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BACKWARD STOCHASTIC DYNAMICS ON A FILTERED
PROBABILITY SPACE1

BY GECHUN LIANG, TERRY LYONS AND ZHONGMIN QIAN

University of Oxford

We demonstrate that backward stochastic differential equations (BSDE)
may be reformulated as ordinary functional differential equations on certain
path spaces. In this framework, neither Itô’s integrals nor martingale rep-
resentation formulate are needed. This approach provides new tools for the
study of BSDE, and is particularly useful for the study of BSDE with partial
information. The approach allows us to study the following type of backward
stochastic differential equations:

dY
j
t = −f

j
0 (t, Yt ,L(M)t ) dt −

d∑
i=1

f
j
i (t, Yt ) dBi

t + dM
j
t

with YT = ξ , on a general filtered probability space (�, F , Ft ,P), where
B is a d-dimensional Brownian motion, L is a prescribed (nonlinear) map-
ping which sends a square-integrable M to an adapted process L(M) and M ,
a correction term, is a square-integrable martingale to be determined. Under
certain technical conditions, we prove that the system admits a unique solu-
tion (Y,M). In general, the associated partial differential equations are not
only nonlinear, but also may be nonlocal and involve integral operators.

1. Introduction. Stochastic differential equations (SDE) may be considered
as dynamical systems perturbed by random signals which are often modeled by
Brownian motion. The important class of stochastic differential equations consid-
ered in the literature are Itô-type equations such as

dX
j
t = f

j
0 (t,Xt) dt +

d∑
i=1

f
j
i (t,Xt) dBi

t ,(1.1)

where B = (B1, . . . ,Bd) is Brownian motion in Rd on a completed probability
space (�, F ,P), fi = ∑d ′

j=1 f
j
i

∂
∂xj are bounded, smooth vector fields in Rd ′

, j =
1, . . . , d ′, where d , d ′ are two positive integers. Itô gave the meaning of solutions
to (1.1) by developing a theory of stochastic integration against Brownian motion
(called Itô’s calculus), and obtained strong solutions by specifying an initial data
at a starting time T .
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SDE (1.1) has to be interpreted as an integral equation

X
j
t − X

j
0 =

∫ t

0
f

j
0 (s,Xs) ds +

d∑
i=1

∫ t

0
f

j
i (s,Xs) dBi

s,

which can be solved forward (i.e., for t > 0). Itô’s calculus requires that a solution
X = (Xt) has to be adapted to Brownian motion B = (B1, . . . ,Bd); it is thus not
necessarily possible to solve (1.1) backward from a certain time T to t < T .

There are interesting applications on the other hand to be able to solve (1.1)
backward. Suppose u is a smooth solution to the Cauchy problem of the quasi-
linear parabolic equation(

1

2
� − ∂

∂t

)
u + f (u,∇u) = 0 on [0,∞) × Rd,

with the initial data u(x,0) = u0(x). Let T > 0 and h(t, x) = u(T − t, x) for
t ∈ [0, T ]. Then h solves the backward parabolic equation(

1

2
� + ∂

∂t

)
h + f (h,∇h) = 0 on [0, T ] × Rd,

and h(x,T ) = u0(x). Let Yt = h(t,Bt ) where B is Brownian motion in Rd . Ac-
cording to Itô’s formula

YT − Yt =
∫ T

t

(
∂

∂s
+ 1

2
�

)
h(s,Bs) ds + MT − Mt(1.2)

for t ≤ T , where Mt = ∫ t
0 ∇h(s,Bs) dBs is a martingale. Substituting ( ∂

∂s
+ 1

2�)h

by −f0(h,∇h) in (1.2) obtains

YT − Yt = −
∫ T

t
f (Ys,∇h(s,Bs)) ds + MT − Mt.(1.3)

According to Itô’s martingale representation theorem, the density process Zt =
∇h(t,Bt ) of M with respect to Brownian motion is uniquely determined as the
unique predictable process Zt such that

MT − M0 =
d∑

j=1

∫ T

0
Z

j
t dB

j
t .

In terms of the pair (Y,Z) (1.3) may be written as

YT − Yt = −
∫ T

t
f (Ys,Zs) ds +

d∑
j=1

∫ T

t
Zj

s dBj
s

with the terminal data YT = u0(BT ), which is the integral form of the following
backward stochastic differential equation:

dYt = −f (Yt ,Zt ) dt + Zt dBt , YT = ξ,(1.4)
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introduced and studied by Pardoux and Peng [32].
In the past twenty years, there has been a large number of articles devoted to

the theory of BSDE and its applications in various research areas. Our references
listed at the end of the paper are by no means complete, and the reader should refer
to excellent surveys such as articles in [18] edited by El Karoui and Mazliak, the
recent paper by El Karoui, Hamadene and Matoussi [16], the book by Yong and
Zhou [40] and the references therein for a guide to the BSDE literature.

To the knowledge of the present authors, it was Bismut [5] (see [6, 7]) who first
formulated terminal problems for a class of stochastic differential equations in
order to study stochastic optimal control problems by means of Pontryagin’s max-
imum principal. His equations, called backward stochastic differential equations,
have been extended and developed to a nonlinear case in the seminal paper [32]
by Pardoux and Peng. A lot of efforts have been made to generalize the class of
BSDE considered in [32]. For example, Lepeltier and San Martin [26] relaxed the
Lipschitz continuous condition on the driver and studied BSDEs with coefficients
of linear growth. Yong [39] employed the continuity method to prove the existence
of solution with arbitrary time horizon. In [8] Briand et al. considered Lp-solutions
for BSDE. It is also natural to consider BSDE coupled with a forward stochastic
differential equation, called a forward–backward stochastic differential equations.
Antonelli [1] first studied such FBSDE; his equation does not involve a density
process Z in the driver. A definite account about FBSDE may be found in Ma,
Protter and Young [27], Hu and Peng [23], Peng and Wu [33], the recent book [28]
and the literature therein. Most authors consider BSDE on a probability space with
Brownian filtration, and there are a few papers dealing with BSDE with jumps or
with reflecting boundary conditions. Tang and Li [38] have studied BSDE with
random jumps, and Barles, Buckdahn and Pardoux [4] have explored the connec-
tion between BSDE with random jumps and some parabolic integro-differential
equations. Rong [36] proved the existence and uniqueness under non-Lipschitz
continuous coefficients for this class of BSDE. Analogous to free-boundary PDE
problems, El Karoui et al. [17] introduced an obstacle to BSDE such that the solu-
tion always stays above such obstacle. This so-called reflected BSDE is further de-
veloped to double reflected barriers by Cvitanić and Karatzas [14] and Hamadene,
Lepeltier and Matoussi [21]. Furthermore, Bally, Pardoux and Stoica [3] have con-
sidered BSDE on the probability space associated with Dirichlet processes.

If the driver of BSDE is with quadratic growth of Z, the nature of equations
is completely changed. This problem is first solved by Kobylanski [24] by using
the Cole–Hopf transformation adopted from the PDE theory. Her results have been
substantially developed and generalized by Briand and Hu [9, 10], where they ex-
tend to equations with convex drivers subject to unbounded terminal values. Most
of the existing literature concentrates on solutions of BSDEs in a strong sense, that
is, the underlying filtered probability space is given. One of the first attempts to
introduce weak solutions for BSDEs was presented in Buckdahn, Engelbert and
Răşcanu [12], and Buckdahn and Engelbert [11] who further proved the unique-
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ness of their weak solutions, while the coefficients of their BSDEs do not evolve
a density process Z. On the other hand, the notion of weak solution for FBSDEs
was introduced by Antonelli and Ma [2] and further developed by Ma, Zhang and
Zheng [29] by employing the martingale problem approach.

