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HARNACK INEQUALITY FOR SDE WITH MULTIPLICATIVE
NOISE AND EXTENSION TO NEUMANN SEMIGROUP ON

NONCONVEX MANIFOLDS1

BY FENG-YU WANG

Beijing Normal University and Swansea University

By constructing a coupling with unbounded time-dependent drift,
dimension-free Harnack inequalities are established for a large class of sto-
chastic differential equations with multiplicative noise. These inequalities are
applied to the study of heat kernel upper bound and contractivity properties
of the semigroup. The main results are also extended to reflecting diffusion
processes on Riemannian manifolds with nonconvex boundary.

1. Introduction. Consider the following SDE on Rd :

dXt = σ(t,Xt) dBt + b(t,Xt ) dt,(1.1)

where Bt is the d-dimensional Brownian motion on a complete filtered probability
space (�, {Ft }t≥0,P), and

σ : [0,∞) × Rd × � → Rd ⊗ Rd, b : [0,∞) × Rd × � → Rd

are progressively measurable and continuous in the second variable. Throughout
the paper, we assume that for any X0 ∈ Rd the equation (1.1) has a unique strong
solution which is nonexplosive and continuous in t .

Let Xx
t be the solution to (1.1) for X0 = x. We aim to establish the Harnack

inequality for the operator Pt :

Ptf (x) := Ef (Xx
t ), t ≥ 0, x ∈ Rd, f ∈ B+

b (Rd),

where B+
b (Rd) is the class of all bounded nonnegative measurable functions

on Rd . To this end, we shall make use of the following assumptions.

(A1) There exists an increasing function K : [0,∞) → R such that almost
surely

‖σ(t, x) − σ(t, y)‖2
HS + 2〈b(t, x) − b(t, y), x − y〉

≤ Kt |x − y|2, x, y ∈ Rd, t ≥ 0.
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(A2) There exists a decreasing function λ : [0,∞) → (0,∞) such that almost
surely

σ(t, x)∗σ(t, x) ≥ λ2
t I, x ∈ Rd, t ≥ 0.

(A3) There exists an increasing function δ : [0,∞) → (0,∞) such that almost
surely ∣∣(σ(t, x) − σ(t, y)

)
(x − y)

∣∣ ≤ δt |x − y|, x, y ∈ Rd, t ≥ 0.

(A4) For n ≥ 1, there exists a constant cn > 0 such that almost surely

‖σ(t, x) − σ(t, y)‖HS + |b(t, x) − b(t, y)| ≤ cn|x − y|, |x|, |y|, t ≤ n.

It is well known that (A1) ensures the uniqueness of the solution to (1.1) while
(A4) implies the existence and the uniqueness of the strong solution (see, e.g., [11]
and references within for weaker conditions). On the other hand, if b and σ depend
only on the variable x ∈ Rd , then their continuity in x implies the existence of weak
solutions (see [13], Theorem 2.3), so that by the Yamada–Watanabe principle [27],
the uniqueness ensured by (A1) implies the existence and uniqueness of the strong
solution.

Note that if σ(t, x) and b(t, x) are deterministic and independent of t , then the
solution is a time-homogeneous Markov process generated by

L := 1

2

d∑
i,j=1

aij ∂i ∂j +
d∑

i=1

bi ∂i,

where a := σσ ∗. If further more σ and b are smooth, we may consider the Bakry–
Emery curvature condition [5]:

�2(f, f ) ≥ −K�(f,f ), f ∈ C∞(Rd),(1.2)

for some constant K ∈ R, where

�(f,g) := 1

2

d∑
i,j=1

aij (∂if )(∂jg), f, g ∈ C1(Rd),

�2(f, f ) := 1
2L�(f,f ) − �(f,Lf ), f ∈ C∞(Rd).

According to [22], Lemma 2.2, and [23], Theorem 1.2, the curvature condition
(1.2) is equivalent to the dimension-free Harnack inequality

(Ptf (x))p ≤ (Ptf
p(y)) exp

[
pρa(x, y)2

2(p − 1)(1 − e−2Kt)

]
,

t ≥ 0,p > 1, f ∈ B+
b (Rd), x, y ∈ Rd,

where

ρa(x, y) := sup{|f (x) − f (y)| :f ∈ C1(Rd),�(f,f ) ≤ 1}, x, y ∈ Rd .
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This type of inequality has been extended and applied to the study of heat kernel (or
transition probability) and contractivity properties for diffusion semigroups, see
[1, 4, 18] for diffusions on manifolds with possibly unbounded below curvature,
[15, 25] for stochastic generalized porous media and fast diffusion equations, and
[2, 3, 8, 10, 14, 16, 17, 28] for the study of some other SPDEs with additive noise.

If σ depends on x, however, it is normally very hard to verify the curvature
condition (1.2), which depends on second order derivatives of a−1, the inverse
matrix of a. This is the main reason why existing results on the dimension-free
Harnack inequality for SPDEs are only proved for the additive noise case.

In this paper, we shall use the coupling argument developed in [4], which will
allow us to establish Harnack inequalities for σ(t, x) depending on x. This method
has also been applied to the study of SPDEs in the above mentioned references. To
see the difficulty in the study for σ(t, x) depending on x, let us briefly recall the
main idea of this argument.

