calculations using (A.2), (A.3) and

(A.4), respectively. For the sake of conciseness, we omit giving the corresponding
proofs here. �

To prove parts (ii) and (iii) of Proposition 3.4, we quote and reprove a condi-
tional Azuma-type inequality appearing in [1].

In this context, denote by (Mk)k∈N0 a one-dimensional martingale on a proba-
bility space (�, F ,P ) with filtration (Fk)k∈N0 and M0 = 0. Set �k :=Mk−Mk−1
and assume that the |�k| are uniformly bounded from above by a finite constant.
Define for any nonnegative random variable X its conditional essential supre-
mum with respect to Fk as ess sup(X|Fk−1) := limn→∞E(Xn|Fk−1)

1/n, where
the right-hand side exists due to Jensen’s inequality. Set

σk := ess sup(|�k||Fk−1).

Then the essential variance of the martingale is defined as

Vk := ess sup

(
k∑

j=1

σ 2
j

)
.

LEMMA A.3. If the �k are uniformly bounded, then for all n ∈N and t > 0,

P(|Mn|> t)≤ 2e−t2/(2Vn).
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Furthermore, if Mn = (M
(1)
n , . . . ,M

(d)
n ) with M

(j)
n being one-dimensional martin-

gales such that the differences �k are uniformly bounded and with V
(j)
n as essen-

tial variance, then writing V max
n :=maxj∈{1,...,d} V (j)

n one has

P(‖Mn‖∞ > t)≤ 2de−t2/(2V max
n ).

PROOF. First, observe that the d-dimensional case is a direct consequence
of the one-dimensional case by considering its components and a standard union
bound. It is therefore sufficient to prove the one-dimensional case.

We start with showing that for each k ∈ {1, . . . , n},
E(e
∑n

j=k �j |Fk−1)≤ e
(1/2) ess sup(

∑n
j=k σ 2

j |Fk−1).(A.19)

To establish this inequality in the case k = n, we first of all note that

lim
m→∞E(|�n|m|Fn−1)

1/m1A ≥ ess sup(|�n|1A)1A − ε(A.20)

for all x ∈ [0,∞), ε > 0 and

A :=Ax,ε :=
{

lim
m→∞E(|�n|m|Fn−1)

1/m ∈ (x, x + ε]
}
∈ Fn−1.

We then observe that for such A and with CA := ess sup(|�n|1A) as well as

hA : [−CA,CA] � s �→ eCA + e−CA

2
+ eCA − e−CA

2

s

CA

,

we obtain

E(e�n |Fn−1) ≤ E(hA(�n)|Fn−1)1A

= hA(E(�n1A|Fn−1))1A

= hA(0)1A = eCA + e−CA

2
1A

= cosh(CA)1A.

Since by comparison of the corresponding power series one has cosh(x) ≤ ex2/2,
we obtain with (A.20) that

E(e�n1A|Fn−1)
(A.21)

≤ eC2
A/21A ≤ exp

{
1

2

(
lim

m→∞E(|�n|m|Fn−1)
1/m + ε

)2}
1A.

Summing (A.21) over all A :=Ax,ε for x = jε, j ∈N0 we get

E(e�n |Fn−1)≤ exp
{

1

2
lim

m→∞E(|�n|m|Fn−1)
2/m

}

× exp{ess sup |�n|2ε+ ε2/2}.
Since �n was assumed to be bounded, taking ε ↓ 0 yields (A.19) for k = n.
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Now we assume (A.19) to hold true for k+ 1 and deduce its validity for k:

E(e
∑n

j=k �j |Fk−1)= E(e�kE(e
∑n

j=k+1 �j |Fk)|Fk−1)

≤ E
(
e�ke

(1/2) ess sup(
∑n

j=k+1 σ 2
j |Fk)|Fk−1

)
≤ E
(
e�ke

(1/2) ess sup(
∑n

j=k+1 σ 2
j |Fk−1)|Fk−1

)
= e

(1/2) ess sup(
∑n

j=k+1 σ 2
j |Fk−1)E(e�k |Fk−1)

≤ e
(1/2) ess sup(

∑n
j=k+1 σ 2

j |Fk−1)e(1/2)σ 2
k

= e
(1/2) ess sup(

∑n
j=k σ 2

j |Fk−1),

where to obtain the second inequality we used that for any nonnegative random
variable X we have

ess sup(X|Fk)≤ ess sup(X|Fk−1).

Altogether, this establishes (A.19).
Inserting k = 1 in (A.19), we deduce EeλMn ≤ e(1/2)λ2Vn for any real λ. This

estimate in combination with the exponential Chebyshev inequality yields

P(|Mn|> t)= P(Mn > t)+ P(Mn <−t)

≤ e−λt (EeλMn +Ee−λMn)

≤ 2e−λt e(1/2)λ2Vn

for λ > 0. Setting λ := t/Vn, this finishes the proof. �

The following result appears as Lemma 3.3 in Berger and Zeitouni [2] and will
prove helpful in the following.

LEMMA A.4. Let d ≥ 3 and let (vn)n∈N be i.i.d., Z
d -valued random variables

such that P -a.s. we have v1 ·e1 ≥ 1 as well as E‖v1‖r <∞ for some r ∈ [2, d−1].
Furthermore, assume that for some δ > 0,

P(v1 · e1 = 1) > δ,

and that for all z ∈ Z
d of the form z= e1 ± ej , j ∈ {2, . . . , d}, one has

P(v1 = z|v1 · e1 = 1) > δ.

Set Sn :=∑n
i=1 vi . Then there exists a constant K > 0 such that for all z ∈ Z

d ,

P(∃n ∈N :Sn = z)≤K|z · e1|−r(d−1)/(r+d−1).

Furthermore, for all l ∈N,∑
z∈Hl

P (∃n ∈N :Sn = z)≤ 1.

The following result guarantees that with positive probability with respect to the
annealed measure, the trajectories of two independent RWRE do never intersect.
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LEMMA A.5. Let d ≥ 4. Then there exists M ∈ (0,∞) such that for x1, x2 ∈
Z

d with (x1 − x2) · e1 = 0 and ‖x1 − x2‖∞ > M we have

Px1,x2

({
X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
}=∅

)
> 0,(A.22)

where

Px1,x2 := Px1

(·|X(1)
n · e1 ≥ x1 · e1 ∀n ∈N

)⊗ Px2

(·|X(2)
n · e2 ≥ x2 · e2 ∀n ∈N

)
and X(1) and X(2) denote copies of the RWRE X “driven” by Px1 and Px2 , respec-
tively.

In particular, for all l ∈N,

inf
x1,x2∈Hl,x1 �=x2

Px1 ⊗ Px2

({
X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
}=∅

)
> 0

also.

PROOF. Due to uniform ellipticity, the last statement is a direct consequence
of (A.22). Thus, we prove (A.22) now.

The proof is inspired by the proof of Proposition 3.4 in [2]. The translation
invariance of P implies that we can assume x · e1 = x · e2 = 0 without loss of
generality. Denote by m := Ex1(X

(1))∗(2) the expectation of the second renewal
radius and for N ∈N set

B
(j)
N :=

{N/(4m)∑
k=1

∥∥(X(j))∗(k)∥∥
1 ≤N/2

}
.

For j ∈ {1,2}, with respect to Px1,x2(·|AN(X(j))),(
n∑

k=1

∥∥(X(j))∗(k)∥∥
1 −Ex1,x2

(∥∥(X(j))∗(k)∥∥
1|AN

(
X(j))))

n∈{0,...,2N2}
is a martingale with bounded increments. Therefore, applying Azuma’s inequality
for N ∈ 4mN large enough results in

Px1,x2

((
B

(j)
N

)c)
= Px1,x2

(N/(4m)∑
k=1

∥∥(X(j))∗(k)∥∥
1 > N/2

)

≤ Px1,x2

([N/(4m)∑
k=1

∥∥(X(j))∗(k)∥∥
1(A.23)

−Ex1,x2

(∥∥(X(j))∗(k)∥∥
1|AN

(
X(j)))> N/4

]∣∣∣∣AN

(
X(j)))

+ Px1,x2

(
AN

(
X(j))c)

≤ 2 exp
{
− (N/4)2

2NR2
2(N)/4

}
+ Px1,x2

(
AN

(
X(j))c);(A.24)
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here, we took advantage of

m≥ Ex1,x2

(∥∥(X(j))∗(k)∥∥
1|AN

(
X(j)))

for all k and N ∈N.
Furthermore, for j ∈ {1,2}, n ∈ N and ν ∈ (0,1) define the random times

hj,n :=max{k ∈N0 :X(j)
τk · e1 ≤ n} as well as the event

T
(j)
ν,N :=

⋂
n≥N/(4m)

{(
X(j))∗(hj,n+1) ≤ (2mn)ν

}
.