The backward stochastic differential equations have found many connections
with other research areas: stochastic control, PDE, mathematical finance, etc. To
derive a maximum principle as necessary conditions for optimal control problems,
one can observe that the adjoint equations to the optimal control problems satisfy
certain backward equations. For stochastic control problems, the corresponding
adjoint equations are stochastic rather than deterministic. Indeed Peng [34] es-
tablished a general stochastic maximum principle by considering both first-order
and second-order adjoint equations, and, on the other hand, Kohlmann and Zhou
[25] interpreted BSDE as equivalent to stochastic control problems. Peng [35] and
Pardoux and Pend [31] derived a probabilistic representation (a Feynman–Kac rep-
resentation) for solutions of some quasi-linear PDEs, which was extended to other
cases by Ma, Protter and Yong [27]. The later has been summarized as a four-step
scheme of solving forward–backward stochastic differential equations (FBSDE)
(see [28] by Ma and Yong for details). Cheridito, Soner, Touzi and Victoir [13]
connected a class of second order BSDEs to fully nonlinear PDEs. In [15] Duffie
and Epstein discovered a class of nonlinear BSDE in their study of recursive util-
ity in economics. Later El Karoui, Peng and Quenez [19] applied BSDE to option
pricing problems and provided a general framework for the application of BSDE
in finance. In order to deal with utility maximization problems in incomplete mar-
kets, Rouge and El Karoui [37] introduced a class of BSDE with quadratic growth.
Hu, Imkeller and Müller [22] further studied this class of BSDE in a more general
setting.

In this article, we put forward a simple approach to deal with the kind of BSDE
such as (1.4) which does not depend on any martingale representation, and thus al-
lows us to study a wide class of backward stochastic dynamics. Our main idea and
contribution in this article is to establish an ordinary functional differential equa-
tion which is equivalent to (1.4), which allows us to obtain alternative representa-
tions for solutions of BSDE and to consider a new interesting class of stochastic
dynamical systems.

Consider the following example of backward stochastic differential equations:

dYt = −f (t, Yt ,Zt ) dt +
d∑

i=1

Zi
t dBi

t , YT = ξ,(1.5)

where B = (Bt )t≥0 is Brownian motion in Rd , ξ ∈ L2(�, FT ,P) and (Ft )t≥0 is
the Brownian filtration. The differential equation has to be interpreted as the inte-
gral equation

ξ − Yt = −
∫ T

t
f (s, Ys,Zs) ds +

d∑
i=1

∫ T

t
Zi

s dBi
s .(1.6)
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By applying the Picard iteration to (Y,Z), one shows that if f is globally Lipschitz
continuous, then there is a unique pair (Y,Z) which satisfies (1.6) for all t ≤ T .
This method relies on the martingale representation for Brownian motion and thus
restricts the class of BSDE.

Our main idea is based on the following simple observation. Suppose that
Y = (Yt )t∈[τ,T ] is a solution of (1.6) back to time τ < T , then Y must be a special
semimartingale whose variation part is continuous. Let Yt = Mt −Vt be the Doob–
Meyer decomposition into its martingale part M and its finite variation part −V .
The decomposition over [τ, T ] is unique up to a random variable measurable with
respect to Fτ . Let us assume that the local martingale part M is indeed a martin-
gale up to T . Then, since the terminal value YT = ξ is given, ξ = MT − VT , so
that Mt = E(ξ + VT |Ft ) and Yt = E(ξ + VT |Ft ) − Vt for t ∈ [τ, T ]. The integral
equation (1.6) thus can be written as

ξ − Mt + Vt = −
∫ T

t
f (s, Ys,Zs) ds +

d∑
i=1

∫ T

t
Zi

s dBi
s

for every t ∈ [τ, T ]. Taking expectations, with both sides conditional on Ft , one
obtains

E(ξ |Ft ) − Mt + Vt = −E
[∫ T

τ
f (s, Ys,Zs) ds

∣∣∣Ft

]

+
∫ t

τ
f (s, Ys,Zs) ds.

By identifying the martingale parts and variational parts, we must have

Vt − Vτ =
∫ t

τ
f (s, Ys,Zs) ds,(1.7)

where Y and Z are considered as functionals of V , namely

Yt = E(ξ + VT |Ft ) − Vt , Mt = E(ξ + VT |Ft ),(1.8)

and Z is determined uniquely by the martingale representation through

MT − Mτ =
d∑

i=1

∫ T

τ
Zi

s dBi
s .

Hence Y and Z are written as Y(V ) and Z(V ), respectively, if we wish to em-
phasize the fact that Y and Z are defined entirely through V . Observe that (1.7) is
clearly the integral form of the functional differential equation

dV

dt
= f (t, Y (V )t ,Z(V )t ),

which can be solved by Picard iteration applying to V alone, rather than the pair
(Y,Z).
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The approach may be made independent of the use of a martingale represen-
tation theorem, provided that one is willing to replace the density process Z

by a functional of V , thus freeing us from the requirement of Brownian filtra-
tion. This kind of generalization of BSDE theory is a bit surprising and even
overly rewarded, which is, however, not the only point we would like to empha-
size. More precisely, we may consider the correction martingale part appearing
in (1.5) as part of the solution rather than its density process Z. That is, by set-
ting Mt − Mτ = ∑d

i=1
∫ t
τ Zi

s dBi
s , and regarding Z as a function of M , so denoted

by L(M), then (1.5) can be reformulated as

dYt = −f (t, Yt ,L(M)t ) dt + dMt, YT = ξ,(1.9)

which is in turn equivalent to the functional integral equation

Vt − Vτ =
∫ t

τ
f (s, Y (V )s,L(M(V ))s) ds,(1.10)

where Y(V ) and M(V ) are given by (1.8). For (1.10), there is no need to insist that
L sends a martingale M to its density process (if there is any), though the density
process mapping L remains the most interesting case.

The approach might be applied to a more general setting of solving dynami-
cal systems backward under other constraints, not necessarily the adaptedness to
a filtration; even a probability setting is not necessary. One possible example can
be the following. One may study the functional differential equation (1.7), where
Y :V → Y(V ) and M :V → M(V ) are defined in terms of some kind of “projec-
tions” instead of conditional expectations. We, however, in this paper, make no
attempt for such an extension.

To our knowledge, most of BSDE which currently exist in the literature may
be studied in the framework of ordinary functional differential equations. Since
our approach does not rely on the martingale representation theorem, we are able
to study a class of BSDE on an arbitrary filtered probability space. We, however,
would like to point out that this paper is not so much about generalizing the the-
ory of BSDE to a general filtered probability space; our main contribution is the
equivalence of BSDE and a class of ordinary functional integral equations. We al-
low a sufficient wide class of functionals L(M) which, even in the classical setting,
extends the associated PDE to some nonlocal integro-differential equations.