To explain the main idea of the coupling, we first consider the easy case where
σ and b are independent of the second variable. For x �= y and T > 0, let Xt solve
(1.1) with X0 = x and Yt solve

dYt = σ(t) dBt + b(t) dt + |x − y|(Xt − Yt )

T |Xt − Yt | dt, Y0 = y.

Then Yt is well defined up to the coupling time

τ := inf{t ≥ 0 :Xt = Yt }.
Let Xt = Yt for t ≥ τ . We have

d|Xt − Yt | = −|x − y|
T

dt, t ≤ τ.

This implies τ = T and hence, XT = YT . On the other hand, by the Girsanov
theorem we have

PT f (y) = E[Rf (YT )]
for

R := exp
[
−|x − y|

T

∫ T

0

〈σ(t)−1(Xt − Yt ), dBt 〉
|Xt − Yt |

− |x − y|2
2T 2

∫ T

0

|σ(t)−1(Xt − Yt )|2
|Xt − Yt |2 dt

]
.

Therefore,

(PT f (y))p = (E[Rf (XT )])p ≤ (PT f p(x))
(
ERp/(p−1))p−1

.
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Since by (A1) and (A2) it is easy to estimate moments of R, the desired Harnack
inequality follows immediately.

In general, if σ(t, x) depends on x, then the process Xt −Yt contains a nontriv-
ial martingale term, which cannot be dominated by and bounded drift. So, in this
case, any additional bounded drift put in the equation for Yt is not enough to make
the coupling successful before a fixed time T . This is the main difficulty to estab-
lish the Harnack inequality for diffusion semigroups with nonconstant diffusion
coefficient.

In this paper, under assumptions (A1) and (A2), we are able to constructed a
coupling with a drift which is unbounded around a fixed time T , such that the cou-
pling is successful before T . In this case, the corresponding exponential martingale
has finite entropy such that the log-Harnack inequality holds; if further more (A3)
holds then the exponential martingale is Lp-integrable for some p > 1 such that
the Harnack inequality with power holds. More precisely, we have the following
result.

THEOREM 1.1. Let σ(t, x) and b(t, x) either be deterministic and indepen-
dent of t , or satisfy (A4).

(1) If (A1) and (A2) hold, then

PT logf (y) ≤ logPT f (x) + KT |x − y|2
2λ2

T (1 − e−KT T )
,

f ≥ 1, x, y ∈ Rd, T > 0.

(2) If (A1), (A2) and (A3) hold, then for p > (1 + δT
λT

)2 and δp,T := max{δT ,
λT
2 (

√
p − 1)}, the Harnack inequality

(PT f (y))p ≤ (PT f p(x)) exp
[

KT
√

p(
√

p − 1)|x − y|2
4δp,T [(√p − 1)λT − δp,T ](1 − e−KT T )

]

holds for all T > 0, x, y ∈ Rd and f ∈ B+
b (Rd).

Theorem 1.1(1) generalizes a recent result in [19] on the log-Harnack inequality
by using the gradient estimate on Pt .

Let pt(x, y) be the density of Pt w.r.t. a Radon measure μ. Then according
to [26], Proposition 2.4, the above log-Harnack inequality and Harnack inequality
are equivalent to the following heat kernel inequalities, respectively:

∫
Rd

pT (x, z) log
pT (x, z)

pT (y, z)
μ(dz) ≤ K|x − y|2

2λ2
T (1 − e−KT T )

,

(1.3)
x, y ∈ Rd, T > 0,
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and
∫

Rd
pT (x, z)

(
pt(x, z)

pt (y, z)

)1/(p−1)

μ(dz)

≤ exp
[

KT
√

p|x − y|2
4δp,T (

√
p + 1)[(√p − 1)λT − δp,T ](1 − e−KT T )

]
,(1.4)

x, y ∈ Rd, T > 0.

So, the following is a direct consequence of Theorem 1.1.

COROLLARY 1.2. Let σ(t, x) and b(t, x) either be deterministic and inde-
pendent of t , or satisfy (A4). Let Pt have a strictly positive density pt(x, y) w.r.t. a
Radon measure μ. Then (A1) and (A2) imply (1.3), while (A1)–(A3) imply (1.4).

Next, by standard applications of the Harnack inequality with power, we have
the following consequence of Theorem 1.1 on contractivity properties of Pt .

COROLLARY 1.3. Let σ(t, x) and b(t, x) be deterministic and independent
of t , such that (A1)–(A3) hold for constant K,λ and δ. Let Pt have an invariant
probability measure μ.

(1) If there exists r > K+/λ2 such that μ(er|·|2) < ∞, then Pt is hypercontrac-
tive, that is, ‖Pt‖L2(μ)→L4(μ) = 1 holds for some t > 0.

(2) If μ(er|·|2) < ∞ holds for all r > 0, then Pt is supercontractive, that is,
‖Pt‖L2(μ)→L4(μ) < ∞ holds for all t > 0.