Then (T )γ implies that for any ν > 0 and K > 0 there exists a constant C > 0 such
that for all N we have

Px1,x2

((
T

(j)
ν,N

)c)≤ CN−K.(A.25)

Now we distinguish the situations in which the trajectories of the two walks
could intersect in order to explain the decomposition in (A.27) and (A.28) below;
for this purpose, assume that x1 and x2 from the assumptions satisfy

‖x1 − x2‖∞ ≥N4.(A.26)

(a) If the walks intersect within the first N/(4m) renewal times of both walks,
then due to (A.26) this event is a subset of (B

(1)
N )c ∪ (B

(2)
N )c. This yields the first

summand in (A.27).
(b) Otherwise, the intersection may occur on (T

(1)
ν,N )c ∪ (T

(2)
ν,N )c, which yields

the second summand in (A.27).
(c) It remains to consider intersections after N/(4m) renewal times for at least

one walk on B
(1)
N ∩B

(2)
N ∩T

(1)
ν,N ∩T

(2)
ν,N ; note that due to the restriction to B

(1)
N ∩B

(2)
N

and (A.26), the intersection can take place in Hn with n ≥ N/(4m) only. In this
case, since we restrict to T

(1)
ν,N ∩ T

(2)
ν,N , if the trajectories intersect in the hyper-

plane Hn, there must have occurred a renewal for each of the walks in distance at
most (2mn)ν from the point of intersection which implies that the two renewals
must occur at sites that have distance 2(2mn)ν at most from each other. Thus,
(A.28) corresponds to an intersection after at least N/(4m) renewals for at least
one walk, on B

(1)
N ∩B

(2)
N ∩ T

(1)
ν,N ∩ T

(2)
ν,N .

Consequently, choosing ν > 0 small enough, we obtain using Lemma A.4 with
r = 2 as well as (A.24) and (A.25), that

Px1,x2

({
X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
} �=∅

)
≤ 2Px1,x2

((
B

(1)
N

)c)+ 2Px1,x2

((
T (1)

ν

)c)(A.27)

+ ∑
j≥N/(4m)

∑
z∈Hj

∑
z′ : ‖z−z′‖1≤2(2mj)ν

Px1,x2

(∃i :X(1)
τi
= z
)

(A.28)
× Px1,x2

(∃k :X(2)
τk
= z′
)
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≤ C

(
N−K + ∑

j≥N/(4m)

∑
z∈Hj

Px1,x2

(∃i :X(1)
τi
= z
)

(A.29)

× ∑
z′ : ‖z−z′‖1≤2(2mj)ν

(
j − 2(2mj)ν

)−2(d−1)/(d+1)
)

≤ C
(
N−K +NνdN−2(d−1)/(d+1)+1)→ 0(A.30)

as N →∞, and where for ease of notation we omitted to emphasize that the
renewal times τi refer to the process that is evaluated at these times. Choosing
M =N4 for some N such that the term in (A.30) is smaller than 1, this establishes
the lemma. �

For ω ∈ � and z ∈ Z
d we set Pz,ω := Pz,ω ⊗ Pz,ω as well as Pz := ∫� Pz,ω ⊗

Pz,ωP(dω), where the RWRE “driven” by the first factor is denoted by X(1) and
the one driven by the second factor is denoted by X(2). Using the previous lemma,
we can bound the number of intersections of two independent RWREs as follows.

LEMMA A.6. There exists a positive constant C such that for all L large
enough as well as z ∈ P̃(0,L) and m ∈N,

Pz

(∣∣{X(1)
n :n ∈N

}∩ {X(2)
n :n ∈N

}∩P(0,L)
∣∣> mRd+1

2 (L)|AL

(
X(1)),AL

(
X(2)))

< e−Cm.

PROOF. For L large enough, any k such that k+R2(L) < L and j ∈ {1,2} we
have

1AL(X(j)) ·
∣∣{x ∈ {X(j)

n :n ∈N
}

:k < x · e1 < k +R2(L)
}∣∣< Rd+1

2 (L)(A.31)

as well as

1AL(X(j)) ·
∣∣{x ∈ {X(j)

n :n ∈N
}

:x · e1 ≤ 0
}∣∣< Rd+1

2 (L).(A.32)

For every k, let Q−
k := P(0,L) ∩ {x :x · e1 < kR2(L)} and Q+

k := P(0,L) ∩
{x :x · e1 ≥ kR2(L)}. Due to Lemma A.5, we can infer that there exists ρ > 0 such
that for every k and uniformly in z ∈ P̃(0,L),

Pz

({{
X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
}∩Q+

k+1 =∅
}|

AL

(
X(1)),AL

(
X(2)), {X(1)

n :n ∈N
}∩Q−

k ,(A.33) {
X(2)

n :n ∈N
}∩Q−

k

)
> ρ.

Let

J (even) := {k ∈ 2N0 :
{
X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
}∩Q+

k ∩Q−
k+1 �=∅

}
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and

J (odd) := {k ∈ 2N0 + 1 :
{
X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
}∩Q+

k ∩Q−
k+1 �=∅

}
.

Then by (A.33), conditioned on AL(X(1)) ∩AL(X(2)), both J (even) and J (odd)

are stochastically dominated by a geometric variable with parameter ρ.
The lemma now follows when we remember that by (A.31) and (A.32),

1AL(X(1))1AL(X(2)) ·
∣∣{X(1)

n :n ∈N
}∩ {X(2)

n :n ∈N
}∩P(0,L)

∣∣
≤Rd+1

2 (L)
(
J (even) + J (odd)). �

As a corollary of Lemma A.6, we obtain the following estimate.

COROLLARY A.7. With the same notation as in Lemma A.6,

P
(∃z ∈ P̃(0,L) :

Ez,ω

(∣∣{X(1)
n :n ∈N

}
(A.34)

∩ {X(2)
n :n ∈N

}∩P(0,L)
∣∣|AL

(
X(1)),AL

(
X(2)))≥R3(L)

)
is contained in S(N) as a function in L.

PROOF. Set Z := |{X(1)
n :n ∈ N} ∩ {X(2)

n :n ∈ N} ∩ P(0,L)| and note that
on AL(X(1)) ∩ AL(X(2)), the variable Z is bounded from above by |P(0,L)| ≤
(2L2)d . Thus,

P
(
Ez,ωZ ≥R3(L)|AL

(
X(1)),AL

(
X(2)))

≤ P
(
Ez,ω

(
Z,Z ≥ nRd+1

2 (L)|AL

(
X(1)),AL

(
X(2)))≥R3(L)/2

)
+ P
(
Ez,ω

(
Z,Z ≤ nRd+1

2 (L)|AL

(
X(1)),AL

(
X(2)))≥R3(L)/2

)︸ ︷︷ ︸
=0 for n=R2(L)

≤ (2L2)dPz

(
Z ≥ nRd+1

2 (L)|AL

(
X(1)),AL

(
X(2)))≤ e−CR2(L)

for n=R2(L) and L large enough due to Lemma A.6. Taking the union bound for
z ∈ P̃(0,L) finishes the proof. �

We define J (L)⊂� to be the set of all ω such that for every z ∈ P̃(0,L),

Ez,ω

(∣∣{X(1)
n :n ∈N

}∩ {X(2)
n :n ∈N

}∩P(0,L)
∣∣|AL

(
X(1)),AL

(
X(2)))≤R3(L).

Then by Corollary A.7,

P(J (·)c) ∈ S(N),(A.35)
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and for ω ∈ J (L) and z ∈ P̃(0,L),∑
x∈P(0,L)

Pz,ω(Tx <∞)2 < R3(L).(A.36)

A.3. Proof of Proposition 3.4(ii). The following lemma will yield part (ii) of
Proposition 3.4.

LEMMA A.8. There exists a sequence of events G
(ii)
L ⊂� such that

P
(
G(ii)·

c) ∈ S(N)

and for every ω ∈G
(ii)
L and z ∈ P̃(0,L),∥∥Ez,ω

(
XT∂P (0,L)

|T∂P(0,L) = T∂+P(0,L)

)−Ez

(
XT∂P (0,L)

|T∂P(0,L) = T∂+P(0,L)

)∥∥
1

≤R4(L).

PROOF. As a consequence of Lemma 3.3, Proposition 3.4(i) and (A.35), it is
sufficient to show that denoting

U(ω, z) := ‖Ez,ω(XT
L2 ,AL,J (L))−Ez(XT

L2 ,AL,J (L))‖1,

one has that

P

( ⋃
z∈P̃(0,L)

{ω :U(ω, z) > R4(L)/2}
)

(A.37)
is contained in S(N) as a function in L.

To this end, note that on AL the walk starting in P̃(0,L) can visit sites in

SL := {x ∈ Z
d :−R2(L)−L2/3≤ x · e1 < L2,

(A.38)
‖πe⊥1

(x)‖∞ ≤ 2L2R2(L)}
only before hitting HL2 . Order the vertices contained in SL lexicographically, that
is in increasing order of their first differing coordinate, as x1, x2, . . . , xn. Let G0 :=
{�,∅} and for k ∈ {1, . . . , n}, let Gk be the σ -algebra on � that is generated by
(ω(xj ))j∈{1,...,k}. Furthermore, define the martingale

Mk :=Ez(XT
L2 ,AL,J (L)|Gk).

