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DE FINETTI THEOREMS FOR EASY QUANTUM GROUPS

BY TEODOR BANICA1, STEPHEN CURRAN AND ROLAND SPEICHER2

Cergy-Pontoise University, UCLA and Queen’s University

We study sequences of noncommutative random variables which are in-
variant under “quantum transformations” coming from an orthogonal quan-
tum group satisfying the “easiness” condition axiomatized in our previous
paper. For 10 easy quantum groups, we obtain de Finetti type theorems char-
acterizing the joint distribution of any infinite quantum invariant sequence.
In particular, we give a new and unified proof of the classical results of de
Finetti and Freedman for the easy groups Sn,On, which is based on the com-
binatorial theory of cumulants. We also recover the free de Finetti theorem of
Köstler and Speicher, and the characterization of operator-valued free semi-
circular families due to Curran. We consider also finite sequences, and prove
an approximation result in the spirit of Diaconis and Freedman.

Introduction. In the study of probabilistic symmetries, the classical groups Sn

and On play central roles. De Finetti’s fundamental theorem states that an infinite
sequence of random variables whose joint distribution is invariant under finite per-
mutations must be conditionally independent and identically distributed. In [20],
Freedman considered sequences of real-valued random variables whose joint dis-
tribution is invariant under orthogonal transformations, and proved that any infinite
sequence with this property must form a conditionally independent Gaussian fam-
ily with mean zero and common variance. Although these results fail for finite
sequences, approximation results may still be obtained (see [17, 18]). For a thor-
ough treatment of probabilistic symmetries, the reader is referred to the recent text
of Kallenberg [23].

The free analogues S+
n and O+

n of the permutation and orthogonal groups were
constructed by Wang in [31, 32]. These are compact quantum groups in the sense
of Woronowicz [34]. In [24], Köstler and Speicher discovered that de Finetti’s the-
orem has a natural free analogue: an infinite sequence of noncommutative random
variables has a joint distribution which is invariant under “quantum permutations”
coming from S+

n if and only if the variables are freely independent and identically
distributed with amalgamation, that is, with respect to a conditional expectation.
This was further studied in [13], where this result was extended to more general
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sequences and an approximation result was given for finite sequences. The free
analogue of Freedman’s result was obtained in [14], where it was shown that an
infinite sequence of self-adjoint noncommutative random variables has a joint dis-
tribution which is invariant under “quantum orthogonal transformations” if and
only if the variables form an operator-valued free semicircular family with mean
zero and common variance.

In this paper, we present a unified approach to de Finetti theorems by using the
“easiness” formalism from [7]. Stated roughly, a quantum group Sn ⊂ G ⊂ O+

n is
called easy if its tensor category is spanned by certain partitions coming from the
tensor category of Sn. This might look, of course, to be a quite technical condi-
tion. However, we feel that this provides a good framework for understanding cer-
tain probabilistic and representation theory aspects of orthogonal quantum groups.
There are 14 natural examples of easy quantum groups, listed as follows:

(1) Groups: On,Sn,Hn,Bn,S
′
n,B

′
n.

(2) Free versions: O+
n , S+

n ,H+
n ,B+

n , S′+
n ,B ′+

n .
(3) Half-liberations: O∗

n,H ∗
n .

Except for H ∗
n , which was found in [5], these are all described in [7]. The four

“primed” versions above are rather trivial modifications of their “unprimed” ver-
sions, corresponding to taking a product with a copy of Z2. We will focus then
on the remaining ten examples in this paper, from which similar results for the
“primed” versions may be easily deduced.

As explained in [5, 7], our motivating belief is that “any result which holds for
Sn,On should have a suitable extension to all easy quantum groups.” This is, of
course, a quite vague statement, whose target is formed by several results at the
borderline of representation theory and probability. This paper represents the first
application of this philosophy.

If G is an easy quantum group, there is a natural notion of G-invariance for a
sequence of noncommutative random variables, which agrees with the usual def-
inition when G is a classical group. Our main result is the following de Finetti
type theorem, which characterizes the joint distributions of infinite G-invariant
sequences for the 10 natural easy quantum groups discussed above.

THEOREM 1. Let (xi)i∈N be a sequence of self-adjoint random variables in a
W∗-probability space (M,ϕ), and suppose that the sequence is G-invariant, where
G is one of O,S,H,B,O∗,H ∗,O+, S+,H+,B+. Assume that M is generated as
a von Neumann algebra by {xi : i ∈ N}. Then there is a W∗-subalgebra 1 ⊂ B ⊂ M

and a ϕ-preserving conditional expectation E :M → B such that the following
hold:

(1) Free case:

(a) If G = S+, then (xi)i∈N are freely independent and identically dis-
tributed with amalgamation over B.
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(b) If G = H+, then (xi)i∈N are freely independent, and have even and
identical distributions, with amalgamation over B.

(c) If G = O+, then (xi)i∈N form a B-valued free semicircular family with
mean zero and common variance.

(d) If G = B+, then (xi)i∈N form a B-valued free semicircular family with
common mean and variance.

(2) Half-liberated case: Suppose that xixjxk = xkxjxi for any i, j, k ∈ N.

(a) If G = H ∗, then (xi)i∈N are conditionally half-independent and identi-
cally distributed given B.

(b) If G = O∗, then (xi)i∈N are conditionally half-independent, and have
symmetrized Rayleigh distributions with common variance, given B.

(3) Classical case: Suppose that (xi)i∈N commute.

(a) If G = S, then (xi)i∈N are conditionally independent and identically
distributed given B.

(b) If G = H , then (xi)i∈N are conditionally independent, and have even
and identical distributions, given B.

(c) If G = O , then (xi)i∈N are conditionally independent, and have Gaus-
sian distributions with mean zero and common variance, given B.

(d) If G = B , then (xi)i∈N are conditionally independent, and have Gaus-
sian distributions with common mean and variance, given B.

The notion of half-independence, appearing in (2) above, will be introduced
in Section 2. The basic example of a half-independent family of noncommutative
random variables is (xi)i∈I ,

xi =
(

0 ξi

ξi 0

)
,

where (ξi)i∈I are independent, complex-valued random variables and E[ξn
i ξi

m] =
0 unless n = m (see Example 2.4 and Proposition 2.8). Note that in particular, if
(ξi)i∈N are independent and identically distributed complex Gaussian random vari-
ables, then xi has a symmetrized Rayleigh distribution (ξiξi)

1/2 and we obtain the
joint distribution in (2) corresponding to the half-liberated orthogonal group O∗.
Since the complex Gaussian distribution is known to be characterized by unitary
invariance, this appears to be closely related to the connection between Un and O∗

n

observed in [5, 8].
Let us briefly outline the proof of Theorem 1, to be presented in Section 5. We

define von Neumann subalgebras Bn ⊂ M consisting of “functions” of the vari-
ables (xi)i∈N which are invariant under “quantum transformations” of x1, . . . , xn

coming from the quantum group Gn. The G-invariant subalgebra B is defined as
the intersection of the nested sequence Bn (note that if G = S, then B corresponds
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to the classical exchangeable subalgebra). There are natural conditional expec-
tations onto Bn given by “averaging” over Gn, that is, integrating with respect
to the Haar state on the compact quantum group Gn. By using an explicit for-
mula for the Haar states on easy quantum groups from [7], and a noncommutative
reversed martingale convergence argument, we obtain a simple combinatorial for-
mula for computing joint moments with respect to the conditional expectation onto
the G-invariant subalgebra. What emerges from these computations is a moment-
cumulant formula, and Theorem 1 follows from the characterizations of these joint
distributions by the structure of their cumulants. Note that, in particular, we obtain
a new proof of de Finetti’s classical result for Sn which is based on cumulants. This
method also allows us to give certain approximation results for finite sequences,
which will be explained in Section 4.

The paper is organized as follows. Section 1 contains preliminaries. Here we
collect the basic notions from the combinatorial theory of classical and free prob-
ability. We also recall some basic notions and results from [7] about the class of
“easy” quantum groups. In Section 2, we introduce half-independence and develop
its basic combinatorial theory. In Section 3, we recall the Weingarten formula from
[7] for computing integrals on easy quantum groups, and give a new estimate on
the asymptotic behavior of these integrals. This will be essential to the proofs of
our main results, and we believe that this estimate will also find applications to
other problems involving easy quantum groups. In Section 4, we define quantum
invariance for finite sequences, prove a converse to Theorem 1, and give approx-
imate de Finetti type results. Section 5 contains the proof of Theorem 1, and a
discussion of the situation for unbounded random variables in the classical and
half-liberated cases. Section 6 contains concluding remarks.

1. Background and notation.

Noncommutative probability. We begin by recalling the basic notions of non-
commutative probability spaces and distributions of random variables. For further
details, see the texts [25, 30].

DEFINITION 1.1.
(1) A noncommutative probability space is a pair (A, ϕ), where A is a unital

algebra over C, and ϕ : A → C is a linear functional such that ϕ(1) = 1. Elements
in a noncommutative probability space (A, ϕ) will be called noncommutative ran-
dom variables, or simply random variables.

(2) A W∗-probability space (M,ϕ) is a von Neumann algebra M together with
a faithful normal state ϕ. We will not assume that ϕ is a trace.

EXAMPLE 1.2. Let (�,�,μ) be a (classical) probability space.