If (Ft )t≥0 is Brownian filtration, any martingale M = (Mt)t≥0 has an Itô in-
tegral representation Mt − M0 = ∑d

j=1
∫ t

0 Z
j
s dW

j
s which determines the density

Z = (Z1, . . . ,Zd). Consider the functional over martingales

L(M)t = E
{∫ T

t
Zsμ(t, ds)

∣∣∣Ft

}
,

where μ(t, ds) is a transition kernel (not random for simplicity), and consider the
corresponding BSDE

dY
j
t = −f

j
0

(
T − t, Yt ,L(M)t

)
dt + dM

j
t , YT = ξ.
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Our approach demonstrates the existence and uniqueness for this kind of BSDE,
whose associated PDE is a system of integro-differential equations,

∂

∂t
u − 1

2
�u + f0(t, u,H(u)) = 0,

where the nonlinear operator H involves space–time integration, and indeed

H(u)(t, x) =
∫ T

t

∫
Rd

∇u(T − s, z)

(2π(s − t))d/2 e−|x−z|2/(2(s−t)) dzμ(t, ds).

If μ(t, ds) = δt (ds) then we recover the case considered in the current literature.
By choosing different functionals L(M) we may obtain even more general integro-
differential equations. This kind of integro-differential equations often appears in
the study of particle limiting models for PDE; one class of equations which has a
similar nature is already in the literature, for example, in Majda [30].

In this paper we constrain ourselves to the study of the following type of back-
ward stochastic differential equations:

dY
j
t = −f

j
0 (t, Yt ,L(M)t ) dt −

d∑
i=1

f
j
i (t, Yt ) dBi

t + dM
j
t ,(1.11)

subject to YT = ξ , on a filtered probability space (�, F , Ft ,P), where B is a d-
dimensional Brownian motion as given, j = 1, . . . , d ′, L is a given (nonlinear)
functional on square-integrable martingales, while (Ft )t≥0 is not necessary to be
Brownian filtration. A solution to (1.11) is a pair (Y,M), where Y = (Y j ) are
semimartingales and M = (Mj) are square-integrable martingales, which satisfies
the corresponding integral equations:

Y
j
T − Y

j
t = −

∫ T

t
f

j
0 (t, Yt ,L(M)t ) dt −

d∑
i=1

∫ T

t
f

j
i (t, Yt ) dBi

t

(1.12)
+ M

j
T − M

j
t .

The term L(M) appearing in the drift term f0 on the right-hand side of (1.11)
suggests that L is a mapping which sends a vector of square-integrable martingales
M = (Mj) to a progressively measurable process L(M). The backward stochastic
equation (1.11) is thus described by the driver f0, the diffusion coefficients fi

together with the prescribed mapping L.
Finally, let us point out that similar ideas have been known in the PDE theory.

Recall that, for any reasonable function u, u has the following decomposition:

u = H(u) + G(u),

where H(u) is a harmonic function determined by a boundary integral against a
Green function, and G(u) is a potential. Thus the boundary condition (which corre-
sponds to our case the terminal value) determines the harmonic function part H(u).
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The regularity theory for nonlinear PDE such as �u = f (u,∇u) may be devel-
oped via the previous decomposition, by studying the Newtonian potential G(u),
(Gilbarg and Trudinger [20]). In this way, backward stochastic dynamics, as a class
of Markov processes, can be regarded as a generic extension of some nonlinear
PDE problems of finite dimension to infinite-dimensional problems in path spaces.
On the other hand, some nonlinear PDE can be considered as a pathwise version
of backward stochastic dynamics. We will explore these ideas further in coming
papers.

The paper is organized as follows. In Section 2 we present some elementary
facts and basic assumptions. The main results of the existence of local and global
solutions, and the uniqueness of the backward stochastic dynamics are presented
and proved in Sections 3 and 4.

2. Preliminaries. Let (�, F , Ft ,P) (where t ∈ [0,∞)) be a filtered probabil-
ity space which satisfies the usual conditions: (�, F ,P) is a completed probabil-
ity space, (Ft )t≥0 is a right-continuous filtration, each Ft contains all events in F
with probability zero and F = σ {Ft : t ≥ 0}. Under these technical assumptions,
any martingale on (�, F , Ft ,P) has a modification whose sample paths are right
continuous with left-hand limits. Henceforth, by a martingale we always mean a
martingale which is right continuous with left-hand limits.

Let 0 ≤ τ < T be any but fixed numbers. [τ, T ] serves as the region of the
time parameter, although we are working with a fixed filtered probability space
(�, F , Ft ,P). Let C([τ, T ];Rd) denote the space of all continuous, adapted
processes (Vt )t∈[τ,T ] valued in Rd such that maxj supt∈[τ,T ]|V j

t | belongs to L2(�,
FT ,P), equipped with the norm

‖V ‖C[τ,T ] =
√√√√√ d∑

j=1

E sup
t∈[τ,T ]

|V j
t |2.

C([τ, T ];Rd) is a Banach space under ‖ · ‖C[τ,T ], M2([τ, T ];Rd) denotes the
space of Rd -valued square-integrable martingales on (�, F , Ft ,P) from time τ

up to time T (which, of course, can be uniquely extended to a martingale in
M2([0, T ],Rd)), together with the norm ‖M‖C[τ,T ]. We also need the direct
sum space of M2([τ, T ];Rd) and C([τ, T ];Rd), denoted by S([τ, T ];Rd). If
Y ∈ S([τ, T ];Rd), its decomposition into an element in M2([τ, T ];Rd) and the
other in C([τ, T ];Rd) may not be unique, and there are various norms one can de-
fine on S([τ, T ];Rd). For our purposes, we choose the norm ‖Y‖C[τ,T ], although
S([τ, T ];Rd) is not complete under ‖ · ‖C[τ,T ]. Finally H2([τ, T ];Rd ′×d) denotes
the space of all predictable processes Z = (Z

j,i
t )t∈[τ,T ] on (�, F , Ft ,P) with run-

ning time [τ, T ], endowed with the usual L2-norm

‖Z‖H2[τ,T ]
=

√√√√√ d ′∑
j=1

d∑
i=1

E
∫ T

τ
|Zi,j

s |2 ds.
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If Y is a semimartingale on (�, F , Ft ,P) over time interval [τ, T ] with its
Doob–Meyer decomposition Yt = Mt − Vt , such that M is an Ft -martingale dur-
ing [τ, T ], V is a continuous, adapted process with finite variation on [τ, T ] and
VT , YT are integrable, then Mt = E(YT + VT |Ft ) and Yt = E(YT + VT |Ft ) − Vt

for t ∈ [τ, T ]. Since we are interested in terminal value problems, in which YT = ξ

are given, therefore, for given ξ = (ξ i) where ξ i ∈ L2(�, FT ,P), we consider two
functionals on C([τ, T ];Rd) :V → Y(V ) and V → M(V ) defined by

Y(V )t = E(ξ + VT |Ft ) − Vt for t ∈ [τ, T ](2.1)

and

M(V )t = E(ξ + VT |Ft ) for t ∈ [τ, T ](2.2)

for any V ∈ C([τ, T ];Rd). If we wish to indicate the dependence on the terminal
value ξ as well, then we will use Y(ξ,V ) and M(ξ,V ) in places of Y(V ) and
M(V ), respectively.

Note that (Y (V )t )t∈[τ,T ] does not depend on the initial value Vτ , an important
fact we will use in our construction of global solutions for the terminal value prob-
lem (1.11).