Note that due to the independence structure of P, taking the conditional expec-
tation with respect to Gk is nothing else than taking the expectation with re-
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spect to the process as well as over all those ω(x) for which x /∈ {x1, . . . , xk}.
Thus, Ez,ω(XT

L2 ,AL,J (L))=Ez(XT
L2 ,AL,J (L)|Gn)(ω) for P-a.a. ω as well as

Ez(XT
L2 ,AL,J (L))=Ez(XT

L2 ,AL,J (L)|G0).
Next, we estimate ess sup(‖Mk −Mk−1‖1|Gk−1) similarly to [1], which again

is based on ideas from Bolthausen and Sznitman [3]. For x ∈ Z
d , let

B(x) := {y ∈Hx·e1−1 :‖x − y‖1 ≤R2(L)+ 1}.
Note that if x is visited, then on AL the first visit to the affine hyperplane Hx·e1−1

will occur at a point contained in B(x). Therefore,

Uk := ess sup(‖Mk −Mk−1‖1|Gk−1)

= ess sup
(∥∥Ez

(
XT

L2 ,AL,J (L), Txk
<∞|Gk

)
−Ez

(
XT

L2 ,AL,J (L), Txk
<∞|Gk−1

)∥∥
1|Gk−1

)
≤ R2

2(L)Pz

(
Txk

<∞,AL,J (L)|Gk−1
)

(A.39)
≤ R2

2(L)
∑

y∈B(xk)∩SL

Pz

(
XTy·e1

= y, J (L)|Gk−1
)

= R2
2(L)

∑
y∈B(xk)∩SL

Pz,ω

(
XTy·e1

= y, J (L)
)

≤ R2
2(L)

( ∑
y∈B(xk)∩P(0,L)

Pz,ω

(
Ty <∞, J (L)

)

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

))
.

Here, the first equality follows since

Ez

(
XT

L2 ,AL,J (L), Txk
=∞|Gk

)−Ez

(
XT

L2 ,AL,J (L), Txk
=∞|Gk−1

)= 0,

which is due to the fact that the restriction to Txk
= ∞ makes the inner ran-

dom variables independent of the realization of ω(xk). The first inequality follows
since, if the walker hits xk , then on AL the site of the subsequent renewal has dis-
tance at most R2(L) to xk and consequently, using standard coupling arguments,
one obtains that the values of

Ez

(
XT

L2 ,AL,J (L), Txk
<∞|Gk

)
as a function in ω(xk) (and all other coordinates fixed) lie within distance of R2

2(L)

of each other.
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Now for ω ∈G
(i)
L ∩J (L), remembering that |B(xk)| ≤ (3R2(L))d and that every

y is in B(x) for at most (3R2(L))d different points x, using (A.39) we infer

n∑
k=1

U2
k ≤

n∑
k=1

R4
2(L)

( ∑
y∈B(xk)∩P(0,L)

Pz,ω

(
Ty <∞, J (L)

)

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

))2

≤ 2(3R2(L))2dR4
2(L)

n∑
k=1

( ∑
y∈B(xk)∩P(0,L)

Pz,ω

(
Ty <∞, J (L)

)2

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

)2)

≤ 2(3R2(L))4dR4
2(L)

( ∑
y∈P(0,L)

Pz,ω

(
Ty <∞, J (L)

)2

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

)2)

≤ 4(3R2(L))4dR4
2(L)R3(L)≤R2

3(L)

for L large enough, where the fourth inequality is a consequence of (A.36) and
part (i) of Proposition 3.4.

Therefore, by Lemma A.3 applied to the (d − 1)-dimensional martingale Mk ,

P
(
U(ω, z) > R4(L)/2

)
< 2de−R2

4(L)/(8R2
3(L)) + P(J (L)c)+ P

(
G

(i)
L

c)
and the right-hand side is contained in S(N) as a function in L due to Proposi-
tion 3.4(i), Lemma 3.3 and (A.35). Now since the above estimates and hence the
last inclusion were uniform in z ∈ P̃(0,L), we infer that (A.37) holds, which in
combination with Remark 3.5 finishes the proof. �

A.4. Auxiliary results for the proof of Proposition 3.4(iii). The following
lemma is the basis for proving Proposition 3.4(iii).

LEMMA A.9. Fix ϑ ∈ (d−1
d

,1], let C be a constant and denote by Bϑ(L)

the set of those ω for which for all M ∈ {�2
5L2	, . . . ,L2}, all z ∈ P̃(0,L) and all

(d − 1)-dimensional hypercubes Q of side length �Lϑ� that are contained in HM ,
one has

|Pz,ω(XTM
∈Q)− Pz(XTM

∈Q)| ≤ CL(ϑ−1)(d−1).(A.40)

Then for C large enough, P(Bϑ(L)c) is contained in S(N) as a function in L.



514 A. DREWITZ AND A. F. RAMÍREZ

PROOF. Choose ϑ ′ ∈ (d−1
d

,ϑ), set U := �L2ϑ ′ 	, fix M ∈ {�2
5L2	, . . . ,L2}

and with SL as in the previous proof set SM
L := SL ∩ {x ∈ Z

d :x · e1 ≤M}. Simi-
larly to the proof of Lemma A.8, we let x1, x2, . . . , xn be a lexicographic order-
ing of the vertices in SM

L and denote by Gk the σ -algebra on � generated by
ω(x1), . . . ,ω(xk). For v ∈HM+U , we start with estimating∣∣Pz

(
XTM+U

= v,AL,J (L)|Gn

)− Pz

(
XTM+U

= v,AL,J (L)
)∣∣,

and for this purpose consider the martingale

Mk := Pz

(
XTM+U

= v,AL,J (L)|Gk

)
.

As in the proof of Lemma A.8, from which we borrow the notation B(xk), we
are going to take advantage of Lemma A.3, whence we will need to bound �k :=
ess sup(|Mk−Mk−1||Gk−1). By part (c) of Lemma A.2, again in combination with
standard coupling arguments, we obtain

�k ≤ CR2
2(L)Pz

(
Txk

<∞,AL,J (L)|Gk−1
) ·U−d/2

≤ CU−d/2R2
2(L)

∑
y∈B(xk)∩SM

L

Pz,ω

(
XTy·e1

= y,AL,J (L)
)

≤ CU−d/2R2
2(L)

( ∑
y∈B(xk)∩P(0,L)

Pz,ω

(
Ty <∞, J (L)

)

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

))
.

Therefore, for ω ∈ J (L) ∩G
(i)
L , and based on the same calculation as in the proof

of Lemma A.8,

ess sup

(
n∑

k=1

�2
k

)
≤R4(L)U−d .(A.41)

Indeed, continuing the previous chain, for ω ∈ J (L)∩G
(i)
L we have

n∑
k=1

�2
k ≤ CU−dR4

2(L)

n∑
k=1

( ∑
y∈B(xk)∩P(0,L)

Pz,ω

(
Ty <∞, J (L)

)

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

))2

≤ CU−dR4
2(L)(3R2(L))d

n∑
k=1

( ∑
y∈B(xk)∩P(0,L)

Pz,ω

(
Ty <∞, J (L)

)2

+ Pz,ω

(
T∂+P(0,L) �= T∂P(0,L)

)2)
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≤ CU−dR4
2(L)(3R2(L))2d

( ∑
y∈P(0,L)

Pz,ω

(
Ty <∞, J (L)

)2

+ nPz,ω

(
T∂P(0,L) �= T∂+P(0,L)

)2)

≤ R2
3(L)U−d

for L large enough and where to obtain the second line we applied the Cauchy–
Schwarz inequality in combination with |B(xk)| ≤ (3R2(L))d . Therefore, using
(A.41) and Lemma A.3, for each v ∈HM+U we have

P
(∣∣Pz

(
XTM+U

= v,AL,J (L)|Gn

)− Pz

(
XTM+U

= v,AL,J (L)
)∣∣> L1−d/4

)
≤ 2e−U2η/(32R4(L))

with η := d−(d−1)/ϑ ′
2 > 0 [here we use the assumption ϑ ′ > (d−1)/d to guarantee

the positivity of η]. We define the subset

T (L) := ⋂
M∈{�(2/5)L2	,...,L2},

v∈HM+U ,

z∈P̃(0,L)

{∣∣Pz(XTM+U
= v|Gn)− Pz(XTM+U

= v)
∣∣≤ L1−d/2

}

of �. Now for any of these choices of M , v and z, we obtain

P
(∣∣Pz(XTM+U

= v|Gn)− Pz(XTM+U
= v)
∣∣> L1−d/2

)
≤ P
(∣∣Pz

(
XTM+U

= v,AL,J (L)|Gn

)
− Pz

(
XTM+U

= v,AL,J (L)
)∣∣> L1−d/4

)
+ P
(
Pz

(
Ac

L ∪ J (L)c|Gn

)
> L1−d/8

)
+ P
(
Pz

(
Ac

L ∪ J (L)c
)
> L1−d/8

)
.