(1) The pair (L∞(μ),E) is a W∗-probability space, where L∞(μ) is the alge-
bra of bounded �-measurable random variables, and E is the expectation func-
tional E(f ) = ∫

f dμ.
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(2) Let

L(μ) = ⋂
1≤p<∞

Lp(μ)

be the algebra of random variables with finite moments of all orders. Then
(L(μ),E) is a noncommutative probability space.

The joint distribution of a sequence (X1, . . . ,Xn) of (classical) random vari-
ables can be defined as the linear functional on Cb(R

n) determined by

f 	→ E[f (X1, . . . ,Xn)].
In the noncommutative context, it is generally not possible to make sense of
f (x1, . . . , xn) for f ∈ Cb(R

n) if the random variables x1, . . . , xn do not commute.
Instead, we work with an algebra of noncommutative polynomials.

NOTATION 1.3. Let I be a nonempty set. We let PI denote the algebra
C〈ti : i ∈ I 〉 of noncommutative polynomials, with generators indexed by the set I .
Note that PI is spanned by 1 and monomials of the form ti1 · · · tik , for k ∈ N

and i1, . . . , ik ∈ I . If I = {1, . . . , n}, we set Pn = PI , and if I = N we denote
P∞ = PI .

Given a family (xi)i∈I of noncommutative random variables in a noncommuta-
tive probability space (A, ϕ), there is a unique unital homomorphism evx :PI →
A which sends ti to xi for each i ∈ I . We also denote this map by p 	→ p(x).

DEFINITION 1.4. Let (xi)i∈I be a family of random variables in the noncom-
mutative probability space (A, ϕ). The joint distribution of (xi)i∈I is the linear
functional ϕx :PI → C defined by

ϕx(p) = ϕ(p(x)).

Note that the joint distribution of (xi)i∈I is determined by the collection of joint
moments

ϕx(ti1 · · · tik ) = ϕ(xi1 · · ·xik )

for k ∈ N and i1, . . . , ik ∈ I .

REMARK 1.5. In the classical de Finetti’s theorem, the independence which
occurs is only after conditioning. Likewise the free de Finetti’s theorem is a state-
ment about freeness with amalgamation. Both of these concepts may be expressed
in terms of operator-valued probability spaces, which we now recall.
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DEFINITION 1.6. An operator-valued probability space (A,E : A → B) con-
sists of a unital algebra A, a subalgebra 1 ∈ B ⊂ A, and a conditional expectation
E : A → B, that is, E is a linear map such that E[1] = 1 and

E[b1ab2] = b1E[a]b2

for all b1, b2 ∈ B and a ∈ A.

EXAMPLE 1.7. Let (�,�,μ) be a probability space, and let F ⊂ � be a σ -
subalgebra. Let A = L∞(μ), and let B = L∞(μ|F ) be the subalgebra of bounded,
F -measurable functions on �. Then (A,E[·|F ]) is an operator-valued probability
space.

To define the joint distribution of a family (xi)i∈I in an operator-valued prob-
ability space (A,E : A → B), we will use the algebra B〈ti : i ∈ I 〉 of noncommu-
tative polynomials with coefficients in B. This algebra is spanned by monomials
of the form b0ti1 · · · tik bk , for k ∈ N, b0, . . . , bk ∈ B and i1, . . . , ik ∈ I . There is a
unique homomorphism from B〈ti : i ∈ I 〉 into A which acts as the identity on B
and sends ti to xi , which we denote by p 	→ p(x).

DEFINITION 1.8. Let (A,E : A → B) be an operator-valued probability
space, and let (xi)i∈I be a family in A. The B-valued joint distribution of the
family (xi)i∈I is the linear map Ex : B〈ti : i ∈ I 〉 → B defined by

Ex(p) = E[p(x)].

Observe that the joint distribution is determined by the B-valued joint moments

Ex[b0ti1 · · · tikbk] = E[b0xi1 · · ·xikbk]
for b0, . . . , bk ∈ B and i1, . . . , ik ∈ I . Observe that if B commutes with the vari-
ables (xi)i∈I , then

E[b0xi1 · · ·xikbk] = b0 · · ·bkE[xi1 · · ·xik ],
so that the B-valued joint distribution is determined simply by the collection of
moments E[xi1 · · ·xik ] for i1, . . . , ik ∈ I .

DEFINITION 1.9. Let (xi)i∈I be a family in the operator-valued probability
space (A,E : A → B).

(1) If the algebra generated by B and {xi : i ∈ I } is commutative, then the vari-
ables are called conditionally independent given B if

E[p1(xi1) · · ·pk(xik )] = E[p1(xi1)] · · ·E[pk(xik )],
whenever i1, . . . , ik are distinct and p1, . . . , pk are polynomials in B〈t〉.
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(2) The variables (xi)i∈I are called free with amalgamation over B, or free with
respect to E, if

E[p1(xi1) · · ·pk(xik )] = 0,

whenever i1, . . . , ik ∈ I are such that il �= il+1 for 1 ≤ l < k, and p1, . . . , pk ∈ B〈t〉
are such that E[pl(xil )] = 0 for 1 ≤ l ≤ k.

REMARK 1.10. Voiculescu first defined freeness with amalgamation, and de-
veloped its basic theory in [29]. Conditional independence and freeness with amal-
gamation also have rich combinatorial theories, which we now recall. In the free
case this is due to Speicher [28]; see also [25].

DEFINITION 1.11.
(1) A partition π of a set S is a collection of disjoint, nonempty sets V1, . . . , Vr

such that V1 ∪ · · · ∪ Vr = S. V1, . . . , Vr are called the blocks of π , and we set
|π | = r . The collection of partitions of S will be denoted P(S), or in the case that
S = {1, . . . , k} by P(k).

(2) Given π,σ ∈ P(S), we say that π ≤ σ if each block of π is contained in a
block of σ . There is a least element of P(S) which is larger than both π and σ ,
which we denote by π ∨ σ .

(3) If S is ordered, we say that π ∈ P(S) is noncrossing if whenever V,W are
blocks of π and s1 < t1 < s2 < t2 are such that s1, s2 ∈ V and t1, t2 ∈ W , then
V = W . The set of noncrossing partitions of S is denoted by NC(S), or by NC(k)
in the case that S = {1, . . . , k}.

(4) The noncrossing partitions can also be defined recursively, a partition π ∈
P(S) is noncrossing if and only if it has a block V which is an interval, such that
π \ V is a noncrossing partition of S \ V .

(5) Given i1, . . . , ik in some index set I , we denote by ker i the element of P(k)
whose blocks are the equivalence classes of the relation

s ∼ t ⇔ is = it .

Note that if π ∈ P(k), then π ≤ ker i is equivalent to the condition that whenever
s and t are in the same block of π , is must equal it .

DEFINITION 1.12. Let (A,E : A → B) be an operator-valued probability
space.

(1) A B-functional is a n-linear map ρ : An → B such that

ρ(b0a1b1, a2b2, . . . , anbn) = b0ρ(a1, b1a2, . . . , bn−1an)bn

for all b0, . . . , bn ∈ B and a1, . . . , an. Equivalently, ρ is a linear map from A⊗Bn

to B, where the tensor product is taken with respect to the natural B − B-bimodule
structure on A.

(2) Suppose that B is commutative. For k ∈ N let ρ(k) be a B-functional. Given
π ∈ P(n), we define a B-functional ρ(π) : An → B by the formula

ρ(π)[a1, . . . , an] = ∏
V ∈π

ρ(V )[a1, . . . , an],
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where if V = (i1 < · · · < is) is a block of π then

ρ(V )[a1, . . . , an] = ρs(ai1, . . . , ais ).

If B is noncommutative, there is no natural order in which to compute the prod-
uct appearing in the above formula for ρ(π). However, the nesting property of
noncrossing partitions allows for a natural definition of ρ(π) for π ∈ NC(n), which
we now recall from [28].

DEFINITION 1.13. Let (A,E : A → B) be an operator-valued probability
space, and for k ∈ N let ρ(k) : Ak → B be a B-functional. Given π ∈ NC(n), define
a B-functional ρ(n) : An → B recursively as follows:

(1) If π = 1n is the partition containing only one block, define ρ(π) = ρ(n).
(2) Otherwise, let V = {l + 1, . . . , l + s} be an interval of π and define

ρ(π)[a1, . . . , an] = ρ(π\V )[a1, . . . , al · ρ(s)(al+1, . . . , al+s), al+s+1, . . . , an

]
for a1, . . . , an ∈ A.

EXAMPLE 1.14. Let

π = {{1,8,9,10}, {2,7}, {3,4,5}, {6}} ∈ NC(10),

then the corresponding ρ(π) is given by

ρ(π)[a1, . . . , a10] = ρ(4)(a1 · ρ(2)(a2 · ρ(3)(a3, a4, a5), ρ
(1)(a6) · a7

)
, a8, a9, a10

)
.

DEFINITION 1.15. Let (A,E : A → B) be an operator-valued probability
space, and let (xi)i∈I be a family of random variables in A.

(1) The operator-valued classical cumulants c
(k)
E : Ak → B are the B-function-

als defined by the classical moment-cumulant formula

E[a1 · · ·an] = ∑
π∈P(n)

c
(π)
E [a1, . . . , an].

Note that the right-hand side of the equation is equal to c
(n)
E [a1, . . . , an] plus lower

order terms, and hence c
(n)
E can be solved for recursively.
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(2) The operator-valued free cumulants κ
(k)
E : Ak → B are the B-functionals

defined by the free moment-cumulant formula

E[a1, . . . , an] = ∑
π∈NC(n)

κ
(π)
E [a1, . . . , an].

As above, this equation can be solved recursively for κ
(n)
E .