(3) If Pte
r|·|2 is bounded for any t, r > 0, then Pt is ultracontractive, that is,

‖Pt‖L2(μ)→L∞(μ) < ∞ for any t > 0.

REMARK 1.1. To see that results in Corollary 1.3 are sharp, let Pt be sym-
metric w.r.t. μ. Then the hypercontractivity is equivalent to the validity of the log-
Sobolev inequality

μ(f 2 logf 2) ≤ Cμ(�(f,f )), f ∈ C∞
b (Rd),μ(f 2) = 1,

for some constant C > 0. Moreover, if there exists a constant R > 0 such that

�(f,f ) ≤ R2|∇f |2, f ∈ C∞(Rd),(1.5)

we have ρa(x, y) ≥ R−1|x − y|. So, by the concentration of measure for the log-
Sobolev inequality, the hypercontractivity implies μ(er|·|2) < ∞ for some r > 0,
while the supercontractivity implies μ(er|·|2) < ∞ for all r > 0. Combining this
with Corollary 1.3, we have the following assertions under conditions (A1)–(A3)
and (1.5):
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(i) Let K ≤ 0. Then Pt is hypercontractive if and only if μ(er|·|2) < ∞ holds
for some r > 0;

(ii) Pt is supercontractive if and only if μ(er|·|2) < ∞ holds for all r > 0;
(iii) Pt is ultracontractive if and only if Pte

r|·|2 is bounded for any t, r > 0.

Therefore, conditions in Corollaries 1.3(2) and 1.3(3) are sharp for the supercon-
tractivity and ultracontractivity of Pt . Moreover, as shown in [7] that when σ is
constant, the sufficient condition μ(er|·|2) < ∞ for some r > K+/λ2 is optimal
for the hypercontractivity of Pt . So, Corollary 1.3(1) also provides a sharp suffi-
cient condition for the hypercontractivity of Pt .

We will prove Theorem 1.1 and Corollary 1.3 in the next section. In Section 3,
we extend these results to SDEs on Riemannian manifolds possibly with a convex
boundary. Finally, combining results in Section 3 with a conformal change method
introduced in [25], we are able to establish Harnack inequalities in Section 4 for
the Neumann semigroup on a class of nonconvex manifolds.

2. Proofs of Theorem 1.1 and Corollary 1.3. Let x, y ∈ Rd, T > 0 and p >

(1 + δT /λT )2 be fixed such that x �= y. We have

θT := 2δT

(
√

p − 1)λT

∈ (0,2).(2.1)

For θ ∈ (0,2), let

ξt = 2 − θ

KT

(
1 − eKT (t−T )), t ∈ [0, T ].

Then ξ is smooth and strictly positive on [0, T ) such that

2 − KT ξt + ξ ′
t = θ, t ∈ [0, T ].(2.2)

Consider the coupling

dXt = σ(t,Xt) dBt + b(t,Xt) dt, X0 = x,

dYt = σ(t, Yt ) dBt + b(t, Yt ) dt(2.3)

+ 1

ξt

σ (t, Yt )σ (t,Xt)
−1(Xt − Yt ) dt, Y0 = y.

Since the additional drift term ξ−1
t σ (t, y)σ (t, x)−1(x − y) is locally Lipschitzian

in y if (A4) holds, and continuous in y when σ and b are deterministic and
time independent, the coupling (Xt , Yt ) is a well-defined continuous process for
t < T ∧ ζ , where ζ is the explosion time of Yt ; namely, ζ = limn→∞ ζn for

ζn := inf{t ∈ [0, T ) : |Yt | ≥ n},
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where we set inf ∅ = T . Let

dB̃t = dBt + 1

ξt

σ (t,Xt)
−1(Xt − Yt ) dt, t < T ∧ ζ.

If ζ = T and

Rs := exp
[
−

∫ s

0
ξ−1
t 〈σ(t,Xt )

−1(Xt − Yt ), dBt 〉

− 1

2

∫ s

0
ξ−2
t |σ(t,Xt)

−1(Xt − Yt )|2 dt

]

is a uniformly integrable martingale for s ∈ [0, T ), then by the martingale con-
vergence theorem, RT := limt↑T Rt exists and {Rt }t∈[0,T ] is a martingale. In this
case, by the Girsanov theorem {B̃t }t∈[0,T ) is a d-dimensional Brownian motion
under the probability RT P. Rewrite (2.3) as

dXt = σ(t,Xt) dB̃t + b(t,Xt ) dt − Xt − Yt

ξt

dt, X0 = x,

(2.4)
dYt = σ(t, Yt ) dB̃t + b(t, Yt ) dt, Y0 = y.

Since
∫ T

0 ξ−1
t dt = ∞, we will see that the additional drift −Xt−Yt

ξt
dt is strong

enough to force the coupling to be successful up to time T . So, we first prove the
uniform integrability of {Rs∧ζ }s∈[0,T ) w.r.t. P so that RT ∧ζ := lims↑T Rs∧ζ exists,
then prove that ζ = T Q-a.s. for Q := RT ∧ζ P so that Q = RT P.