We consider the following type of backward stochastic differential equations:

dY
j
t = −f

j
0 (t, Yt ,L(M)t ) dt −

d∑
i=1

f
j
i (t, Yt ) dBi

t + dM
j
t , Y

j
T = ξj ,(2.3)

on the filtered probability space (�, F , Ft ,P) (j = 1, . . . , d ′), where B is a d-
dimensional Brownian motion on (�, F , Ft ,P) as given, T > 0 is the terminal
time, ξj ∈ L2(�, FT ,P) (for j = 1, . . . , d ′) are terminal values, f

j
i (i = 0, . . . , d

and j = 1, . . . , d ′) are locally bounded and Borel measurable, and L is a prescribed
mapping on M2([τ, T ];Rd ′

) valued in H2([τ, T ];Rd ′×d) or in C([τ, T ];Rd ′
).

A solution of (2.3) backward to time τ is a pair of adapted processes (Yt ,
Mt)t∈[τ,T ] where Mj = (M

j
t )t∈[τ,T ] are square-integrable martingales and Y

j
t =

(Y
j
t )t∈[τ,T ] are special semimartingales with continuous variation parts, which sat-

isfies the integral equations

Y
j
t − ξj =

∫ T

t
f

j
0 (s, Ys,L(M)s) ds +

d∑
i=1

∫ T

t
f

j
i (s, Ys) dBi

s

(2.4)
+ M

j
t − M

j
T

for t ∈ [τ, T ], j = 1, . . . , d ′.
As we have seen in the Introduction, by writing Yt = Mt −Vt , a solution (Y,M)

to (2.4) is equivalent to a solution V of the functional integral equation

Vt − Vτ =
∫ t

τ
f0(s, Y (V )s,L(M(V ))s) ds +

d∑
i=1

∫ t

τ
fi(s, Y (V )s) dBi

s,(2.5)
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where M(V )t = E(ξ + VT |Ft ) and Y(V )t = M(V )t − Vt for t ∈ [τ, T ]. It is the
integral equation (2.5) we are going to study.

The following standard assumptions are always imposed on our backward SDE
(2.3). Additional conditions on L will be introduced later on to ensure local and
global existence.

(1) f0 = (f
j
0 )j≤d ′ are Lipschitz continuous on [0,∞) × Rd ′ × Rm and fi =

(f
j
i )j≤d ′ (i = 1, . . . , d) Lipschitz continuous on [0,∞) × Rd ′

: there is a constant
C2 such that

|f0(t, y, z)| ≤ C2(1 + t + |y| + |z|),
|f0(t, y, z) − f0(t, y

′, z′)| ≤ C2(|y − y′| + |z − z′|),
|fi(t, y)| ≤ C2(1 + t + |y|)

and

|fi(t, y) − fi(t, y
′)| ≤ C2|y − y′|

for t ≥ 0, all y, y′ ∈ Rd ′
and z, z′ ∈ Rm.

(2) The terminal value ξ = (ξ i)i=1,...,d ′ , ξ i ∈ L2(�, FT ,P).

3. Local solutions and uniqueness. In this section, we prove two results: the
uniqueness and the existence of a local solution to (2.3) under the assumption that
L is Lipschitz continuous

(3) L : M2([τ, T ];Rd ′
) → H2([τ, T ];Rm) (resp., C([τ, T ];Rm)):

‖L(M) − L(M̃)‖H2 ≤ C1‖M − M̃‖C

[resp.,

‖L(M) − L(M̃)‖C ≤ C1‖M − M̃‖C ]
for any M , M̃ ∈ M2([τ, T ];Rd ′

), where ‖M‖C means ‖M‖C([τ,T ];Rd′
)

etc. for
simplicity.

By “local solution” we mean a solution from T back to τ , where T −τ is smaller
than a certain constant depending on L and f

j
i .

In order to prove the uniqueness, we need to consider BSDE in a more gen-
eral form than (2.3). More precisely, we are given another Brownian motion
W = (W 1, . . . ,Wm′

) on (�, Ft , F ,P) and gk : R+ × Rd ′ → Rd ′
which are Lip-

schitz continuous

|gk(t, y)| ≤ C2(1 + t + |y|)
and

|gk(t, y) − gk(t, y
′)| ≤ C2|y − y′|
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for all t ≥ 0, y, y′ ∈ Rd ′
, k = 1, . . . ,m′. Define

L : M2([τ, T ];Rd ′
) × S([τ, T ];Rd ′

)

→ H2([τ, T ];Rm) (resp., C([τ, T ];Rm))

by

L(M,Y ) = L

(
M −

m′∑
k=1

∫ ·
τ

gk(s, Ys) dWk
s

)
.(3.1)

Consider the following mapping L defined on C0([τ, T ];Rd ′
), the space of all

processes in C([τ, T ];Rd ′
) with initial data Vτ = 0, by

L(V )t =
∫ t

τ
f0(s, Y (V )s,L(M(V ),Y (V ))s) ds

(3.2)

+
d∑

i=1

∫ t

τ
fi(s, Y (V )s) dBi

s,

where M(V )t = E(ξ + VT |Ft ) and Y(V )t = M(V )t − Vt for t ∈ [τ, T ], so that
Y(V )T = ξ . As we have seen, the functional integral equation: V = L(V ), is
equivalent to the following BSDE:

dY
j
t = −f

j
0 (t, Yt ,L(M,Y )t ) dt −

d∑
i=1

f
j
i (t, Yt ) dBi

t + dM
j
t , YT = ξ.(3.3)

LEMMA 3.1. L defined by (3.1) is Lipschitz continuous

‖L(M,Y ) − L(M̃, Ỹ )‖H2[τ,T ]
(3.4)

≤ C1‖M − M̃‖C[τ,T ] + m′C1C2√
2

(T − τ)‖Y − Ỹ‖C[τ,T ]

and

‖L(M,Y ) − L(M̃, Ỹ )‖C[τ,T ]
(3.5)

≤ C1‖M − M̃‖C[τ,T ] + 2m′C1C2
√

T − τ‖Y − Ỹ‖C[τ,T ]

for any M,M̃ ∈ M2([τ, T ];Rd ′
) and Y, Ỹ ∈ C([τ, T ];Rd ′

).

PROOF. Let us omit the subscript [τ, T ] for simplicity. Then

‖L(M,Y ) − L(M̃, Ỹ )‖H2

≤ C1‖M − M̃‖C + C1

m′∑
k=1

∥∥∥∥
∫ ·
τ

(
gk(s, Ys) − gk(s, Ỹs)

)
dWk

s

∥∥∥∥
H2
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= C1‖M − M̃‖C + C1

m∑
k=1

√
E

∫ T

τ

∣∣∣∣
∫ t

τ

(
gk(s, Ys) − gk(s, Ỹs)

)
dWk

s

∣∣∣∣
2

dt

= C1‖M − M̃‖C + C1

m′∑
k=1

√
E

∫ T

τ

∫ t

τ

∣∣(gk(s, Ys) − gk(s, Ỹs)
)∣∣2 ds dt

≤ C1‖M − M̃‖C + m′C1C2

√
E

∫ T

τ

∫ t

τ
|Ys − Ỹs |2 ds dt

≤ C1‖M − M̃‖C + m′C1C2√
2

(T − τ)‖Y − Ỹ‖C .

The proof of the second inequality is similar. �

The following is our basic local existence theorem.

