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SOME STOCHASTIC PROCESS WITHOUT BIRTH, LINKED TO
THE MEAN CURVATURE FLOW

BY KOLÉHÈ A. COULIBALY-PASQUIER

Université du Luxembourg

Using Huisken’s results about the mean curvature flow on a strictly con-
vex hypersurface and Kendall–Cranston’s coupling, we will build a stochas-
tic process without birth and show that there exists a unique law of such a
process. This process has many similarities with the circular Brownian mo-
tion studied by Émery and Schachermayer, and Arnaudon. In general this
process is not a stationary process; it is linked to some differential equation
without initial condition. We will show that this differential equation has a
unique solution up to a multiplicative constant.

1. Tools and first properties. Let M be a compact Riemannian manifold of
dimension n without boundary, which is smoothly embedded in Rn+1 for n ≥ 2.
We write F0 the embedding function

F0 :M ↪→ Rn+1.

Consider the flow defined by{
∂tF (t, x) = −Hν(t, x)�ν(t, x),

F (0, x) = F0(x).
(1.1)

Let Mt = F(t,M). We identify M with M0 and F0 with Id. In (1.1), �ν(t, x) is the
outer unit normal at F(t, x) on Mt , and Hν(t, x) is the mean curvature at F(t, x)

on Mt in the direction �ν(t, x), that is, Hν(x) = trace(Sν(x)) where Sν is the second
fundamental form (see [20] for the definition).

REMARK 1.1. In this paper we take this point of view of mean curvature flow
(see [14] for existence, and related results). Many other authors give a different
point of view for this equation. The viscosity solution (see [7–11]) generalizes the
solution after the explosion time and gives a unique solution which is contained
in the Brakke family of solutions and passes the singularity. In the sequel we shall
only consider smooth solutions until explosion time.

As usual we call Mt the motion by mean curvature. To be self-contained, we
include a proof of the next lemma, although it is well known.
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LEMMA 1.2. Let (M,g) be a Riemannian manifold isometrically embedded
in Rn+1. We call ι the isometry

(M,g)
ι

↪→ Rn+1.

Then

∀x ∈ M,�ι(x) = −Hν(x)�ν(x),(1.2)

where � is the Laplace–Beltrami operator associated to the metric g.

PROOF. By the flatness of the target manifold, we have

�ι(x) =
⎛
⎜⎝

�ι1(x)
...

�ιn+1(x)

⎞
⎟⎠

and

�ιj (x) =
n∑

i=1

d

dt2

∣∣∣∣
t=0

ιj (γi(t)),

where γi(t) is a geodesic in M such that γi(0) = x and γ̇i(0) = Ai , and Ai is an
orthogonal basis of TxM . By definition of a geodesic we obtain

�ι(x) ⊥ Tι(x)(ι(M)),

so there exists a function β such that �ι(x) = β(x)�ν(x). We compute β as follows:

β(x) = 〈�ι(x), �ν(x)〉

=
n∑

i=1

〈
d

dt2

∣∣∣∣
t=0

ι(γi(t)), �ν(x)

〉

=
n∑

i=1

〈∇Rn

˙ι(γi(t))
˙ι(γi(t))

∣∣
t=0, �ν(x)

〉

=
n∑

i=1

−〈 ˙ι(γi(t)),∇Rn

˙ι(γi(t))
�ν〉∣∣t=0,metric connection

=
n∑

i=1

−〈 ˙ι(γi(t)),
(∇Rn

˙ι(γi(t))
�ν)�〉∣∣t=0

= − trace(Sν(x)).

�

To give a parabolic interpretation of (1.1), let us define a family of metrics g(t)

on M which is the pull-back by F(t, ·) of the induced metric on Mt , that is,

g(t) := F(t, ·)∗(〈·, ·〉Rn+1)|Mt
.
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Using the previous lemma we rewrite the equation as in [14]{
∂tF (t, x) = �tF(t, x),

F (0, x) = F0(x),

where �t is the Laplace–Beltrami operator associated to the metric g(t).

REMARK 1.3. Sometimes we follow the probabilistic convention of putting
1/2 in front of the Laplacian (which just changes the time and makes computations
more concise); sometimes we use a geometric convention.

We call Tc the explosion time of the mean curvature flow. Let T < Tc, and g(t)

be the family of metrics defined as above. Let (Wi)1≤i≤n be a Rn-valued Brownian
motion. Recall from [4] the definition of the g(t)-Brownian motion in M started
at x which we call g(t)-BM(x).

DEFINITION 1.4. Let us take a filtered probability space (	, (Ft )t≥0, F ,P)

and a C1,2-family g(t)t∈[0,T [ of metrics over M . An M-valued process X(x) de-
fined on 	 × [0, T [ is called a g(t) Brownian motion in M started at x ∈ M if
X(x) is continuous, adapted and for every smooth function f ,

f (Xs(x)) − f (x) − 1

2

∫ s

0
�tf (Xt(x)) dt

is a local martingale vanishing at 0.

We give a proposition which yields a characterization of mean curvature flow
by the g(t) Brownian motion.

PROPOSITION 1.5. Let M be an n-dimensional manifold isometrically em-
bedded in Rn+1. Consider the application

F : [0, T [ × M → Rn+1

such that F(t, ·) are diffeomorphisms and the family of metrics g(t) on M , which
is the pull-back by F(t, ·) of the induced metric on Mt = F(t,M), that is,

g(t) := F(t, ·)∗(〈·, ·〉Rn+1)|Mt
.

Then the following assertions are equivalent:

(i) F(t, ·) is a solution of mean curvature flow;
(ii) ∀x0 ∈ M , ∀T ∈ [0, Tc[, let g̃T

t = 1
2gT −t and XT (x0) be a (g̃T

t )t∈[0,T ]- BM(x0),
then

YT
t = F

(
T − t,XT

t (x0)
)

is a local martingale in Rn+1.
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PROOF. By definition we have a sequence of isometries

F(t, ·) : (M,gt )→̃Mt ↪→ Rn+1.

Let x0 ∈ M and T ∈ [0, Tc[ and XT (x0) a (g̃T
t )t∈[0,T ]-BM(x0). We compute the

Itô differential of

Y
T,i
t = F i(T − t,XT

t (x0)
)
,

that is to say

d(Y
T,i
t ) = − ∂

∂t
F i(T − t,XT

t (x0)
)
dt + d(F i

T −t (X
T
t (x0))

≡
dM

− ∂

∂t
F i(T − t,XT

t (x0)
)
dt + 1

2
�g̃t

F i
T −t (X

T
t (x0)) dt

≡
dM

− ∂

∂t
F i(T − t,XT

t (x0)
)
dt + �gT −t

F i
T −t (X

T
t (x0)) dt

≡
dM

0.

Therefore YT
t is a local martingale.

Let us show the converse. Let x0 ∈ M and T ∈ [0, Tc[ and let XT (x0) be a
(g̃T

t )t∈[0,T ]-BM(x0). Then Y
T,i
t is a local martingale since, almost surely, for all

t ∈ [0, T ]

− ∂

∂t
F i(T − t,XT

t (x0)
)
dt + �gT −t

F i
T −t (X

T
t (x0)) dt = 0.

For any s ∈ [0, T ], we get by integrating∫ s

0
− ∂

∂t
F i(T − t,XT

t (x0)
)
dt + �gT −t

F i
T −t (X

T
t (x0)) dt = 0.