Thus, in combination with Lemma 3.3 and Proposition 3.4(i), and since the previ-
ous bounds were uniform in the (at most polynomially many) admissible choices
of M , v and z,4 we get that

P(T (·)c) ∈ S(N).(A.42)

Now in order to estimate

|Pz,ω(XTM
∈Q)− Pz(XTM

∈Q)|,

4More precisely, in order to have only polynomially many choices for v, we restrict v to be con-

tained in the union of all admissible hypercubes Q(2) appearing in (A.43).
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we denote by c(Q) the centre of the cube Q and set c′(Q) := c(Q)+ U
v̂·e1

v̂. Fur-
thermore, set

Q(1) := {y ∈HM+U :‖y − c′(Q)‖∞ < (0.9)1/(d−1)Lϑ/2
}

and

Q(2) := {y ∈HM+U :‖y − c′(Q)‖∞ < (1.1)1/(d−1)Lϑ/2
}
.(A.43)

Then by standard annealed estimates there exists ϕ ∈ S(N) such that for all z ∈
P̃(0,L),

Pz

(
XTM+U

∈Q(1))< Pz(XTM
∈Q)+ ϕ(L),(A.44)

Pz

(
XTM+U

∈Q(2))> Pz(XTM
∈Q)− ϕ(L),(A.45)

Pz

(
XTM+U

∈Q(1)|Gn

)
< Pz,ω(XTM

∈Q)+ ϕ(L)(A.46)

and

Pz

(
XTM+U

∈Q(2)|Gn

)
> Pz,ω(XTM

∈Q)− ϕ(L)(A.47)

for ω ∈ AL. Indeed, in order to prove equation (A.44) note that

Pz

(
XTM+U

∈Q(1))≤ Pz

(
XTM

∈Q,XTM+U
∈Q(1))

+ Pz

(
XTM

/∈Q,XTM+U
∈Q(1)).

By Lemma 3.3 and restricting to AL, using Azuma’s inequality one can show that

sup
z∈P̃(0,L)

Pz

(
XTM

/∈Q,XTM+U
∈Q(1))

is contained in S(N) as a function in L; this then implies (A.44). The remaining
inequalities are shown in similar ways.

In order to make use of (A.44) to (A.47), note that for ω ∈ T (L) ∩ AL we get
with Lemma A.2(a) that∣∣Pz

(
XTM+U

∈Q(1)|Gn

)− Pz

(
XTM+U

∈Q(2))∣∣
≤ ∣∣Pz

(
XTM+U

∈Q(1)|Gn

)− Pz

(
XTM+U

∈Q(1))∣∣
+
∣∣∣∣ ∑
v∈Q(2)\Q(1)

Pz(XTM+U
= v)

∣∣∣∣
≤ ∣∣Pz

(
XTM+U

∈Q(1)|Gn

)− Pz

(
XTM+U

∈Q(1))∣∣+ ∣∣Q(2) \Q(1)
∣∣CL1−d

≤ CL(ϑ−1)(d−1)

for some constant C. If Pz,ω(XTM
∈ Q) ≤ Pz(XTM

∈ Q), then this estimate in
combination with (A.45) and (A.46) yields (A.40). Otherwise, again for ω ∈
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T (L)∩AL we compute∣∣Pz,ω

(
XTM+U

∈Q(2))− Pz

(
XTM+U

∈Q(1))∣∣
≤ ∣∣Pz

(
XTM+U

∈Q(2)|Gn

)− Pz

(
XTM+U

∈Q(2))∣∣+ ∣∣Q(2) \Q(1)
∣∣CL1−d

≤ CL(ϑ−1)(d−1),

which in combination with (A.44) and (A.47) again implies (A.40).
Thus, for C large enough, and since the bounds we derived so far were uniform

in the admissible choices of M , z and Q, it follows that T (L) ∩ AL ⊆ Bϑ(L).
Therefore, employing (A.42), we get P(Bϑ(·)c) ∈ S(N). �

Departing from Lemma A.9, due to the following result, for a large set of en-
vironments we can bound from above the quenched probability of hitting a hyper-
plane in a hypercube of side length �Lϑ� for any ϑ ∈ (0,1].

LEMMA A.10. For ϑ ∈ (0,1] and h ∈ N, denote by Bϑ
h (L) the set of those

ω for which for all z ∈ P̃(0,L), all M ∈ {�1
2L2	, . . . ,L2} and all (d − 1)-

dimensional hypercubes Q of side length �Lϑ� which are contained in HM ,

Pz,ω(XTM
∈Q)≤Rh(L)L(ϑ−1)(d−1).(A.48)

Then there exists h(ϑ) ∈ N such that P(Bϑ
h(ϑ)(L)c) is contained in S(N) as a

function in L.

PROOF. We prove the lemma by descending induction on ϑ . Lemma A.9 in
combination with Lemma A.2(a) implies that P(Bϑ

1 (·)c) ∈ S(N) for each ϑ ∈
(d−1

d
,1]. For the induction step, assume that the statement of the lemma holds for

some ϑ ′ and choose ϑ such that ρ := ϑ
ϑ ′ ∈ (d−1

d
,1]. Set h′ := h(ϑ ′). For z ∈ Z

d ,
define the canonical shift on Z

d via σz : Zd � x �→ x + z ∈ Z
d and let

G := Bρ(L)∩G∗�Lρ	 ∩
⋂

z∈P(0,L)

σz(B
ϑ ′
h′ (�Lρ	)),

where Bρ(L) as in Lemma A.9 and

G∗�Lρ	 :=
⋂

x∈P(0,L)

⋂
y∈P̃(x,�Lρ	)

{
Py,ω

(
T∂P(x,�Lρ	) �= T∂+P(x,�Lρ	)

)
< e−R2(�Lρ	)γ }.

The translation invariance of P implies that

P(σz(B
ϑ ′
h′ (�Lρ	)))= P(Bϑ ′

h′ (�Lρ	)),
and therefore, as a consequence of Proposition 3.4(i), P(Gc) is contained in S(N)

as a function in L. Thus, it is sufficient to show that for some h and all L large
enough, we have that G ⊆ Bϑ

h (L). To this end we fix ω ∈ G, z ∈ P̃(0,L), M ∈
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{�1
2L2	, . . . ,L2} and a cube Q of side length �Lϑ� in P(0,L)∩HM . Let c(Q) be

the centre of Q and x′ be an element of Z
d closest to c(Q)− �Lρ	2

v̂·e1
v̂. Due to the

strong Markov property and the fact that ω ∈G∗�Lρ	,∣∣∣∣Pz,ω(XTM
∈Q)− ∑

v∈H
M−�Lρ 	2∩P(x′,�Lρ	)

Pz,ω(XT
M−�Lρ 	2 = v)

(A.49)

× Pv,ω(XTM
∈Q)

∣∣∣∣
is contained in S(N) as a function in L. To estimate the second factor of the sum,
observe that since

ω ∈ ⋂
z∈P(0,L)

σz(B
ϑ ′
h′ (�Lρ	)),

we get that for every v ∈HM−�Lρ	2 ,

Pv,ω(XTM
∈Q) < Rh′(L)Lρ(ϑ ′−1)(d−1) =Rh′(L)L(ϑ−ρ)(d−1).(A.50)

With respect to the first factor of the sum, for L large enough, HM−�Lρ	2 ∩
P(x′, �Lρ	) is the union of less than R7(L) cubes of side length �Lρ	. Since
ω ∈ Bρ(L), we deduce that for every cube Q′ of side length �Lρ	 that is con-
tained in HM−�Lρ	2 ∩P(0,L), one has

Pz,ω(XT
M−�Lρ 	2 ∈Q′) < R2(L)L(ρ−1)(d−1)(A.51)

for L large enough. Combining (A.49), (A.50) and (A.51), we infer that

Pz,ω(XTM
∈Q)≤ R7(L)Rh′(L)L(ϑ−ρ)(d−1) ·R2(L)L(ρ−1)(d−1)

≤ Rh(L)L(ϑ−1)(d−1)

for h=max{7, h′} + 1 and L large enough.
Noting that the above estimates are uniform in the (at most polynomially many)

admissible choices of z, M and Q, this finishes the proof. �

The next result employs the previous lemmas to yield bounds on the difference
of certain annealed and semi-annealed hitting probabilities.

LEMMA A.11. Let G be the σ -algebra in � generated by the functions {� �
ω �→ ω(z) : z · e1 ≤ L2}. Let η ∈ (0, 6

d−1 ∧ 1), U := �Lη	 and denote by B(L,η)

the set of those ω for which for all z ∈ P̃(0,L) and all v ∈HL2+U , one has

|Pz(XT
L2+U

= v|G)− Pz(XT
L2+U

= v)| ≤ L1−dU(1−d)/3.

Then P(B(L,η)c) is contained in S(N) as a function in L.

PROOF. Let v ∈HL2+U and let ϑ > 0 be such that ϑ < 1
12η. Define KL to be

the natural number such that 2−KLL2 > U ≥ 2−KL−1L2, and for k ∈ {1, . . . ,KL−
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1} we set

P (k) := P(0,L)∩ {x :L2 − 2−kL2 < x · e1 ≤ L2 − 2−k−1L2}.
In addition, we take

P (KL) := P(0,L)∩ {x :L2 − 2−KLL2 < x · e1 ≤ L2},
P (0) := P(0,L)∩ {x :x · e1 ≤L2/2}

and

F(v) := {x ∈ P(0,L) :‖x − u(v, x)‖1 ≤R7(L)‖(v − x) · e1‖1/2
1 },

where u(v, x) := v+ (x−v)·e1
v̂·e1

v̂. Then for k ∈ {0, . . . ,KL} we define

P (k)(v) := P (k) ∩ F(v)

and

P̂ (k)(v) := {y ∈ Z
d :∃x ∈ P (k)(v) such that ‖x − y‖1 < R2(L)

}
.