THEOREM 3.2. Under the assumptions on L, f i
j and gi

j described above. Let

l1 = 1

C2
2 [4C1 + 6(1 + 2

√
d) + 3

√
2m′C1C2]2

∧ 1,(3.6)

which depends on the Lipschitz constants C1,C2 and the dimensions, but is inde-
pendent of the terminal data ξ . Suppose that T − τ ≤ l1, then L admits a unique
fixed point on C0([τ, T ];Rd ′

).

PROOF. The proof is a standard use of the fixed point theorem applying to L.
To this end, we need to show that L is a contraction on C0([τ, T ];Rd ′

) as long as
T − τ ≤ l1. This can be done by devising a priori estimates for L. Let us prove the
case that L : M2([τ, T ];Rd ′

) → H2([τ, T ];Rm) is Lipschitz; the other case can
be treated similarly. To simplify our notation, let δ ≡ T − l1 be the life duration.
Since

‖L(V )‖C ≤ √
δ

√
E

∫ T

τ
|f0(s, Y (V )s,L(M(V ),Y (V ))s)|2 ds

+ 2

√√√√ d∑
i=1

E
∫ T

τ
|fi(s, Y (V )s)|2 ds.

Since f0 and fi are Lipschitz continuous, so that

‖L(V )‖C ≤ 2C2
(√

δ + √
d
)√∫ T

τ
(1 + s)2 ds

+ 2C2
(√

δ + √
d
)√∫ T

τ
E|Y(V )s |2 ds(3.7)

+ 2C2
√

δ‖L(M(V ),Y (V ))‖H2 .
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Together with the elementary estimates

‖Y(V )‖C ≤ 2
√

E|ξ |2 + 3‖V ‖C

and

‖M(V )‖C ≤ 2
√

E|ξ |2 + 2‖V ‖C ,

one deduces that

‖L(V )‖C ≤ 2√
3
C2

(√
δ + √

3d
)
δ
√

δ

+ 2
[√

2m′C1C
2
2δ + 2C2

√
δ + 2C2

√
d + 2C2C1

]√
δ

√
E|ξ |2(3.8)

+ [
3
√

2m′C1C
2
2δ + 6C2

√
δ + 4C2C1 + 6C2

√
d
]√

δ‖V ‖C .

Similarly, for V, Ṽ ∈ C[τ, T ] such that Vτ = Ṽτ = 0 one has

‖L(V ) − L(Ṽ )‖C

≤
√

E
(∫ T

τ
|f0(s, Ys,L(M,Y )s) − f0(s, Ỹs,L(M̃, Ỹ )s)|ds

)2

+
√√√√√E sup

t∈[τ,T ]

∣∣∣∣∣
d∑

i=1

∫ t

τ
[fi(s, Ys) − fi(s, Ỹs)]dBi

s

∣∣∣∣∣
2

,

where Mt = E(ξ + VT |Ft ), M̃t = E(ξ + ṼT |Ft ), Yt = Mt − Vt and Ỹt = Mt − Vt .
Since fi are Lipschitz continuous, so that√

E
(∫ T

τ
|f0(s, Ys,L(M,Y )s) − f0(s, Ỹs,L(M̃, Ỹ )s)|ds

)2

≤ C2

√
E

[∫ T

τ

(|Ys − Ỹs | + |L(M,Y )s − L(M̃, Ỹ )s |)ds

]2

≤ C2
√

δ

√
E

∫ T

τ

(|Ys − Ỹs | + |L(M,Y )s − L(M̃, Ỹ )s |)2
ds

≤ C2δ‖Y − Ỹ‖C + C2
√

δ‖L(M,Y ) − L(M̃, Ỹ )‖H2

≤ C2

[
1 + √

δ
m′C1C2√

2

]
δ‖Y − Ỹ‖C

+ C2C1
√

δ‖M − M̃‖C ,
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where the last inequality follows from (3.5). Itô’s integration term can be treated
similarly. Applying Doob’s inequality, one has√√√√√E sup

t∈[τ,T ]

∣∣∣∣∣
d∑

i=1

∫ t

τ
[fi(s, Ys) − fi(s, Ỹs)]dBi

s

∣∣∣∣∣
2

≤ 2

√√√√√E

∣∣∣∣∣
d∑

i=1

∫ T

τ
[fi(s, Ys) − fi(s, Ỹs)]dBi

s

∣∣∣∣∣
2

≤ 2C2
√

d

√
E

∫ T

τ
|Ys − Ỹs |2 ds

≤ 2C2
√

d
√

δ‖Y − Ỹ‖C .

Putting these estimates together we obtain

‖L(V ) − L(Ṽ )‖C ≤ C2

[
1 + √

δ
m′C1C2√

2

]
δ‖Y − Ỹ‖C

(3.9)
+ C2

(
C1 + 2

√
d
)√

δ‖M − M̃‖C .

On the other hand it is easy to see that

‖M − M̃‖C =
√

E sup
t∈[τ,T ]

E(VT − ṼT |Ft )2

≤ 2‖V − Ṽ ‖C

and

‖Y − Ỹ‖C ≤ 3‖V − Ṽ ‖C .

Inserting these estimates into (3.9) we finally obtain

‖L(V ) − L(Ṽ )‖C
(3.10)

≤ C2

[
2C1 + 6

√
d + 3

√
δ + 3δ

m′C1C2√
2

]√
δ‖V − Ṽ ‖C .

Since δ ≤ l1, the constant in front of the norm on the right-hand side is less than 1
2 ,

so that

‖L(V ) − L(Ṽ )‖C ≤ 1
2‖V − Ṽ ‖C .

Therefore L is a contraction on C0([τ, T ];Rd) as long as T − τ ≤ l1, so there is a
unique fixed point in C0[τ, T ]. This completes the proof. �

We are now in a position to show the local existence and uniqueness of solutions
to BSDE (2.3).



1436 G. LIANG, T. LYONS AND Z. QIAN

THEOREM 3.3. Let L, f i
j be Lipschitz continuous with Lipschitz constants

C1, C2 and

l2 = 1

C2
2 [4C1 + 6(1 + 2

√
d) + 3

√
2d ′C1C2]2

∧ 1,

which is independent of the terminal data ξ ∈ L2(�, FT ,P). Suppose that T −τ ≤
l2 and L(M) = L(M − Mτ) for any M ∈ M2([τ, T ];Rd ′

). Then there is a pair
(Y,M), where Y = (Yt )t∈[τ,T ] is a special semimartingale, M = (Mt)t∈[τ,T ] is
a square-integrable martingale, which solves the backward stochastic differential
equation (2.3) to time τ . Moreover, such a pair of solution is unique in the sense
that if (Y,M) and (Ỹ , M̃) are two pairs of solutions, then Y = Ỹ and M − Mτ =
M̃ − M̃τ on [τ, T ].

PROOF. By Theorem 3.2 (applying to the case that all gk = 0), there is a
unique V ∈ C0[τ, T ] such that

Vt =
∫ t

τ
f0(s, Ys,L(M)s) ds +

d∑
i=1

∫ t

τ
fi(s, Ys) dBi

s ∀t ∈ [τ, T ],

where Mt = E(ξ + VT |Ft ) and Yt = Mt − Vt . It is clear that YT = ξ and

Yt − ξ =
∫ T

t
f0(s, Ys,L(M)s) ds +

d∑
i=1

∫ T

t
fi(s, Ys) dBi

s + Mt − MT(3.11)

for all t ∈ [τ, T ]. Therefore (Y,M) solves the backward stochastic differential
equations (2.3).