While the definitions of conditional independence and freeness with amalga-
mation given above appear at first to be quite different, they have very similar
expressions in terms of cumulants. In the free case, the following theorem is due
to Speicher [28].

THEOREM 1.16. Let (A,E : A → B) be an operator-valued probability
space, and (xi)i∈I a family of random variables in A.

(1) If the algebra generated by B and (xi)i∈I is commutative, then the variables
are conditionally independent given B if and only if

c
(n)
E [b0xi1b1, . . . , xinbn] = 0,

whenever there are 1 ≤ k, l ≤ n such that ik �= il .
(2) The variables are free with amalgamation over B if and only if

κ
(n)
E [b0xi1b1, . . . , xinbn] = 0,

whenever there are 1 ≤ k, l ≤ n such that ik �= il .

Note that the condition in (1) is equivalent to the statement that if π ∈ P(n),
then

c
(π)
E [b0xi1b1, . . . , xinbn] = 0

unless π ≤ ker i, and likewise in (2) for π ∈ NC(n). Stronger characterizations of
the joint distribution of (xi)i∈I can be given by specifying what types of partitions
may contribute nonzero cumulants.

THEOREM 1.17. Let (A,E : A → B) be an operator-valued probability
space, and let (xi)i∈I be a family of random variables in A.

(1) Suppose that B and (xi)i∈I generate a commutative algebra. The B-valued
joint distribution of (xi)i∈I has the property corresponding to D in the table below
if and only if for any π ∈ P(n)

c
(π)
E [b0xi1b1, . . . , xinbn] = 0

unless π ∈ D(n) and π ≤ ker i.
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Partitions D Joint distribution

P : All partitions Independent
Ph: Partitions with even block sizes Independent and even
Pb: Partitions with block size ≤ 2 Independent Gaussian
P2: Pair partitions Independent centered Gaussian

(2) The B-valued joint distribution of (xi)i∈I has the property corresponding
to D in the the table below if and only if for any π ∈ NC(n)

κ
(π)
E [b0xi1b1, . . . , xinbn] = 0

unless π ∈ D(n) and π ≤ ker i.

Noncrossing partitions D Joint distribution

NC: Noncrossing partitions Freely independent
NCh: Noncrossing partitions with even block sizes Freely independent and even
NCb: Noncrossing partitions with block size ≤ 2 Freely independent semicircular
NC2: Noncrossing pair partitions Freely independent centered semicircular

PROOF. These results are well known. In the classical case, note that the re-
sults for P2,Pb are equivalent to the Wick formula for computing moments of
independent Gaussian families. In the free case, see [25, 28]. �

REMARK 1.18. It is clear from the definitions that the classical and free cu-
mulants can be solved for from the joint moments. In fact, a combinatorial formula
for the cumulants in terms of the moments can be given. First we recall the defini-
tion of the Möbius function on a partially ordered set.

DEFINITION 1.19. Let (P,<) be a finite partially ordered set. The Möbius
function μP :P × P → Z is defined by

μP (p,q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, p �≤ q,

1, p = q,

−1 + ∑
l≥1

(−1)l+1#{(p1, . . . , pl) ∈ P l :p < p1 < · · · < pl < q},
p < q.

THEOREM 1.20. Let (A,E : A → B) be an operator-valued probability
space, and let (xi)i∈I be a family of random variables. Define the B-valued mo-
ment functionals E(n) by

E(n)[a1, . . . , an] = E[a1 · · ·an].
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(1) Suppose that B is commutative. Then for any σ ∈ P(n) and a1, . . . , an ∈ A,
we have

c
(σ)
E [a1, . . . , an] = ∑

π∈P(n)
π≤σ

μP(n)(π,σ )E(π)[a1, . . . , an].

(2) For any σ ∈ NC(n) and a1, . . . , an ∈ A, we have

κ
(σ)
E [a1, . . . , an] = ∑

π∈NC(n)
π≤σ

μNC(n)(π, σ )E(π)[a1, . . . , an].

PROOF. This follows from the Möbius inversion formula; see [25, 28]. �

Easy quantum groups. We will now briefly recall some notions and results
from [7].

Consider a compact group G ⊂ On. By the Stone–Weierstrauss theorem, C(G)

is generated by the n2 coordinate functions uij sending a matrix in G to its (i, j)

entry. The structure of G as a compact group is captured by the commutative Hopf
C∗-algebra C(G) together with comultiplication, counit and antipode determined
by


(uij ) =
n∑

k=1

uik ⊗ ukj ,

ε(uij ) = δij ,

S(uij ) = uji.

Dropping the condition of commutativity, we obtain the following definition,
adapted from the fundamental paper of Woronowicz [34].

DEFINITION 1.21. An orthogonal Hopf algebra is a unital C∗-algebra A gen-
erated by n2 self-adjoint elements uij , such that the following conditions hold:

(1) The inverse of u = (uij ) ∈ Mn(A) is the transpose ut = (uji).
(2) 
(uij ) = ∑

k uik ⊗ ukj determines a morphism 
 :A → A ⊗ A.
(3) ε(uij ) = δij defines a morphism ε :A → C.
(4) S(uij ) = uji defines a morphism S :A → Aop .

It follows from the definitions that 
,ε,S satisfy the usual Hopf algebra ax-
ioms. If A is an orthogonal Hopf algebra, we use the heuristic formula “A =
C(G),” where G is an compact orthogonal quantum group. Of course if A is non-
commutative, then G cannot exist as a concrete object, and all statements about G

must be interpreted in terms of the Hopf algebra A.
The following two examples, constructed by Wang in [31, 32], are fundamental

to our considerations.
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DEFINITION 1.22.

(1) Ao(n) is the universal C∗-algebra generated by n2 self-adjoint elements uij ,
such that u = (uij ) ∈ Mn(Ao(n)) is orthogonal.

(2) As(n) is the universal C∗-algebra generated by n2 projections uij , such that
the sum along any row or column of u = (uij ) ∈ Mn(As(n)) is the identity.

As discussed above, we use the notation Ao(n) = C(O+
n ), As(n) = C(S+

n ), and
call O+

n and S+
n the free orthogonal group and free permutation group, respec-

tively.
We now recall the “easiness” condition from [7] for a compact orthogonal quan-

tum group Sn ⊂ G ⊂ O+
n . Let u, v be the fundamental representations of G,Sn on

C
n, respectively. By functoriality, the space Hom(u⊗k, u⊗l) of intertwining opera-

tors is contained in Hom(v⊗k, v⊗l) for any k, l. But the Hom-spaces for v are well
known: they are spanned by operators Tπ with π belonging to the set P(k, l) of
partitions between k upper and l lower points. Explicitly, if e1, . . . , en denotes the
standard basis of C

n, then the formula for Tπ is given by

Tπ(ei1 ⊗ · · · ⊗ eik ) = ∑
j1,...,jl

δπ

(
i1 · · · ik
j1 · · · jl

)
ej1 ⊗ · · · ⊗ ejl

.

Here the δ symbol appearing on the right-hand side is 1 when the indices “fit,” that
is, if each block of π contains equal indices, and 0 otherwise.

It follows from the above discussion that Hom(u⊗k, u⊗l) consists of certain
linear combinations of the operators Tπ , with π ∈ P(k, l). We call G “easy” if
these spaces are spanned by partitions.

DEFINITION 1.23. A compact orthogonal quantum group Sn ⊂ G ⊂ O+
n

is called easy if for each k, l ∈ N, there exist sets D(k, l) ⊂ P(k, l) such that
Hom(u⊗k, u⊗l) = span(Tπ :π ∈ D(k, l)). If we have D(k, l) ⊂ NC(k, l) for each
k, l ∈ N, we say that G is a free quantum group.

There are four natural examples of classical groups which are easy:

Group Partitions

Permutation group Sn P : All partitions
Orthogonal group On P2: Pair partitions
Hyperoctahedral group Hn Ph: Partitions with even block sizes
Bistochastic group Bn Pb: Partitions with block size ≤ 2

There are also the two trivial modifications S′
n = Sn × Z2 and B ′

n = Bn × Z2, and
it was shown in [7] that these six examples are the only ones.

There is a one-to-one correspondence between classical easy groups and free
quantum groups, which on a combinatorial level corresponds to restricting to non-
crossing partitions:
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Quantum group Partitions

S+
n NC: All noncrossing partitions

O+
n NC2: Noncrossing pair partitions

H+
n NCh: Noncrossing partitions with even block sizes

B+
n NCb: Noncrossing partitions with block size ≤ 2

There are also free versions of S′
n,B

′
n, constructed in [7].

In general, the class of easy quantum groups appears to be quite rigid (see [5]
for a discussion here). However, two more examples can be obtained as “half-
liberations.” The idea is that instead of removing the commutativity relations
from the generators uij of C(G) for a classical easy group G, which would
produce C(G+), we instead require that the the generators “half-commute,” that
is, abc = cba for a, b, c ∈ {uij }. More precisely, we define C(G∗) = C(G+)/I ,
where I is the ideal generated by the relations abc = cba for a, b, c ∈ {uij }. For
G = Sn,S

′
n,Bn,B

′
n we have G∗ = G, however for On,Hn, we obtain new quan-

tum groups O∗
n,H ∗

n . The corresponding partition categories E2,Eh consist of all
pair partitions, respectively all partitions, which are balanced in the sense that each
block contains as many odd as even legs.

2. Half independence. In this section, we introduce a new kind of indepen-
dence which appears in the de Finetti theorems for the half-liberated quantum
groups H ∗ and O∗. To define this notion, we require that the variables have a
certain degree of commutativity.