Let

τn = inf{t ∈ [0, T ) : |Xt | + |Yt | ≥ n}.
Since Xt is nonexplosive as assumed, we have τn ↑ ζ as n ↑ ∞.

LEMMA 2.1. Assume (A1) and (A2). Let θ ∈ (0,2), x, y ∈ Rd and T > 0 be
fixed.

(1) There holds

sup
s∈[0,T ),n≥1

ERs∧τn logRs∧τn ≤ KT |x − y|2
2λ2

T θ(2 − θ)(1 − e−KT T )| .

Consequently,

Rs∧ζ := lim
n↑∞Rs∧τn∧(T −1/n), s ∈ [0, T ], RT ∧ζ := lim

s↑T
Rs∧ζ

exist such that {Rs∧ζ }s∈[0,T ] is a uniformly integrable martingale.
(2) Let Q = RT ∧ζ P. Then Q(ζ = T ) = 1 so that Q = RT P.
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PROOF. (1) Let s ∈ [0, T ) be fixed. By (2.4), (A1) and the Itô formula,

d‖Xt − Yt‖2 ≤ 2
〈(
σ(t,Xt) − σ(t, Yt )

)
(Xt − Yt ), dB̃t

〉

+ KT |Xt − Yt |2 dt − 2

ξt

|Xt − Yt |2 dt

holds for t ≤ s ∧ τn. Combining this with (2.2) we obtain

d
|Xt − Yt |2

ξt

≤ 2

ξt

〈(
σ(t,Xt ) − σ(t, Yt )

)
(Xt − Yt ), dB̃t

〉

− |Xt − Yt |2
ξ2
t

(2 − KT ξt + ξ ′
t ) dt

(2.5)

= 2

ξt

〈(
σ(t,Xt ) − σ(t, Yt )

)
(Xt − Yt ), dB̃t

〉

− θ

ξ2
t

|Xt − Yt |2 dt, t ≤ s ∧ τn.

Multiplying by 1
θ

and integrating from 0 to s ∧ τn, we obtain
∫ s∧τn

0

|Xt − Yt |2
ξ2
t

dt ≤
∫ s∧τn

0

2

θξt

〈(
σ(t,Xt) − σ(t, Yt )

)
(Xt − Yt ), dB̃t

〉

− |Xt − Yt |2
θξt

+ |x − y|2
θξ0

.

By the Girsanov theorem, {B̃t }t≤τn∧s is the d-dimensional Brownian motion un-
der the probability measure Rs∧τnP. So, taking expectation Es,n with respect to
Rs∧τnP, we arrive at

Es,n

∫ s∧τn

0

|Xt − Yt |2
ξ2
t

dt ≤ |x − y|2
θξ0

, s ∈ [0, T ), n ≥ 1.(2.6)

By (A2) and the definitions of Rt and B̃t , we have

logRr = −
∫ r

0

1

ξt

〈σ(t,Xt )
−1(Xt − Yt ), dB̃t 〉 + 1

2

∫ r

0

|σ(t,Xt)
−1(Xt , Yt )|2
ξ2
t

dt

≤ −
∫ r

0

1

ξt

〈σ(t,Xt )
−1(Xt − Yt ), dB̃t 〉 + 1

2λ2
T

∫ r

0

|Xt − Yt |2
ξ2
t

dt,

r ≤ s ∧ τn.

Since {B̃t } is the d-dimensional Brownian motion under Rs∧τnP up to s ∧ τn, com-
bining this with (2.6), we obtain

ERs∧τn logRs∧τn = Es,n logRs∧τn ≤ |x − y|2
2λ2

T θξ0
, s ∈ [0, T ), n ≥ 1.
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By the martingale convergence theorem and the Fatou lemma, {Rs∧ζ : s ∈ [0, T ]}
is a well-defined martingale with

ERs∧ζ logRs∧ζ ≤ |x − y|2
2λ2

T θξ0
= KT |x − y|2

2λ2
T θ(2 − θ)(1 − e−KT T )

, s ∈ [0, T ].

To see that {Rs∧ζ : s ∈ [0, T ]} is a martingale, let 0 ≤ s < t ≤ T . By the dominated
convergence theorem and the martingale property of {Rs∧τn : s ∈ [0, T )}, we have

E(Rt∧ζ |Fs) = E
(

lim
n→∞Rt∧τn∧(T −1/n)|Fs

)
= lim

n→∞ E
(
Rt∧τn∧(T −1/n)|Fs

)

= lim
n→∞Rs∧τn = Rs∧ζ .