See Figure 6 for an illustration.
Similarly to the previous, we use a lexicographic enumeration x1, x2, . . . , xn of

P̂ :=
KL⋃
k=0

P̂ (k)(A.52)

FIG. 6. The sets P (k)(v) contained in P(0,L).
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and the corresponding filtration {Gi}i∈{0,...,n}. We consider the martingale Mi :=
Pz(XT

L2+U
= v,AL,J (L)|Gi ). Again, in order to use Lemma A.3, we need to

bound Ui := ess sup(|Mi −Mi−1||Gi−1). With the same reasoning as in the proof
of Lemma A.9 and with Lemma A.2(c), we obtain for i such that xi ∈ P (k)(v):

Ui ≤ CR2(L)Pz

(
Txi

<∞,AL,J (L)|Gi−1
) ·L−d2(k+1)(d/2).

To obtain a useful upper bound for Ui with k ∈ {0, . . . ,KL} and ω ∈ Bϑ
h(ϑ)∩J (L),

we will estimate

Vω(k)= ∑
x∈P (k)(v)

Pz,ω

(
Tx <∞,AL,J (L)

)2
.

Using (A.36), we get for ω ∈ J (L) that

Vω(0)≤R3(L).

Now choose h(ϑ) ≥ 8 such that the implication of Lemma A.10 holds true; then
for k > 0 as well as B(x) as in the proof of Lemma A.9,

Vω(k)= ∑
x∈P (k)(v)

Pz,ω(Tx <∞,AL)2

≤ ∑
x∈P (k)(v)

( ∑
y∈B(x)

Pz,ω(XTy·e1
= y)

)2

≤ (3R2(L))d−1
∑

y∈P̂ (k)(v)

Pz,ω(XTy·e1
= y)2(A.53)

≤ (3R2(L))d−1
∑

y∈P̂ (k)(v)

R2
h(ϑ)(L)L2(ϑ−1)(d−1)

≤ Rh(ϑ)+1(L)L2((d+1)/2+(ϑ−1)(d−1))2−k�(d+1)/2	

for L large enough, where inequality (A.53) follows from the fact that ω ∈
Bϑ

h(ϑ)(L).

Therefore, we get that for ω ∈ J (L)∩Bϑ
h(ϑ) we have

ess sup

(
n∑

i=1

U2
i

)
≤ CR2

2(L)

KL∑
k=0

Vω(k)L−2d2kd

≤ CRh(ϑ)+1(L)L−2d

+CRh+1(L)L2((d+1)/2+(ϑ−1)(d−1))−2d
KL∑
k=1

2kd−k(d+1)/2

≤ CRh(ϑ)+1(L)
(
L−2d +L3−3d+2(d−1)ϑ2KL(d−1)/2)
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≤ CRh(ϑ)+1(L)
(
L−2d +L2−2d+2(d−1)ϑU−(d−1)/2)

≤ L2−2dU(1−d)/3/2

for L large enough and where the penultimate inequality follows from the defini-
tion of KL, while the last inequality is due to the choice of ϑ . Thus, Lemma A.3
yields that

P
(∣∣Pz(XT

L2+U
= v,AL|Gn)− Pz(XT

L2+U
= v,AL)

∣∣> L1−dU(1−d)/3/2
)

(A.54)

is contained in S(N) as a function in L, uniformly in the admissible choices of z

and v.
Observe furthermore that with P̂ defined in (A.52), for example, by Azuma’s

inequality,

Pz(XT
L2+U

= v,AL,T
∂P̂ < Tv)

is contained in S(N), and thus, due to Markov’s inequality, so is

P
(
Pz(XT

L2+U
= v,AL,T

∂P̂ < Tv|G)≥ L1−dU(1−d)/3/2
)
.

In combination with (A.54) and the fact that{
ω :
∣∣Pz(XT

L2+U
= v,AL|G)− Pz(XT

L2+U
= v,AL|Gn)

∣∣≥ L1−dU(1−d)/3/2
}

⊂ {ω :Pz(XT
L2+U

= v,AL,T
∂P̂ < Tv|G)≥ L1−dU(1−d)/3/2

}
,

this supplies us with the fact that

P
(∣∣Pz(XT

L2+U
= v,AL|G)− Pz(XT

L2+U
= v,AL)

∣∣> L1−dU(1−d)/3)
is contained in S(N) also.

A union bound in combination with Lemma 3.3 and Lemma 3.10 completes the
proof of the lemma. �

LEMMA A.12. For any ϑ ∈ (0, 6
d−1 ∧ 1) denote by Dϑ(L) the set of those ω

for which for all z ∈ P̃(0,L) and all (d − 1)-dimensional hypercubes Q of side
length �Lϑ� that are contained in ∂+P(0,L),∣∣Pz,ω

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)
− Pz

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)∣∣(A.55)

≤ L(ϑ−1)(d−1)−ϑ(d−1)/(d+1).

Then P(Dϑ(L)c) is contained in S(N) as a function in L.

PROOF. Choose ϑ ′ ∈ (3
4ϑ,ϑ) and U := �L4ϑ ′/(d+1)	. Then by Lemma A.11

and Proposition 3.4(i), we know that P(B(·, 4ϑ ′
d+1)c ∪ G(i)·

c
) ∈ S(N) whence it is
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sufficient to show that B(L, 4ϑ ′
d+1)∩G

(i)
L ⊂Dϑ(L); this we will do similarly to the

last step of the proof of Lemma A.9. We denote by c(Q) one of those elements of
Z

d closest to the centre of Q and let x′ ∈HL2+U be one of the lattice points closest
to c(Q)+ U

v̂·e1
v̂. Furthermore, let Q(1) and Q(2) be (d−1)-dimensional hypercubes

that are contained in HL2+U and are centred in x′, such that the side length of Q(1)

is �Lϑ −R6(L)
√

U	 and the side length of Q(2) is �Lϑ +R6(L)
√

U�. Then due
to Lemma A.11, on B(L, 4ϑ ′

d+1) for i ∈ {1,2},∣∣Pz

(
XT

L2+U
∈Q(i)|G

)− Pz

(
XT

L2+U
∈Q(i))∣∣≤ ∣∣Q(i)

∣∣L1−dU(1−d)/3(A.56)

for all corresponding z and Q. Now similarly to (A.44) to (A.47), there exists
ϕ ∈ S(N) such that for all such z and Q,

Pz

(
XT

L2+U
∈Q(1))− ϕ(L)

(A.57)
< Pz(XT

L2 ∈Q) < Pz

(
XT

L2+U
∈Q(2))+ ϕ(L)

as well as

Pz

(
XT

L2+U
∈Q(1)|G

)− ϕ(L)
(A.58)

< Pz,ω(XT
L2 ∈Q) < Pz

(
XT

L2+U
∈Q(2)|G

)+ ϕ(L).

Proposition 3.4(i) and Lemma 3.10 imply that for ω ∈G
(i)
L ,∣∣Pz,ω

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)− Pz,ω(XT
L2 ∈Q)

∣∣
and ∣∣Pz

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)− Pz(XT
L2 ∈Q)

∣∣
are both contained in S(N) as functions in L. Therefore, for ω ∈ B(L, 4ϑ ′

d+1)∩G
(i)
L ,

using (A.56) to (A.58) and as a consequence of Lemma A.2(a),∣∣Pz,ω

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)
− Pz

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)∣∣
≤ |Pz,ω(XT

L2 ∈Q)− Pz(XT
L2 ∈Q)| + ϕ(L)

≤ ∣∣Q(2)
∣∣L1−dU(1−d)/3 +C

(∣∣Q(2)
∣∣− ∣∣Q(1)

∣∣)L1−d + ϕ(L)

≤ C
(
L(ϑ−1)(d−1)U(1−d)/3 +R6(L)

√
U�Lϑ�d−2L1−d)

≤ L(ϑ−1)(d−1)−ϑ(d−1)/(d+1)

for L large enough and some ϕ ∈ S(N). Here, we used that U = �L4ϑ ′/(d+1)	 and
ϑ ′ ∈ (3

4ϑ,ϑ) to obtain the last line. �
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A.5. Proof of Proposition 3.4(iii). Denote by Dϑ(L) the set of all ω such
that

max
z∈P̃(0,L)

max
Q

∣∣Pz,ω

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)
− Pz

(
XT∂P (0,L)

∈Q|T∂P(0,L) = T∂+P(0,L)

)∣∣
< L(ϑ−1)(d−1)−ϑ(d−1)/(d+1)

holds, where the maximum in Q is taken over all (d − 1)-dimensional hypercubes
Q ⊂ ∂+P(0,L) of side length �Lϑ�. Then for ϑ ∈ (0, 6

d−1 ∧ 1), Lemma A.12 is
applicable and yields that P(Dϑ(L)c) is contained in S(N) as a function in L. In
combination with Remark 3.5, this finishes the proof.