Continuity of g(t)-Brownian motions then yields

− ∂

∂t
F i(T , x0) + �gT

F i
T (x0) = 0. �

In order to apply this proposition, we give an estimation of the explosion time.
This is also a consequence of a maximum principle explicitly contained in the
g(t)-Brownian motion.

The quadratic covariation of YT
t is given by

PROPOSITION 1.6. Let YT
t be defined as before; then the quadratic covaria-

tion of YT
t for the usual scalar product in Rn+1 is

〈dYT
t , dY T

t 〉 = 2n1[0,T ](t) dt.
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PROOF. Let //T
0,t be the parallel transport above XT

t . It is shown in [4] that
this is an isometry:

//T
0,t : (TX0M, g̃(0)) �−→ (TXt M, g̃(t)).

Let (ei)1≤i≤n be a orthonormal basis of (TX0M, g̃(0)), and (Wi)1≤i≤n be the Rn-
valued Brownian motion such that (e.g., [2, 4])

∗dWt = //
T,−1
0,t ∗ dXT

t ,

and in the Itô’s sense

dXT
t = //T

0,t ei dWi
t .

Hence

〈dYT
t , dY T

t 〉 = 〈d(FT −t (X
T
t (x0))), d(FT −t (X

T
t (x0)))〉

= 〈d(XT
t (x0)), d(XT

t (x0))〉gT −t

= 〈d(XT
t (x0)), d(XT

t (x0))〉2g̃t

=
〈

n∑
i=1

//T
0,t ei dWi,

n∑
j=1

//T
0,t ej dWj

〉
2g̃t

=
n∑

i=1

〈//T
0,t ei , //

T
0,t ei〉2g̃t

dt =
n∑

i=1

2dt = 2ndt.

To pass from the first to the second line, we used the fact that FT −t is an isometry,
for the last step we used the isometry of the parallel transport. �

REMARK 1.7. Up to convention we recover the same martingale as in [21].

An immediate corollary of Proposition 1.6 is the following result, which appears
in [10] and [14].

COROLLARY 1.8. Let M be a compact Riemannian n-manifold and Tc the
explosion time of the mean curvature flow; then

Tc ≤ diam(M0)
2

2n
.

PROOF. Recall that the mean curvature flow stays in a compact region, like
the smallest ball which contains M0. This result is clear in the case of a strictly
convex starting manifold and can be proved in the general setting using P. L. Lions
viscosity solution (e.g., Theorem 7.1 in [10]).

For all T ∈ [0, Tc[ take the previous notation. By the above recall that

‖YT
t ‖ ≤ diam(M0);
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then YT
t is a true martingale, and

‖YT
t ‖2 − 〈YT ,Y T 〉t

is also a true martingale. Hence

E[‖YT
0 ‖2] + 2nT ≤ diam(M0)

2,

and we obtain

T ≤ diam(M0)
2

2n
. �

2. Tightness and first example on the sphere. We now define (g̃Tc)t∈]0,Tc]-
BM in a general setting. When the initial manifold M0 is a sphere we use con-
formality of the metric to show that after a deterministic change of time such a
process is a ]−∞, Tc] Brownian motion on the sphere (for existence and definition
see [1] and [6]). In the next section, we shall give a general uniqueness result when
the initial manifold M0 is strictly convex.

DEFINITION 2.1. Let M be an n-dimensional strictly convex manifold (i.e.,
with a strictly positive definite second fundamental form), F(t, ·) the smooth so-
lution of the mean curvature flow, (M,g(t)) the family of metrics constructed by
pull-back (as in Proposition 1.5) and Tc the explosion time. We define a family of
processes as follows: ∀ε ∈]0, Tc]

Xε
t (x0) =

{
x0, if 0 < t ≤ ε,
BM(ε, x0)t , if ε ≤ t ≤ Tc,

where BM(ε, x0)t is a 1
2g(Tc − t) Brownian motion that starts at x0 at time ε, and

Y ε
t (x0) =

{
F(Tc − ε, x0), if 0 ≤ t ≤ ε,
F
(
Tc − t,Xε

t (x0)
)
, if ε ≤ t ≤ Tc.

REMARK 2.2. We proceed as before because at time Tc, there is not any met-
ric. Huisken shows in [14] that in this case

∃D ∈ Rn+1 such that ∀x0 ∈ M, lim
s→Tc

F (s, x0) = D.

PROPOSITION 2.3. With the same notation as in the above definition there
exists at least one martingale Y 1 in the adherence (for the weak convergence) of
(Y ε· (x0))ε>0 when ε goes to 0. Also, every adherence point is a martingale.

PROOF. We have

dY ε
t (x0) =

{
0, if t ≤ ε,
dM, if t ≥ ε,
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where dM is an Itô differential of some martingale. This defines a family of mar-
tingales. With the same computation as in Proposition 1.6, we get

〈dY ε
t , dY ε

t 〉Rn+1 = 2n1]ε,Tc](t) dt ≤ 2ndt.

Also by the above remark Y ε
0 is tight, hence (Y ε· (x0))ε>0 is tight. As usual,

Prokhorov’s theorem implies that there exists an adherence point. We also use
Huisken [14] (for the strictly convex manifold) to show

‖Y ε‖ ≤ diam(M0).(2.1)

By Proposition 1-1 in [16], page 481, and the fact that (Y ε) are martingales, we
conclude that all adherence points of (Y ε) are martingales with respect to the fil-
tration that they generate. �

REMARK 2.4. The above proposition is also valid for arbitrary M which are
isometrically embedded in Rn+1 just because the bound (2.1) is also a consequence
of Theorem 7.1 in [10].

We will now derive tightness of Xε
t from those of (Y ε). This purpose will be

completed by the subsequent Lemma 2.6.
Recall some results of [14]: if M0 is a strictly convex manifold, then Mt is also

strictly convex and ∀0 ≤ t1 < t2 < Tc, Mt2 ⊂ int(Mt1), where int is the interior of
the bounded connected component of the complementary. Hence there is a folia-
tion of int(M0) ⊔

t∈[0,Tc[
Mt,

where
⊔

stand for the disjoint union.

DEFINITION 2.5. We denote

Cf (]0, Tc],Rn+1) = {γ ∈ C(]0, Tc],Rn+1) such that γ (t) ∈ MTc−t }.
Note that Cf (]0, Tc],Rn) is a closed set of C(]0, Tc],Rn) for the Skorokhod

topology.

LEMMA 2.6. Let M be an n-dimensional strictly convex manifold, F(t, ·) the
smooth solution of the mean curvature flow and Tc the explosion time. Then

F : [0, Tc[×M −→ ⊔
t∈[0,Tc[

Mt

is a diffeomorphism in the sense of manifolds with boundary, and

� : Cf (]0, Tc],Rn) −→ C(]0, Tc],M),

γ �−→ t �→ F−1(Tc − t, γ (t)
)

is continuous for the different Skorokhod topologies. To define the Skorokhod topol-
ogy in C(]0, Tc],M) we could use the initial metric g(0) on M .
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PROOF. It is clear that F is smooth as a solution of a parabolic equation [14],
and this result has been used above. Its differential is given at each point by

∀(t, x) ∈ [0, Tc[×M,∀v ∈ TxM

DF(t, x)

(
∂

∂t

, v

)
= ∂

∂t

F (t, x) ⊕ DFt(x)(v),

where ∂
∂t

F (t, x) = −H(t, x)�ν(t, x); here ⊕ stands for + and means that we cannot
cancel the sum without cancelling each term. Since there is no ambiguity we write
H(t, x) for Hν(t, x). Recall that H(t, x) > 0.