(2) Let σn = inf{t ≥ 0 : |Xt | ≥ n}. We have σn ↑ ∞ P-a.s and hence, also Q-a.s.
Since {B̃t } is a Q-Brownian motion up to T ∧ ζ , it follows from (2.5) that

(n − m)2

ξ0
Q(σm > t, ζn ≤ t) ≤ EQ

|Xt∧σm∧ζn − Xt∧σm∧ζn |2
ξt∧σm∧ζn

≤ |x − y|2
ξ0

holds for all n > m > 0 and t ∈ [0, T ). By letting first n ↑ ∞ then m ↑ ∞, we ob-
tain Q(ζ ≤ t) = 0 for all t ∈ [0, T ). This is equivalent to Q(ζ = T ) = 1 according
to the definition of ζ . �

Lemma 2.1 ensures that under Q := RT ∧ζ P, {B̃t }t∈[0,T ] is a Brownian motion.
Then by (2.4), the coupling (Xt , Yt ) is well-constructed under Q for t ∈ [0, T ].
Since

∫ T
0 ξ−1

t dt = ∞, we shall see that the coupling is successful up to time T , so
that XT = YT holds Q-a.s. (see the proof of Theorem 1.1 below). This will provide
the desired Harnack inequality for Pt as explained in Section 1 as soon as RT ∧ζ

has finite p/(p − 1)-moment. The next lemma provides an explicit upper bound
on moments of RT ∧ζ .

LEMMA 2.2. Assume (A1)–(A3). Let Rt and ξt be fixed for θ = θT . We have

sup
s∈[0,T ]

E

{
Rs∧ζ exp

[
θ2
T

8δ2
T

∫ s∧ζ

0

|Xt − Yt |2
ξ2
t

dt

]}

(2.7)

≤ exp
[

θT KT |x − y|2
4δ2

T (2 − θT )(1 − e−KT T )

]
.

Consequently,

sup
s∈[0,T ]

ER
1+rT
s∧ζ ≤ exp

[
θT KT (2δT + θT λT )|x − y|2

8δ2
T (2 − θT )(δT + θT λT )(1 − e−KT T )

]
(2.8)

holds for

rT = λ2
T θ2

T

4δ2
T + 4θT λT δT

.
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PROOF. Let θ = θT . By (2.5), for any r > 0 we have

Es,n exp
[
r

∫ s∧τn

0

|Xt − Yt |2
ξ2
t

dt

]

≤ exp
[
r|x − y|2

θT ξ0

]

× Es,n exp
[

2r

θT

∫ s∧τn

0

1

ξt

〈(
σ(t,Xt) − σ(t, Yt )

)
(Xt − Yt ), dB̃t

〉]

≤ exp
[

rKT |x − y|2
θT (2 − θT )(1 − e−KT T )

]

×
(

Es,n exp
[

8r2δ2
T

θ2
T

∫ s∧τn

0

|Xt − Yt |2
ξ2
t

dt

])1/2

,

where the last step is due to (A3) and the fact that

EeMt ≤ (
Ee2〈M〉t )1/2

for a continuous exponential integrable martingale Mt . Taking r = θ2
T /(8δ2

T ), we
arrive at

Es,n exp
[

θ2
T

8δ2
T

∫ s∧τn

0

|Xt − Yt |2
ξ2
t

dt

]
≤

[
θT KT |x − y|2

4δ2
T (2 − θT )(1 − e−KT T )

]
, n ≥ 1.

This implies (2.7) by letting n → ∞.
Next, by (A2) and the definition of Rs , we have

ER
1+rT
s∧τn

= Es,nR
rT
s∧τn

= Es,n exp
[
−rT

∫ s∧τn

0

1

ξt

〈σ(t,Xt )
−1(Xt − Yt ), dB̃t 〉(2.9)

+ rT

2

∫ s∧τn

0

|σ(t,Xt)
−1(Xt − Yt )|2
ξ2
t

dt

]
.

Noting that for any exponential integrable martingale Mt w.r.t. Rs∧τnP, one has

Es,n exp[rT Mt + rT 〈M〉t /2]
= Es,n exp[rT Mt − r2

T q〈M〉t /2 + rT (qrT + 1)〈M〉t /2]
≤ (Es,n exp[rT qMt − r2

T q2〈M〉t /2])1/q

×
(

Es,n exp
[
rT q(rT q + 1)

2(q − 1)
〈M〉t

])(q−1)/q

=
(

Es,n exp
[
rT q(rT q + 1)

2(q − 1)
〈M〉t

])(q−1)/q

, q > 1,
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it follows from (2.9) that

ER
1+rT
s∧τn

≤
(

Es,n exp
[
qrT (qrT + 1)

2(q − 1)λ2
T

∫ s∧τn

0

|Xt − Yt |2
ξ2
t

dt

])(q−1)/q

.(2.10)

Take

q = 1 +
√

1 + r−1
T ,(2.11)

which minimizes q(qrT + 1)/(q − 1) such that

qrT (qrT + 1)

2λ2
T (q − 1)

= rT + √
rT (rT + 1)

2λ2
T

√
1 + r−1

T

(
rT + 1 + √

rT (rT + 1)
)

(2.12)

= (rT +
√

r2
T + rT )2

2λ2
T

= θ2
T

8δ2
T

.

Combining (2.10) with (2.7) and (2.12), and noting that due to (2.11) and the
definition of rT

q − 1

q
=

√
1 + r−1

T

1 +
√

1 + r−1
T

= 2δT + θT λT

2δT + 2θT λT

,

we obtain

ER
1+rT
s∧τn

≤ exp
[

θT KT (2δT + θT λT )|x − y|2
8δ2

T (2 − θT )(δT + θT λT )(1 − e−KT T )

]
.