A.6. Further auxiliary results. The principal purpose of this subsection is to
prove Lemma 3.18 that has been employed in step (B) in the construction of the
auxiliary random walk on page 490.

We start with proving some further auxiliary results, parts of which have been
stated and employed above already.

PROOF OF LEMMA 3.14. We observe that due to Lemma 3.10, it is sufficient
to establish (3.25). With v̂L as defined in (3.18), we obtain∥∥∥∥ExXT∂P (0,L)

− x − L2 − x · e1

v̂ · e1
v̂

∥∥∥∥
1

≤
∥∥∥∥ExXT∂P (0,L)

− x − L2 − x · e1

v̂L · e1
v̂L

∥∥∥∥
1

(A.59)

+
∥∥∥∥L2 − x · e1

v̂L · e1
v̂L − L2 − x · e1

v̂ · e1
v̂

∥∥∥∥
1
.

To estimate the first summand on the right-hand side of (A.59), note that for H :=
inf{n ∈ N :

∑n
j=1(Xτj

− Xτj−1) · e1 ≥ L2}, we can infer from Lemma 3.10 and
Lemma 3.3 that

‖ExXT∂P (0,L)
−Ex(XτH

,AL)‖1 ≤ 2R2(L)(A.60)

for L large enough. Now (
∑n

j=1 Xτj
−Xτj−1 − Ex(Xτj

−Xτj−1 |AL))n∈{1,...,2L2}
is a zero-mean martingale with respect to Px(·|AL), whence the optimal stopping
theorem implies

Ex(XτH
− x|AL)= (Ex(H |AL)− 1

) ·Ex(Xτ2 −Xτ1 |AL)
(A.61)

+Ex(Xτ1 − x|AL).

But as a consequence of the conditioning on AL, we have∥∥Ex(XτH
− x|AL) · e1 − (L2 − x · e1)

∥∥
1 ≤R2(L).(A.62)
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Since furthermore∥∥Ex(Xτ2 −Xτ1 |AL)−Ex(Xτ1 − x|AL)
∥∥

1 ≤ 2R2(L)(A.63)

using (A.61) to (A.63), we get∥∥∥∥Ex(XτH
− x|AL)− L2 − x · e1

v̂L · e1
v̂L

∥∥∥∥
1
≤ 3R2(L).

Combining this with (A.60) we obtain that the first summand on the right-hand
side of (A.59) is bounded from above by 5R2(L).

Furthermore, the second summand on the right-hand side of (A.59) is contained
in S(N) as a function in L due to Lemma 3.9. This finishes the proof. �

In the following, we will sometimes consider distributions μ
√

jL
0,0 for j ∈N, and

in particular,
√

jL is not necessarily a natural number anymore. However, as one
may check, this does not lead to any complications.

CLAIM A.13. For j ∈ {1, . . . , �Lχ	2}, let U be distributed according to the

convolution μL
0,0 ∗μ

√
j−1L

0,0 . Then U can be represented as U = Û +U ′ such that

Û ∼ μ
√

jL
0,0 and

P
(‖U ′‖1 > 2R2(L)

)≤ Ce−C−1R2(L)γ

for some constant C independent of j and L.

PROOF. Since we assume all appearing probability spaces to be large enough,
it is sufficient to construct U, Û and U ′ as desired. First, observe that for

Ak,N := {X∗(n) < R2(N) ∀n ∈ {1, . . . , k}},
the same reasoning as in the proof of Lemma 3.3 yields that

P0
(
Ac

(�Lχ 	L)2,L

)≤ C exp{−C−1R2(L)γ }.
This in combination with Azuma’s inequality, Lemma 3.10 and Lemma 3.14,
yields that for L large enough we have

P0
(
T∂P(0,

√
j−1L) �= T∂+P(0,

√
j−1L)

)
≤ P0
(
Ac

(�Lχ 	L)2,L

)+ 2d(�Lχ	L)2 exp
{
− R6(L)2

4R2(L)2

}

≤ C exp{−C−1R2(L)γ }.
Now for l ∈N, let n(l) be the unique natural number such that τn(l)−1 < Tl ≤ τn(l).
Then due to the above, in combination with Lemma 3.3,

P0
(‖Xτ

n((j−1)L2)
−XT∂P (0,

√
j−1L)

‖1 ≥R2(L)
)≤ C exp{−C−1R2(L)γ }.
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Now let Z denote a RWRE coupled to X in such a way that Z0 = XT∂+P (0,
√

j−1L)

and

ZτZ
1 +· =Xτ

n((j−1)L2)
+· −Xτ

n((j−1)L2)
,

whereas between times 0 and τZ
1 it evolves independently of X. Then

P0

({
T∂P(0,

√
jL) �= T∂+P(0,

√
jL)

}
∪ {T∂P(0,

√
j−1L) �= T∂+P(0,

√
j−1L)

}∪ {T Z
∂P(Z0,L) �= T Z

∂+P(Z0,L)

}
(A.64)

∪
{

max
0≤n≤τZ

1

‖Zn −Z0‖1 ≥R2(L)
}
∪Ac

(�Lχ 	L)2,L

)

≤ C exp{−C−1R2(L)γ }
for C large enough and all L; restricted to the complement of the event on the
left-hand side of (A.64),

‖XT∂+P (0,
√

j−1L)
+ (ZT Z

∂+P (Z0,L)
−Z0)−XT∂+P (0,

√
jL)
‖1 ≤ 2R2(L).(A.65)

Furthermore, with respect to

P0
(·|T∂P(0,

√
j−1L) = T∂+P(0,

√
j−1L), T

Z
∂P(Z0,L) = T Z

∂+P(Z0,L)

)
,

the variable

U :=XT∂+P (0,
√

j−1L)
+ZT Z

∂+P (Z0,L)
−Z0

is distributed according to μ
√

j−1L
0,0 ∗μL

0,0, while with respect to

P0
(·|T∂P(0,

√
jL) = T∂+P(0,

√
jL)

)
,

the variable Û :=XT∂P (0,
√

jL)
is distributed as μ

√
jL

0,0 . Therefore, setting U ′ :=U −
Û , in combination with (A.64) and (A.65) we deduce the desired result. �

The following lemma is essentially a discrete second-order Taylor expansion.

LEMMA A.14. Let μ be a finite signed measure on Z
d and let f : Zd → R.

Choose m, k, J , N ∈N and � ∈ Z
d such that:

(a) for every x, y ∈ Z
d such that ‖x − y‖1 = 1, we have |f (x)− f (y)|< m;

(b) for every x, y, z,w ∈ Z
d and i, j ∈ {1, . . . , d} such that x − y = z−w = ei

and x − z = y − w = ej , we have that |f (x)+ f (w)− f (y)− f (z)| < k (note
that if i = j then y = z and this is the discrete second derivative, while if i �= j it
is a discrete mixed second derivative);

(c)
∑

x μ(x)= 0;
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(d) ‖∑x xμ(x)‖1 ≤N ;
(e)
∑

x ‖x − �‖2
1 · |μ(x)|< J .

Then ∣∣∣∣∑
x

f (x)μ(x)

∣∣∣∣≤mN + kJ.

PROOF. From (c), we infer that
∑

x f (x)μ(x)=∑x(f (x)+ c)μ(x) for every
c ∈ R. Therefore, without loss of generality, we may assume that f (�) = 0. Let
g : Zd →R be the affine function characterized by

g(�)= f (�)= 0 and g(�+ ei)= f (�+ ei) ∀i ∈ {1, . . . , d}.(A.66)

Then for any x ∈ Z
d ,

|f (x)− g(x)|< k‖x − �‖2
1.(A.67)

In fact, setting h := f − g we get for B(x,�) := {y ∈ Z
d :xi ∧ �i ≤ yi ≤ xi ∨

�i ∀i ∈ {1, . . . , d}} that

|f (x)− g(x)| ≤ |h(�)| + max
i∈{1,...,d},
y∈B(x,�)

∣∣∣∣ ∂

∂ei

h(y)

∣∣∣∣ · ‖x − �‖1,(A.68)

where ∂
∂ei

h(y) := h(y + ei)− h(y).

In addition, for ∂2

∂ej ∂ei
h(y) := h(y + ei)− h(y)− (h(y + ei + ej )− h(y + ej ))

we get for y ∈ B(x,�) that∣∣∣∣ ∂

∂ei

h(y)

∣∣∣∣≤
∣∣∣∣ ∂

∂ei

h(�)

∣∣∣∣+ max
j∈{1,...,d},
z∈B(x,�)

∣∣∣∣ ∂2

∂ej ∂ei

h(z)

∣∣∣∣ · ‖y − �‖1.(A.69)

Noting that h(�)= ∂
∂ei

h(�)= 0 as well as ∂2

∂ej ∂ei
h= ∂2

∂ej ∂ei
f, and plugging (A.69)

into (A.68), (b) yields (A.67).
Now (e) in combination with (A.67) results in∣∣∣∣∑

x

f (x)μ(x)−∑
x

g(x)μ(x)

∣∣∣∣≤∑
x

|f (x)− g(x)| · |μ(x)| ≤ kJ.