For the second part of the lemma, we remark that for 0 ≤ δ < Tc

F−1 :
⊔

t∈[0,δ]
Mt −→ [0, δ] × M

is Lipschitz (use the bound of the differential on a compact set).
Recall that a sequence converges to a continuous function in the Skorokhod

topology if and only if it converges to this function locally uniformly. We will
now show the continuity of � . Take a sequence αm in Cf (]0, Tc],Rn+1) and
α ∈ Cf (]0, T ],Rn+1) such that αm → α for the Skorokhod topology. Then for
all compact sets A in ]0, Tc],

‖αm − α‖A −→ 0,

where ‖f ‖A = supt∈A‖f (t)‖. Let A be a compact set in ]0, Tc]; then there exists
a Lipschitz constant CA of F−1 in

⊔
t∈A Mt , such that for all t in A,

dg(o)(F
−1(αm(t)),F−1(α(t))) ≤ CA‖αm(t) − α(t)‖,

where dg(o)(x, y) is the distance in M between x and y for the metric g(0). We
also define

dg(o),A(f, g) = sup
t∈A

dg(o)(f (t), g(t)),

where f and g are M-valued function. We get

dg(o),A(�(αm),�(α)) ≤ CA‖αm − α‖A.

So �(αm) −→ �(α) uniformly in all compact, so for the Skorokhod topology in
C(]0, Tc],M). �

Let

Ỹ ε
t = (Y ε

t − Y ε
0 ) + (

Y ε
0 1[ε,Tc](t) + 1[0,ε](t)F (Tc − t, xo)

)
.

Proposition 2.3 gives the tightness of Y ε
t − Y ε

0 , and

Y ε
0 1[ε,Tc](t) + 1[0,ε](t)F (Tc − t, xo)



A STOCHASTIC PROCESS WITHOUT BIRTH 1313

is a nonrandom sequence of functions that converges uniformly; hence Ỹ ε is tight.
For strictly positive time t ,

Xε
t = F−1(Tc − t, Ỹ ε

t ).

The previous Lemma 2.6 yields the tightness of Xε . Hence we have shown that

∀ϕ = (εk)k → 0,∃X
ϕ
]0,Tc], X

εk]0,Tc]
L→ X

ϕ
]0,Tc] for a subsequence.

PROPOSITION 2.7. Let ϕ = (εk)k → 0 and X
ϕ
]0,Tc] such that X

εk]0,Tc]
L→

X
ϕ
]0,Tc]. Then X

ϕ
]0,Tc] is a 1

2g(Tc − t)- BM in the following sense:

∀ε > 0 X
ϕ
[ε,Tc]

L= BM(ε,Xϕ
ε ).

PROOF. Let ε > 0; then for large k{
Xεk is a BM(ε,Xεk

ε ) after time ε, by the Markov property,
and let X be a BM(ε,Xϕ

ε
) after time ε.

We want to show that X = Xϕ after ε. To sketch the proof

Xεk
L−→

k→∞Xϕ,

and hence

Xεk
ε

L−→
k→∞Xϕ

ε .

We use the Skorokhod theorem, to have a L2-convergence in a larger probability
space

X′εk
ε

L2, a.s.−→
k→∞ X′ϕ

ε ,

with X′εk
ε

L= Xεk
ε and X

′ϕ
ε

L= X
ϕ
ε . We use convergence of solutions of SDEs with

initial conditions converging in L2 (see Stroock and Varadhan [22]), to get

BM(ε,X′εk
ε )

L−→
k→∞ BM(ε,X′ϕ

ε ),

BM(ε,X′εk
ε )

L= X
εk[ε,Tc],

BM(X′ϕ
ε )

L= BM(ε,Xϕ
ε ).

We use that

Xεk
L−→

k→∞Xϕ

to conclude, after identification of the limit,

X = BM(ε,Xϕ
ε )

L= X
ϕ
[ε,Tc].
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Hence the process Xϕ is a 1
2g(Tc − u)u∈]0,Tc]- BM in the above sense, we call

“without birth.” �

We now show that in the sphere case the 1
2g(Tc − u)u∈]0,Tc]-BM is, after a

change of time, nothing else than a BM(g(0))]−∞,0]. This will give uniqueness in
law of the process.

PROPOSITION 2.8. Let g(t) be a family of metrics which arises from a mean
curvature flow on the sphere. Then the g̃(u) = 1

2g(Tc −u)u∈]0,Tc]- BM is unique in
law.

PROOF. Let R0 be the radius of the g(0)-sphere. Then Tc = R2
0

2n
, and by direct

computation we obtain

F(t, x) =
√

R2
0 − 2nt

R0
x.

Let X be a 1
2g(Tc − u)u∈]0,Tc]-BM. By Proposition 1.5 we know that the diffusion

Zt := F(Tc − t,Xt ) is a local martingale in Rn+1. By construction we know that
Zt belongs to the sphere MTc−t , and Xt = R0√

2nt
Zt . By invariance under the or-

thogonal group O(n+ 1), the generator of X must have the form k(t)�g(0), where
�g(0) is the generator of the spherical Brownian motion; consequently for some
deterministic time-change ϕ, Xϕ(·) is a spherical Brownian motion. To identify ϕ

it suffices to compute the quadratic variation of X in Rn+1. Proposition 1.6 gives
〈dZt , dZt 〉 = 2ndt , wherefrom

〈dXt , dXt 〉 =
(

R0√
2nt

)2

〈dZt , dZt 〉 = R2
0

t
dt

and

〈
dXϕ(t), dXϕ(t)

〉= R2
0ϕ′(t)
ϕ(t)

dt;

identifying this with the quadratic variation ndt of spherical Brownian motion
gives the time-change ϕ with the initial condition ϕ(0) = Tc, that is, the function

ϕ(t) = Tc exp
(

t

2Tc

)
.

We get that Xϕ(t) = (BMg(0))t , according to the usual characterization of a
Brownian motion. Hence by this deterministic change of time, and by the unique-
ness in law of a (BMg(0))]−∞,0] on the sphere, we get uniqueness in law of a
1
2g(Tc − u)u∈]0,Tc]-BM on a sphere. �
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REMARK 2.9. By invariance of Zt under the orthogonal group O(n + 1) and
using the fact that the norm of Zt is deterministic [i.e., ‖Zt‖ = f (t)] we deduce
that the generator of Z at a point z ∈ Rn+1 \{0} must have the form c(t)�z⊥ [where
c(t) depends on f (t), i.e., 2nc(t) = (f 2(t))′, and �z⊥ denotes the Laplacian in the
hyperplanar direction z⊥], just by computing the generator in good coordinates.

In the above proof we essentially made use of conformality of the family of
metrics. In the general case of a strictly convex initial manifold the family of met-
rics may be not conform. But we shall see in the sequel that for any strictly convex
initial manifold we can prove the uniqueness in law of the 1

2g(Tc −u)u∈]0,Tc]-BM,
without the assumption of conformality and by using different strategies.

3. Kendall–Cranston coupling. In this section the manifold M is compact
and strictly convex. The goal is to prove uniqueness in law of the g(Tc − t)-BM.
This section will be cut into two parts: in the first one we will give a geometric
result inspired by the work of Huisken; the second one will be an adaptation of
the Kendall–Cranston coupling. We will, by a deterministic change of time, trans-
form a g(Tc − t)-BM (the existence of which comes from Proposition 2.7) into a
g̃(t)]−∞,0]-BM which has good geometric properties.