According to the Fatou lemma, the proof is then completed by letting n → ∞. �

PROOF OF THEOREM 1.1. Since (A3) also holds for δp,T in place of δT , it
suffices to prove the desired Harnack inequality for δT in place of δp,T .

(1) By Lemma 2.1, {Rs∧ζ }s∈[0,T ] is an uniformly integrable martingale and
{B̃t }t≤T is a d-dimensional Brownian motion under the probability Q. Thus, Yt

can be solved up to time T . Let

τ = inf{t ∈ [0, T ] :Xt = Yt }
and set inf ∅ = ∞ by convention. We claim that τ ≤ T and thus, XT = YT , Q-a.s.
Indeed, if for some ω ∈ � such that τ(ω) > T , by the continuity of the processes
we have

inf
t∈[0,T ] |Xt − Yt |2(ω) > 0.

So,
∫ T

0

|Xt − Yt |2
ξ2
t

dt = ∞
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holds on the set {τ > T }. But according to Lemma 2.2, we have

EQ

∫ T

0

|Xt − Yt |2
ξ2
t

dt < ∞,

we conclude that Q(τ > T ) = 0. Therefore, XT = YT Q-a.s.
Now, combining Lemma 2.1 with XT = YT and using the Young inequality, for

f ≥ 1 we have

PT logf (y) = EQ[logf (YT )] = E[RT ∧ζ logf (XT )]
≤ ERT ∧ζ logRT ∧ζ + log Rf (XT )

≤ logPT f (x) + KT |x − y|2
2λ2

T θ(2 − θ)(1 − e−KT T )
.

This completes the proof of (1) by taking θ = 1.
(2) Let θ = θT . Since XT = YT and {B̃t }t∈[0,T ] is the d-dimensional Brownian

motion under Q, we have

(PT f (y))p = (EQ[f (YT )])p = (E[RT ∧ζ f (XT )])p
(2.13)

≤ (PT f p(x))
(
ER

p/(p−1)
T ∧ζ

)p−1
.

Due to (2.1), we see that

p

p − 1
= 1 + λ2

T θ2
T

4δT (δT + θT λT )
.

So, it follows from Lemma 2.2 and (2.1) that

(
ER

p/(p−1)
T ∧ζ

)p−1 = (ER
1+rT
T ∧ζ )p−1 ≤ exp

[
(p − 1)θT KT (2δT + θT λT )|x − y|2

8δ2
T (2 − θT )(δT + θT λT )(1 − e−KT T )

]

= exp
[

KT
√

p(
√

p − 1)|x − y|2
4δT [(√p − 1)λT − δT ](1 − e−KT T )

]
.

Then the proof is finished by combining this with (2.13). �

PROOF OF COROLLARY 1.3. Let f ∈ B+
b (Rd) be such that μ(f p) ≤ 1. Let

p > (1 + δ/λ)2. By Theorem 1.1(2), we have

(Ptf (y))p exp
[
− K

√
p(

√
p − 1)|x − y|2

4δp[(√p − 1)λ − δp](1 − e−Kt)

]
≤ Ptf

p(x), x, y ∈ Rd,

where δp = max{δ, λ
2 (

√
p − 1)}. Integrating w.r.t. μ(dx) and noting that μ is Pt -

invariant, we obtain

(Ptf (y))p
∫

Rd
exp

[
− K

√
p(

√
p − 1)|x − y|2

4δ[(√p − 1)λ − δ](1 − e−Kt)

]
μ(dx) ≤ 1.(2.14)
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Taking f = n ∧ (pt (y, ·))1/p and letting n ↑ ∞, we prove the first assertion.
Next, let B(0,1) = {x ∈ Rd : |x| ≤ 1}. Since μ is an invariant measure, it has

a strictly positive density w.r.t. the Lebesgue measure so that μ(B(0,1)) > 0
(cf. [6]). Let p ≥ (1 + 2δ/λ)2. We have δp = (

√
p − 1)λ/2 and thus

√
p(

√
p − 1)

4δp[(√p − 1)λ − δp] =
√

p

λ2(
√

p − 1)
.

Combining this with (2.14) and noting that

∫
Rd

exp
[
− K

√
p(

√
p − 1)|x − y|2

4δ[(√p − 1)λ − δ](1 − e−Kt)

]
μ(dx)

≥ μ(B(0,1)) exp
[
− K

√
p(

√
p − 1)(1 + |y|)2

4δ[(√p − 1)λ − δ](1 − e−Kt)

]
,

we obtain

(Ptf (y))p ≤ C1 exp
[

K
√

p(1 + |y|)2

λ2
T (

√
p − 1)(1 − e−Kt)

]
, t > 0, y ∈ Rd,(2.15)

for some constant C1 > 0 and all f ∈ B+
b (Rd) with μ(f p) ≤ 1. Since

lim
p→∞ lim

t→∞
K

√
p

λ2(
√

p − 1)(1 − e−Kt)
= K+

λ2 ,

for any r > K+/λ2 there exist p > (1 + 2δT /λ)2, β > 1 and t1 > 0 such that

(Pt1f (y))βp ≤ C2e
r|y|2, y ∈ Rd, f ∈ B+

b (Rd),μ(f p) ≤ 1,

holds for some constant C2 > 0. Thus, μ(er|·|2) < ∞ implies that

‖Pt1‖Lp(μ)→Lpβ(μ) < ∞.