DEFINITION 2.1. Let (xi)i∈I be a family of noncommutative random vari-
ables. We say that the variables half-commute if

xixjxk = xkxjxi

for all i, j, k ∈ I .

Observe that if (xi)i∈I half-commute, then in particular x2
i commutes with xj

for any i, j ∈ I .

DEFINITION 2.2. Let (A,E : A → B) be an operator-valued probability
space, and suppose that B is contained in the center of A. Let (xi)i∈I be a family of
random variables in A which half-commute. We say that (xi)i∈I are conditionally
half-independent given B, or half-independent with respect to E, if the following
conditions are satisfied:

(1) The variables (x2
i )i∈I are conditionally independent given B.

(2) For any i1, . . . , ik ∈ I , we have

E[xi1 · · ·xik ] = 0

unless for each i ∈ I the set of 1 ≤ j ≤ k such that ij = i contains as many odd as
even numbers, that is, unless ker i is balanced.
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If B = C, then the variables are simply called half-independent.

REMARK 2.3. As a first remark, we note that half-independence is defined
only between random variables and not at the level of algebras, in contrast with
classical and free independence. In fact, it is known from [27] there are no other
good notions of independence between unital algebras other than classical and
free.

The conditions may appear at first to be somewhat artificial, but are motivated
by the following natural example.

EXAMPLE 2.4. Let (�,�,μ) be a (classical) probability space, and let L(μ)

denote the algebra of complex-valued random variables on � with finite moments
of all orders.

(1) Let (ξi)i∈I be a family of independent random variables in L(μ). Suppose
that for each i ∈ I , the distribution of ξi is such that

E[ξn
i ξm

i ] = 0

unless n = m. Define random variables xi in (M2(L(μ)),E ◦ tr) by

xi =
(

0 ξi

ξ i 0

)
.

A simple computation shows that the variables (xi)i∈I half-commute. Since

x2
i = |ξi |2I2,

it is clear that (x2
i )i∈I are independent with respect to E◦ tr. Moreover, the assump-

tion on the distributions of the ξi clearly implies that E[tr[xi1 · · ·xik ]] = 0 unless k

is even and ker i is balanced. So (xi)i∈I are half-independent.
Observe also that the distribution of xi is equal to that of (ξiξi)

1/2, where the
square root is chosen such that the distribution is even. We call this the squeezed
version of the complex distribution ξi (cf. [7]).

(2) Of particular interest is the case that the (ξi)i∈I have complex Gaussian
distributions. Here the distribution of xi is the squeezed version of the complex
Gaussian ξi , which is a symmetrized Rayleigh distribution.

REMARK 2.5. We will show in Proposition 2.8 below that any half-independ-
ent family can be modeled as in the example above. First, we will show that,
as for classical and free independence, the joint distribution of a family of half-
independent random variables (xi)i∈I is determined by the distributions of xi for
i ∈ I . It is convenient to first introduce the following family of permutations which
are related to the half-commutation relation.
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DEFINITION 2.6. We say that a permutation ω ∈ Sn preserves parity if ω(i) ≡
i (mod 2) for 1 ≤ i ≤ n.

The collection of parity preserving partitions in Sn clearly form a subgroup,
which is simply S({1,3, . . .})×S({2,4, . . .}). Moreover, this subgroup is generated
by the transpositions (i i + 2) for 1 ≤ i ≤ n − 2. It follows that if (xi)i∈I half-
commute, then

xi1 · · ·xin = xiω(1)
· · ·xiω(n)

,

whenever ω ∈ Sn preserves parity.

LEMMA 2.7. Let (A,E : A → B) be an operator-valued probability space
such that B is contained in the center of A. Suppose that (xi)i∈I is a family of
random variables in A which are conditionally half-independent given B. Then
the B-valued joint distribution of (xi)i∈I is uniquely determined by the B-valued
distributions of xi for i ∈ I .

PROOF. Let i1, . . . , ik ∈ I . We know that

E[xi1 · · ·xik ] = 0

unless we have that for each i ∈ I , the set of 1 ≤ j ≤ k such that ij = i has as
many odd as even elements. So suppose that this the case. By the remark above, we
know that xi1 · · ·xik = xiω(1)

· · ·xiω(k)
whenever ω ∈ Sk is parity preserving. With an

appropriate choose of ω, it follows that

xi1 · · ·xik = x
2(k1)
j1

· · ·x2(km)
jm

for some j1, . . . , jm ∈ I and k1, . . . , km ∈ N such that k = 2(k1 + · · · + km). Since
the joint distribution of (x2

i )i∈I is clearly determined by the distributions of xi for
i ∈ I , the result follows. �

PROPOSITION 2.8. Let (xi)i∈I be a half-commuting family of random vari-
ables in a W∗-probability space (M,ϕ) which are half-independent. Then there
are independent complex-valued random variables (ξi)i∈I such that E[ξn

i ξm
i ] = 0

unless n = m, and such that (xi)i∈I has the same joint distribution as the family
(yi)i∈I ,

yi =
(

0 ξi

ξ i 0

)
.

PROOF. Let (Xi)i∈I be a family of independent random variables such that
Xi has the same distribution as xi . Let (Ui)i∈I be a family of independent Haar
unitary random variables which are independent from (Xi)i∈I , and let ξi = UiXi .
Then (ξi)i∈I are independent and

E[ξn
i ξm

i ] = E[Xn+m
i ]E[Un

i Ui
m] = δnmϕ(x2n

i ).
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From Example 2.4, the variables (yi)i∈I defined by

yi =
(

0 ξi

ξ i 0

)
are half-independent, and yi has the same distribution as xi for each i ∈ I . By
Lemma 2.7, (yi)i∈I has the same joint distribution as (xi)i∈I . �

REMARK 2.9. We have stated our results in the scalar case B = C for sim-
plicity, but note that with suitable modifications, Example 2.4 and Proposition 2.8
apply equally well to conditionally half-independent families.

We will now develop a combinatorial theory for half-independence, based on
the family Eh of balanced partitions.

DEFINITION 2.10. Let (A,E : A → B) be an operator-valued probability
space, and suppose that B is contained in the center of A. Let (xi)i∈I be a family
of random-variables in A, and suppose that

E[xi1 · · ·xik ] = 0

for any odd k and i1, . . . , ik ∈ I . Define the half-liberated cumulants γ
(n)
E by the

half-liberated moment-cumulant formula

E[xi1 · · ·xik ] = ∑
π∈Eh(k)

π≤ker i

γ
(π)
E [xi1, . . . , xik ],

where γ
(π)
E [xi1, . . . , xik ] is defined, as in the classical case, by the formula

γ
(π)
E [xi1, . . . , xik ] = ∏

V ∈π

γ
(|V |)
E (V )[xi1, . . . , xik ].

Observe that both sides of the moment-cumulant formula above are equal to
zero for odd values of k, and for even values the right hand side is equal to
γ

(k)
E [xi1, . . . , xik ] plus products of lower ordered terms and hence γ

(k)
E may be

solved for recursively. As in the free and classical cases, we may apply the Möbius
inversion formula to obtain the following equation for γ

(π)
E , π ∈ Eh(k):

γ
(π)
E (xi1, . . . , xik ) = ∑

σ∈Eh(k)
σ≤π

μEh(k)(σ,π)E(π)[xi1, . . . , xik ].

THEOREM 2.11. Let (A,E : A → B) be an operator-valued probability
space, and suppose that B is contained in the center of A. Suppose (xi)i∈N is
a family of variables in A which half-commute. Then the following conditions are
equivalent:
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(1) (xi)i∈N are half-independent with respect to E.
(2) E[xi1 · · ·xik ] = 0 whenever k is odd, and

γ
(π)
E [xi1, . . . , xik ] = 0

for any π ∈ Eh(k) such that π �≤ ker i.

PROOF. First, suppose that condition (2) holds. From the moment-cumulant
formula, we have

E[xi1 · · ·xik ] = ∑
π∈Eh(k)

π≤ker i

γ
(π)
E [xi1, . . . , xik ]

for any k ∈ N and i1, . . . , ik ∈ I . Observe that if ker i is not balanced then there
is no π ∈ Eh(k) such that π ≤ ker i, so it follows that E[xi1 · · ·xik ] = 0. It re-
mains to show that (x2

i )i∈I are independent. Choose k1, . . . , km ∈ N, distinct
i1, . . . , im ∈ I and let k = 2(k1 + · · · + km). Let τ ∈ Eh(k) be the partition with
blocks {1, . . . ,2k1}, . . . , {2(k1 + · · · + km−1) + 1, . . . ,2k}. Then

E
[
x

(2k1)
i1

· · ·x(2km)
im

] = ∑
π∈Eh(k)

π≤τ

γ
(π)
E [xi1, . . . , xi1, xi2, . . . , xim, . . . , xim]

= ∏
1≤j≤m

∑
π∈Eh(2kj )

γ
(π)
E [xij , . . . , xij ]

= ∏
1≤j≤m

E
[
x

(2kj )

ij

]
,

so that (x2
i )i∈I are independent and hence (xi)i∈I are half-independent.

The implication (1) ⇒ (2) actually follows from (2) ⇒ (1). Indeed, sup-
pose that (xi)i∈I are half-independent. Consider the algebra A′ = B〈yi : i ∈ I 〉/
〈yiyjyk = ykyjyi〉 of polynomials in half-commuting indeterminates (yi)i∈I and
coefficients in B. Define a conditional expectation E′ : A′ → B by

E′[yi1 · · ·yik ] = ∑
π∈Eh(k)

π≤ker i

γ
(π)
E [xi1, . . . , xik ].