REMARK 3.1. In the two last sections in [14], Huisken considers, like Hamil-
ton for the Ricci flow, the normalized mean curvature flow. It consists of dilating
the manifolds Mt by a coefficient to obtain manifolds of constant volume. He ob-
tains a positive coefficient of dilation ψ(t) that satisfies the following property:

THEOREM 3.2 (Huisken [14]). For all t ∈ [0, Tc[, define F̃ (t, ·) = ψ(t)F (t, ·)
such that

∫
M̃t

dμ̃t = |M0| and t̃ (t) = ∫ t
0 ψ2(τ ) dτ , then there exist positive con-

stants δ and C such that:

(i) T̃c = ∞;
(ii) H̃max(t̃) − H̃min(t̃) ≤ Ce−δt̃ ;

(iii) | ∂
∂t̃

g̃ij (t̃ )| ≤ Ce−δt̃ ;
(iv) g̃ij (t̃) → g̃ij (∞) when t̃ → ∞ uniformly, for the C∞-topology, and the con-

vergence is exponentially fast;
(v) g̃(∞) is a metric such that (M, g̃(∞)) is a sphere.

We will now give the change of time propositions.

PROPOSITION 3.3. Let ψ : [0, Tc[→]0,∞[ be as above, t̃ defined by

t̃ : [0, Tc[ −→ [0,∞[, t �−→
∫ t

0
ψ2(τ ) dτ,(3.1)
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for all t ∈ [0,∞[, define

g̃(t) = ψ2(t̃−1(t))g(t̃−1(t)),

where g(t) is the family of metrics coming from a mean curvature flow, and Xt is
a g(t)-BM. Then

t �→ Xt̃−1(t) is a g̃(t)- BM defined on [0,∞[.
PROOF. Let f ∈ C∞(M)

f
(
Xt̃−1(t)

) M≡ 1

2

∫ t̃−1(t)

0
�g(s)f (Xs) ds

M≡ 1

2

∫ t

0
�g(t̃−1(s))f

(
Xt̃−1(s)

)
(t̃−1)′(s) ds

M≡ 1

2

∫ t

0
�1/((t̃−1)′(s))g(t̃−1(s))f

(
Xt̃−1(s)

)
ds.

Using

ψ2(t̃−1(s))(t̃−1)′(s) = 1,

we obtain
1

(t̃−1)′(s)
g(t̃−1(s)) = g̃(s). �

PROPOSITION 3.4. Let X
Tc
t , with t ∈ ]0, Tc], be a g(Tc − t)- BM. Let τ be

defined by

τ : ]0, Tc] −→ ]−∞,0],
t �−→ −t̃ (T − t).

Let g̃(t) be defined by

g̃(t) = ψ2(Tc − τ−1(t)
)
g
(
Tc − τ−1(t)

) ∀t ∈]−∞,0].
Then

t �→ X
Tc

τ−1(t)
is a g̃(t)- BM .

PROOF. Let f ∈ C∞(M) and s < t ,

f
(
X

Tc

τ−1(t)

)− f
(
X

Tc

τ−1(s)

) M≡ 1

2

∫ τ−1(t)

τ−1(s)
�g(Tc−u)f (XTc

u ) du

M≡ 1

2

∫ t

s
�g(Tc−τ−1(u))f

(
X

Tc

τ−1(u)

)
(τ−1(u))′(s) du

M≡ 1

2

∫ t

s
�1/(τ−1)′(u)g(Tc−τ−1(u))f

(
X

Tc

τ−1(u)

)
du.
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We have −t̃ (Tc − τ−1(u)) = u, and

(τ−1)′(u)ψ2(Tc − τ−1(u)
)= 1.

We obtain

f
(
X

Tc

τ−1(t)

)− f
(
X

Tc

τ−1(s)

) M≡ 1

2

∫ t

s
�ψ2(Tc−τ−1(u))g(Tc−τ−1(u))f

(
X

Tc

τ−1(u)

)
du,

that is,

f
(
X

Tc

τ−1(t)

)− f
(
X

Tc

τ−1(s)

) M≡ 1

2

∫ t

s
�g̃(u)f

(
X

Tc

τ−1(u)

)
du. �

REMARK 3.5. By Theorem 3.2, we know that g̃(t) tends to a sphere metric as
t goes to −∞. The above proposition transforms “two” g(Tc − t)-BM into “two”
g̃-BM. Thus we shall use the regularization of a metric into the sphere metric as
well as the large time interval to perform the coupling.

Let τx be a plane in TxM and g(t) be a metric on M . We write K(t, τx) for the
sectional curvature of the plane τx according to the metric g(t). We will now give
a few geometric lemmas that will be used later. For simplicity we will take positive
times.

LEMMA 3.6. Let g(t) be a family of metrics on a manifold M , and g(∞) a
metric that makes M into a sphere. Suppose that:

(i) g(t) −→ g(∞) uniformly, when t −→ ∞ for the C∞-topology exponen-
tially fast, that is, ∀n ∈ N,∀ multi-indices (i1, . . . , ik) such that

∑
ik = n,

∃Cn, δn > 0, such that∣∣∣∣ ∂n

∂Xi1 · · ·Xik

gij (t) − ∂n

∂Xi1 · · ·Xik

gij (∞)

∣∣∣∣≤ Cne
−δnt ;

(ii) ∃δ,C1 > 0 such that | ∂
∂t

gij (t)| ≤ C1e−δt ;
(iii) volg(t)(M) = volg(0)(M).

Then, for all ε > 0, there exists T ∈ [0,∞[, ∃C, cst, cst1 ∈ R+ and cn(cst,V ) > 0
such that, ∀t ∈ [T ,∞[ the following conditions are satisfied:

(i) for all x in M and for all planes τx ⊂ TxM , |K(t, τx) − cst| ≤ ε;
(ii) |ρt − ρ∞|M×M ≤ cst1e−δt ;

(iii) ρ′
t (x, y) := d

dt
ρt (x, y) ≤ C in a compact CC of M × M ,

where the constant cst comes from the radius of M with respect to g(∞), ρt (x, y)

is the distance between x and y for the metric g(t), and

CC =
{
(x, y) ∈ M × M :ρt (x, y) ≤ min

(
π

2
√

(cst + ε)
,
cn(cst,V )

2

)
,∀t > T

}
.
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PROOF. Let us prove (i).
Curvatures are functions of second-order derivatives of the metric tensor. We

give the definitions of curvatures tensors, to make this point clear. Conventions
are as in [17, 18, 20], and in particular, we use Einstein’s summation convention.
For a metric connection without torsion (Levi–Cività connection), we recall the
following standard definitions:

- the Christoffel symbols,

�k
ij = 1

2
gkl

(
∂

∂xi

gjl + ∂

∂xj

gil − ∂

∂xl

gij

)
;

- the (3,1) Riemann tensor,

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z;
- the (4,0) curvature tensor,

Rm(X,Y,Z,W) = 〈R(X,Y )Z,W 〉;
- the sectional curvature,

K(X,Y ) = Rm(X,Y,Y,X)

|X|2|Y |2 − 〈X,Y 〉2 .