Suppose that (Y,M) and (Ŷ , M̂) are two solutions satisfying (3.11), where Y

and Ŷ are two special semimartingales. Let

Zt = Mt +
d∑

i=1

∫ t

τ
fi(s, Ys) dBi

s .

Then

Yt − ξ =
∫ T

t
f0(s, Ys,L(Z,Y )s) ds + Zt − ZT(3.12)

for t ∈ [τ, T ], where

L(Z,Y ) = L

(
Z −

d∑
i=1

∫ ·
τ

fi(s, Ys) dBi
s

)
.

It follows that

Yt = E[ξ + AT |Ft ] − At,
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where

At =
∫ t

τ
f0(s, Ys,L(Z,Y )s) ds ∀t ∈ [τ, T ].

Hence Yt = Y(A)t and the integral equation (3.12) becomes

Yt = AT − ZT + ξ − At + Zt .

Since Aτ = 0 so that

Yτ = AT − ZT + ξ + Zτ ,

and thus we may rewrite the previous identity as

Yt = Yτ + (Zt − Zτ ) − At .

By the uniqueness of the decompositions for special semimartingales we must
have

Yτ + (Zt − Zτ ) = E[ξ + AT |Ft ] = M(A)t .

Since L(M) = L(M − Mτ) for any M ∈ M2([τ, T ];Rd ′
), so that L(Z,Y ) =

L(M(A),Y ). Hence

At =
∫ t

τ
f0(s, Y (A)s,L(M(A),Y (A))s) ds.

The same argument applies to (Ỹ , M̃), so that we also have

Ãt =
∫ t

τ
f0(s, Y (Ã)s,L(M(Ã), Y (Ã))s) ds.

By Theorem 3.2, A = Ã, which yields that Y = Ỹ . It follows then

Zt − Zτ = Z̃t − Z̃τ ∀t ∈ [τ, T ]
thus M − Mτ = M̃ − M̃τ which completes the proof. �

One of course wonders whether the global existence can be established, by
means of weighted norms, for example, as in the BSDE literature. The present
authors were unable to achieve better results than the local existence even with
different choices of norms or spaces to which we apply the fixed point theorem. In
fact, under the Lipschitz condition only on the mapping L, the local existence is
the best we can hope. This is because L(M)t may depend on the whole path from
τ to T , and therefore the corresponding stochastic functional differential equation

dVt = f0(t, Y (V )t ,L(M(V ))t ) ds +
d∑

i=1

fi(t, Y (V )t ) dBi
t , Vτ = 0,
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is neither local nor Markovian. This can be best demonstrated by its associated
differential and integral equation. For example, it is not difficult to show that

Lc(M)t =
√

E(〈Mc,Mc〉T − 〈Mc,Mc〉t |Ft )

for t ∈ [τ, T ] is Lipschitz continuous, where Mc is its continuous martingale part
such that Mc

0 = 0, and therefore we have

COROLLARY 3.4. Suppose T ≤ l2. Then there is a unique special semimartin-
gale Y = (Yt )t∈[0,T ] such that YT = ξ and

Yt − ξ =
∫ T

t
f0(s, Ys,Lc(M))ds + Mt − MT .(3.13)

Moreover M is unique up to a random variable measurable with respect to F0.

Let us apply Corollary 3.4 to the case that (Ft )t≥0 is the Brownian filtration
of Brownian motion B = (B1, . . . ,Bd). Then, by Itô’s martingale representation
theorem,

Lc(M)t =
√√√√∫ T

t

d∑
i=1

E(|Zi
s |2|Ft ) ds,

where Zi are predictable processes such that

MT − Mτ =
d∑

i=1

∫ T

τ
Zi

t dBi
t .

Suppose u is a bounded, smooth function which solves the backward parabolic
nonlinear equation

∂

∂t
u + 1

2
�u + f0(t, u,K(u)) = 0 on [τ, T ] × Rd,(3.14)

with u(T , ·) = ϕ, where

K(u)(t, x) =
√∫ T

t
Ps−t |∇u|2(s, x) ds,

where (Pt )t≥0 is the heat semi-group in Rd , that is, Pt = e(t�)/2. In particular, the
differential and integral equation (3.14) is not local, and is a nonlinear equation
involving space–time integration and partial derivatives.

Applying Itô’s formula to the process Yt = u(t,Bt ) one has

YT − Yt =
∫ T

t

(
∂

∂t
+ 1

2
�

)
u(s,Bs) ds + MT − Mt

= −
∫ T

t
f0(s, Ys,K(u)(s,Bs)) ds + MT − Mt,
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where Mt = ∫ t
0 ∇u(s,Bs) dBs is a square-integrable martingale, and one recog-

nizes that

Lc(M)t =
√

E(〈M,M〉T − 〈M,M〉t |Ft )

=
√

E
(∫ T

t
|∇u|2(s,Bs) ds|Ft

)

=
√∫ T

t
Ps−t |∇u|2(s,Bt ) ds

= K(u)(t,Bt ).

Therefore (Y,M) is the unique solution to (3.13), and we have a probability rep-
resentation

u(t, x) = E{Yt |Bt = x}.
Since the nonlinear equation (3.14) depends on the “future” of the solution from
time T , it is not always possible that a solution exists back to any time τ . In turn,
we thus cannot expect that the general BSDE (2.3) have a solution that is global in
time without further restrictions on L.

4. Global solutions. In the previous section, under only the Lipschitz condi-
tions on L we are able to construct a solution to the backward stochastic differential
equation (2.3) back to time τ such that T − τ ≤ l2.

In this section we construct the unique global solution to (2.3) if L satisfies
further regularity conditions.

We assume that the mapping L : M2([0, T ];Rd ′
) → H2([0, T ];Rm) (resp.,

C([0, T ];Rm)) satisfies three technical conditions (a), (b) and (c) below: the local-
in-time property, the differential property and the Lipschitz condition. The last one
is standard, but the first two properties are motivated by the example of density
processes in Itô’s martingale representations.

For any [T2, T1] ⊂ [0, T ], define the restriction

L[T2,T1] : M2([T2, T1];Rd ′
) → H2([T2, T1];Rm) (resp., C([T2, T1];Rd ′

))

by L[T2,T1](N)t = L(N̂)t for any N ∈ M2([T2, T1];Rd ′
) and t ∈ [T2, T1], where

N̂ ∈ M2([0, T ];Rd ′
) defined by N̂t = E(NT1 |Ft ) for t ≤ T1 and N̂t = NT1 for

t ≥ T1.
(a) (Local-in-time property.) For every pair of nonnegative rational numbers

T2 < T1 ≤ T , and for any M ∈ M2([0, T ];Rd ′
), L(M) = L[T2,T1](M̃) on (T2, T1),

where M̃ = (Mt)t∈[T2,T1] is restriction of M on [T2, T1]. The local-in-time prop-
erty requires that L(M)t is locally defined, that is, L(M)t depends only on
(Ms)s∈[t,t+ε) for however small the ε > 0.
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(b) (Differential property.) For every pair of nonnegative rational numbers T1 <

T2 ≤ T and M ∈ M2([T2, T1];Rd ′
), one has L[T2,T1](M − MT2) = L[T2,T1](M) on

(T2, T1). The differential property requires that L[T2,T1](M)t depends only on the
increments {Ms − MT2 : s ≥ t} for t ∈ [T2, T1].