(It is easy to see that E′ is well defined, that is, compatible with the half-
commutation relations.) Since the half-liberated cumulants are uniquely deter-
mined by the moment-cumulant formula, it follows that

γ
(π)
E′ [yi1, . . . , yik ] =

{
γ

(π)
E [xi1, . . . , xik ], π ≤ ker i,

0, otherwise.

By the first part, it follows that (yi)i∈I are half-independent with respect to E′.
Since yi has the same B-valued distribution as xi , it follows from Lemma 2.7
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that (yi)i∈I have the same joint distribution as (xi)i∈I . It then follows from the
moment-cumulant formula that these families have the same half-liberated cumu-
lants, and hence γ

(π)
E [xi1, . . . , xik ] = 0 unless π ≤ ker i. �

Recall that (centered) Gaussian and semicircular distributions are character-
ized by the property that their nonvanishing cumulants are those corresponding to
pair and noncrossing pair partitions, respectively. We will now show that for half-
independence, it is the symmetrized Rayleigh distribution which has this property.
This follows from the considerations in [7], but we include here a direct proof.

PROPOSITION 2.12. Let x be a random variable in (A, ϕ) which has an even
distribution. Then x has a symmetrized Rayleigh distribution if and only if

γ
(π)
E [x, . . . , x] = 0

for any π ∈ Eh(k) such that π /∈ E2(k).

PROOF. Since the distribution of x is determined uniquely by its half-liberated
cumulants, it suffices to show that if the cumulants have the stated property then x

has a symmetrized Rayleigh distribution. Suppose that this is the case, then

ϕ(xk) = ∑
π∈E2(k)

γ (π)[x, . . . , x]

= γ (2)[x, x]#{π ∈ E2(k)}.
It is easy to see that the number of partitions in E2(k) is m! if k = 2m is even and
is zero if k is odd. Since these agree with the moments of a symmetrized Rayleigh
distribution, the result follows. �

3. Weingarten estimate. It is a fundamental result of Woronowicz [34]
that if G is a compact orthogonal quantum group, then there is a unique state∫

:C(G) → C, called the Haar state, which is left and right invariant in the sense
that (∫

⊗ id
)

(f ) =

∫
(f ) · 1C(G) =

(
id ⊗

∫ )

(f )

(
f ∈ C(G)

)
.

If G ⊂ On is a compact group, then the Haar state on C(G) is given by integrating
against the Haar measure on G.

One quite useful aspect of the easiness condition for a compact orthogonal quan-
tum group is that it leads to a combinatorial Weingarten formula for computing the
Haar state, which we now recall from [7].

DEFINITION 3.1. Let D(k) ⊂ P(k) be a collection of partitions. For n ∈ N,
define the Gram matrix (Gkn(π,σ ))π,σ∈D(k) by the formula

Gkn(π,σ ) = n|π∨σ |.
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Gkn is invertible for n sufficiently large (see Proposition 3.4), define the Wein-
garten matrix Wkn to be its inverse.

THEOREM 3.2. Let G ⊂ O+
n be an easy quantum group and let D(k) ⊂

P(0, k) be the corresponding collection of partitions having no upper points. If
Gkn is invertible, then∫

ui1j1 · · ·uikjk
= ∑

π,σ∈D(k)

π≤ker i
σ≤ker j

Wkn(π,σ ).

REMARK 3.3. The statement of the theorem above is from [7], but goes back
to work of Weingarten [33] and was developed in a series of papers [2, 3, 11, 12].
Note that this reduces the problem of evaluating integrals over G to computing the
entries of the Weingarten matrix. We will now give an estimate on the asymptotic
behavior of Wkn as n → ∞. This unifies and extends the estimates given in [2] and
[15] for O+, S+.

PROPOSITION 3.4. Let k ∈ N and D(k) ⊂ P(k). For n sufficiently large, the
Gram matrix Gkn is invertible. Moreover, the entries of the Weingarten matrix
Wkn = G−1

kn satisfy the following:

(1) Wkn(π,σ ) = O(n|π∨σ |−|π |−|σ |).
(2) If π ≤ σ , then

n|π |Wkn(π,σ ) = μD(k)(π,σ ) + O(n−1),

where μD(k) is the Möbius function on the partially ordered set D(k) under the
restriction of the order on P(k).

PROOF. We use a standard method from [11, 12], further developed in [2, 3,
13].

First, note that

Gkn = �
1/2
kn (1 + Bkn)�

1/2
kn ,

where

�kn(π,σ ) =
{

n|π |, π = σ ,
0, π �= σ ,

Bkn(π,σ ) =
{

0, π = σ ,
n|π∨σ |−(|π |+|σ |)/2, π �= σ .

Note that the entries of Bkn are O(n−1/2), it follows that for n sufficiently large
1 + Bkn is invertible and

(1 + Bkn)
−1 = 1 − Bkn + ∑

l≥1

(−1)l+1Bl+1
kn .
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Gkn is then invertible, and

Wkn(π,σ ) = ∑
l≥1

(−1)l+1(�
−1/2
kn Bl+1

kn �
−1/2
kn )(π,σ )

+
{

n−|π |, π = σ ,
−n|π∨σ |−|π |−|σ |, π �= σ .

Now for l ≥ 1 we have

(�
−1/2
kn Bl+1

kn �
−1/2
kn )(π,σ )

= ∑
ν1,...,νl∈D(k)

π �=ν1 �=···�=νl �=σ

n|π∨ν1|+|ν1∨ν2|+···+|νl∨σ |−|ν1|−···−|νl |−|π |−|σ |.

So to prove (1), it suffices to show that if ν1, . . . , νl ∈ D(k), then

|π ∨ ν1| + |ν1 ∨ ν2| + · · · + |νl ∨ σ | ≤ |π ∨ σ | + |ν1| + · · · + |νl|.
We will use the fact that P(k) is a semi-modular lattice ([10], Section I.8, Ex-

ample 9): If ν, τ ∈ P(k), then

|ν| + |τ | ≤ |ν ∨ τ | + |ν ∧ τ |.
We will now prove the claim by induction on l, for l = 1 we may apply the formula
above to find

|π ∨ ν| + |ν ∨ σ | ≤ |(π ∨ ν) ∨ (ν ∨ σ)| + |(π ∨ ν) ∧ (ν ∨ σ)|
≤ |π ∨ σ | + |ν|.

Now let l > 1, by induction we have

|π ∨ ν1| + |ν1 ∨ ν2| + · · · + |νl−1 ∨ νl| ≤ |π ∨ νl| + |ν1| + · · · + |νl−1|.
Also |νl ∨ σ | ≤ |π ∨ σ | + |νl| − |π ∨ νl|, and the result follows.

To prove (2), suppose π,σ ∈ D(k) and π ≤ σ . The terms which contribute to
order n−|π | in the expansion come from sequences ν1, . . . , νl ∈ D(k) such that
π �= ν1 �= · · · �= νl �= σ and

|π ∨ ν1| + · · · + |νl ∨ σ | = |σ | + |ν1| + · · · + |νl|.
Since |π ∨ ν1| ≤ |ν1|, |ν1 ∨ ν2| ≤ |ν2|, . . . , |νl ∨ σ | ≤ σ , it follows that each of
these must be an equality, which implies π < ν1 < · · · < νl < σ . Conversely, any
ν1, . . . , νl ∈ D(k) such that π < ν1 < · · · < νl < σ clearly satisfy this equation.
Therefore, the coefficient of n−|π | in Wkn(π,σ ) is⎧⎪⎨⎪⎩

1, π = σ ,

−1 +
∞∑
l=1

(−1)l+1#{(ν1, . . . , νl) ∈ D(k)l :π < ν1 < · · · < νl < σ }, π < σ ,



DE FINETTI THEOREMS 421

which is precisely μD(k)(π,σ ). �

Recall that the free, half-liberated and classical cumulants are obtained from
moment functionals by using the Möbius functions on NC,Eh and P , respectively.
To show that this is compatible with Proposition 3.4, we will need the following
result.

PROPOSITION 3.5.

(1) If D = NC,NC2,NCb,NCh, then

μD(k)(π,σ ) = μNC(k)(π, σ )

for all π,σ ∈ D(k).
(2) If D = Eh,E2, then

μD(k)(π,σ ) = μEh(k)(π, σ )

for all π,σ ∈ D(k).
(3) If D = P,P2,Pb,Ph, then

μD(k)(π,σ ) = μP(k)(π, σ )

for all π,σ ∈ D(k).

PROOF. Let Q = NC,Eh,P according to cases (1), (2), (3). It is easy to
see in each case that D(k) is closed under taking intervals in Q(k), that is, if
π1, π2 ∈ D(k), σ ∈ Q(k) and π1 < σ < π2 then σ ∈ D(k). The result now follows
immediately from the definition of the Möbius function. �

4. Finite quantum invariant sequences. We begin this section by defin-
ing the notion of quantum invariance for a sequence of noncommutative ran-
dom variables under “transformations” coming from an orthogonal quantum group
Gn ⊂ O+

n .
Let Pn = C〈t1, . . . , tn〉, and let αn :Pn → Pn ⊗ C(Gn) be the unique unital

homomorphism such that

αn(tj ) =
n∑

i=1

ti ⊗ uij .