Since ‖Ps‖Lq(μ) = 1 holds for any q ∈ [1,∞], by the interpolation theorem and
the semigroup property one may find t2 > t1 such that

‖Pt2‖L2(μ)→L4(μ) < ∞.(2.16)

Moreover, by [12], Theorem 3.6(ii), there exist some constants η,C3 > 0 such that

‖Pt − μ‖L2(μ) ≤ C3e
−ηt , t ≥ 0.

Combining this with (2.16) we conclude that ‖Pt‖L2(μ)→L4(μ) ≤ 1 holds for suffi-
ciently large t > 0, that is, (2) holds.

Finally, (3) and (4) follow immediately from (2.15) and the interpolation theo-
rem. �



1462 F.-Y. WANG

3. Extension to manifolds with convex boundary. Let M be a d-dimen-
sional complete, connected Riemannian manifold, possibly with a convex bound-
ary ∂M . Let N be the inward unit normal vector filed of ∂M when ∂M �= ∅. Let
Pt be the (Neumann) semigroup generated by

L := ψ2(� + Z)

on M , where ψ ∈ C1(M) and Z is a C1 vector field on M . Assume that ψ is
bounded and

Ric−∇Z ≥ −K0(3.1)

holds for some constant K0 ≥ 0. Then the (reflecting) diffusion process generated
by L is nonexplosive.

To formulate Pt as the semigroup associated to a SDE like (1.1), we set

σ = √
2ψ, b = ψ2Z.(3.2)

Let dI denote the Itô differential on M . In local coordinates the Itô differential for
a continuous semi-martingale Xt on M is given by (see [4] or [9])

(dIXt)
k = dXk

t + 1

2

d∑
i,j=1

�k
ij (Xt) d〈Xi,Xj 〉t , 1 ≤ k ≤ d.

Then Pt is the semigroup for the solution to the SDE

dIXt = σ(Xt)�t dBt + b(Xt) dt + N(Xt) dlt ,(3.3)

where Bt is the d-dimensional Brownian motion on a complete filtered probability
space (�, {Ft }t≥0,P), �t is the horizontal lift of Xt onto the frame bundle O(M),
and lt is the local time of Xt on ∂M . When ∂M = ∅, we simply set lt = 0.

To derive the Harnack inequality as in Section 2, we assume that

λ := infσ > 0, δ := supσ − infσ < ∞.(3.4)

Now, let x, y ∈ M and T > 0 be fixed. Let ρ be the Riemannian distance on M ,
that is, ρ(x, y) is the length of the minimal geodesic on M linking x and y, which
exits if ∂M is either convex or empty.

Let Xt solve (3.3) with X0 = x. Next, any strictly positive function ξ ∈
C([0, T )), let Yt solve

dIYt = σ(Yt )PXt ,Yt �t dBt + b(Xt) dt

− σ(Yt )ρ(Xt , Yt )

σ (Xt)ξt

∇ρ(Xt , ·)(Yt ) dt + N(Yt ) dl̃t

for Y0 = y, where l̃t is the local time of Yt on ∂M , and PXt ,Yt :TXt M → TYt M is
the parallel displacement along the minimal geodesic from Xt to Yt , which exists
since ∂M is convex or empty. As explained in [4], Section 3, we may and do
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assume that the cut-locus of M is empty such that the parallel displacement is
smooth. Let

dB̃t = dBt + ρ(Xt , Yt )

ξtσ (Xt)
�−1

t ∇ρ(·, Yt )(Xt ) dt, t < T .

By the Girsanov theorem, for any s ∈ (0, T ) the process {B̃t }t∈[0,s] is the d-
dimensional Brownian motion under the weighted probability measure RsP, where

Rs := exp
[
−

∫ s

0

ρ(Xt , Yt )

ξtσ (Xt)
〈∇ρ(·, Yt )(Xt ),�t dBt 〉

(3.5)

− 1

2

∫ s

0

ρ(Xt , Yt )
2

ξ2
t σ (Xt)2

dt

]
.

Thus, by (3.2) we have

dIXt = √
2ψ(Xt)�t dB̃t + (ψ2Z)(Xt) dt

− ρ(Xt , Yt )

ξt

∇ρ(·, Yt )(Xt ) dt + N(Xt) dlt ,

dI Yt = √
2ψ(Yt)�t dB̃t + (ψ2Z)(Yt ) dt + N(Yt ) dl̃t .

Let ξ ∈ C1([0, T )) be strictly positive and take

βt = − ρ(Xt , Yt )√
2ξtψ(Xt)

�−1
t ∇ρ(·, Yt )(Xt ).

Repeating the proof of (4.10) in [21], we obtain

dρ(Xt , Yt ) ≤ (
σ(Xt) − σ(Yt )

)〈∇ρ(·, Yt )(Xt ),�t dB̃t 〉
+ K1ρ(Xt , Yt ) dt − ρ(Xt , Yt )

ξt

dt, t < T ,

where

K1 = K0‖ψ‖2∞ + 2‖Z‖∞‖∇ψ‖∞‖ψ‖∞.