We see that the sectional curvature depends on the metric and its derivatives up to
order two, so that ∀x ∈ M , and for all planes τx ⊂ TxM ,

lim
t→∞K(t, τx) = cst.

Also, for all ε > 0, there exists T such that for all t > T , for all x in M and for all
planes τx ⊂ TxM ,

|K(t, τx) − cst| ≤ ε.

For the third point (iii): for (x, y) ∈ CC, where CC is defined above, we will
show that we have uniqueness of minimal g(t)-geodesic from x to y, for all time
t > T , because we have the well-known Klingenberg’s result (e.g., [12], page 158)
about the injectivity radius of a compact manifold whose sectional curvature is
bounded above. To use Klingenberg’s lemma, we have to bound the shortest length
of a closed geodesic. We will use Cheeger’s theorem ([3], page 96). By the con-
vergence of the metric, we have the convergence of the Ricci curvature, and thus
we obtain that they are bounded by the same constant. We obtain, using Myers’s
theorem that all diameters are bounded from above. The volumes are constant
so bounded from below, all sectional curvatures of M are bounded in absolute
value from above. By Cheeger’s theorem there exists a constant cn(cst,V ) > 0
that bounds the length of smooth closed geodesics. Hence, for large time, using
Klingenberg’s lemma, we get a bound from below, uniform in time for large time,
of the injectivity radius min( π

2
√

(cst+ε)
, cn(cst,V )

2 ).
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Hence for all t > T , there exists only one g(t)-geodesic between x and y, and
we denote it by γ t . Let E(γ t ) = ∫ 1

0 〈γ̇ t (s), γ̇ t (s)〉g(t) ds be the energy of the geo-
desic where γ̇ t (s) = ∂

∂s
γ t (s), ρ2

t (x, y) = E(γ t ). We compute

2
(

∂

∂t

∣∣∣∣
t=t0

ρt (x, y)

)
(ρt (x, y))

= ∂

∂t

∣∣∣∣
t=t0

E(γ t )

=
∫ 1

0
〈γ̇ t0(s), γ̇ t0(s)〉∂/∂t |t=t0g(t) ds

+ 2
∫ 1

0

〈
Dt |t=t0

∂

∂s
γ t (s),

∂

∂s
γ t0(s)

〉
g(t0)

ds

=
∫ 1

0
〈γ̇ t0(s), γ̇ t0(s)〉∂/∂t |t=t0g(t) ds

+ 2
∫ 1

0

〈
Ds

∂

∂t

∣∣∣∣
t=t0

γ t (s),
∂

∂s
γ t0(s)

〉
g(t0)

ds.

Let X = ∂
∂t

|t=t0γ
t (s) be a vector field such that X(x) = 0TxM,X(y) = 0TyM

because we do not change the starting and terminal point. The covariant derivative
is computed with the Levi–Cività connection associated to g(t0). Hence we obtain∫ 1

0

〈
Ds

∂

∂t

∣∣∣∣
t=t0

γ t (s),
∂

∂s
γ t0(s)

〉
g(t0)

ds =
∫ 1

0

〈
∇γ̇ t0 (s)X,

∂

∂s
γ t0(s)

〉
g(t0)

ds,

and also 〈
∇γ̇ t0 (s)X,

∂

∂s
γ t0(s)

〉
g(t0)

= ∂

∂s

〈
X,

∂

∂s
γ t0(s)

〉
g(t0)

,

because the connection is metric, and γ t0 is a g(t0)-geodesic. Hence∫ 1

0

∂

∂s

〈
X,

∂

∂s
γ t0(s)

〉
g(t0)

ds =
[〈

X,
∂

∂s
γ t0(s)

〉
g(t0)

]1

0
= 0.

Finally, we obtain

∂

∂t

∣∣∣∣
t=t0

ρt (x, y) = 1

2ρt0(x, y)

∫ 1

0
〈γ̇ t0(s), γ̇ t0(s)〉∂/∂t |t=t0g(t) ds.(3.2)

We will now control the second term in the previous equation. By the exponen-
tial convergence of the metric we can assume that the time is in the compact inter-
val [0,1]. The manifold is compact, so we have a finite family of charts (indeed, we
may assume that we have two charts because the manifold has a metric which turns
it into a sphere). The support of this chart could be taken to be relatively compact,
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and in this chart we can take the Euclidean metric, that is, 〈∂i, ∂j 〉E = δ
j
i . In gen-

eral this is not a metric on M . For the sake of simplicity, after taking the minimum
over all charts, we may assume that we just have one chart. Let S1 be a sphere in
Rn with the Euclidean metric. The functional

[0,1] × S1 × M −→ R, (t, v, x) �−→ gij (t, x)vivj ,

reaches its minimum C > 0. Hence

‖T ‖E ≤ C−1‖T ‖g(t) ∀t ∈ [0,1],∀T ∈ T M.

Hence for (3.2) we get the estimate∣∣∣∣ ∂∂t

∣∣∣∣
t=t0

ρt (x, y)

∣∣∣∣≤ 1

2ρt0(x, y)
C1e−δt0

∫ 1

0
|〈γ̇ t0(s), γ̇ t0(s)〉E|ds

≤ 1

2ρt0(x, y)
C1(C)−1e−δt0

∫ 1

0
|〈γ̇ t0(s), γ̇ t0(s)〉g(t0)|ds

≤ 1

2
C1(C)−1e−δt0 .

This expression is clearly bounded.
For the second point (ii), let x, y ∈ M take γ∞ be a g(∞)-geodesic that joins x

to y. Then we have, on the one hand,

ρ2
t (x, y) − ρ2∞(x, y) ≤

∫ 1

0
〈γ̇∞(s), γ̇∞(s)〉g(t)−g(∞) ds

≤ Cst e−δt
∫ 1

0
‖γ̇∞(s)‖2

g(∞) ds

≤ Cst e−δt diam2
g(∞)(M),

where the constant changes and depends on the previous constant.
On the other hand, we have

ρ2∞(x, y) − ρ2
t (x, y) ≤

∫ 1

0
〈γ̇ t (s), γ̇ t (s)〉g(∞)−g(t) ds

≤ Cst e−δt
∫ 1

0
‖γ̇ t (s)‖2

g(t) ds

≤ Cst e−δt diam2
g(t)(M)

≤ cst1 e−δt ,

for some constant cst1. We use Myers’s theorem for the last inequality to get a
uniform upper bound of the diameter (since all Ricci curvatures are uniformly
bounded). We get exponential convergence of the length. �
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We will now show uniqueness in law of a g(Tc − t)-BM. By Proposition 3.4,
this uniqueness is equivalent to uniqueness in law of a g̃(t)]−∞,0]-BM. This family
of metrics, g̃(t), satisfies

g̃(t) −→ g̃(−∞) for the C∞-topology.

Let Z1,Z2 be two g̃-BM]−∞,0] and N � T where T is the time of the Lem-
ma 3.6, that is, the time up to which all bounds of the lemma are under control.
The geometry before this time is similar to the geometry of the sphere. So the
result of uniqueness in law for Brownian motion defined in a product probability
space, indexed by R in a compact manifold (e.g., [1, 6]) could give the heuristics
to our results. As we can see in [4] the g(t)-stochastic development and the g(t)-
horizontal lift of a g(t)-BM is well defined.

We shall consider a new process Z3
N,t equal in law to Z2 after N and equal to

Z2 before. In the sequel we denote Z3
t for Z3

N,t . The construction, after time N ,
will be given by localization in a stochastic interval.