(c) (Lipschitz continuity.) L : M2([0, T ];Rd ′
) → H2([0, T ];Rm) (resp., C([0,

T ];Rm)) is bounded and Lipschitz continuous: there is a constant C1 such that

‖L(M)‖H2[T2,T1]
≤ C1‖M‖C[T2,T1](4.1)

and

‖L(M) − L(M̃)‖H2[T2,T1]
≤ C1‖M − M̃‖C[T2,T1](4.2)

[resp.,

‖L(M)‖C[T2,T1] ≤ C1‖M‖C[T2,T1](4.3)

and

‖L(M) − L(M̃)‖C[T2,T1] ≤ C1‖M − M̃‖C[T2,T1]](4.4)

for any M,M̃ ∈ M2([0, T ];Rd ′
) and for any rationales T1 and T2 such that

0 ≤ T2 < T1 ≤ T . That is to say L[T2,T1] are Lipschitz continuous with Lipschitz
constant independent of [T2, T1] ⊂ [0, T ].

The first example below provides the most interesting examples of L in appli-
cations, which are, however, variations of the classical example considered in the
literature.

EXAMPLE 1. Suppose that (Ft )t≥0 is the Brownian filtration generated by a
d + N -dimensional Brownian motion B = (B1, . . . ,Bd,W 1, . . . ,WN) on a prob-
ability space (�, F ,P). If M ∈ M2([0, T ];Rd ′

), then, according to Itô’s martin-
gale representation theorem, M is continuous, and there are unique predictable
processes (Z

j,i
t )t∈[0,T ] such that

M
j
t − M

j
0 =

d∑
i=1

∫ t

0
Zj,i

s dBi
s +

N∑
k=1

∫ t

0
Zj,k+d

s dWk
s , j = 1, . . . , d ′,(4.5)

for all t ∈ [0, T ]. Assign M ∈ M2([0, T ];Rd ′
) with L(M) = (Zj,i)j≤d ′,i≤d . For

0 ≤ T2 < T1 ≤ T , the restriction of M on [T2, T1], denoted again by M , belongs
to M2([T2, T1];Rd ′

). By the uniqueness of Itô’s representation we can see that L

satisfies the local-in-time and differential properties. It is also easy to show that
L : M2([0, T ];Rd ′

) → H2([0, T ];Rd ′×d) satisfies the Lipschitz condition.

Another class of interesting examples of L is presented in the following exam-
ple.
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EXAMPLE 2. Let (�, F , Ft ,P) be a filtered probability space which satisfies
the technical conditions described at the beginning of Section 2, but not necessary
to be a Brownian filtration. Let B = (Bt )t≥0 be a Brownian motion in Rm adapted
to (Ft )t≥0, therefore (Ft )t≥0 is in general bigger than the Brownian filtration gen-
erated by B . Let MB denote the closed stable sub-space of M2 determined by B ,
that is,

MB =
{

m∑
j=1

∫ ·
0

Zj
s dBj

s :Zj are predictable and E
∫ T

0
|Hj

s |2 ds < ∞
}
.

Then any martingale M has a unique decomposition

Mt − M0 =
m∑

j=1

∫ t

0
Zj

s dBj
s + M ′

t ,

where M ′ ∈ M2([0, T ];R) orthogonal to MB . Then L(M) = (Zj ) satisfies the
local-in-time and differential properties, as well as the Lipschitz condition.

In the following theorems we retain the basic assumptions on the coefficients
f i

j and the terminal values ξ i .

THEOREM 4.1. Assume that L satisfies conditions (a), (b) and (c) listed
above. Then there exists a pair of processes (Y,M), where Y = (Yt )t∈[0,T ] is a
special semimartingale, and M = (Mt)t∈[0,T ] is a square integrable martingale,
which solves the backward equation

dYt = −f0(t, Yt ,L(M)t ) dt −
d∑

i=1

fi(t, Yt ) dBi
t + dMt, YT = ξ.(4.6)

The solution Y is unique, and its martingale correction term M is unique up to a
random variable measurable with respect to F0.

The remainder of this section is devoted to the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. Recall that

l2 = 1

C2
2 [4C1 + 6(1 + 2

√
d) + 3

√
2dC1C2]2

∧ 1,

which is positive and independent of ξ .
By Theorem 3.2, if the terminal time T ≤ l2, the nonlinear mapping L on

C0([0, T ];Rd ′
) admits a unique fixed point, where

L(V )t =
∫ t

0
f0(s, Y (V )s,L(M(V ))s) ds +

d∑
i=1

∫ t

0
fi(s, Y (V )s) dBi

s .
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Next we consider the case T > l2. In this case we divide the interval [0, T ] into
subintervals with length not exceeding l2. More precisely, let

T = T0 > T1 > · · · > Tk = 0

so that 0 < Ti−1 − Ti ≤ l2 where Ti are rationales except T0 = T .
Begin with the top interval [T1, T0], together with the terminal value YT0 = ξ

and the filtration starting from FT1 . Applying Lemma 3.2 to the interval [T1, T0]
and L1, where

(L1V )t =
∫ t

T1

f0
(
s, Y1(V )s,L[T1,T0](M1(V ))s

)
ds

+
d∑

i=1

∫ t

T1

fi(s, Y1(V )s) dBi
s,

where

M1(V )t = E(ξ + VT0 |Ft ), Y1(V )t = M1(V )t − Vt

for any V ∈ C([T1, T0];Rd ′
) and t ∈ [T1, T0]. Then, there exists a unique V (1) ∈

C0([T1, T0];Rd ′
) such that L1V (1) = V (1).

Repeat the same argument to each interval [Tj , Tj−1] (for 2 ≤ j ≤ k) with the
terminal value Yj−1(V (j − 1))Tj−1 , the filtration starting from FTj

, and the non-

linear mapping Lj defined on C0([Tj , Tj−1];Rd ′
) by

(LjV )t =
∫ t

Tj

f0
(
s, Yj (V )s,L[Tj ,Tj−1](M(Vj ))s

)
ds

+
N∑

i=1

∫ t

Tj

fi(s, Yj (V )s) dBi
s,

where V ∈ C([Tj , Tj−1];Rd ′
) and

Mj(V )t = E
(
Yj−1

(
V (j − 1)

)
Tj−1

+ VTj−1 |Ft

)
,

Yj (V )t = Mj(V )t − Vt

for t ∈ [Tj , Tj−1].
Therefore, for 1 ≤ j ≤ k, there exists a unique V (j) ∈ C([Tj , Tj−1];Rd ′

) such
that

V (j)t =
∫ t

Tj

f0
(
s, Y (j)s,L[Tj ,Tj−1](M(j))s

)
ds

+
N∑

i=1

∫ t

Tj

fi(s, Y (j)s) dBi
s
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for t ∈ [Tj , Tj−1], where Y(0)T0 = ξ , Y(j − 1)Tj−1 = Y(j)Tj−1 for 2 ≤ j ≤ k, and

M(j)t = E
(
Y(j − 1)Tj−1 + V (j)Tj−1 |Ft

)
,

Y (j)t = M(j)t − V (j)t

for t ∈ [Tj , Tj−1].
Since Y(j − 1)Tj−1 = Y(j)Tj−1 for 2 ≤ j ≤ k, Y = (Yt )t∈[0,T ] given by

Yt = Y(j)t if t ∈ [Tj , Tj−1]
for 1 ≤ j ≤ k, is well defined. Define V by shifting it at the partition points,

Vt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V (k)t , if t ∈ [0, Tk−1],
V (k − 1)t + V (k)Tk−1, if t ∈ [Tk−1, Tk−2],
· · ·
V (1)t +

k∑
l=2

V (l)Tl−1, if t ∈ [T1, T ].