It is easily verified that αn is an action of Gn, that is,

(id ⊗ 
) ◦ αn = (αn ⊗ id) ◦ αn

and

(id ⊗ ε) ◦ αn = id.
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DEFINITION 4.1. Let (x1, . . . , xn) be a sequence of random variables in a
noncommutative probability space (B, ϕ). We say that the joint distribution of this
sequence is invariant under Gn, or that the sequence is Gn-invariant, if the distri-
bution functional ϕx :Pn → C is invariant under the coaction αn, that is,

(ϕx ⊗ id)αn(p) = ϕx(p)

for all p ∈ Pn. More explicitly, the sequence (x1, . . . , xn) is Gn-invariant if

ϕ(xj1 · · ·xjk
)1C(Gn) = ∑

1≤i1,...,ik≤n

ϕ(xi1 · · ·xik )ui1j1 · · ·uikjk

as an equality in C(Gn), for all k ∈ N and 1 ≤ j1, . . . , jk ≤ n.

REMARK 4.2. Suppose that Gn ⊂ On is a compact group. By evaluating both
sides of the above equation at g ∈ Gn, we see that a sequence (x1, . . . , xn) is Gn-
invariant if and only if

ϕ(xj1 · · ·xjk
) = ∑

1≤i1,...,ik≤n

gi1j1 · · ·gikjk
ϕ(xi1 · · ·xik )

for each k ∈ N, 1 ≤ j1, . . . , jk ≤ n and g = (gij ) ∈ Gn, which coincides with the
usual notion of Gn-invariance for a sequence of classical random variables.

We will now prove a converse to Theorem 1, which holds for finite sequences
and in a purely algebraic context. The proof is adapted from the method of [24],
Proposition 3.1.

PROPOSITION 4.3. Let (A, ϕ) be a noncommutative probability space, 1 ∈
B ⊂ A a unital subalgebra and E : A → B a conditional expectation which pre-
serves ϕ. Let (x1, . . . , xn) be a sequence in A.

(1) Free case:

(a) If x1, . . . , xn are freely independent and identically distributed with
amalgamation over B, then the sequence is S+

n -invariant.
(b) If x1, . . . , xn are freely independent and identically distributed with

amalgamation over B, and have even distributions with respect to E, then
the sequence is H+

n -invariant.
(c) If x1, . . . , xn are freely independent and identically distributed with

amalgamation over B, and have semicircular distributions with respect to E,
then the sequence is B+

n -invariant.
(d) If x1, . . . , xn are freely independent and identically distributed with

amalgamation over B, and have centered semicircular distributions with re-
spect to E, then the sequence is O+

n -invariant.

(2) Half-liberated case: Suppose that (x1, . . . , xn) half-commute, and that B is
central in A.
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(a) If x1, . . . , xn are half-independent and identically distributed given B,
then the sequence is H ∗

n -invariant.
(b) If x1, . . . , xn are half-independent and identically distributed given B,

and have symmetrized Rayleigh distributions with respect to E, then the se-
quence is O∗

n -invariant.

(3) Suppose that B and x1, . . . , xn generate a commutative algebra.

(a) If x1, . . . , xn are conditionally independent and identically distributed
given B, then the sequence is Sn-invariant.

(b) If x1, . . . , xn are conditionally independent and identically distributed
given B, and have even distributions with respect to E, then the sequence is
Hn-invariant.

(c) If x1, . . . , xn are conditionally independent and identically distributed
given B, and have Gaussian distributions with respect to E, then the sequence
is Bn-invariant.

(d) If x1, . . . , xn are conditionally independent and identically distributed
given B, and have centered Gaussian distributions with respect to E, then the
sequence is On-invariant.

PROOF. Suppose that the joint distribution of (x1, . . . , xn) satisfies one of the
conditions specified in the statement of the proposition, and let D be the partition
family associated to the corresponding easy quantum group. By Propositions 1.17
and 2.11, and the moment-cumulant formulae, for any k ∈ N and 1 ≤ j1, . . . , jk ≤
n we have ∑

1≤i1,...,ik≤n

ϕ(xi1 · · ·xik )ui1j1 · · ·uikjk

= ∑
1≤i1,...,ik≤n

ϕ(E[xj1 · · ·xjk
])ui1j1 · · ·uikjk

= ∑
1≤i1,...,ik≤n

∑
π∈D(k)

π≤ker i

ϕ
(
ξ

(π)
E [x1, . . . , x1])ui1j1 · · ·uikjk

= ∑
π∈D(k)

ϕ
(
ξ

(π)
E [x1, . . . , x1]) ∑

1≤i1,...,ik≤n

π≤ker i

ui1j1 · · ·uikjk
,

where ξ denotes the free, half-liberated or classical cumulants in cases (1), (2) and
(3), respectively. It follows from the considerations in [7], or by direct computa-
tion, that if π ∈ D(k) then∑

1≤i1,...,ik≤n

π≤ker i

ui1j1 · · ·uikjk
=

{
1C(Gn), π ≤ ker j,
0, otherwise.
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Applying this above, we find∑
1≤i1,...,ik≤n

ϕ(xi1 · · ·xik )ui1j1 · · ·uikjk
= ∑

π∈D(k)

π≤ker j

ϕ
(
ξ

(π)
E [x1, . . . , x1])1C(Gn)

= ϕ(xj1 · · ·xjk
)1C(Gn),

which completes the proof. �

REMARK 4.4. To prove the approximation result for finite sequences, we will
require more analytic structure. Throughout the rest of the section, we will assume
that Gn ⊂ O+

n is a compact quantum group, (M,ϕ) is a W∗-probability space
and (x1, . . . , xn) is a sequence of self-adjoint random variables in M . We denote
the von Neumann algebra generated by (x1, . . . , xn) by Mn, and define the Gn-
invariant subalgebra by

Bn = W∗({p(x) :p ∈ Pαn
n }),

where Pαn
n denotes the fixed point algebra of the action αn, that is,

Pαn
n = {

p ∈ Pn :αn(p) = p ⊗ 1C(Gn)

}
.

We now begin the technical preparations for our approximation result. First, we
will need to extend the action αn to the von Neumann algebra context. L∞(Gn)

will denote the von Neumann algebra obtained by taking the weak closure of
πn(C(Gn)), where πn is the GNS representation of C(Gn) on the GNS Hilbert
space L2(Gn) for the Haar state. L∞(Gn) is a Hopf von Neumann algebra, with
the natural structure induced from C(Gn).

PROPOSITION 4.5. Suppose that (x1, . . . , xn) is Gn-invariant. Then there is a
right coaction α̃n :Mn → Mn ⊗ L∞(Gn) determined by

α̃n(p(x)) = (evx ⊗ πn)αn(p)

for p ∈ Pn. Moreover, the fixed point algebra of α̃n is precisely the Gn-invariant
subalgebra Bn.

PROOF. This follows from [13], Theorem 3.3, after identifying the GNS rep-
resentation of Pn for the state ϕx with the homomorphism evx :Pn → Mn. �

There is a natural conditional expectation En :Mn → Bn given by integrating
the coaction α̃n with respect to the Haar state, that is,

En[m] =
(

id ⊗
∫ )

α̃n(m).

By using the Weingarten calculus, we can give a simple combinatorial formula
for the moment functionals with respect to En if Gn is one of the easy quantum
groups under consideration. In the half-liberated case, we must first show that Bn

is central in Mn.
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LEMMA 4.6. Suppose that (x1, . . . , xn) half-commute. If H ∗
n ⊂ Gn, then the

Gn-invariant subalgebra Bn is contained in the center of Mn.

PROOF. Since the Gn-invariant subalgebra is clearly contained in the H ∗
n -

invariant subalgebra, it suffices to prove the result for Gn = H ∗
n . Observe that

the representation of Gn on the subspace of Pn consisting of homogeneous non-
commutative polynomials of degree k, given by the restriction of αn, is naturally
identified with u⊗k , where u is the fundamental representation of Gn. As discussed
in Section 1, Fix(u⊗k) is spanned by the operators Tπ for π ∈ Eh(k). It follows
that the fixed point algebra of αn is spanned by

pπ = ∑
1≤i1,...,ik≤n

π≤ker i

ti1 · · · tik

for k ∈ N and π ∈ Eh(k). Therefore, Bn is generated by pπ(x), for k ∈ N and
π ∈ Eh(k). Recall from Section 2 that if ω ∈ Sk is a parity preserving permu-
tation, then xi1 · · ·xik = xiω(1)

· · ·xiω(k)
for any 1 ≤ i1, . . . , ik ≤ n. It follows that

pπ(x) = pω(π)(x), where ω(π) is given by the usual action of permutations on
set partitions. Now if π ∈ Eh(k), it is easy to see that there is a parity preserving
permutation ω ∈ Sk such that

ω(π) = {
(1, . . . ,2k1), . . . ,

(
2(k1 + · · · + kl−1) + 1, . . . ,2(k1 + . . . + kl)

)}
is an interval partition. We then have

pπ(x) = pω(π)(x) =
(

n∑
i1=1

x
2k1
i1

)
· · ·

(
n∑

il=1

x
2kl

il

)
.

Since x2
i is central in Mn for 1 ≤ i ≤ n, the result follows. �

PROPOSITION 4.7. Suppose that (x1, . . . , xn) is Gn-invariant, and that one of
the following conditions is satisfied:

(1) Gn is a free quantum group O+
n , S+

n ,H+
n or B+

n .
(2) Gn is a half-liberated quantum group O∗

n or H ∗
n and (x1, . . . , xn) half-

commute.
(3) Gn is an easy group On,Sn,Hn or Bn and (x1, . . . , xn) commute.