Let T N
0 = N, and for all t ≤ N , Z3

N,t = Z2
t .

(1) Let Z3
t evolve independently of Z1

t , that is, Z3
t is a g(T N

0 + ·)-BM which
starts at Z3

T N
0

and the Rn-valued Brownian motion that drives Z3
t will be indepen-

dent of the one that drives Z1
t .

Let T N
1 = (N + 1

2) ∧ inf{t > T N
0 , ρt (Z

1
t ,Z

3
t ) ≤ 1

4( π√
cst+ε

∧ cn(cst,V ))} ∧ T .
The constant ε is just taken to be small enough.

Let CN = inf{t > N,Z1
t = Z3

t }.
(2) At time T N

1 :

• if ρT N
1

(Z1
T N

1
,Z3

T N
1

) ≤ 1
4( π√

cst+ε
∧ cn(cst,V )), these two points (Z3

T N
1

and Z1
T N

1
)

are close enough to make mirror coupling possible. The distance between these
two points is strictly less than the injectivity radius ig(t)(M), and hence we have
uniqueness of the geodesic that joins these two points. After T N

1 and before CN ,
we build Z3

t as the g(T N
1 + ·)-BM that starts at Z3

T N
1

, and solves

∗dZ3
t = U3

t ∗ d((U3
t )−1mt

Z1
t ,Z3

t
U1

t ei dWi
t )

and after CN ,

Z3
t = Z1

t , CN ≤ t,

where U3
t is the horizontal lift of Z3

t . To be correct we have to write down
a system of stochastic differential equations as in Kendall [19]: let U1

t be the
horizontal lift of Z1

t and dWi
t be the Brownian motions that drive Z1

t . Then
the mirror map mt

x,y consists of transporting a vector along the unique minimal
g(t)-geodesic that joins x to y and then reflecting it about the hyperplane of
(TyM,g(t)) which is perpendicular to the incoming geodesic.
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By the isometry property of the horizontal lift of the g(t)-BM (see [4]), we
have that

(U3
t )−1mt

Z1
t ,Z3

t
U1

t dWi
t

is an Rn-valued Brownian motion. Let

T N
2 =

(
T N

1 + 1

2

)
∧ inf

{
t > T N

1 , ρt (Z
1
t ,Z

3
t ) >

π/
√

cst + ε ∧ cn(cst,V )

2

}

∧ T ∧ CN.

• If ρT N
1

(Z1
T N

1
,Z3

T N
1

) > 1
4( π√

cst+ε
∧ cn(cst,V )), then T N

2 = T N
1 .

Iterate step 1 and 2 successively (changing T N
0 by T N

2 and T N
1 by T N

3 in step 1,
changing T N

1 by T N
3 and T N

2 by T N
4 in step 2, . . . , after time T if we have no cou-

pling, we let Z3 evolve independently of Z1
t until the end), we build by induction

the process Z3
t and a sequence of stopping times. We sketch it as:

• if CN < T ,

T N
0

independent−→ T N
1

coupling−→ T N
2

independent−→ T N
3

coupling−→ T N
4 · · ·CN

Z3
t =Z1

t−→ 0;
• if CN > T ,

T N
0

independent−→ T N
1

coupling−→ T N
2

independent−→ T N
3

coupling−→ T N
4 · · ·T independent−→ 0.

PROPOSITION 3.7. The two processes Z3 and Z2 are equal in law.

PROOF. It is clear that before N the two processes are equal, so they are equal
in law. After N we argue as following:

Z3
N = Z2

N .⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∗dZ3
t =∑

i

U3
t ei ∗ dBi, when t ∈ [T N

2k , T N
2k+1 ∧ CN ],

∗dZ3
t =∑

i

U3
t ∗ d((U3

t )−1mt

Z1
t ,Z3

t
U1

t )ei dWi
t ,

when t ∈ [T N
2k+1, T

N
2k+2 ∧ CN ],

Z3
t = Z1

t , CN ≤ t.

We write

∗dZ3
t =

∞∑
k=0

1[T N
k ,T N

k+1](t) ∗ dZ3
t = ∑

k : even

· · · + ∑
k : odd

· · · .

Let f ∈ C∞(M) then we have:



A STOCHASTIC PROCESS WITHOUT BIRTH 1323

- for even k:

df
(
1[T N

k ,T N
k+1](t) ∗ dZ3

t

) dM≡ 1
21[T N

k ,T N
k+1](t)�g̃(t)f (Z3

t ) dt;
- for odd k:

df
(
1[T N

k ,T N
k+1](t) ∗ dZ3

t

) dM≡ 1
21[T N

k ,T N
k+1]�g̃(t)f (Z3

t ) dt.

Hence Z3 and Z2 are two diffusions with the same starting distribution and the
same generator; hence they are equal in law. For the gluing with Z1 after CN this
is just the strong Markov property for (t,Z). �

PROPOSITION 3.8. There exists α > 0 such that

P
(
T N

1 − N < 1
2

)
> α.

PROOF. By the C∞-convergence of the metric we get

∀t < T
∣∣�g̃(t)f − �g̃(−∞)f

∣∣≤ C̃eδt ,

where the constant comes from Theorem 3.2, and the derivative of f up to order
two. We also obtain, by Lemma 3.6, for a constant ε2 that will be fixed below:

|ρt − ρ−∞| ≤ ε2.

Over the sphere (M, g̃(−∞)), we have by the usual comparison theorem

�g̃(−∞)ρ−∞(x) ≤ n cot(ρ−∞(x)).

We can suppose after normalization that the radius of the sphere (M, g̃(−∞)) is
one, Radius−∞(M) = 1 (i.e., cst = 1) in Lemma 3.6. We deduce from above that

�g̃(t)ρ−∞(x) ≤ n cot(ρ−∞(x)) + C̃eδt .

In [N,T N
1 [, we have ρt (Z

1
t ,Z

3
t ) > 1

4( π√
1+ε

∧ cn(cst,V )), so

1

4

(
π√

1 + ε
∧ cn(cst,V )

)
− ε2 ≤ ρt (Z

1
t ,Z

3
t ) − ε2 ≤ ρ−∞(Z1

t ,Z
3
t ) ≤ π.

We can choose ε, ε2 such that 1
4( π√

1+ε
∧ cn(cst,V )) − ε2 ≥ β > 0. We obtain

cot(ρ−∞(Z1
t ,Z

3
t )) ≤ cot(β)

and

�g̃(t)ρ−∞(Z1
t , ·)(Z3

t ) ≤ n cot(β) + C̃eδT ,

(recall that T � 0). The increments of Z3 and Z1 are independent on [N,T N
1 ].

Hence

(Z1
t ,Z

3
t ) is a diffusion with generator 1

2

(
�g̃(t),1 + �g̃(t),2

)
,
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that is,

dρ−∞(Z1
t ,Z

3
t ) = dMt + 1

2

(
�g̃(t)ρ−∞(Z1

t , ·)(Z3
t ) + �g̃(t)ρ−∞(·,Z3

t )(Z
1
t )
)
dt,

where Mt is a local martingale, so

dρ−∞(Z1
t ,Z

3
t ) ≤ dMt +

(
cot
(

π

8

)
+ C̃eδT

)
dt.