In addition, since g is affine, g − g(0) is linear and hence (A.66) in combination
with (a) and (d) yields∣∣∣∣∑

x

g(x)μ(x)

∣∣∣∣=
∣∣∣∣g
(∑

x

xμ(x)

)
− g(0)+∑

x

g(0)μ(x)

∣∣∣∣≤mN.

Due to the triangle inequality, these two estimates imply the statement of the
lemma. �
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PROOF OF LEMMA 3.18. We will construct a coupling that establishes the
desired closeness. For each k ∈ {1, . . . , n}, conditioned on �1, . . . ,�k−1, the dis-
tribution of �k is (λ,K)-close to μL

0,0 by assumption, whence a coupling as de-
fined in Definition 3.7 exists. As mentioned in Remark 3.8, the coupling can be
constructed on the (possibly extended) probability space the variables �k are de-
fined on, with �k playing the role of Z2 of that definition. We will assume such
couplings to be given. Thus, for each such k we still denote the variable corre-
sponding to Z2 in Definition 3.7 by �k ; the variable corresponding to Z0 will
be denoted by Yk . Without loss of generality, due to the fact that the �k’s and
μL

0,0 are supported on ∂+P(0,L), we may assume that the Yk’s take values in
∂+P(0,L) only. Again, without loss of generality, we assume all these couplings
to be defined on one common probability space (�, F ,P ). Thus, using the nota-
tion Fk−1 := σ(�1, . . . ,�k−1) for k ∈ {2, . . . , n} and F0 := {∅,�}, the following
hold P -a.s.:

(a′) ∑x |P(Yk = x|Fk−1)−μL
0,0(x)| ≤ λ;

(b′) P(‖Yk −�k‖1 ≤K|Fk−1)= 1;
(c′) E(Yk|Fk−1)=EμL

0,0
;

(d′) ∑x ‖x −EμL
0,0
‖2

1 · |P(Yk = x|Fk−1)−μL
0,0(x)| ≤ λVarμL

0,0
.

To prove the desired result, it is sufficient to show that there exists a random vari-
able Y ′ defined on the same probability space such that:

(a′′) ∑x |P(Y ′ = x)−μ
√

nL

0,0 (x)| ≤ λR9(L);
(b′′) P(‖Y ′ − Sn‖1 < 4nK)= 1;
(c′′) EY ′ =E

μ

√
nL

0,0
;

(d′′) ∑x ‖x −E
μ

√
nL

0,0
‖2

1 · |P(Y ′ = x)−μ
√

nL

0,0 (x)| ≤ λR9(L)Var
μ

√
nL

0,0
.

To this end, set

S(j) :=
n∑

k=j

Yk.(A.70)

Using descending induction, we start with showing that for all j ∈ {1, . . . , n} the
following holds:

(IS) Conditioned on �1, . . . ,�j−1, we can write S(j) = Y (j) + Z(j) for some
Y (j) and Z(j) such that ‖Z(j)‖1 ≤ (n− j)R3(L) a.s. and such that with respect to

P(·|Fj−1), the variable Y (j) is distributed as μ
√

n−j+1L
0,0 +D

(j)
2 , where D

(j)
2 is a

signed measure the variational norm ‖D(j)
2 ‖TV of which is bounded from above

by λ(j) with λ(n) = λ and

λ(j) := λ(j+1) +CλR6
(√

n− jL
)
(n− j)−1

for j < n and some constant C.
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For j = n, the statement holds true due to the assumptions with Z(n) = 0. We now
assume that the statement holds for j + 1 and prove it for j .

Setting H := Yj + Y (j+1), for each z we have

P(H = z|Fj−1)=
∑
x

P (Yj = x|Fj−1)P
(
Y (j+1) = z− x|Yj = x, Fj−1

)
.

With μ̂L
n,j,Yj

defined as the convolution P(Yj ∈ ·|Fj−1) ∗μ
√

n−jL
0,0 , this yields that∑

z

∣∣P(H = z|Fj−1)− μ̂L
n,j,Yj

(z)
∣∣

≤∑
z

∑
x

P (Yj = x|Fj−1)

× ∣∣P (Y (j+1) = z− x|Yj = x, Fj−1
)−μ

√
n−jL

0,0 (z− x)
∣∣(A.71)

=∑
x,y

P (Yj = x|Fj−1) ·
∣∣P (Y (j+1) = y|Yj = x, Fj−1

)−μ
√

n−jL
0,0 (y)

∣∣
≤ ∥∥D(j+1)

2

∥∥
TV ≤ λ(j+1)

holds a.s.
Next, we set μ̂L

1,n−j := μL
0,0 ∗μ

√
n−jL

0,0 and will bound

|μ̂L
1,n−j (z)− μ̂L

n,j,Yj
(z)|

(A.72)

=
∣∣∣∣∑

x

μ
√

n−jL
0,0 (x)

(
P(Yj = z− x|Fj−1)−μL

0,0(z− x)
)∣∣∣∣

from above.
For this purpose, for given z, we will apply Lemma A.14 to the function μ

√
n−jL

0,0

with the corresponding measure μ given by P(Yj ∈ ·|Fj−1) − μL
0,0 (note that

‖μ‖TV ≤ λ).
We now determine the parameters k,m,J and N of the assumptions of

Lemma A.14. Parts (d) and (e) of Lemma A.2 yield that we can choose k ≤
C(
√

n− jL)−d−1. Furthermore, as a consequence of (c′) we can choose N equal
to 0, whence the exact value of m does not matter (m= 1 works). In addition, (d′)
yields that J can be chosen equal to 2λVarμL

0,0
, with � equal to one of the elements

of Z
d closest to EμL

0,0
. Thus, Lemmas 3.12 and A.14 in combination with (A.72)

yield that a.s.,

|μ̂L
1,n−j (z)− μ̂L

n,j,Yj
(z)| ≤ CλL1−d(n− j)(−d−1)/2.(A.73)

Note that for z such that ‖z− Eμ̂L
1,n−j

‖∞ > 4dR6(
√

n− jL)
√

n− jL, the terms

μ̂L
1,n−j (z) and μ̂L

n,j,Yj
(z) vanish. Thus, using (A.71) and (A.73), the triangle in-
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equality implies that a.s.,∑
z

∣∣P(H = z|Fj−1)− μ̂L
1,n−j (z)

∣∣
≤∑

z

∣∣P(H = z|Fj−1)− μ̂L
n,j,Yj

(z)
∣∣

+ ∑
z∈H

(n−j)L2 ,

‖z−E
μ̂L

1,n−j
‖1≤4dR6(

√
n−jL)

√
n−jL

|μ̂L
n,j,Yj

(z)− μ̂L
1,n−j (z)|

≤ λ(j+1) +CλR6
(√

n− jL
)d−1

(n− j)−1.

Consequently, we get that the distribution of H can be written as μ̂L
1,n−j +D

(j)
2

for a signed measure D
(j)

2 with∥∥D(j)

2
∥∥

TV ≤ λ(j+1) +CλR6
(√

n− jL
)d−1

(n− j)−1.(A.74)

By Claim A.13, there exists Z′(j) such that

P
(‖Z′(j)‖1 > R3(L)

)≤ Ce−C−1R2(L)γ ,

and such that the distribution of H +Z′(j) is μ
√

n−j+1L
0,0 +D

(j)

2 . Let

H :=H +Z′(j) · 1‖Z′(j)‖1≤R3(L).

Then due to (A.74), the distribution of H equals μ
√

n−j+1L
0,0 +Ď

(j)
2 for some signed

measure Ď
(j)
2 such that∥∥Ď(j)

2

∥∥
TV ≤
∥∥D(j)

2
∥∥

TV+Ce−C−1R2(L)γ ≤ λ(j+1)+CλR6
(√

n− jL
)d−1

(n−j)−1.

We let

Z(j) := Z(j+1) +Z′(j) · 1‖Z′(j)‖1≤R3(L)

and

Y (j) := S(j) −Z(j).

Then we infer that ∥∥Z(j)
∥∥

1 ≤ (n− j)R3(L)(A.75)

and the distribution of Y (j) is μ
√

n−j+1L
0,0 +D

(j)
2 where D

(j)
2 is a signed measure

such that ‖D(j)
2 ‖TV ≤ λ(j) with

λ(j) ≤ λ(j+1) +CλR6
(√

n− jL
)d−1

(n− j)−1.

This establishes (IS).
Using (c′) and (A.70), the expectation of Y (1) is computed via

EY (1) =ES(1) −EZ(1) = nEμL
0,0
−EZ(1).(A.76)
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Therefore, in combination with (A.75), we get∥∥EY (1) −E
μ

√
nL

0,0

∥∥
1 ≤ ‖nEμL

0,0
−E

μ

√
nL

0,0
‖1 +
∥∥EZ(1)

∥∥
1

≤ CnR2
(√

nL
)+ nR3(L)

≤ 2nR3(L)

for L large enough, since n ≤ L by assumption; indeed, with the help of Lem-
ma 3.14 one deduces

‖nEμL
0,0
−E

μ

√
nL

0,0
‖1 ≤ n

∥∥∥∥EμL
0,0
− L2

v̂ · e1
v̂

∥∥∥∥
1
+
∥∥∥∥ nL2

v̂ · e1
v̂ −E

μ

√
nL

0,0

∥∥∥∥
1

≤ C
(
nR2(L)+R2

(√
nL
))

.