Then for any π in the partition category D(k) for the easy quantum group Gn, and
any b0, . . . , bk ∈ Bn, we have

E(π)
n [b0x1b1, . . . , x1bk] = 1

n|π |
∑

1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk,

which holds if n is sufficiently large that the Gram matrix Gkn is invertible.
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PROOF. We prove this by induction on the number of blocks of π . First, sup-
pose that π = 1k is the partition with only one block. Then

E(1k)
n [b0x1b1, . . . , x1bk] = En[b0x1 · · ·x1bk]

= ∑
1≤i1,...,ik≤n

b0xi1 · · ·xikbk

∫
ui11 · · ·uik1,

where we have used the fact that b0, . . . , bk are fixed by the coaction α̃n. Applying
the Weingarten integration formula in Proposition 3.2, we have

En[b0x1 · · ·x1bk] = ∑
1≤i1,...,ik≤n

b0xi1 · · ·xikbk

∑
σ,π∈D(k)

π≤ker i

Wkn(π,σ )

= ∑
π∈D(k)

( ∑
σ∈D(k)

Wkn(π,σ )

) ∑
1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk.

Observe that Gkn(σ,1k) = n|σ∨1k | = n for any σ ∈ D(k). It follows that for any
π ∈ D(k), we have

n · ∑
σ∈D(k)

Wkn(π,σ ) = ∑
σ∈D(k)

Wkn(π,σ )Gkn(σ,1k)

= δπ1k
.

Applying this above, we find

En[b0x1 · · ·x1bk] = ∑
π∈D(k)

n−1δπ1k

∑
1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk

= 1

n

n∑
i=1

b0xi · · ·xibk,

as desired.
If condition (2) or (3) are satisfied, then the general case follows from the for-

mula

E(π)
n [b0x1b1, . . . , x1bk] = b1 · · ·bk

∏
V ∈π

En(V )[x1, . . . , x1],

where in the half-liberated case we are applying the previous lemma. The one thing
we must check here is that if π ∈ D(k) and V is a block of π with s elements, then
1s ∈ D(s). This is easily verified, in each case, for D = P,P2,Ph,Pb,Eh,E2.

Suppose now that condition (1) is satisfied. Let π ∈ D(k). Since π is noncross-
ing, π contains an interval V = {l + 1, . . . , l + s + 1}. We then have

E(π)
n [b0x1b1, . . . , x1bk]

= E(π\V )
n [b0x1b1, . . . ,En[x1bl+1 · · ·x1bl+s]x1, . . . , x1bk].
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To apply induction, we must check that π \ V ∈ D(k − s) and 1s ∈ D(s). Indeed,
this is easily verified for NC,NC2,NCh and NCb. Applying induction, we have

E(π)
n [b0x1b1, . . . , x1bk]

= 1

n|π |−1

∑
1≤i1,...,il ,

il+s+1,...,ik≤n

(π\V )≤ker i

b0xi1 · · ·bl(En[x1bl+1 · · ·x1bl+s])xil+s
· · ·xikbk

= 1

n|π |−1

∑
1≤i1,...,il ,

il+s+1,...,ik≤n

(π\V )≤ker i

b0xi1 · · ·bl

(
1

n

n∑
i=1

xibl+1 · · ·xibl+s

)
xil+s

· · ·xikbk

= 1

n|π |
∑

1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk,

which completes the proof. �

We are now prepared to prove the approximation result for finite sequences.

THEOREM 4.8. Suppose that (x1, . . . , xn) is Gn-invariant, and that one of the
following conditions is satisfied:

(1) Gn is a free quantum group O+
n , S+

n ,H+
n or B+

n .
(2) Gn is a half-liberated quantum group O∗

n or H ∗
n and (x1, . . . , xn) half-

commute.
(3) Gn is an easy group On,Sn,Hn or Bn and (x1, . . . , xn) commute.

Let (y1, . . . , yn) be a sequence of Bn-valued random variables with Bn-valued joint
distribution determined as follows:

• G = O+: Free semicircular, centered with same variance as x1.
• G = S+: Freely independent, yi has same distribution as x1.
• G = H+: Freely independent, yi has same distribution as x1.
• G = B+: Free semicircular, same mean and variance as x1.
• G = O∗: Half-liberated Gaussian, same variance as x1.
• G = H ∗: Half-independent, yi has same distribution as x1.
• G = O: Independent Gaussian, centered with same variance as x1.
• G = S: Independent, yi has same distribution as x1.
• G = H : Independent, yi has same distribution as x1.
• G = B: Independent Gaussian, same mean and variance as x1.

If 1 ≤ j1, . . . , jk ≤ n and b0, . . . , bk ∈ Bn, then

‖En[b0xj1 · · ·xjk
bk] − E[b0yj1 · · ·yjk

bk]‖ ≤ Ck(G)

n
‖x1‖k‖b0‖ · · · ‖bk‖,
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where Ck(G) is a universal constant which depends only on k and the easy quan-
tum group G.

PROOF. First, we note that it suffices to prove the statement for n sufficiently
large, in particular we will assume throughout that n is sufficiently large for the
Gram matrix Gkn to be invertible.

Let 1 ≤ j1, . . . , jk ≤ n and b0, . . . , bk ∈ Bn. We have

En[b0xj1 · · ·xjk
bk] = ∑

1≤i1,...,ik≤n

b0xi1 · · ·xikbk

∫
ui1j1 · · ·uikjk

= ∑
1≤i1,...,ik≤n

b0xi1 · · ·xikbk

∑
π,σ∈D(k)

π≤ker i
σ≤ker j

Wkn(π,σ )

= ∑
σ∈D(k)

σ≤ker j

∑
π∈D(k)

Wkn(π,σ )
∑

1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk.

On the other hand, it follows from the assumptions on (y1, . . . , yn) and the various
moment-cumulant formulae that

E[b0yj1 · · ·yjk
bk] = ∑

σ∈D(k)

σ≤ker j

ξ
(σ)
En

[b0x1b1, . . . , x1bk],

where ξ denotes the relevant free, classical or half-liberated cumulants. The right-
hand side can be expanded, via Möbius inversion, in terms of expectation func-
tionals E

(π)
n [b0x1b1, . . . , x1bk] where π is a partition in NC,Eh,P according

to cases (1), (2), (3), and π ≤ σ for some σ ∈ D(k). Now if π /∈ D(k) then
we claim that this expectation functional is zero. Indeed this is only possible if
D = NC2,NCh,P2,Ph and π has a block with an odd number of legs. But it is
easy to see that in these cases x1 has an even distribution with respect to En, and
therefore E

(π)
n [b0x1b1, . . . , x1bk] = 0 as claimed. This observation, together with

Proposition 3.5, allows to to rewrite the above equation as

E[b0yj1 · · ·yjk
bk] = ∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)
π≤σ

μD(k)(π, σ )E(π)
n [b0x1b1, . . . , x1bk].

Applying Lemma 4.7, we have

E[b0yj1 · · ·yjk
bk] = ∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)
π≤σ

μD(k)(π, σ )n−|π | ∑
1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk.
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Comparing these two equations, we find that

En[b0xj1 · · ·xjk
bk] − E[b0yj1 · · ·yjk

bk]
= ∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)

(
Wkn(π,σ ) − μD(k)(π,σ )n−|π |) ∑

1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk.

Now since x1, . . . , xn are identically distributed with respect to the faithful state ϕ,
it follows that these variables have the same norm. Therefore,∥∥∥∥ ∑

1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk

∥∥∥∥ ≤ n|π |‖x1‖k‖b0‖ · · · ‖bk‖

for any π ∈ D(k). Combining this with former equation, we have

‖En[b0xj1 · · ·xjk
bk] − E[b0yj1 · · ·yjk

bk]‖
≤ ∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)

∣∣Wkn(π,σ )n|π | − μD(k)(π,σ )
∣∣‖x1‖k‖b0‖ · · · ‖bk‖.

Setting

Ck(G) = sup
n∈N

n · ∑
σ,π∈D(k)

∣∣Wkn(π,σ )n|π | − μD(k)(π,σ )
∣∣,

which is finite by Proposition 3.4, completes the proof. �

5. Infinite quantum invariant sequences. In this section, we will prove The-
orem 1. Throughout this section, we will assume that G is one of the easy quantum
groups O,S,H,B,O∗,H ∗,O+, S+,H+ or B+. We will make use of the inclu-
sions Gn ↪→ Gm for n < m, which correspond to the Hopf algebra morphisms
ωn,m :C(Gm) → C(Gn) determined by

ωn,m(uij ) =
{

uij , 1 ≤ i, j ≤ n,
δij 1C(Gn), max{i, j} > n.

The existence of ωn,m may be verified in each case by using the universal relations
of C(Gn).

We begin by extending the notion of Gn-invariance to infinite sequences.

DEFINITION 5.1. Let (xi)i∈N be a sequence in a noncommutative probability
space (A, ϕ). We say that the joint distribution of (xi)i∈N is invariant under G, or
that the sequence is G-invariant, if (x1, . . . , xn) is Gn-invariant for each n ∈ N.

This means that the joint distribution functional of (x1, . . . , xn) is invariant un-
der the action αn :Pn → Pn ⊗ C(Gn) for each n ∈ N. It will be convenient to
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extend these actions to P∞ = C〈ti : i ∈ N〉, by defining βn :P∞ → P∞ ⊗C(Gn)

to be the unique unital homomorphism such that

βn(tj ) =
⎧⎪⎨⎪⎩

n∑
i=1

ti ⊗ uij , 1 ≤ j ≤ n,

tj ⊗ 1C(Gn), j > n.