Let us compute the quadratic variation of this local martingale,

d〈M,M〉t = dρ−∞(Z1
t ,Z

3
t ) dρ−∞(Z1

t ,Z
3
t )

with

dρ−∞(Z1
t ,Z

3
t ) = dρ−∞(Z1

t , ·) ∗ dZ3
t + dρ−∞(·,Z3

t ) ∗ dZ1
t .(3.3)

Let γ−∞(Z3
t ,Z

1
t )(s) be the minimal g̃(−∞)-geodesic between Z3

t and Z1
t that

exists and is unique almost everywhere because Cut−∞(M) is a null measure sub-
space. We write

v1
t = γ̇−∞(Z3

t ,Z
1
t )(0)

‖γ̇−∞(Z3
t ,Z

1
t )(0)‖g̃(−∞)

.

We complete v1
t with v

j
t to get a g̃(−∞)-orthonormal basis. We rewrite ∗dZ3

t as

∗dZ3
t =∑

U3
t ei ∗ dBi =∑

i,j

〈U3
t ei, v

j
t 〉g̃(−∞)v

j
t ∗ dBi.

Hence by the Gauss lemma, we obtain

dρ−∞(Z1
t , ·) ∗ dZ3

t =∑
dρ−∞(Z1

t , ·)U3
t ei ∗ dBi

=∑
i,j

dρ−∞(Z1
t , ·)〈U3

t ei, v
j
t 〉g̃(−∞)v

j
t ∗ dBi

=∑
i

dρ−∞(Z1
t , ·)〈U3

t ei, v
1
t 〉g̃(−∞)v

1
t ∗ dBi

=∑
i

〈U3
t ei, v

1
t 〉g̃(−∞) ∗ dBi.

It follows that(
dρ−∞(Z1

t , ·) ∗ dZ3
t

)(
dρ−∞(Z1

t , ·) ∗ dZ3
t

)=∑
i

〈U3
t ei, v

1
t 〉2

g̃(−∞) dt.

By the exponential convergence of the metric,

〈U3
t ei, v

1
t 〉g̃(−∞) ≥ 〈U3

t ei , v
1
t 〉g̃(t) − C̃eδT ,
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hence ∑
i

〈Utei, v
1
t 〉2

g̃(−∞)

≥∑
i

〈Utei, v
1
t 〉2

g̃(t) − 2C̃eδT
∑
i

〈Utei, v
1
t 〉g̃(t) + n(C̃eδT )2

= ‖v1
t ‖2

g̃(t) − 2C̃eδT
∑
i

〈Utei, v
1
t 〉g̃(t) + n(C̃eδT )2

≥ ‖v1
t ‖2

g̃(t) − 2C̃eδT n‖v1
t ‖g̃(t) + n(C̃eδT )2 Schwarz

≥ (‖v1
t ‖g̃(−∞) − C̃eδT )2 − 2C̃eδT n

(‖v1
t ‖g̃(−∞) + C̃eδT )

+ n(C̃eδT )2

≥ 1 − C̃eδT (2 − C̃eδT + 2(n + nC̃eδT ) − nC̃eδT )
≥ 1

2
for a small enough T .

The independence of Z1
t and Z3

t gives

d〈Mt,Mt 〉 = (
dρ−∞(Z1

t , ·) ∗ dZ3
t

)(
dρ−∞(Z1

t , ·) ∗ dZ3
t

)
+ (dρ−∞(·,Z3

t ) ∗ dZ1
t

)(
dρ−∞(·,Z3

t ) ∗ dZ1
t

)
,

and hence

d〈Mt,Mt 〉 ≥ 1dt.

For simplicity we write θ = 1
4( π√

1+ε
∧ cn(cst,V )). It follows from (3.3) that

P(T N
1 − N < 1/2)

= P
(∃t ∈ [N,N + 1/2] s.t. ρt (Z

1
t ,Z

3
t ) ≤ θ

)
≥ P

(∃t ∈ [N,N + 1/2] s.t. ρ−∞(Z1
t ,Z

3
t ) ≤ θ − ε2

)
≥ P

(∃t ∈ [N,N + 1/2] s.t. π + Mt

+ (cot(β) + C̃eδT )(t − N) ≤ θ − ε2
)

≥ α > 0.

For the last step, we use the usual comparison theorem for stochastic processes
(e.g., Ikeda and Watanabe [15]). �

We will now show that the coupling can occur between [T N
1 , T N

2 ] in a time
smaller than 1/2.



1326 K. A. COULIBALY-PASQUIER

PROPOSITION 3.9. There exists α̃ > 0 such that

P
(
CN <

(
T N

1 + 1
2

)∧ T N
2
)
> α̃.

PROOF. Between the two times T N
1 and T N

2 , we have mirror coupling between
Z1

t and Z3
t . As in [5, 19] we have

dρt (Z
1
t ,Z

3
t ) = ρ′

t (Z
1
t ,Z

3
t ) dt + 2dβt + 1

2

n∑
i=2

I t (J t
i , J

t
i ) dt,

dZ3
t = U3

t ∗ d((U3
t )−1mt

Z1
t ,Z3

t
U1

t ei dWi
t ),

where:

- βt is a standard real Brownian motion;
- γt (Z

1
t ,Z

3
t )(s) the minimal g̃(t) geodesic between Z1

t and Z3
t ;

- (γ̇ (Z1
t ,Z

3
t )(0), ei(t)) a g̃(t)-orthonormal basis of TZ1

t
M ;

- J t
i (s) the Jacobi field along γt for the metric g̃(t), with initial condition J t

i (0) =
ei(t) and J t

i (ρt (Z
1
t ,Z

3
t )) = //

t,γt

ρt (Z
1
t ,Z3

t )
ei(t), that is, the parallel transport for the

metric g̃(t) along γt , which is an orthogonal Jacobi field;
- I t is the index bilinear form for the metric g̃(t).

Between the times T N
1 and T N

2 , we have

ρt (Z
1
t ,Z

3
t ) ≤ π/

√
cst + ε ∧ cn(cst,V )

2
.

Hence by Lemma 3.6, there exists a constant C such that

ρ ′
t (x, y) ≤ C.

We have to show that between the times T N
1 and T N

2 ,

n∑
i=2

I t (J t
i , J

t
i )

is bounded from above. We denote r = ρt (Z
1
t ,Z

3
t ), and γ for γ t . Let G(s) be a

real-valued function and Kt
i be the orthogonal vector field over γ defined by

Kt
i (s) = G(s)(//

γt
t ei(t))(s),

where G(0) = G(r) = 1. We have

‖∇ t
∂/∂sK

t
i (s)‖2

g̃(t) = (Ġ)2.

By the index lemma (e.g., [20]), we deduce

I t (J t
i , J

t
i ) ≤ I t (Kt

i ,K
t
i )
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and

I t (Kt
i ,K

t
i ) =

∫ r

0
〈DsK

t
i ,DsK

t
i 〉g̃(t) − Rm,g̃(t)(K

t
i , γ̇ , γ̇ ,Kt

i ) dt,

where Rm,g̃(t) is the (4,0) curvature tensor associated to the metric g̃(t). Hence

n∑
i=2

I t (Kt
i ,K

t
i ) =

n∑
i=2

∫ r

0
〈DsK

t
i ,DsK

t
i 〉g̃(t) − Rm,g̃(t)(K

t
i , γ̇ , γ̇ ,Kt

i ) ds

=
n∑

i=2

∫ r

0
‖∇ t

∂/∂sKi(s)‖2
g̃(t) − Rm,g̃(t)(K

t
i , γ̇ , γ̇ ,Kt

i ) ds

=
∫ r

0
(n − 1)(Ġ)2 − (G)2 Ricg̃(t)(γ̇ , γ̇ ) ds

≤ (n − 1)

∫ r

0

(
(Ġ)2 − (G)2

(
1 − ε

n − 1

))
ds.