As in the proof of Corollary 3.13, we can find a variable U which is independent
of all the variables we have seen so far, and such that ‖U‖1 ≤ 2nR3(L), U ∈H0
almost surely and

EU =E
μ

√
nL

0,0
−EY (1).

We define

Y ′ := Y (1) +U,

which directly yields that (c′′) holds. To check (b′′), note that in combination with
(IS) and the definition of S(1) we get

‖Sn − Y ′‖1 ≤
∥∥Sn − S(1)

∥∥
1 +
∥∥S(1) − Y (1)

∥∥
1 +
∥∥Y (1) − Y ′

∥∥
1

(A.77)
≤ nK + nR3(L)+ 2nR3(L)≤ 4nK

since K ≥ R3(L). Now from (IS) it follows that λ(1) ≤ CλR6(L
2)d−1 log(n) ≤

CλR7(L) for L large enough. Thus, (a′′) is a consequence of∑
x

∣∣P(Y ′ = x)−μ
√

nL

0,0 (x)
∣∣

≤ 2
∑

x∈∂+P(0,
√

nL)

∣∣∣∣ ∑
y∈H0,

‖y‖1≤2nR3(L)

P (U = y)P
(
Y (1) = x − y

)−μ
√

nL

0,0 (x)

∣∣∣∣

≤ 2
∑

x∈∂+P(0,
√

nL)

(∣∣∣∣ ∑
y∈H0,

‖y‖1≤2nR3(L)

P (U = y)
(
P
(
Y (1) = x − y

)

(A.78)

−μ
√

nL

0,0 (x − y)
)∣∣∣∣

+CnR3(L)
(√

nL
)−d
)

≤CλR7(L)
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for L large enough and where we used Lemma A.2(b) to obtain the second in-
equality, and also the fact that λ≥ nL−1.

The remaining part of the proof consists of establishing that Y ′ also satis-

fies (d′′). Denoting by D2 be the signed measure such that Y ′ ∼ μ
√

nL

0,0 +D2, this
amounts to showing that∑

x

‖x −E
μ

√
nL

0,0
‖2

1 · |D2(x)| ≤ λR9(L)Var
μ

√
nL

0,0
(A.79)

holds.
To start with, note that∑

x

‖x −E
μ

√
nL

0,0
‖2

1 · |D2(x)|

≤ (d − 1)
∑
x

‖x −E
μ

√
nL

0,0
‖2

2 · |D2(x)|(A.80)

= (d − 1)

d∑
i=2

∑
x

(
(x −E

μ

√
nL

0,0
) · ei

)2 · |D2(x)|.

To proceed, we write D2 = D+
2 − D−

2 for the Jordan decomposition of D2 and
estimate ∑

x

(
(x −E

μ

√
nL

0,0
) · ei

)2 · |D2(x)|

≤ 2
∑
x

(
(x −E

μ

√
nL

0,0
) · ei

)2 ·D−
2 (x)(A.81)

+
∣∣∣∣∑

x

(
(x −E

μ

√
nL

0,0
) · ei

)2 ·D2(x)

∣∣∣∣.(A.82)

To bound (A.81) from above, note that D−
2 (x) ≤ μ

√
nL

0,0 (x) for all x. Combined
with the fact that ‖D−

2 ‖TV ≤ ‖D2‖TV ≤ CλR7(L) [due to (A.78)], we obtain∑
x

(
(x −E

μ

√
nL

0,0
) · ei

)2
D−

2 (x)≤ λR8(L)nL2(A.83)

for L large enough, since μ
√

nL

0,0 is supported on ∂+P(0,
√

nL).
In order to estimate (A.82), note that due to (c′′) we have

∑
x xD2(x)= 0, and

hence (A.82) equals |Var(D2, i)| with

Var(D2, i) :=
∑
x

(x · ei)
2D2(x)=Var(Y ′ · ei)−Var(W · ei),(A.84)

where W denotes a random variable distributed according to μ
√

nL

0,0 . By Claim A.13,
there exists a random variable W ′ such that W ′ ∼ (μL

0,0)
∗n, with (μL

0,0)
∗n denoting
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the n-fold convolution of μL
0,0, and such that

P
(‖W −W ′‖1 > nR3(L)

)
< Cne−C−1R2(L)γ

for L large enough. Then

|Var(D2, i)| ≤ |Var(W · ei)−Var(W ′ · ei)|
+ ∣∣Var(W ′ · ei)−Var

(
S(1) · ei

)∣∣(A.85)

+ ∣∣Var
(
S(1) · ei

)−Var(Y ′ · ei)
∣∣.

Now for L large enough,

|Var(W · ei)−Var(W ′ · ei)|
≤Var

(
(W −W ′) · ei

)
+ 2
∣∣Cov
(
(W −W ′) · ei,W

′ · e1
)∣∣

(A.86)
≤ ess sup

(
(W −W ′) · ei

)2
P
(‖W −W ′‖1 > nR3(L)

)
+ 2n2R3(L)2 + 2nR3(L)

√
Var(W ′)

≤ Cn3/2R3(L)L,

where among others we used
√

n≤ L and Lemma 3.12. Furthermore,∣∣Var(Y ′ · ei)−Var
(
S(1) · ei

)∣∣= ∣∣Var
((

S(1) +U ′
) · ei

)−Var
(
S(1) · ei

)∣∣
≤ 2 ess sup(‖U ′‖1)

√
Var
(
S(1)
)+ ess sup(‖U ′‖1)

2

≤ Cn3/2R3(L)L+ 4n2R2
3(L)(A.87)

≤ Cn3/2R3(L)L,(A.88)

where we used n≤L and that by the definition of Y ′, we know that U ′ := Y ′ −S(1)

satisfies ‖U ′‖1 ≤ 3nR3(L).
To estimate the remaining summand, note that Cov(Yj , Yk)= 0 for j �= k, and

hence ∣∣Var
(
S(1) · ei

)−Var(W ′ · ei)
∣∣≤ n∑

j=1

∣∣Var(Yj · ei)−VarμL
0,0◦(··ei)

−1

∣∣.(A.89)

Furthermore, since EμL
0,0
=EYj for every j , from (d′) we infer that∣∣Var(Yj · ei)−VarμL

0,0◦(··ei)
−1

∣∣
=
∣∣∣∣∑

x

(
x · ei − (EμL

0,0
· ei)
)2(

P(Yj = x)−μL
0,0(x)

)∣∣∣∣
≤∑

x

(
x · ei − (EμL

0,0
· ei)
)2|P(Yj = x)−μL

0,0(x)|

≤ λVarμL
0,0

,



EXIT ESTIMATES AND BALLISTICITY CONDITIONS 533

and as a consequence∣∣Var
(
S(1) · ei

)−Var(W ′ · ei)
∣∣≤ nλVarμL

0,0
.(A.90)

Using (A.85) to (A.90) in combination with Lemma 3.12, we deduce that

|Var(D2, i)| ≤ CλnL2,

whence in combination with (A.81) to (A.84) we have∑
x

(x · ei −E
μ

√
nL

0,0
· ei)

2|D2(x)| ≤ 2R8(L)λnL2

for L large enough. Therefore, (A.80) yields∑
x

‖x −E
μ

√
nL

0,0
‖2

1 · |D2(x)| ≤ 2d2R8(L)λnL2

for L large enough. In combination with Lemma 3.12, we deduce that (A.79) holds
and thus (d′′) is fulfilled. �

We now prove the previously employed Lemma 3.11.

PROOF OF LEMMA 3.11. We continue to use the notation B(l, k) and B(l)

introduced in the proof of Lemma A.2, from which this proof draws its strategy.
Again, denote by � the covariance matrix of Xτ2 −Xτ1 with respect to P0 and set
m := E0(Xτ2 −Xτ1). Using (A.5) and the fact that, since �−1 is positive definite,
the corresponding quadratic form induces a norm, we infer that for any C > 0 there
exists a constant c > 0 such that for k large enough and y ∈ HL2 with ‖y − x −
km‖1 ≤ C

√
k, we have

Px

(
XT

L2 = y,B(L2, k)
)≥ ck−d/2.(A.91)

Setting l∗ := L2−x·e1
m·e1

and C := 4C′, for k ∈ {�l∗ −√l∗	, . . . , �l∗ +√l∗�} and x, y

as in the assumptions, we have

‖y − x − km‖1 ≤ ‖π̃v̂⊥(y − x)‖1 + ‖l∗m− km‖1 ≤ CL

for L large enough. Then, using (A.91) with y ∈ ∂+P(0,L), uniformly in x ∈
P̃(0,L) we have

Px(XT
L2 = y)≥ Px

(
XT

L2 = y,B(L2)
)

≥
�l∗+√l∗�∑

k=�l∗−√l∗	
Px

(
XT

L2 = y,B(L2, k)
)

≥ cL1−d,

which due to (3.20) finishes the proof. �
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