Then V ∈ C([0, T ];Rd ′
). Finally we define

Mt = Yt + Vt for t ∈ [0, T ].
It remains to show that M is a martingale.

LEMMA 4.2. M defined above has the expression

Mt = M(j)t +
k∑

l=j+1

V (l)Tl−1 if t ∈ [Tj , Tj−1](4.7)

for 1 ≤ j ≤ k, and moreover, M is an (Ft )-martingale up to time T , so that

Mt = E(ξ + VT |Ft ).

PROOF. We first prove the expression (4.7). Since for 1 ≤ j ≤ k,

Y(j)t = M(j)t − V (j)t if t ∈ [Tj , Tj−1]
so that

Yt = M(j)t +
k∑

l=j+1

V (l)Tl−1 − Vt if t ∈ [Tj , Tj−1],

one may conclude that

Mt = M(j)t +
k∑

l=j+1

V (l)Tl−1 if t ∈ [Tj , Tj−1].
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It is clear that M is adapted to (Ft ), so we only need to show E(Mt |Fs) = Ms

for any 0 ≤ s ≤ t ≤ T . If s, t ∈ [Tj , Tj−1] for some j , then

Mt − Ms = M(j)t − M(j)s

so that

E(Mt − Ms |Fs) = E
(
M(j)t − M(j)s |Fs

) = 0.

If s ∈ [Ti, Ti−1] and t ∈ [Tj , Tj−1] for some i > j , then according to (4.7),

Ms = M(i)s +
k∑

l=i+1

V (l)Tl−1

and

Mt = M(j)t +
k∑

l=j+1

V (l)Tl−1 .

Since M(j) is a martingale on [Tj , Tj−1] so that

E(Mt |FTj
) = M(j)Tj

+
k∑

l=j+1

V (l)Tl−1,

conditional on FTj+1 ⊂ FTj
we obtain

E(Mt |FTj+1) = E
(
M(j)Tj

+ V (j + 1)Tj
|FTj+1

) +
k∑

l=j+2

V (l)Tl−1 .(4.8)

On the other hand, M(j)Tj
= YTj

+ V (j)Tj
= YTj

so that

E
(
M(j)Tj

+ V (j + 1)Tj
|FTj+1

) = E
(
YTj

+ V (j + 1)Tj
|FTj+1

)
= M(j + 1)Tj+1 .

Substituting it into (4.8) we obtain

E(Mt |FTj+1) = M(j + 1)Tj+1 +
k∑

l=j+2

V (l)Tl−1 .(4.9)

By repeating the same argument we may establish

E(Mt |FTi−1) = M(i − 1)Ti−1 +
k∑

l=i

V (l)Tl−1 .(4.10)
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Since s ∈ [Ti, Ti−1], conditional on Fs ,

E(Mt |Fs) = E
(
M(i − 1)Ti−1 + V (i)Ti−1 |Fs

) +
k∑

l=i+1

V (l)Tl−1

= E
(
YTi−1 + V (i)Ti−1 |Fs

) +
k∑

l=i+1

V (l)Tl−1

= M(i)s +
k∑

l=i+1

V (l)Tl−1

= Ms,

which proves M is an Ft -adapted martingale up to T . �

Since L satisfies the local-in-time property and the differential property, so that

L[Tj ,Tj−1](M(Vj ))s = L(M)s for s ∈ [Tj , Tj−1],
hence

V (j)t =
∫ t

Tj

f0(s, Ys,L(M)s) ds +
d∑

i=1

∫ t

Tj

fi(s, Ys) dBi
s

for any t ∈ [Tj , Tj−1] and j = 2, . . . , k. Therefore

Vt =
∫ t

0
f0(s, Ys,L(M)s) ds +

d∑
i=1

∫ t

0
fi(s, Ys) dBi

s ∀t ∈ [0, T ]

and Y = M − V , YT = ξ , which together imply that

Mt − Yt =
∫ t

0
f0(s, Ys,L(M)s) ds +

d∑
i=1

∫ t

0
fi(s, Ys) dBi

s ∀t ∈ [0, T ].

Thus (Y,M) solves the backward equation (2.3). Uniqueness follows from the fact
the solution (Y (j),M(j) − M(j)Tj

) is unique for any j .
The proof of Theorem 4.1 is complete. �

We end this article with several comments about the main results.
The local and global existence results remain valid even if the driver f

j
0 and the

diffusion coefficients f
j
i of the BSDE are random as long as the global Lipschitz

conditions are maintained. For example, if f
j
0 : R+ × � × Rd ′ × Rm → Rd ′

and

f
j
i : R+ × � × Rd ′ → Rd ′

are jointly measurable such that for any special semi-

martingale Y and Z ∈ H2([0, T ];Rm) (resp., C([0, T ];Rm)), f
j
0 (t, ·, Yt ,Zt ) and
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f
j
i (t, ·, Yt ) are progressively measurable and√

E
∫ T1

T2

|f j
0 (t, ·, Yt ,Zt ) − f

j
0 (t, ·, Ỹt , Z̃t )|2 dt

≤ C3‖Y − Y‖C[T2,T1] + C3‖Z − Z‖H2[T2,T1]
and √

E
∫ T1

T2

|f j
i (t, ·, Yt ) − f

j
i (t, ·, Ỹt )|2 dt ≤ C3‖Y − Y‖C[T2,T1]

for any [T2, T1] ⊂ [0, T ], Y, Ỹ ∈ S([0, T ];Rd) and Z, Z̃ ∈ H2([0, T ];Rm) (and
similarly for the case Z, Z̃ ∈ C([0, T ];Rm) with norm C[T2, T1] instead of
H2[T2, T1]), then all our local and global results remain true. We leave the details
of the proofs for the reader who may be interested in such a generalization.
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[12] BUCKDAHN, R., ENGELBERT, H. J. and RĂŞCANU, A. (2004). On weak solutions of back-
ward stochastic differential equations. Teor. Veroyatn. Primen. 49 70–108. MR2141331

http://www.ams.org/mathscinet-getitem?mr=1233625
http://www.ams.org/mathscinet-getitem?mr=1978231
http://www.ams.org/mathscinet-getitem?mr=2127730
http://www.ams.org/mathscinet-getitem?mr=1436432
http://www.ams.org/mathscinet-getitem?mr=0453161
http://www.ams.org/mathscinet-getitem?mr=0469466
http://www.ams.org/mathscinet-getitem?mr=2008603
http://www.ams.org/mathscinet-getitem?mr=2257138
http://www.ams.org/mathscinet-getitem?mr=2391164
http://www.ams.org/mathscinet-getitem?mr=2354579
http://www.ams.org/mathscinet-getitem?mr=2141331


BACKWARD STOCHASTIC DYNAMICS 1447

[13] CHERIDITO, P., SONER, M., TOUZI, N. and VICTOIR, N. (2007). Second order backward
stochastic differential equations and fully non-linear parabolic PDEs. Comm. Pure Appl.
Math. 60 1081–1110.
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