This implies that

d
ρ(Xt , Yt )

2

ξt

≤ 2

ξt

ρ(Xt , Yt )
(
σ(Xt) − σ(Yt )

)〈∇ρ(·, Yt )(Xt ),�t dB̃t 〉

− ρ(Xt , Yt )
2

ξ2
t

(2 − Kξt + ξ ′
t ) dt

holds for t < T and

K := 2K1 + ‖∇σ‖2∞
(3.6)

= 2K0‖ψ‖2∞ + 4‖Z‖∞‖∇ψ‖∞‖ψ‖∞ + 2‖∇ψ‖2∞.
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In particular, letting

ξt = 2 − θ

K

(
1 − eK(t−T )), t ∈ [0, T ], θ ∈ (0,2),

we have

2 − Kξt + ξ ′
t = θ.

Therefore, the following result follows immediately by repeating calculations in
Section 2.

THEOREM 3.1. Assume that ∂M is either empty or convex. Let (4.1) and Z,φ

be bounded such that

K := 2K0‖ψ‖2∞ + 4‖Z‖∞‖∇ψ‖∞‖ψ‖∞ + 2‖∇ψ‖2∞ < ∞.

Then all assertions in Theorem 1.1 and Corollaries 1.2, 1.3 hold for Pt the (Neu-
mann) semigroup generated by L = ψ2(� + Z) on M with ρ(x, y) replacing
|x − y|, and for constant functions K,δ := supψ − infψ and λ := inf|ψ |.

4. Neumann semigroup on nonconvex manifolds. Following the line of
[24], we are able to make the boundary from nonconvex to convex by using a con-
formal change of metric. This will enable us to extend our results to the Neumann
semigroup on a class of nonconvex manifolds.

Let ∂M �= ∅ with N the inward normal unit vector field. Then the second fun-
damental form of ∂M is a two-tensor on the tangent space of ∂M defined by

I(X,Y ) := −〈∇XN,Y 〉, X,Y ∈ T ∂M.

Assume that there exists κ > 0 and K0 ∈ R such that

Ric−∇Z ≥ −K0, I ≥ −κ(4.1)

holds for M and a C1 vector field Z. We shall consider the Harnack inequality for
the Neumann semigroup Pt generated by

L = � + Z.

To make the boundary convex, let f ∈ C∞
b (M) such that f ≥ 1 and

N logf |∂M ≥ κ . By [24], Lemma 2.1, ∂M is convex under the metric

〈·, ·〉′ = f −2〈·, ·〉.
Let �′ and ∇′ be the Laplacian and gradient induced by the new metric. We have
(see (2.2) in [20])

L = f −2(�′ + Z′), Z′ = f 2Z + d − 2

2
∇f 2.
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Let Ric′ be the Ricci curvature induced by the metric 〈·, ·〉′. We have (see the proof
of [21], Theorem 5.1)

Ric′ −∇′Z′ ≥ −Kf 〈·, ·〉′
for

Kf = sup{Kf 2 − d�f + (d − 3)|∇f |2 + 3|Z|f |∇f |}.(4.2)

Applying Theorem 3.1 to the convex manifold (M, 〈·, ·〉′), ψ = f −1 and

K = 2K+
f ‖f −1‖∞ + 4‖Z′‖′∞‖∇′f −1‖′∞‖f −1‖∞ + 2‖∇′f −1‖′2∞

(4.3)
≤ 2K+

f + 4‖f Z + (d − 2)∇f ‖∞‖∇f ‖∞ + 2‖∇f ‖2∞,

where ‖ · ‖′ is the norm induced by 〈·, ·〉′ and we have used that f ≥ 1, we obtain
the following result.

THEOREM 4.1. Let (4.1) hold for some κ > 0 and K0 ∈ R, and let Pt be the
Neumann semigroup generated by L = � + Z on M . Then for any f ∈ C∞

b (M)

such that inff = 1, N logf |∂M ≥ κ and K < ∞, where K is fixed by (4.2)
and (4.3), all assertions in Theorem 1.1 and Corollaries 1.2 and 1.3 hold with
ρ(x, y) replacing |x − y| for constant functions K,δ := supf −1 − inff −1 and
λ := inff −1.

REMARK 4.1. A simple choice of f in Theorem 4.1 is f = φ ◦ ρ∂ , where
ρ∂ is the Riemannian distance to the boundary which is smooth on {ρ∂ ≤ rT }
for some rT > 0 provided the injectivity radius of the boundary is positive, and
f ∈ C∞

b ([0,∞)) is such that f (0) = 1, f ′(0) = κ and f (r) = f (rT ) for r ≥ rT .
In general, f is taken according to rT and bounds of the second fundamental
form and sectional curvatures, see, for example, [21, 24] for details. With specific
choices of f , Theorem 4.1 provides explicit Harnack type inequalities, heat ker-
nels estimates and criteria on contractivity properties for the Neumann semigroup
on manifolds with nonconvex boundary.
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