For performing the computation, we impose on G to satisfy the ODE⎧⎨
⎩

G(0) = G(r) = 1,
..
G +

(
1 − ε

n − 1

)
G = 0.

We notice that

(Ġ)2 − (G)2
(

1 − ε

n − 1

)
= (GĠ)′,

and the solution of this ODE is given by the function

G(s) = cos

(√
1 − ε

n − 1
s

)
+ 1 − cos(

√
(1 − ε)/(n − 1)r)

sin(
√

(1 − ε)/(n − 1)r)
sin

(√
1 − ε

n − 1
s

)
.

This function does not explode for r in [0, π

2
√

(1−ε)/(n−1)
], and

(Ġ)(r) − (Ġ)(0) = −2

√
1 − ε

n − 1
tan

(√
1 − ε

n − 1
r/2

)
.

Hence

n∑
i=2

I t (J t
i , J

t
i ) ≤ −2(n − 1)

√
1 − ε

n − 1
tan

(√
1 − ε

n − 1
r/2

)
≤ 0.

We get

dρt (Z
1
t ,Z

3
t ) ≤ C dt + 2dβt .
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After conditioning by FT N
1

we get the following computation

P

(
CN <

(
T N

1 + 1

2

)
∧ T N

2

)

= P

(
∃t ∈

[
T N

1 ,

(
T N

1 + 1

2

)
∧ T N

2

]
such that ρt (Z

1
t ,Z

3
t ) = 0

)

≥ P

(
∃t ∈

[
0,

1

2

]
such that Ct + 2βt + π/

√
1 + ε ∧ cn(cst,V )

4
= 0

and sup
0≤s≤t

(
Cs + 2βs + π/

√
1 + ε ∧ cn(cst,V )

4

)

<
π/

√
1 + ε ∧ cn(cst,V )

2

)

≥ α̃ > 0. �

REMARK 3.10. A better α̃ could be found with a martingale of the type
eaβt−a2t/2.

THEOREM 3.11. Let (M,g) be a compact, strictly convex hypersurface iso-
metrically embedded in Rn+1, n ≥ 2, and (M,g(t)) the family of metrics con-
structed by the mean curvature flow (as in Proposition 1.5). There exists a unique
g(Tc − t)-BM in law.

PROOF. Let X1
t and X2

t be two g(Tc − t)-BM, and by a deterministic change
of time we get two g̃(t)-BM which we denote Z1

t and Z2
t . Let N ≤ T � 0. As

above we build Z3
N,t and obtain Z3

N,t = Z2
t in law. Let k̃ = E(T − N) where E(t)

is the integer part of t . We have by construction

P(∃t ∈ [N,T ], s.t. Z3
N,t = Z1

t ) ≥ P(∃t ∈ [T N
0 , T N

2k̃
], s.t. Z3

N,t = Z1
t ).

Let F be the natural filtration generated by the two processes. By Propositions 3.8
and 3.9, along with the strong Markov property, we obtain

P(∃t ∈ [N,T N
2 ] such that Z3

N,t = Z1
t )

≥ P
(
T N

1 < 1
2 + N;CN <

(
T N

1 + 1
2

)∧ T N
2
)

= E
[
P
(
CN ≤ (T N

1 + 1
2

)∧ T N
2 |FT N

1

)
1T N

1 ≤1/2+N

]
≥ α̃E[1T N

1 ≤1/2+N ]
≥ αα̃ > 0.

By successive conditioning (by FT2k̃−2
, . . .) we get

P(�t ∈ [T N
0 , T N

2k̃
] such that Z3

N,t = Z1
t ) ≤ (1 − αα̃)k̃.
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Let f1, . . . , fm ∈ Bb(M) (bounded Borel functions) and t < t1 < · · · < tm ≤ 0,

|E[f1(Z
1
t1
) · · ·fm(Z1

tm
) − f1(Z

2
t1
) · · ·fm(Z2

tm
)]|

= |E[f1(Z
1
t1
) · · ·fm(Z1

tm
) − f1(Z

3
N,t1

) · · ·fm(Z3
N,tm

)]|
≤ E[|f1(Z

1
t1
) · · ·fm(Z1

tm
) − f1(Z

3
N,t1

) · · ·fm(Z3
N,tm

)|1Z1
t �=Z3

N,t
]

≤ 2‖f1‖∞ · · · ‖fm‖∞P(Z1
t �= Z3

N,t )

= 2‖f1‖∞ · · · ‖fm‖∞P(�u ∈ [N, t] such that Z1
u = Z3

N,u)

≤ 2‖f ‖∞ · · · ‖fm‖∞(1 − αα̃)E(t−N).

We get the result by sending N to −∞. �

REMARK 3.12. We could use Hamilton’s results in [13] as well as the same
strategies developed before to show the uniqueness in law of a g(Tc − t) Brownian
motion, when the family of metrics g(t) comes from a three-dimensional Ricci
flow and under the assumption of positive Ricci curvature for the starting manifold.

As application we give uniqueness of a solution of a differential equation with-
out initial condition.

COROLLARY 3.13. Let (M,g) be a compact, strictly convex hypersurface
isometrically embedded in Rn+1, n ≥ 2, and (M,g(t)) the family of metrics con-
structed by the mean curvature flow (as in Proposition 1.5). Then the following
equation has a unique solution in ]0, Tc], where Tc is the explosion time of the
mean curvature flow:⎧⎪⎪⎨

⎪⎪⎩
∂

∂t
h(t, y) + H 2(Tc − t, y)h(t, y) = 1

2
�g(Tc−t)h(t, y),∫

M
h(Tc, y) dμ0 = 1.

(3.4)

PROOF. Existence: let X
Tc]0,Tc] be a g(Tc − t)-BM with law h(t, y) dμTc−t at

time t . Then the law satisfies (3.4); this is a consequence of a Green formula (com-
pare with the similar computation for the Ricci flow in [4], Section 2).

Uniqueness: let h̃ be a solution of (3.4) and νk be a nonincreasing sequence
in ]0, Tc] such that limk→∞ νk = 0. Take an M-valued random variable X̃νk ∼
h̃νk

dμTc−νk
, and define the process

X
νk

t =
{

X̃νk , for t ∈]0, νk],
g(Tc − t)-BM(X̃νk ), for t ∈ [νk, Tc].

By a similar argument as in Section 2, we deduce the tightness of the sequence
X

νk ; let X be a limit of a extracted sequence (also denoted by νk). It is easy to
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see (by the uniqueness of solutions of SDE, resp., PDE with initial function) that

X
νk′
(·)

L= X
νk

(·) for times greater than νk and k′ ≥ k. Sending k′ to infinity we obtain

X(·)
L= X

νk

(·) for times greater than νk . Note also that for t ≥ νk ,

X
νk

(·)
L= g(Tc − ·)-BM(X

νk

t )
L= g(Tc − ·)-BM(Xt).

Hence X is a g(Tc − t)]0,Tc] Brownian motion. For t ≥ νk we have

Xt
L= X

νk

t ∼ h̃t dμTc−t .

By uniqueness in law of such processes we get uniqueness of the solution, hence
h = h̃. �
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