It is clear that βn is an action of Gn, moreover we have the relations

(id ⊗ ωn,m) ◦ βm = βn

and

(ιn ⊗ id) ◦ αn = βn ◦ ιn,

where ιn :Pn → P∞ is the natural inclusion. Using these compatibilities, it is not
hard to see that a sequence (xi)i∈N is G-invariant if and only if the joint distribution
functional ϕx :P∞ → C is invariant under βn for each n ∈ N.

Throughout the rest of the section, (M,ϕ) will be a W∗-probability space and
(xi)i∈N a sequence of self-adjoint random variables in (M,ϕ). We will assume that
M is generated as a von Neumann algebra by {xi : i ∈ N}. L2(M,ϕ) will denote the
GNS Hilbert space, with inner product 〈m1,m2〉 = ϕ(m∗

1m2). The strong topology
on M will be taken with respect to the faithful representation on L2(M,ϕ). We set

Bn = W∗({p(x) :p ∈ Pβn∞ }),
where P

βn∞ is the fixed point algebra of the action βn. Since

(id ⊗ ωn,n+1) ◦ βn+1 = βn,

it follows that Bn+1 ⊂ Bn for all n ≥ 1. We then define the G-invariant subalgebra
by

B = ⋂
n≥1

Bn.

REMARK 5.2. If (xi)i∈N is G-invariant, then as in Proposition 4.5, for each
n ∈ N there is a right coaction β̃n :M → M ⊗ L∞(Gn) determined by

β̃n(p(x)) = (evx ⊗ πn)βn(p)

for p ∈ P∞, and moreover the fixed point algebra of β̃n is Bn. For each n ∈ N,
there is then a ϕ-preserving conditional expectation En :M → Bn given by inte-
grating the action β̃n, that is,

En[m] =
(

id ⊗
∫ )

β̃n(m)

for m ∈ M . By taking the limit as n → ∞, we obtain a ϕ-preserving conditional
expectation onto the G-invariant subalgebra.
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PROPOSITION 5.3. Suppose that (xi)i∈N is G-invariant. Then:

(1) For any m ∈ M , the sequence En[m] converges in | · |2 and the strong topol-
ogy to a limit E[m] in B. Moreover, E is a ϕ-preserving conditional expectation
of M onto B.

(2) Fix π ∈ NC(k) and m1, . . . ,mk ∈ M , then

E(π)[m1 ⊗ · · · ⊗ mk] = lim
n→∞E(π)

n [m1 ⊗ · · · ⊗ mk],
with convergence in the strong topology.

PROOF. The proof follows from [14], Proposition 4.7. Note that (1) is just a
simple noncommutative reversed martingale convergence theorem. More sophisti-
cated convergence theorems for noncommutative martingales have been obtained;
see, for example, [21, 22]. �

We are now prepared to prove Theorem 1.

PROOF OF THEOREM 1. Let j1, . . . , jk ∈ N and b0, . . . , bk ∈ B . As in the
proof of Theorem 4.8, we have

E[b0xj1 · · ·xjk
bk]

= lim
n→∞En[b0xj1 · · ·xjk

bk]
= lim

n→∞
∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)

Wkn(π,σ )
∑

1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk

= lim
n→∞

∑
σ∈D(k)

σ≤ker j

∑
π∈D(k)
π≤σ

μD(k)(π, σ )n−|π | ∑
1≤i1,...,ik≤n

π≤ker i

b0xi1 · · ·xikbk.

By Proposition 4.7, and using the compatibility

( ι̃n ⊗ id) ◦ α̃n = β̃n ◦ ι̃n,

where ι̃n :W ∗(x1, . . . , xn) → M is the obvious inclusion and α̃n is as in the previ-
ous section, we have

E[b0xj1 · · ·xjk
bk] = lim

n→∞
∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)
π≤σ

μD(k)(π, σ )E(π)
n [b0x1b1, . . . , x1bk].

By (2) of Proposition 5.3, we obtain

E[b0xj1 · · ·xjk
bk] = ∑

σ∈D(k)

σ≤ker j

∑
π∈D(k)
π≤σ

μD(k)(π, σ )E(π)[b0x1b1, . . . , x1bk].
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As discussed in the proof of Theorem 4.8, we can replace the sum of expectation
functionals by cumulants to obtain

E[b0xj1 · · ·xjk
bk] = ∑

σ∈D(k)

σ≤ker j

ξ
(σ)
E [b0x1b1, . . . , x1bk],

where ξ denotes the relevant free, half-liberated or classical cumulants. Since the
cumulants are determined by the moment-cumulant formulae, we find that

ξ
(σ)
E [b0xj1b1, . . . , xjk

bk] =
{

ξ
(σ)
E [b0x1b1, . . . , x1bk], σ ∈ D(k) and σ ≤ ker j,

0, otherwise.

The result then follows from the characterizations of these joint distributions in
terms of cumulants given in Theorem 1.17 and Propositions 2.11 and 2.12. �

REMARK 5.4. For simplicity, we have restricted to elements of a von Neu-
mann algebra, that is, bounded random variables, in the statement of Theorem 1.
However, for the easy quantum groups O,B and O∗ the result implies that the
variables must have unbounded distributions. In the classical setting, the bounded-
ness assumption can be easily replaced by the condition that x1 has finite moments
of all orders. The key differences are as follows:

First, in the classical case one can replace the uniform bound in Theorem 4.8 by
the Lp estimate

|En[xj1 · · ·xjk
] − E[yj1 · · ·yjk

]|p ≤ Ck(G)

n
|x1|kpk,

where | · |p denotes the Lp-norm. The proof is identical, except that one uses
Hölder’s identity |xi1 · · ·xik |p ≤ |x1|kpk for any 1 ≤ i1, . . . , ip ≤ n.

Second, Proposition 5.3 is replaced by a standard Lp reversed martingale con-
vergence theorem (the statement for expectation functionals requiring another ap-
plication of Hölder).

With these technical modifications, the proof of Theorem 1 shows that any in-
finite B (resp., O) invariant sequence of classical random variables with finite
moments of all orders has the same joint moments with respect to B as a con-
ditionally i.i.d. (centered) Gaussian family. But this is sufficient to determine the
joint distribution with respect to B, since the Gaussian distribution is characterized
by its moments.

Likewise, the result for O∗ still holds if (xi)i∈N are of the form in Example 2.4,
where |ξi | has finite moments of all orders. The details are left to the reader.

6. Concluding remarks. We have seen in this paper that the “easiness” con-
dition from [7] provides a good framework for the study of de Finetti type theorems
for orthogonal quantum groups.

A first natural question is what happens in the unitary case. For the classical
unitary group Un, it is well known that an infinite sequence of complex-valued
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random variables is unitarily invariant if and only if they are conditionally i.i.d.
centered complex Gaussians. For the free unitary group U+

n this is considered in
[14], where it is shown that an infinite sequence of noncommutative random vari-
ables is quantum unitarily invariant if and only if they form an operator-valued
free circular family with mean zero and common variance. However, the study
and classification of easy quantum groups seems to be a quite difficult combina-
torial problem in the unitary case, we refer to the concluding section of [7] for a
discussion here.

In addition to the 14 easy quantum groups discussed in this paper, there are also
two infinite series H

(s)
n and H [s]

n , s = 2,3, . . . ,∞, which are related to the com-
plex reflection groups Hs

n = Zs �Sn. These are described in [5], with the conjectural
conclusion that the class of easy quantum groups consists of the 14 examples dis-
cussed in this paper, and a multi-parameter “hyperoctahedral series” unifying H

(s)
n

and H [s]
n . It is a natural question whether there are de Finetti type results for this

series, with corresponding notions of “independence,” and we plan to return to this
question after completing the construction.

A third question is whether the approximation result in Theorem 4.8 can be
strengthened. The main tool that we have available at this time, namely the Wein-
garten formula, is only suitable for estimates on the joint moments. In [17], Dia-
conis and Freedman give refined estimates on the variation norm between the dis-
tribution of the coordinates (u11, . . . , u1k) on Sn (resp., On) and an independent
Bernoulli (resp., Gaussian) distribution. This is used to prove finite de Finetti type
results, where the approximations hold in variation norm. It is known from [2, 3]
that the coordinates (u11, . . . , u1k) on S+

n and O+
n converge in moments to freely

independent Bernoulli and semicircular distributions, and it is a natural question
whether these converge in a stronger sense. For k = 1, it is known from [4] that
the distribution of n1/2u11 in C(O+

n ) “superconverges” (in the sense of [9]) to the
semicircle law, but nothing is currently known for k > 1.

Another question is whether the results of Aldous [1] for invariant arrays of ran-
dom variables have suitable extensions to easy quantum groups. We will consider
this problem first for free quantum groups in a forthcoming paper [16].

Another basic symmetry for a sequence of classical random variables is spread-
ability, that is, invariance under taking subsequences. Ryll-Nardzewski proved in
[26] that de Finetti’s theorem in fact holds under this apparently weaker condition.
A free analogue of this condition, and of Ryll-Nardzewski’s theorem, has been
obtained in [15].

Finally, there is the general question of applying our “Sn,On philosophy” to
other situations. In [6], we have developed a global approach, using the “easiness”
formalism, to the fundamental stochastic eigenvalue computations of Diaconis and
Shahshahani [19].
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